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Multi-Trace Boundary Integral Equations

Xavier Claeys, Ralf Hiptmair and Carlos Jerez-Hanckes

Abstract. We consider the scattering of acoustic or electromagnetic waves at a penetrable

object composed of different homogeneous materials. This problem can be recast as a first-

kind boundary integral equation posed on the interface trace spaces through what we call a

single trace boundary integral equation formulation (STF). Its Ritz-Galerkin discretization by

means of low-order piecewise polynomial boundary elements on fine interface triangulations

leads to ill-conditioned linear systems of equations, which defy efficient iterative solution.

Powerful preconditioners for discrete boundary integral equations are provided by the policy

of operator preconditioning provided that the underlying trace spaces support a duality pairing

with L2 pivot space. This condition is not met by the STF. As a remedy we have proposed
two variants of new multi-trace boundary integral equations (MTF); whereas the STF features

unique Cauchy traces on material domain interfaces as unknowns, the multi-trace approach

tears apart the traces so that local traces are recovered. Local trace spaces are in duality with

respect to the L2-pairing, and, thus, operator preconditioning becomes available for MTF.

Keywords. Helmholtz equation, Maxwell’s equation, transmission problems, boundary inte-

gral equations, PMCHWT, operator preconditioning, boundary elements, multi-trace formula-

tions.

AMS classification. 74J20,65N38,65N55.
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1 Introduction

Boundary integral equations connecting traces of solutions of linear elliptic bound-

ary value problems were a key discovery of classical analysis and potential theory.

The research on which this article is based was funded by Thales Systemes Aeroportes SA through the

project “Preconditioned Boundary Element Methods for Electromagnetic Scattering at Dielectric Ob-

jects”.
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They have also become a pivotal tool for numerical simulation, since they provide the

foundation of the boundary element method in all its variants.

No doubt, the study of boundary integral equations is a mature field of applied math-

ematics. Thus, the reader might be surprised to learn that the field has witnessed recent

new developments. At their cradle stood transmission problems arising in the scatter-

ing of waves at composite objects. A composite object is finite and composed of a few

simple parts with constant material properties inside each of them, see Section 1.1 for

details. It goes without saying that this kind of geometry is very common in technical

designs.

The use of boundary element methods to tackle such transmission problems nu-

merically is well established and they have become the methods of choice for a range

of industrial applications. Yet, for scattering at composite objects scalability of nu-

merical simulations based on traditional boundary element approaches emerged as a

challenge; despite the use of sophisticated matrix compression techniques like multi-

pole [15], adaptive cross approximation [2], and panel clustering [47, Ch. 7], compu-

tational effort still increases much faster than the number of degrees of freedom. The

sole culprit is sluggish convergence of iterative solvers, when applied to high resolu-

tion boundary element models. Unfortunately, it seems to be the very structure of the

customary first-kind boundary integral equations that denies us the remedy of effective

preconditioners. In Section 4 we are going to explain this in detail.

This takes us to the heart of this article: after having understood the basic difficulties

inherent in the standard first-kind boundary integral equations, called single-trace for-
mulation (STF) hereafter, we will try to convince the reader that those can be overcome
by switching to multi-trace formulations (MTF). They come in two different varieties,
the global MTF to which Section 5 is devoted, and the local MTF treated in Section 6.

Of course, the problem has been attacked from other directions, notably by means of

domain decomposition techniques like “Boundary element tearing and interconnect-

ing” (BETI) [36, 51]. Schemes with a multi-trace flavor have also been proposed in

computational electromagnetics, see [41, 43, 42] and [49, Sect. 3-4]. They seem to be

related to the class of method proposed in this article, but the precise link still awaits

disclosure.

In this article we aim to motivate and explain our novel multi-trace boundary integral

equations. The emphasis will be rather on their derivation than on comprehensive

theoretical analysis. Simplicity will often trump generality and for rigorous proofs

and technical details the reader is referred to the original publications

• [19] as concerns the global MTF for acoustic scattering,

• [18], where the global MTF for electromagnetic scattering was introduced,

• [32], which proposed the local MTF.

Discretization will be addressed, because it is a particular difficulty haunting the low

order boundary element Ritz-Galerkin discretization of the STF that has triggered the

pursuit of new approaches. Yet, we are not going to delve into a full-fledged numerical
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analysis of a Galerkin discretization of the new MTF. Nor will we report numerical

results; these can be found in the seminal publications cited above.

Eventually, we would like to remind the reader that this article reports very recent

developments that are unfolding with numerous issues still unresolved. Here we can

only provide a snapshot of current research.

List of notations

!i material sub-domains ⊂ Rd, !0 unbounded, see Fig. 1

N number of sub-domains

!∗ union of closures of bounded sub-domains

!0 (unbounded) complement of!∗

n, ni exterior unit normal vector fields

"ij interface ∂!i ∩ ∂!j , often assumed to have non-vanishing d − 1-

dimensional measure

# skeleton, union of all interfaces

κi, κ(x) (local) wave numbers

αi, α(x) (locally constant) coefficients for PDE operator, see (1.4)

D first order partial differential operator grad or curl

D∗ L2-adjoint of D, either − div or curl

L 2nd-order partial differential operatorD∗(α(x)D·)− κ2(x)u

H(D,!) Sobolev spaces, see (1.5)

uinc incoming wave, see (1.7)

T (D, ∂!) trace space for Sobolev spaceH(D,!)

TD (Dirichlet) trace operator

[·, ·], !·, ·" bi-linear pairings, usually of L2-type

〈·, ·〉 duality pairing between a vector space and its dual

TN Neumann trace operator, see (2.3)

T (∂!) Cauchy trace space, product of Dirichlet and Neumann trace spaces

u, v,w, . . . elements of Cauchy trace spaces

A,B, . . . linear operators on Cauchy trace spaces

T,T+ Cauchy trace operator, see (2.6)

X exterior-to-interior trace transfer operator, see (2.8)

SL,DL single and double layer potentials, see Theorem 2.2

G total potential, see (2.13)

P Calderón projector, see Definition 2.4
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CD(∂!) space of Cauchy data for L, see Definition 2.5

A,Aj [i] local compound boundary integral operator, see (2.17)

MT (#) multi-trace space, see (3.1)

$u,$v, $w, . . . elements ofMT (#)

Li localization operators, Li :MT (#) → T (∂!i)

ST (#) single-trace space, see (3.5)

S′# single-trace boundary integral operator (weak form), see (3.20)

#h,"j,h boundary meshes

1.1 Geometry

The notion of a composite scatterer inspires the geometric setting adopted throughout

this article. It is supposed to occupy the bounded domain !∗ ⊂ Rd, d = 2, 3, it
features a Lipschitz boundary, and it is composed of so-called sub-domains !i ⊂ Rd,

i = 1, . . . ,N , that represent open and connected curvilinear Lipschitz polygons (d =
2) or polyhedra (d = 3). We demand that they do not intersect (!i ∩ !j = ∅) for
i (= j, and that they form a partition of !∗ in that

!∗ =
N⋃

i=1

!i .

The unbounded complement of!∗ should be connected and will provide another sub-

domain !0, which means !0 := Rd \!∗.

The generic situation that we have in mind is depicted in Figure 1. The sub-domains

will usually be adjacent, which engenders “material junction points”, that is, points on

which at least three sub-domains abut (marked in Figure 1). In this case, some !i will

inevitably have non-smooth boundaries. For each i = 1, . . . ,N , the boundary ∂!i

is orientable and can be endowed with a unit normal vector field ni pointing into the

exterior of !i.

We write "ij for the common interface of!i and!j , "ij := ∂!i∩∂!j, i (= j. Two
sub-domains !i and !j are adjacent, if "ij is a d− 1-dimensional Lipschitz manifold
(with boundary). In this case we equip "ij with an intrinsic orientation that amounts to

prescribing a specific transversal direction. Note that, when referring to “all interfaces

"ij” we only include those that have a positive d − 1-dimensional measure. We refer
to them as “genuine interfaces” in the sequel. The union of all the interfaces "ij forms

the so-called skeleton

# :=
⋃

ij

"ij =
N⋃

i=0

∂!i .
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replacements

!0

!1

!2

!3

!4

"01

"02

"03
"12

"13

"23

n0

n0

n0

n1
n1

n1

n2

n2

n2
n3

n3

n3

junction points

Figure 1. Typical geometry of a 2D “composite object”, N = 4, induced orientations of

some interfaces indicated by normal directions.

ForN > 1 the skeleton # will usually not be orientable, nor be a manifold.

1.2 Transmission Problems

The application that we have in mind for the new multi-trace integral equations are

time-harmonic wave scattering problems. The first instance is acoustic scattering with

penetrable materials, modelled by a transmission problem for the Helmholtz equation

[20, Ch. 2], [40, Ch. 2],

− div(αi gradu)− κ2iβiu = 0 in !i , i = 0, . . . ,N ,

+ transmission conditions across "ij for adjacent sub-domains,

+ Sommerfeld radiation conditions at∞.

(1.1)

Here, the κi ≥ 0 are the local wave numbers, the coefficients αi are positive definite

d × d tensors, and βi > 0, i = 0, . . . ,N . The transmission and radiation conditions
will be specified in detail in Section 2.1. A related scattering problem can be stated for

d = 3 and electromagnetic waves based on the time-harmonic Maxwell equations [20,
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Ch. 6], [40, Ch. 5],

curl(αi curl u) − κ2iβiu = 0 in !i , i = 0, . . . ,N ,

+ transmission conditions across "ij for adjacent sub-domains,

+ Silver-Müller radiation conditions at∞,

(1.2)

where u stands for the electric or magnetic field. In the former case, αi is called the

magnetic susceptibility and βi the electric permittivity. Both are positive definite 3×3
tensors.

For the sake of simplicity, in the remainder of this article we will assume βi ≡ 1

in (1.1) and βi to be the identity matrix in (1.2). In both cases αi is supposed to be

a positive number, which describes isotropic materials. Dropping the subscript from

αi and κi and writing α(x) and κ(x) indicates that we consider the corresponding
piecewise constant functions on Rd.

The transmission problems (1.1) and (1.2) have much in common. Therefore we

opt for a unified treatment in an abstract framework. We are aware, that cognitive

ease suggests a presentation for a concrete transmission problem. On the other hand,

abstraction unveils important general patterns, which, eventually, promotes insight. In

our opinion this benefit is worth the extra effort it takes to grasp abstraction. In this

spirit, let us introduce the general second-order partial differential operator

Lu := D
∗(α(x)Du)− κ2(x)u , (1.3)

where D is a suitable first-order differential operator, for instance, D = grad for the

Helmholtz equation (1.1), and D = curl for Maxwell’s equation. The other first-

order differential operator occurring in (1.4) is the formal L2-adjoint D∗ of D. Then

solutions of both (1.1) and (1.2) satisfy

Lu = 0 locally in !i , i = 0, . . . ,N . (1.4)

For the variational formulation of the transmission problems associated with (1.4)

we have to establish a function space framework. To that end, for the remainder of this

section let ! be a generic domain ⊂ Rd, d = 2, 3. The natural domains of definition
of both D and D∗ are the Sobolev spaces 12

H(D,!) := {u ∈ L2(!) : Du ∈ L2(!)} ,

H(D∗,!) := {u ∈ L2(!) : D
∗u ∈ L2(!)} .

(1.5)

They become Hilbert spaces when equipped with the natural graph norm. In case !

is unbounded, a subscript “loc” will tag the Frechet spaces of functions that belong to

1 Bold roman typeface will mark functions or vector fields defined on a domain ⊂ R
d.

2 We use calligraphic font for Hilbert spaces of functions, unless this clashes with firmly established

notational conventions for Sobolev spaces.
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the corresponding function space on each compact subset. Moreover, in order to deal

with the radiation conditions at∞ for ! = !0, the spaceH(D,!) has to be modified
by switching to weaker weighted norms. This yields larger Hilbert spacesHrad(D,!)
that contain all “physically meaningful outgoing solutions”. Details can be found in

[47, Sect. 2.9.2.4] and [40, Sects. 2.6.5 & 5.4].

A function u qualifies as a solution of Lu = 0 on! only if it belongs toHloc(D,!).
In addition, the differential equation immediately implies αDu ∈ Hloc(D∗,!) and we
conclude that u is an element of the function space

Hloc(L,!) := {v ∈ Hloc(D,!) : αiDv ∈ Hloc(D
∗,!)} . (1.6)

Sources will be introduced into our scattering models through a given incident wave
uinc ∈ Hloc(L,Rd) that satisfies

L0uinc := D
∗(α0Du)− κ20u = 0 everywhere in Rd . (1.7)

Plane waves provide the most common specimens for uinc.

Definition 1.1. A function u ∈ Hloc(L,!)∩Hrad(D,!) is called a radiating solution
(on !), if it solves Lu = 0 in the sense of distributions.

The function spaces introduced above supply a suitable framework for the varia-

tional formulation of the transmission problems that are in the focus of this article:

seek u ∈ Hloc(D,Rd) such that

[αDu,Dv]
Rd −

[
κ2u,v

]
Rd = 0 ∀v ∈ Hloc(D,R

d) , (1.8)

where [w,q]
Rd :=

∫
Rd w(x) · q(x) dx, and the scattered field u− uinc satisfies

(u− uinc) |!0 ∈ Hrad(D,!0) . (1.9)

Obviously, solutions of (1.8) are radiating solutions in each bounded !i. By Rel-

lich’s lemma, analytic continuation techniques and Fredholm arguments existence and

uniqueness of solutions can be established [1, 28].

Theorem 1.2. For D = grad (“Helmholtz case”) and D = curl (“Maxwell case”)
the variational problems (1.8) possess a unique solution.

Remark 1.1 (Complex and vanishing wave numbers). Lossy materials, in which prop-
agating waves are damped, can be modelled by wave numbers κi with positive imag-
inary part. All methods discussed in this article can deal with Imκi > 0 without

modifications.

In the Helmholtz case D = grad all considerations of this article carry over to

the case of local pure diffusion κi = 0 for some or all i’s. If κ0 = 0 the radiation

conditions have to be replaced with suitable decay conditions, see [38, Ch. 8].

In the Maxwell case D = curl we cannot accommodate κi = 0 for any i due to
the notorious low-frequency instability of the representation formulas underlying our

methods, see [22, 24] for a discussion. /
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2 Boundary Integral Operators

Many boundary value problems for linear second order differential operators with con-

stant coefficients can be recast in the form of boundary integral equations, and this can

be achieved through a number of standard steps. This is a venerable insight of applied

mathematics dating back to the 19th century and monographs offer comprehensive

coverage of the topic, among them [38, 47, 33]. This section is meant to review and

summarize relevant formulas and results, introducing key notions and notations along

the way.

In this section the exposition will mainly address a generic domain ! ⊂ Rd with

compact Lipschitz boundary ∂! and exterior unit normal vectorfield n ∈ L∞(∂!).
Throughout, α and κ are positive numbers and stand for constant coefficients in the
partial differential operator L := D∗αD − κ2Id, cf. (1.3).

2.1 Trace spaces and operators

WritingH0(D,!) for the closure of smooth compactly supported functions inH(D,!),
it turns out that the quotient spaceH(D,!)/H0(D,!) is isomorphic to an intrinsi-
cally defined function space T (D, ∂!) on the boundary ∂!, a so-called trace space.
“Intrinsic” indicates that we can also establish an isomorphism

T (D, ∂!) ∼= H(D,Rd \!)/H0(D,R
d \!) .

The canonical projectionH(D,!) 1→ T (D, ∂!) gives rise to a surjective and contin-
uous trace operator

TD :H(D,!) 1→ T (D, ∂!) .

It owes its name to the fact that TD applied to smooth functions inH(D,!) on a do-
main! with piecewise smooth boundary agrees with a particular pointwise restriction

almost everywhere on ∂!. This relationship is addressed by so-called trace theorems.
Traces occur in the crucial integration by parts formulas (“Green’s theorems”)

[Du,v]! − [u,D∗v]! = [TD u,TD∗ v]∂! ∀u ∈ H(D,!), v ∈ H(D∗,!) , (2.1)

with [·, ·]! and [·, ·]∂! denoting (extensions of) the bi-linearL
2-type pairings on! and

∂!, respectively.
Notations and conventions. Single and double square brackets designate bi-linear

forms [·, ·] , !·, ·" : V × W 1→ C on function spaces, so-called pairings. Usually

they will carry an additional subscript for clear identification. Angle brackets 〈·, ·〉 are
reserved for the duality pairing 〈·, ·〉 : V ′×V → C between a normed space V and its

dual V ′. Round brackets (·, ·)V are used for (sesqui-linear) inner products in Hilbert
spaces. Recall from [47, Thm. 2.1.44] that a pairing [·, ·] : V × W → C induces an
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isomorphism V 1→ W ′, if

∃c > 0 : sup
w∈W

| [v,w] |

‖w‖W
≥ c ‖v‖V ∀v ∈ V ,

sup
v∈V

| [v,w] |

‖v‖V
> 0 ∀w ∈ W .

(2.2)

We phrase this as “W is dual to V with respect to the pairing [·, ·]”, if [·, ·] acts on
V × V , then V is called “self-dual with respect to the pairing [·, ·]”.
We would like to highlight an important consequence of (2.1).

Theorem 2.1. The spaces T (D, ∂!) and T (D∗, ∂!) are dual to each other with re-
spect to the pairing [·, ·]∂!.

Two trace operators are induced by the second-order partial differential operator L:

TD :H(D,!) → T (D, ∂!) , TD :=TD ,

TN :H(L,!) → T (D∗, ∂!) , TN :=TD∗(αD·) .
(2.3)

We are going to refer to the surjective operators TD and TN as Dirichlet trace and
Neumann trace, respectively. For the associated trace spaces we adopt the notation
TD(∂!) = T (D, ∂!) and TN (∂!) := T (D∗, ∂!) and the parlance “Dirichlet trace
space” and “Neumann trace space”. These can be merged into the Cauchy trace space

T (∂!) := TD(∂!)× TN (∂!) , (2.4)

which is self-dual with respect to the pairing 3

!u, v"T (∂!) := [u,ϕ]∂! + [v, ν]∂! , u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈ T (∂!) . (2.5)

A related compact notation is the Cauchy trace operator4

T :H(L,!) → T (∂!) , T u :=

(
TD u

TN u

)
. (2.6)

Of course, traces can also be taken from the exterior of !, with the complement Rd \
! now playing the role of !. The corresponding trace operators are tagged with a

superscript “+”, for instance,

T
+ :Hloc(L,R

d \!) → T (∂!) , T
+ u+ :=

(
T
+
D u+

T
+
N u+

)
. (2.7)

3 Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is

reserved for Dirichlet traces, and Greek symbols for Neumann traces.
4 We use blackboard bold typeface in order to distinguish operators acting on or mapping into Cauchy

trace spaces.
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Note that both Neumann tracesTN and T
+
N rely on the same coefficientα, but assume

opposite orientation of ∂!! Thus, even for u ∈ Hloc(L,Rd) exterior and interior
traces agree only up to a change of sign of the Neumann component

T
+ u = X T u where X :

{
T (∂!) → T (∂!)(u

ϕ

)
1→

( u
−ϕ

) . (2.8)

Concretization 2.1 (Helmholtz case). Our terminology “Dirichlet trace” and “Neu-
mann trace” is borrowed from the standard parlance used for the Helmholtz problem,

that is, for D = grad andH(D,!) = H1(!). In this special case the trace operators
boil down to

TD u = u |∂! , TN u = (αgrad u) |∂! · n . (2.9)

The trace spaces are the well-known Sobolev spacesH
1
2 (∂!) andH− 1

2 (∂!), see [38,
Ch. 3]. /

Concretization 2.2 (Maxwell case). In the Maxwell case D = curl andH(D,!) =
H(curl,!) we are led to consider the tangential trace operators

TD u = n× (u |∂! × n) , TN u = (α curl u) |∂! × n .

In [10, 7, 11] the related trace space have been characterized and we recall the notations

TD(∂!) = H− 1
2 (curl",!) and TN (∂!) = H− 1

2 (div",!). /

Remark 2.1. Both, in (2.9) and (2.2), the Neumann traces will change signs, when the
orientation of the normal vector n is flipped; the induced orientation of ∂! matters

for the Neumann trace! This pattern has a simple explanation, when viewing (1.4) as

an equation for differential forms, see [29, 35]. Then it turns out that multiplication

with α corresponds to the action of a Hodge-operator, converting straight forms into
twisted forms. /

The formula (2.1) can be applied to a solution u of (1.4) and with v := αDu,
where the overbar effects complex conjugation. Thus, by virtue of the relation (2.1),

we obtain

[TD u,TN u]∂! =

∫

!

α |Du|2 − κ2 |u|2 dx . (2.10)

Notation. By a subscript index we indicate that a trace operator is applied to a
particular sub-domain, e.g., TD,i, TN,i, Ti, etc., i = 0, . . . ,N . Invariably, the induced
orientation of ∂!i is used.

Remark 2.2 (Radiation conditions). Dirichlet and Neumann traces occur in the formal
statement of the radiation conditions mentioned in the statement of the transmission

problems. Let us adopt the notation Tr
D and T

r
N for Dirichlet- and Neumann traces
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onto the boundary of the ball Br := {x ∈ Rd : |x| < r} (from inside). Then

u ∈ Hloc(L,!) will satisfy the radiation condition, if

lim
r→∞

∫

|x|=r

|(Tr
N u)(y)− ıκ(Tr

D u)(y)|2 dS(y) = 0 . (2.11)

/

2.2 Potentials

Potential representations of solutions of (1.4) are the first step towards boundary inte-

gral equations. Here, by the term “potential” we refer to a linear operator that maps a

function in a trace space on ∂! to a function defined everywhere onRd \∂!. Further,
potentials are supposed to provide radiating solutions of (1.4) in both ! and Rd \ !.
Throughout, when acting on sufficiently smooth argument functions, potentials agree

with integral operators with singular kernels spawned by fundamental solutions for L.

The following key result can be found in [47, Sect. 3.11] and [38, Ch. 6] for Helmholtz’

equation (1.1) and in [12] for Maxwell’s equation (1.2).

Theorem 2.2 (Single domain representation formula). There are continuous operators,
depending on α > 0 and κ > 0, the

single layer potential SL : TN (∂!) 1→ H(L,! ∪ R
d \!) ,

double layer potential DL : TD(∂!) 1→ H(L,! ∪ R
d \!) ,

such that

(i) SL(ϕ) and DL(u) are radiating solutions of (1.4) in ! ∪ Rd \ ! for any ϕ ∈
TN (∂!), u ∈ TD(∂!).

(ii) every solution u ∈ Hrad(L,!) of Lu = 0 can be written as

u = −DL(TD u) + SL(TN u) , (2.12)

A more compact way to write (2.12) is

u = G(T u) , with G(u) := −DL(u) + SL(ϕ) , u :=

(
u

ϕ

)
∈ T (∂!) . (2.13)

Concretization 2.3 (Helmholtz, d = 3). For the Helmholtz problem (1.1) with wave

number κ and scalar coefficient α > 0 the concrete integral formulas for the potentials

are

SL(ϕ)(x) = 1
α

∫

∂!
$κ/

√
α(x− y)ϕ(y) dS ,

DL(u)(x) =

∫

∂!
grad$κ/

√
α(x− y) · n(y)u(y) dS ,

(2.14)
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for x (∈ ∂!, u a distribution on ∂!, and with the fundamental solution

$θ(z) =
exp(ıθ |z|)

4π |z|
, θ ∈ R . (2.15)

/
Concretization 2.4 (Maxwell). In the case of Maxwell’s equations (1.2) (κi = κ)
we find from the fundamental Stratton-Zhu representation formula [12, Sect. 4], [20,

Thm. 6.2] for x (∈ ∂!

SL(ϕ)(x) = 1
α

∫

∂!
$κ/

√
α(x− y)ϕ(y) dS+

1
ακ2

grad
x

∫

!

$κ/
√
α(x− y)(div"ϕ)(y) dS ,

DL(u)(x) = − curlx

∫

∂!
$κ/

√
α(x− y)(n× u)(y) dS ,

(2.16)

for tangential vector fields ϕ, u : ∂! 1→ C3. /
Inherent in the definition of potentials is that they generate a function defined both

inside and outside of !. This enables us to take traces of potentials also from the

exterior of ∂!. The famous jump relations tell us that, thus, we will not get any new
boundary integral operators.

Theorem 2.3 (Jump relations).

(T+ −X T) ◦G =

(
T
+
D −TD

T
+
N +TN

)
◦G = −X on T (∂!) .

We refer to [47, Sect. 3.3.1], [38, Thm. 6.11] (Helmholtz) and [12, Thm. 7] (Maxwell)

for proof and more details.

2.3 Calderón projectors

Obviously applying the total trace operator T to the representation formula (2.12) ex-

actly recovers the traces of a radiating solution of (1.4). The converse is also true. To

formalize this, we introduce a pivotal operator, cf. [47, Sect. 3.6], [33, Sect. 5.6].

Definition 2.4 (Calderón projector). The Calderón projector P for L on ! is defined

by

P := T ◦G : T (∂!) → T (∂!) .

Thanks to the mapping properties of the trace operators and the potentials, P is

linear and continuous. It has a close link with the subspace of T (∂!) that contains all
traces of functions in the kernel of L.
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Definition 2.5 (Cauchy data). The space of Cauchy data CD(∂!) ⊂ T (∂!) for the
differential equation (1.4) is

CD(∂!) := {v ∈ T (∂!) : ∃u ∈ Hrad(L,!), Lu = 0, v = T u} .

As corollary of Theorem 2.2 we infer the following fact.

Theorem 2.6. The Calderón projector is a continuous projector onto CD(∂!), that is,

P
2 = P and Ker(Id− P) = CD(∂!) .

Boundary integral operators are obtained by letting the trace operators TD and TN

act on the potentials SL and DL. This is exactly what Definition 2.4 of the Calderón

projector boils down to. Hence, we use it to define the continuous compound boundary

integral operator

A := P− 1
2
Id

(Thm. 2.3)
= 1

2

(
TD +T

+
D

TN −T
+
N

)
◦G : T (∂!) → T (∂!) . (2.17)

Recalling the definition ofG, (2.17) boils down to applying two traces to two potentials

(single and double layer), which yields a total of four boundary integral operators. Yet,

we never need to worry about the fine structure of A, which can safely be regarded

as a “black box operator” that is at our disposal (in discretized form, of course, see

Section 3.3).

Concretization 2.5 (Helmholtz case). In the case ofD = grad, we can disassemble A

into

A =

(
K V

W K′

)
, (2.18)

where the individual boundary integral operators are known as single layer boundary

integral operator V, double layer boundary integral operator K, adjoint double layer

boundary integral operator K′, and hypersingular boundary integral operatorW. Our

notation follows [47, Ch. 3], but the reader should be aware that no universally ac-

cepted notational conventions have emerged. /

Concretization 2.6 (Maxwell case). For a splitting of A according to (2.18) in the

case of Maxwell’s equations we refer to [30, Sect. 3] for descriptions of the operator

building blocks. Beware, that [12] and the monograph [40] adopt conventions for

the Neumann trace different from ours, which yields slightly different forms of the

boundary integral operators. /

A deep result from the theory of boundary integral operators asserts a generalized

Garding inequality for A, see [47, Prop. 3.5.5] for Helmholtz and [12, Lemma 10] for

the Maxwell case.
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Theorem 2.7 (Coercivity of boundary integral operators). For any α and κ there exist
an isomorphism F : T (∂!) → T (∂!) and a compact operatorK : T (∂!) → T (∂!)
such that for some constant C > 0 5

|!A v,F v"T (∂!) + !K v, v"T (∂!)| ≥ C ‖v‖2T (∂!) ∀v ∈ T (∂!) .

Remark 2.3 (Weak boundary integral equations). In order to pursue Galerkin dis-
cretization of boundary integral equations, these have to be cast in variational form.

To this end the self-duality of T (∂!) with respect to the pairing !·, ·"T (∂!) comes

handy; for instance, to A we can associate the bi-linear form

(u, v) 1→ !A u, v"T (∂!) , u, v ∈ T (∂!) . (2.19)

In turns, the bi-linear form gives rise to an operator T (∂!) → T (∂!)′ mapping the
Cauchy trace space to its dual. Occasionally we will tag such operators with a prime ′,

e.g., A′. /

Notations. Above potentials and boundary integral operators have been introduced
for a generic domain ! and their dependence on the coefficients was suppressed in

the notation. In the sequel we will have to consider potentials defined on different

boundaries and relying on different coefficients.

Firstly, to distinguish their incarnations for a sub-domain !j we use a subscript j,
e.g.,Aj ,Gj , etc. Doing so, we tacitly assume that all traces and potentials are based on

the coefficients αj and κj associated with !j . Sometimes, though potentials and inte-

gral operators are defined on ∂!j we will nevertheless base them on the coefficients

αi and κi from another sub-domain !i. If this is the case, we write Aj [i], Gj [i].

3 Classical Single-Trace Integral Equations

This section is dedicated to a review of a well established boundary integral equation

formulation for the transmission problems (1.1) and (1.2). For Helmholtz’ equation

it was first analyzed in [53], but probably used earlier. For Maxwell’s equations it

agrees with the so-called Poggio-Miller-Chew-Harrington-Wu-Tsai (PMCHWT) inte-

gral equations [44, 14, 54, 27]. Its numerical analysis was first accomplished in [12].

3.1 Skeleton trace spaces

The skeleton multi-trace space is simply defined as

MT (#) := MTD(#)×MTN (#) , (3.1)

with
MTD(#) := TD(∂!0)× · · · × TD(∂!N) ,

MTN (#) := TN (∂!0)× · · · × TN (∂!N) .
(3.2)

5 We use an overbar to designate complex conjugation.
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It owes its name to the fact that on each interface "ij a function $u ∈ MT (#) com-
prises two pairs of Dirichlet and Neumann data, one contributed by the sub-domain

on either side. Obviously,MT (#) can be identified with the product of local Cauchy
trace spaces

MT (#) ∼= T (∂!0)× · · · × T (∂!N) , (3.3)

which illustrate the localized nature ofMT (#). We chose the ordering of local trace
components given by (3.1) for the sake of simpler notations in Section 3. To isolate

the contribution of a single sub-domain we rely on trivial localization operators 6

Li :MT (#) → T (∂!i) , Li $u :=

(
ui
νi

)
,

$u = (u0, . . . , uN , ν0, . . . , νN ) ,

ui ∈ TD(∂!i), νi ∈ TN (∂!i) .

The multi-trace spaces inherit all properties of their local components. For instance,

a self-duality of MT (#) is obviously induced by the L2-type bi-linear pairing, cf.
(2.5),

#
$u,$v

$
MT (#)

:=
N∑

i=0

#
Li $u,Li$v

$
T (∂!i)

, $u,$v ∈ MT (#) . (3.4)

Now, we introduce an important notion intimately linked to the transmission condi-

tions that connect traces across interfaces. This connection is captured by the so-called

single-trace spaces

ST (#) := STD(#)× STN (#) ⊂ MT (#) , (3.5)

STD(#) := {(u0, . . . , uN ) ∈ MTD(#) : ∃u ∈ H(D,Rd), ui = TD,i u} ,

STN (#) := {(ν0, . . . , νN ) ∈ MTN (#) : ∃φ ∈ H(D∗,Rd), νi = TD∗,iφ} .
(3.6)

In words, functions in STD(#) and STN (#) are skeleton traces of functions defined
on Rd. Further explanations of the term “single trace” are given in Remark 3.2.

Concretization 3.1 (Helmholtz). For the case D = grad, the space STD(#) contains
restrictions of functions in H(D,Rd) = H1(Rd) to the skeleton #. We deem the

mental image of continuous functions on # an appropriate view of STD(#) in this
case.

The spaceSTN (#) contains the normal component traces of vectorfields inH(div,R3).
However, the normal components rely on the local exterior unit vectors ni, which re-

flect the induced orientation of ∂!i. Note that the two induced orientations of an

interface "ij are opposite. Thus, an element of STN (#) will involve two Neumann
traces on each interface that have opposite sign. /

6 Functions in a multi-trace space will be distinguished by an overset arrow, e.g.,!u, !v.



16 X. Claeys, R. Hiptmair and C. Jerez

Concretization 3.2 (Maxwell). Consider d = 3 and D = curl. Then STD(#) will
contain tangential components on # of vectorfields inH(curl,R3). Imagine these as
vectorfields # 1→ R3, tangential to the interfaces in # that, in addition, are tangentially

continuous across the seams between genuine interfaces.

Again, elements ofSTN (#)will no longer support an interpretation as well-defined
functions on #. They can be obtained as

STN (#) = {(ν1, . . . , νN ) ∈ MTN (#) : ∃$u ∈ STD(#) : νi = ui × ni} , (3.7)

that is, by taking a tangential vectorfield on # and rotating it counterclockwise (seen

from inside !i) on ∂!i. It is clear that the result will be two vectorfields of opposite

sign on each interface. /

Remark 3.1. With single trace spaces at our disposal, we can eventually give a rigorous
description of the transmission conditions already mentioned in (1.1) and (1.2). These
are conditions to be satisfied by functions ui that provide local solutions of (1.4) on

!i so that they qualify as solutions of (1.8). They read

(TD,0 u0, . . . ,TD,N uN ,TN,0 u0, . . . ,TD,N uN ) ∈ ST (#) , (3.8)

which means, in the sense of distributions,

TD,i ui = TD,j uj and TN,i ui = −TN,j uj on "ij . (3.9)

In light of (3.6), the equivalence between (3.8) and (3.9) is known in the form of

compatibility conditions inherent in the definition of Sobolev spaces. For instance, in

the Helmholtz case, if u fulfills u |!i
∈ H1(!i) it will belong toH1(Rd) if and only if

it features weak continuity (agreement of Dirichlet traces in the sense of distributions)

across all genuine interfaces. Analogous facts are known for u |!i
∈ H(div,!i) and

u |!i
∈ H(curl,!i). /

A fundamental result is the following “polar set” characterization of ST (#) as a
subspace ofMT (#) given in [19, Prop. 2.1].

Theorem 3.1.

ST (#) = {u ∈ MT (#) : !u, v"MT (#) = 0 ∀v ∈ ST (#)} .

Before we give a formal proof, let us explain the intuition behind this result; for

sufficiently smooth functions we find

#
$u,$v

$
MT (#)

=
∑

i,j

∫

"ij

uiψi + viνi + ujψj + vjνj dS , (3.10)

where $u = (u0, . . . , uN , ν0, . . . , νN ), $v = (v0, . . . , vN ,ψ0, . . . ,ψN ). This reflects the
fact that each interface is visited twice when summing integrals over all sub-domain
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boundaries. Guided by the insight that functions inSTD(#) are single-valued on each
interface, whereas functions in STN (#) differ in sign on both sides of "ij , cf. (3.9),
we conclude complete cancellation of all terms in (3.10).

Proof of Theorem 3.1. (i) First assume $u =
(&u
&ν

)
∈ ST (#), that is, there are associated

functions u ∈ H(D,Rd) and φ ∈ H(D∗,Rd) such that ui = TD,i u, νi = TD∗,iφ.

Pick $v ∈ ST (#) with associated functions v ∈ H(D,Rd), ψ ∈ H(D∗,Rd), so
that integration by parts according to (2.1) yields,$v =

(&v
&ψ

)
,

#
$u,$v

$
MT (#)

=
N∑

i=1

[ui,ψi]∂!i
+ [vi, νi]∂!i

=
N∑

i=1

[Du,ψ]!i
− [u,D∗ψ]!i

+ [Dv,ϕ]!i
− [v,D∗ϕ]!i

= [Du,ψ]
Rd − [u,D∗ψ]

Rd + [Dv,ϕ]
Rd − [v,D∗ϕ]

Rd = 0 .

(ii) Pick u = (u0, . . . , uN , ν0, . . . , νN ) ∈ MT (#) and local extensions ui ∈
H(D,!i) and fi ∈ H(D∗,!i) such that ui = TD,i ui and νi = TD∗,i fi. Then in-

troduce the functions u ∈ L2(Rd) and f ∈ L2(Rd) defined piecewise according to

u |!i
:= ui , f |!i

= fi , i = 0, . . . ,N . (3.11)

We have to show that u ∈ H(D,Rd) and f ∈ H(D∗,Rd) provided that !u, v"T (#) = 0

for all v ∈ ST (#). This follows, if we can establish

Du |!i
= Dui , D

∗f |!i
= Dfi , i = 0, . . . ,N , (3.12)

in the sense of distributions, because a function that agrees with Dui ∈ L2(!i) in each
sub-domain certainly belongs to L2(Rd).

Letw ∈ C∞
0 (Rd)∩H(D∗,Rd) and v ∈ C∞

0 (Rd)∩H(D,Rd) be smooth compactly
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supported test functions. Then

− [u,D∗w]
Rd + [f ,Dv]

Rd =
N∑

i=0

−[ui,D
∗w]!i

+ [fi,Dv]!i

=
N∑

i=0

−[Dui,w]!i
+ [TD,i ui,TD∗,iw]∂!i

+ [D∗fi,v]!i
+ [TD,i v,TD∗,i fi]∂!i

=
N∑

i=0

−[Dui,w]!i
+ [D∗fi,v]!i

+ [ui,TD∗,iw]∂!i
+ [TD,i v, νi]∂!i

=
N∑

i=0

−[Dui,w]!i
+ [D∗fi,v]!i

+ !u, (TD,0 v, . . . ,TD,N v,TD∗,0w, . . . ,TD∗,N w)"T (#)︸ ︷︷ ︸
=0

,

which amounts to (3.12).

Let us mention an immediate consequence of Theorem 3.1:

Corollary 3.2. ST (#) is a closed subspace ofMT (#).

Remark 3.2. The term “single-trace space” conjures up the image of functions # 1→ C.

In fact, pairs of such functions can be identified with elements of ST (#). First, we are
going to elaborate the connection for the Helmholtz problem (1.1), that is TD(∂!i) =

H
1
2 (∂!i) and TN (∂!i) = H− 1

2 (∂!i). Remember that each interface "ij has an
intrinsic orientation given by a prescribed transversal direction. A potential mismatch

with induced orientation is taken into account by “orientation adjustment functions”

σj ∈ L∞(∂!j), j = 0, . . . ,N , defined as

σj(x) :=

{
1 , if x ∈ "ij ⊂ ∂!j and orientations of ∂!j and "ij match,

−1 , if x ∈ "ij ⊂ ∂!j and orientations of ∂!j and "ij are opposite.

Observe that σi = −σj on "ij . Given a continuous function û on # with û |"ij
∈

H1("ij) and ν̂ ∈ L2(#), we can now define

uj := û |∂!j
∈ H

1
2 (∂!j) , νj := σj · ν̂ |∂!j

∈ H− 1
2 (∂!j) , (3.13)

which gives $u = (u0, . . . , uN , ν0, . . . , νN ) ∈ ST (#).
For electromagnetic scattering, see (1.2), a similar approach works. We start from

two tangential vector fields # 1→ C3, again denoted by û, and ν̂, that are piecewise
smooth on the interfaces and tangentially continuous across the seams of the skeleton,
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that is, they have a unique tangential component on the boundaries of the interfaces,

recall Concretization 3.2. Then define

uj := û |∂!j
∈ H− 1

2 (curl", ∂!j) ,

νj := ν̂ |∂!j
× nj ∈ H− 1

2 (div", ∂!j) .
(3.14)

Here, a sign flip as in (3.13) is induced by the opposite directions of ni and nj on "ij .

One easily verifies that (u0, . . . , uN , ν0, . . . , νN ) ∈ ST (#). /

3.2 A first-kind boundary integral equation

Assume that u ∈ Hrad(L,Rd) solves the transmission problem (1.8). Obviously, u |!j

provides local solutions of the homogeneous PDE, see Definition 1.1, on the bounded

sub-domains !1, . . . ,!N , and Theorem 2.6 permits us to conclude

(Id− Pj)Tj u = 0 in T (∂!j) , j = 1, . . . ,N . (3.15)

As u− uinc is a radiating solution on !0, owing to (1.9) the same argument gives

(Id− P0)T0(u− uinc) = 0 (3.16)

which implies that for all $v ∈ ST (#)

N∑

j=0

#
(Id− Pj)Tj u,Lj $v

$
T (∂!j)

=
#
(Id− P0)T0 uinc,L0$v

$
T (∂!0)

. (3.17)

A key observation is that by definition T# u ∈ ST (#) so that, thanks to Theorem 3.1,
the variational formulation (3.17) is equivalent to

N∑

j=0

#
Aj Tj u,Lj $v

$
T (∂!j)

= −
#
(Id− P0)T0 uinc,L0$v

$
T (∂!0)

, (3.18)

for all $v ∈ ST (#). Another simplification results from the property (1.7), which im-
pliesT0 uinc ∈ CD(∂!∗), and by Theorem 2.6 we can conclude that (Id−P0)T0 uinc =
T0 u0. Thus, the integral operators on the right hand side of (3.18) can be dropped.

We have derived a variational equation satisfied by T# u ∈ ST (#). Regarding the
skeleton Cauchy traces as unknowns, this yields the classical single-trace boundary

integral equation (STF): seek$u ∈ ST (#) such that

N∑

j=0

#
Aj Lj $u,Lj $v

$
T (∂!j)

= −
#
T0 uinc,L0$v

$
T (∂!0)

∀$v ∈ ST (#) . (3.19)
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This STF variational problem can equivalently be expressed as the operator equation7

S
′
#$u :=

N∑

j=0

L
∗
j Aj Lj $u = −L

∗
0 T0 uinc , (3.20)

with S′# : ST (#) → ST (#)′. Here, L∗
j : T (∂!j) → ST (#)′ stands for an adjoint

of the localization operator Lj : ST (#) → T (∂!j) with respect to the respective
L2-type duality pairings

〈
L
∗
j uj,$v

〉
ST (#)

:=
#
uj ,Lj $v

$
T (∂!j)

∀uj ∈ T (∂!j), $v ∈ ST (#) . (3.21)

A consequence of Theorem 2.7 is that the bi-linear form on the left hand side of (3.19)

fulfills a generalized Gårding inequality.

Theorem 3.3. There is an isomorphism F : ST (#) 1→ ST (#) and a compact opera-
tor K : ST (#) 1→ MT (#) such that for some C > 0

∣∣∣∣
〈
S
′
#
$v,F$v

〉
+

%
K$v,$v

&

T (#)

∣∣∣∣ ≥ C
∥∥$v

∥∥2
MT (#)

∀$v ∈ ST (#) . (3.22)

Concretization 3.3. For the case of the Helmholtz equation we find F = Id and the

assertion of Theorem 3.3 is a corollary of Theorem 2.7. Note that in this case (3.22) is

a standard Garding inequality.

For electromagnetic wave propagation (1.2) a sophisticated F is needed based on a

direct splitting of ST (#), see [8]. /

The variational problem (3.19) will always possess unique solutions, cf. [53] and
[19, Prop. A.1].

Lemma 3.4 (Uniqueness of solutions of STF).

S′# from (3.20) is injective.

Proof. Let $w ∈ ST (#) satisfy

〈
S
′
#
$w,$v

〉
=

N∑

j=0

#
Aj Lj $w,Lj $v

$
T (∂!j)

= 0 ∀$v ∈ ST (#) . (3.23)

Define (radiating) local solutions

uj := Gj(Lj $w) |!j
∈ Hrad(L,!j) , (3.24)

and recall that Definition 2.4 means

Tj uj = Pj(Lj $w) = (Aj +
1
2
Id)Lj $w . (3.25)

7 The prime in the notation S′
# is intended to highlight that this operator is defined via a bi-linear form

and, thus, must be regarded as a mapping of a space into a dual space.
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Hence, (3.23) implies

N∑

j=0

#
Tj uj ,Lj $v

$
T (∂!j)

=
N∑

j=0

#
(Aj +

1
2
Id)Lj $w,Lj $v

$
T (∂!j)

= 0 (3.26)

for all $v ∈ ST (#) by virtue of (3.23) and Theorem 3.1. This latter theorem, using its
other inclusion, permits us to conclude

(Tj uj)
N
j=0 ∈ ST (#) . (3.27)

In other words, the compound function

u ∈ L2loc(R
d) , u |!j

:= uj ,

satisfies the transmission conditions, which renders u ∈ H(L,Rd) an entire radiating
solution. Thus, we conclude u = 0 from the uniqueness result of Theorem 1.2.

Next, we introduce “exterior” radiating solutions

u+
j := Gj(Lj $w) |Rd\!j

∈ Hrad(L,R
d\!j) . (3.28)

and examine their exterior traces

T
+
j u+

j = (Id− Pj)(Lj $w) = ( 1
2
Id− Aj)Lj $w . (3.29)

Thus, the same arguments as in (3.26) imply

(
T
+
j u+

j

)N

j=0
∈ ST (#) . (3.30)

Relying on “Rellich’s lemma” [20, Lemma .2.11] we are going to show u+
j = 0 for all

j = 0, . . . ,N . This is a standard technique, but important enough to justify a detailed
presentation. Rellich’s lemma asserts that

u ∈ Hrad(L,!0) , Lu = 0 , lim
r→∞

∫

|x|=r

|Tr
D u|2 dS = 0 (3.31)

implies u = 0 in !0. Recall the notation T
r
D and T

r
N for Dirichlet- and Neumann

traces onto the boundary of the ballBr := {x ∈ Rd : |x| < r}. Applying integration
by parts (2.10) we get for r large enough and j = 1, . . . ,N

∫

|x|=r

T
r
D u+

j · Tr
N u+

j dS =

∫

Br\!j

α
∣∣∣Du+

j

∣∣∣
2
− κ2

∣∣∣u+
j

∣∣∣
2
dx−

∫

∂!j

T
+
D,j u

+
j · T+

N,j u
+
j dS , (3.32)
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and for j = 0

0 =

∫

Rd\!0

α
∣∣Du+

0

∣∣2 − κ2
∣∣u+
0

∣∣2 dx−

∫

∂!0

T
+
D,0 u

+
0 · T+

N,0 u
+
0 dS . (3.33)

Summing these equations for j = 0, . . . ,N and taking the imaginary part yields

N∑

j=1

− Im

∫

|x|=r

T
r
D u+

j · Tr
N u+

j dS =
N∑

j=0

Im

∫

∂!j

T
+
D,j u

+
j · T+

N,j u
+
j dS =

− 1
2
Im

'(
T
+
j u+

j

)N

j=0
,
(
T
+
j u+

j

)N

j=0

(

T (#)

= 0 , (3.34)

because of (3.30), which allows to apply Theorem 3.1.

Simple algebra shows that the radiation conditions (2.11) for u+
j combined with

(3.34) gives limr→∞
∑N

i=1

∫
|x|=r |T

r
D u+

j |
2 dS = 0 as required by Rellich’s lemma,

and, consequently, u+
j = 0, j = 1, . . . ,N . Next, we appeal to the jump relations of

Theorem 2.3 to see

Xj Lj $w = Tj uj − T
+
j u+

j = 0 . (3.35)

As $w ∈ ST (#) this immediately implies L0 $w = 0, that is, $w = 0.

Combining Theorem 3.3 and Lemma 3.4 provides the essential prerequisite for ap-

plying the Fredholm alternative to (3.19), which immediately confirms existence and

uniqueness of solutions of (3.19): using the STF operator S′#, we can give a concise

statement of this main result.

Corollary 3.5. S′# : ST (#) 1→ ST (#)′ from (3.20) is an isomorphism.

3.3 Boundary element Galerkin discretization

Abstract Galerkin discretization of (3.19) restricts the variational equation to a finite

dimensional subspace ST h(#) ⊂ ST (#) [47, Sect. 4.2.2]. Here we take a closer
look only at piecewise polynomial constructions with respect to a triangulation #h of

the skeleton #. For d = 2 this amounts to partitioning all interfaces "ij into (curved)

segments, separated by so-called nodes. We demand that multiple junctions of inter-

faces will always coincide with nodes. In three dimensions, each interface is equipped

with a (curved) triangular mesh. These meshes are supposed to be compatible across

interface boundaries (“no hanging nodes”). The requirements imply that the restriction

of #h to ∂!j is a valid triangulation "j,h := #h |∂!j
of this boundary.

Suitable piecewise polynomial (w.r.t. "j,h) subspaces TD,h(∂!j) and TN,h(∂!j) of
TD(∂!j) and TN (∂!j), respectively, can be obtained by applying the trace operators
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TD,j and TD∗,j to piecewise polynomial finite element subspaces of H(D,!j) and
H(D∗,!j), respectively. The finite element spaces are built upon some triangular
(d = 2) or tetrahedral (d = 3) mesh of !j , whose restriction to ∂!j coincides with

"j,h.

Concretization 3.4 (Helmholtz). For the Helmholtz transmission problem (1.1) we

have TD(∂!j) = H
1
2 (∂!j) and the simplest choice is continuous piecewise linear

functions on "j,h. Obviously, this space can be obtained by taking the point trace of

continuous piecewise linear functions on a suitable finite element mesh. The natural

tent function basis of this TD,h(∂!j) is dual to the point evaluations in the nodes of
"j,h.

The Neumann trace space for the Helmholtz transmission problem (1.1) is TN (∂!j) =

H− 1
2 (∂!j), which can be approximated by means of piecewise constant discontinu-

ous functions on "j,h. The characteristics functions of mesh cells provide a natural

basis.

This and more general constructions of piecewise polynomial boundary element

subspaces ofH
1
2 (∂!j) andH

− 1
2 (∂!j) are discussed in [47, Sect. 4.1]. /

Concretization 3.5 (Maxwell). In the Maxwell case, that is, d = 3 and TD(∂!j) =

H− 1
2 (curl", ∂!j), surface edge elements supply the simplest space TD,h(∂!j). They

are piecewise linear tangentially continuous tangential vector fields. Locally supported

basis functions are associated with edges of the surface mesh "j,h. In computational

electromagnetics these are known as Rao-Wilton-Glisson (RWG) basis functions [45].

As for the approximation of Neumann traces, we have the simple formula

TN,h(∂!j) = TD,h(∂!j)× nj ,

that is, Neumann traces can be approximated by the same finite dimensional spaces

of tangential vector fields apart from a rotation by π
2
. This matches the identity

H− 1
2 (curl", ∂!j) = H− 1

2 (div", ∂!j) × nj . The space thus constructed is closely

related to the so-called lowest order Raviart-Thomas finite element space [5, 6, 46]. /
With TD,h(∂!j) and TN,h(∂!j), j = 0, . . . ,N , at our disposal, finite dimen-

sional subspaces of MT (#) can be obtained by taking products. The construction
of ST h(#) is not so straightforward and is guided by Remark 3.2. We describe it
separately for the Helmholtz and Maxwell case.

Concretization 3.6 (Helmholtz). In the case of the Helmholtz transmission problem
(1.1) ST h(#) can be obtained by combining two spaces,

(i) a space FD,h of continuous #h-piecewise polynomial functions,

(ii) and a space FN,h of possibly discontinuous #h-piecewise polynomial functions,

from which we get

STh(#) =
N⊗

j=0

FD,h |∂!j
×

N⊗

j=0

σjFN,h |∂!j
,
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where the “orientation adjustment functions” σj are defined in Remark 3.2. We point
out that even if FN,h contained only continuous functions, we will usually wind up

with a discontinuous approximation space for Neumann data in ST h(#), because the
orientation adjustment function σj may jump.
Clearly, for this simplest choice of piecewise linear and piecewise constant bound-

ary element spaces as explained in Concretization 3.4, the dimension of ST h(#) will
agree with the sum of the number of vertices and cells of #h. /
Concretization 3.7 (Maxwell). The construction ofST h(#) for the Maxwell caseD =
curl and d = 3 starts from a space Fh of #h-piecewise polynomial tangential and

tangentially continuous vector fields, cf. Concretization 3.2. This means that for an
$uh ∈ Fh its orthogonal projection onto any edge of #h must be unique. The simplest

specimen is the edge element skeleton space, whose functions are piecewise linear and

uniquely characterized by their path integrals along edges, cf. Concretization 3.5.
Then, taking the cue from (3.14), we find

ST h(#) =
N⊗

j=0

Fh |∂!j
×

N⊗

j=0

(
Fh |∂!j

× nj
)
.

Using surface edge elements to define Fh, we thus end up with a space STh(#),
whose dimension is twice the number of edges in #h. /
Remark 3.3. Galerkin discretization of (3.19) using the standard choices for ST h(#)
explained above will lead to a linear system of equations, whose matrix can be obtained

by adding the matrices arising from a boundary element Galerkin discretization of the

boundary integral operators Aj , j = 0, . . . ,N , after suitably padding them with zero
rows and columns, in order to take into account the localization to ∂!j . /
It turns out that all piecewise polynomial boundary element spaces give rise to

asymptotically quasi-optimal Galerkin approximations. This result is stated as a dis-

crete inf-sup condition in the next theorem. In the case of Helmholtz’ equation (1.1)

its proof boils down to a classical duality argument, see [48] and [47, Sect. 4.2.3].

For Maxwell’s equation (1.2) it requires more subtle considerations centering around

a uniform gap property of a discrete Hodge-type decomposition. We are not going to

give details on this technique, but refer to [12, Sect. 9.1] for principal ideas and [8] for

the application to STF.

Theorem 3.6. Let ST h(#) ⊂ ST (#) be a space of piecewise polynomial boundary
element functions of fixed polynomial degree based on a skeleton mesh #h with mesh-
width h > 0.
There is h0 > 0 and a constant c > 0 depending only on #, the type and polynomial

degree of the boundary element space, and the shape-regularity of #h, such that the
following discrete inf-sup condition holds

sup
&vh∈STh(#)

|
〈
S′#$uh,$vh

〉
|∥∥$vh

∥∥
MT (#)

≥ c ‖$uh‖MT (#) ∀$uh ∈ ST h(#) , ∀h < h0 . (3.36)
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This implies that the trace norm of the Galerkin discretization error is proportional

to the best approximation error of ST h(#) in ST (#) provided that #h is sufficiently
fine, hence the attribute “asymptotic” attached to this estimate. More details can be
found in [47, Sect. 4.2.2].

4 Preconditioning

According to the results reported in the previous section, the STF operator S′# defined

in (3.20) induces an isomorphism between the trace space ST (#) and its dual. This
is typical of first kind boundary integral equations and the STF belongs to this class.
Unfortunately, the standard local bases of the piecewise polynomial boundary element

spaces discussed in Section 3.3 are not stable with respect to the norm of ST (#).

Indeed, writing
{
$bi
}M

i=1
, M := dimST h(#), for this basis of the boundary element

space ST h(#) ⊂ ST (#), we find r, s ∈ Z satisfying s− r = 2, such that

Chs

∥∥∥∥∥

M∑

i=1

γi$bi

∥∥∥∥∥

2

MT (#)

≤
M∑

i=1

γ2i

∥∥∥$bi
∥∥∥
2

MT (#)
≤ Chr

∥∥∥∥∥

M∑

i=1

γi$bi

∥∥∥∥∥

2

MT (#)

, (4.1)

for all γi ∈ C, where h > 0 stands for the meshwidth of the skeleton mesh #h and

the constants C,C > 0 depend only on the geometry of #, the ratio of the sizes of

the largest and smallest panel, and, for d = 3, on the shape regularity measure of the

triangles of #h. For both Helmholtz and Maxwell the estimate (4.1) can be proved by

means of local inverse inequalities and interpolation in Sobolev scales [47, Sect. 6.4.1].

As a consequence, on a sequence of meshes created by uniform regular refinement

the Galerkin matrix A ∈ CM,M arising from a standard boundary element Galerkin

discretization of (3.19) will display a growth of its condition number (defined through

the Euclidean norm on CM ) like

cond2(A) = O(h−2) , (4.2)

cf. [47, Cor. 6.4.14 & Lemma 4.51]. This can be blamed for the commonly observed
severely degraded performance of iterative Krylov-subspace solvers like GMRES or

BiCGStab on fine meshes, though a rigorous theoretical link between (4.2) and speed

of convergence has not yet been established, cf. [13, 4], unless more precise informa-
tion about the spectrum ofA is available.

Slow convergence of iterative solvers has become a major issue, since local low

rank matrix compression algorithms have paved the way for using boundary element

discretizations with many degrees of freedoms (104–106). These algorithms are known

as fast multipole methods [25, 21],H-matrix compression [26], or adaptive cross ap-
proximation [3, Ch. 3].

Compressed matrices merely allow fast matrix×vector multiplication, which is suf-
ficient for applying iterative solvers, but precludes direct elimination techniques. The
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bottom line is that it becomes essential to accelerate the convergence of the Krylov-

subspace iterative solvers, which is usually achieved by preconditioning. The next two

sections will outline a powerful heuristics that, nowadays, plays an important role in

boundary element implementations.

4.1 Operator Products

Temporarily we focus on the single-trace formulation (3.19) for the case N = 1,

that is, the case of a single homogeneous scatterer. We elaborate how in this very

special situation the discrete variational STF can be preconditioned efficiently. A first

particular feature of the N = 1 case is that # = ∂!0 = ∂!1; from now we are going
to write " for this single interface. We endow it with a positive orientation with respect

to !1. Then the single-trace variational formulation (3.19) becomes

#
A0 L0$u,L0$v

$
T (")

+
#
A1 L1$u,L1$v

$
T (")

= −
#
T" uinc,L0$v

$
T (")

∀$v ∈ ST (#) ,

(4.3)

with equivalent operator form, cf. (3.20),

S
′
"$u := (L∗

0 A0 L0+L
∗
1 A1 L1)$u = −L

∗
0 T" uinc . (4.4)

The particular situation makes possible the straightforward identification of ST (#)
with the Cauchy trace space T (") via

ST (#) = {(u, u,−ϕ,ϕ) : u ∈ TD("), ϕ ∈ TN (")} , (4.5)

which introduces the isometric isomorphism

C : T (") 1→ ST (#) , u =

(
u

ϕ

)
1→ 1

2
(u, u,−ϕ,ϕ) . (4.6)

Thus, the L2-type pairing providing self-duality of T (") indirectly induces a self-
duality of ST (#). The related isometric isomorphism is denoted by D′ : ST (#) →
ST (#)′ and defined through

〈
D
′$u,$v

〉
MT (#)

:=
#
C
−1 $u,C−1 $v

$
T (")

, ∀$u,$v ∈ ST (#) . (4.7)

As is evident from (4.6) and (2.5), D′ is spawned by an L2-type local pairing on ".
Since S′# : ST (#) 1→ ST (#)′ is continuous, we find that the operator product

(D′−1)∗S′"D
′−1

S
′
" : ST (#) 1→ ST (#) (4.8)

gives rise to a continuousmapping within the same space. The relevance of this obser-
vation for accelerating iterative solvers will be elaborated in Section 4.3.
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4.2 Calderón identities

Now we explore an interesting property of the operator product from (4.8) in the spe-

cial case α1 = α0; equal coefficients α0 = α1 will be taken for granted throughout
this subsection. The starting point is the projector property of the Calderón projectors

stated in Theorem 2.6. It can be used to extract from (2.17) that

A
2 = 1

4
Id . (4.9)

This equation comprises several so-called Calderón identities for boundary integral
operators, see [47, Prop. 3.6.4]. Similar relationships hold for the operator product

from (4.8) and we will also call them “Calderón identities”. To derive these we rely

on the identification of ST (#) and T (") according to (4.6). It enables us to convert
(4.3) into: seek u ∈ T (") such that
〈
S
′
" C u,C v

〉
ST (#)

= !A0X u,X v"T (") + !A1 u, v"T (") = −!T" uinc,X v"T (") ,

(4.10)

for all v ∈ T (").
Now, we aim to relateA0 andA1. To do so, it is important to note that both potentials

G0 and G1 map between the same spaces and satisfy

G0 = −G1[0] ◦X on T (") , (4.11)

due to the fact that the orientation of the boundary matters for the kernel of the double

layer potential, cf. the formulas (2.14) and (2.16). In addition, we resort to the jump
relations of Theorem 2.3 that tell us

T0G1[0] =

(
T
+
D,1

T
+
N,1

)
G1[0]=

(
TD,1

−TN,1

)
G1[0]− X = X T1G1[0]−X . (4.12)

Since X is an involution and !X u,X v"T (∂!) = −!u, v"T (∂!) (from (2.8) and (2.5))

we have the equalities

!A0X u,X v"T (")
(2.17)
=

#
(T0G0 − 1

2
Id)X u,X v

$
T (")

(4.11)
= !−T0G1[0]u,X v"T (") −

1
2
!X u,X v"T (")

(4.12)
= !−(X T1G1[0]−X)u,X v"T (") +

1
2
!u, v"T (")

= !(T1G1[0]− Id)u, v"T (") +
1
2
!u, v"T (")

(2.17)
= !A1[0]u, v"T (") .

(4.13)

This means that the single trace boundary integral equations for a homogeneous scat-

terer can be rephrased as: seek u ∈ T (") such that
#
S
′
#C u,C v

$
T (")

= !(A1+A1[0]) u, v"T (") = −!T" uinc,X v"T (") , (4.14)
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for all v ∈ T ("). Here we relied on the identification (4.6) through the isomorphism
C again.

A closer inspection of A1 and A1[0] for α0 = α1 reveals that these boundary inte-
gral operators feature kernels with the same singular behavior for x = y, cf. (2.14).
Forming their difference, these singularities will cancel, resulting in an operator that

is smoothing compared to A1 and A1[0]. Hence, the Rellich embedding theorem [38,
Thm. 3.27] allows the following conclusion, see [47, Lemma 3.9.8].

Lemma 4.1 (Compact modification). Provided that αj = αk, the operator Ai[j] −
Ai[k] : T (∂!i) 1→ T (∂!i) is compact.

As a consequence of this result and (4.9) applied toA1 we find the desired Calderón

identity for the operator product from (4.8):

A1 ◦ (A1+A1[0]) =
1
2
Id+ {compact} in T (") (4.15)

⇓ (4.14)

(D′−1)∗S′"D
′−1

S
′
" = Id+ {compact} in ST (#) . (4.16)

We learn that B := (D′−1)∗S′"D
′−1 is an inverse of S′" up to a compact perturbation,

which will make the eigenvalues of the operator product in (4.16) cluster around 1. In

a sense,B qualifies as a preconditioning operator for S′"! Why this parlance is justified
and how to transfer this insight to Ritz-Galerkin discretization will be explained in the

next section.

4.3 Operator preconditioning

The policy of operator preconditioning is best understood in an abstract framework

that we present following [31, Sect. 2]. We consider a Hilbert space V with dual V ′

and two bounded operatorsA : V 1→ V ′ and B : V 1→ V ′ with associated sesqui-linear

forms a : V × V 1→ C and b : V × V 1→ C. The spaces V and V ′ are also dual with

respect to the pairing [·, ·] : V ×V 1→ C, which is supposed to give rise to an isometric
isomorphism V 1→ V ′. In other words, the norm on V ′ is defined via [·, ·].
Galerkin discretization of A and B is based on finite-dimensional subspaces Vh ⊂ V

and Ṽh ⊂ V . Stability of the discretization is assumed, which amounts to discrete inf-
sup-conditions of the form

sup
vh∈Vh

| a(uh, vh)|

‖vh‖V
≥ cA ‖uh‖V ∀uh ∈ Vh . (4.17)

sup
ṽh∈Ṽh

| b(ũh, ṽh)|

‖ṽh‖V
≥ cB ‖ũh‖V ∀ũh ∈ Ṽh . (4.18)
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The crucial assumption is the stability of the duality pairing for the Galerkin trial

spaces

sup
ṽh∈Ṽh

[ṽh, uh]

‖ṽh‖V
≥ cD ‖uh‖V ∀uh ∈ Vh . (4.19)

A necessary condition for (4.19) isM := dim Vh = dim Ṽh. Choosing arbitrary bases
of Vh and Ṽh we can represent the sesqui-linear forms a, b, and [·, ·] by means of their
M ×M Galerkin matricesA,B,D ∈ CM,M . Then [31, Theorem 2.1] asserts that

κ(D−HBD−1A) ≤ δ :=
‖A‖ ‖B‖

cAcBc2D
, (4.20)

where κ stands for the spectral condition number of a matrix, that is, the ratio of the
moduli of the largest (in modulus) and smallest eigenvalue.

Estimate (4.20) suggests that D−HBD−1 can serve as a preconditioner of A. In-

deed, for symmetric sesqui-linear forms a and b the estimate (4.20) immediately im-

plies that the rate of linear convergence of a preconditioned iterative Krylov-subspace

solver (CG or MINRES) can be bounded in terms of δ alone. Provided that the stabil-
ity constants cA, cB, and cD can be uniformly bounded away from zero for a family
of trial spaces, “uniformly fast”/“h-independent” convergence of the iterative solver is
ensured.

Without symmetry of a and b, (4.20) does not permit us to predict the speed of

convergence of an iterative solver like GMRES. In this case using D−HBD−1 as

a preconditioner is heuristics, which has proved to be highly successful in practice,

though.

4.4 Stable duality pairing for boundary elements

The single trace formulation for N = 1, discretized by means of lowest order piece-

wise polynomial boundary elements as discussed in Section 4.1, can be fit into the

abstract framework of operator preconditioning as introduced in the previous section

in a straightforward way; the incarnations of the operators and pairings are immediate

from (4.8) and (4.16). Based on the Hilbert space V := ST (#), the role of A and
B is played by the continuous STF operator S′" : ST (#) → ST (#)′. The isometric
duality pairing is provided by the operatorD′ according to (4.7).

The discrete inf-sup conditions (4.17) and (4.18) are guaranteed by Theorem 3.6

on sufficiently fine interface meshes with constants independent of the meshwidth h.
However, no h-uniform discrete inf-sup condition (4.19) is available for the pairing on
ST h(#)× ST h(#) effected by the operator D′!

In the case of D = grad (Helmholtz) and lowest degree boundary elements, see

Concretization 3.4, this is obvious, because in general dimTN,h(") (= dim TD,h("),
whereas the duality pairing relies on products of functions of these two spaces. Even
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in the case of D = curl (Maxwell) and surface edge elements (4.19) fails to hold

uniformly in h, though in this case dimTN,h(") and dim TD,h(") both agree with the
number of edges of "h. This was demonstrated in [17, Prop. 3.1].

A remedy for this conundrum is to use different meshes for the construction of
TN,h(") and TD,h("), thereby ensuring stability and, of course, matching dimensions
dim TN,h(") = dim TD,h("). For 2nd-order diffusion problems the pioneering work
[50] investigated a suitable construction for lowest order polynomial BEM. It relies on

dual meshes. An application to acoustic scattering (Helmholtz case) is covered in [16].
The idea was adapted to surface edge elements in [9] and we refer to this article for a

comprehensive analysis and the proof of uniform stability of standard duality pairings

on the primal-dual boundary element spaces. Thus, all pieces are in place for operator

preconditioning of the discretized STF forN = 1!

Remark 4.1 (Riesz pairing). The alert reader will have realized that on the Hilbert
space ST (#) a suitable alternative candidate for D′ in (4.7) would be the Riesz iso-

morphism ST (#) → ST (#)′ induced by the inner product of ST (#). This choice
would preserve the continuity properties of (D′−1)∗S′"D

′−1S′".

At second glance, the Riesz isomorphism turns out to be utterly useless for the pur-

pose of operator preconditioning; the matrixD would be the Galerkin matrix of an-

other boundary integral operator of the first kind, structurally similar to S′#. Therefore,

applying the preconditioner would entail solving two ill-conditioned linear systems of

equations as hard as the one tackled by the preconditioner. /

Remark 4.2 (Sparse pairing matrix). Duality inducing pairings based on the pivot
space L2 are inherently local; inserting two functions with non-overlapping supports
will yield zero. Thus, using boundary element spaces on dualmeshes for the stable dis-

cretization of the pairing along with standard local basis functions will lead to sparse
Galerkin matrices D, cf. (4.20). Thus, direct Gaussian elimination becomes a com-
petitive option for computing the action ofD−1 and D−H in the preconditioner. The

efficiency of iterative solvers also hinges on sparsity. Thus, strengthening Remark 4.1

we can make the statement that

operator preconditioning of Galerkin matrices arising from boundary inte-

gral equations will be feasible, only if the underlying pairing is of L2-type,
hence local.

/

Remark 4.3 (Varying coefficients αi). Provided that the uniform stability assumptions

are met, operator preconditioning for the discretized STF will be robust with respect to

the choice of skeleton meshes. No assumptions on αi other than αi > 0 are necessary.

Of course, the heights of the jumps of α(x) will affect the stability constants.
In the case αi = α0, i = 1, . . . ,N , we conclude from the results of Section 4.2

the eigenvalues of the operator product from (4.16) have 1 ∈ C as sole accumulation

point. Therefore, one may hope that a similar property holds for the spectrum of the

matrix product from (4.20). Yet, so far there is no rigorous proof that this is the case.
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/

4.5 The challenge

Unfortunately, the case of a homogeneous scatterer N = 1 is very special. In this

case T (") offers an isomorphic model of ST (#), see (4.6), and, thus, a local L2-type
duality pairing has become available. WheneverN > 1 and there are material junction

points, it seems impossible to find a way to express the self-duality of ST (#) through
an L2-type pairing. Also note that Theorem 3.1 rules out that !·, ·"MT (#) can serve as

a duality pairing for ST (#).
Hence, efficient operator preconditioning of the single-trace boundary integral equa-

tions becomes elusive, remember Remark 4.2. Hitherto, this problem has not been

overcome. This prompted us to

seek alternatives to the single trace formulation that are amenable to opera-

tor preconditioning.

Our search has been trained on formulations with straightforwardL2-type duality pair-
ings. It led to the development of new boundary integral equations belonging to the

class of multi-trace formulations (MTF). They will be presented in he remainder of the

paper.

5 Global Multi-Trace Formulation

5.1 Separated sub-domains

In Section 4.1 we have seen that the classical single trace formulation allows operator

preconditioning for N = 1. Asking the question, what was exceptional about this

setting, we arrived at the conclusion that it is the availability of a simple L2-pairing
bringing about the duality of ST (#) and ST (#)′. This was the gift of the isomor-
phism C from (4.6).

!0

!1
!2

"01

"02
n1

n2

Figure 2. N = 2, isolated sub-domains
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Obviously, an analogous isometric isomorphism

ST (#) ∼= T (∂!1)× · · · × T (∂!N) , (5.1)

still exists for N > 1, if all sub-domains !j are separated as illustrated in Figure 2
for N = 2. In this setting the isomorphism C : T (∂!1) × · · · × T (∂!N) → ST (#)
underlying (5.1) reads

C :






T (∂!1)× T (∂!2) → ST (#)
((u1

ϕ1

)
(u2
ϕ2

)
)

1→ (u1 ∨ u2, u1, u2,−(ϕ1 ∨ ϕ2),ϕ1,ϕ2)
, (5.2)

where ∨ indicates that two functions on ∂!1 and ∂!2 are combined into a function on
∂!0 = ∂!1 ∪ ∂!2:

(u1 ∨ u2)(x) := ui(x) , if x ∈ !i , i = 1, 2 .

We remark that this isomorphism relies on the induced orientation of ∂!j from !j ,

see Figure 2.

A duality pairing for the right hand side of (5.1) is furnished by the local L2-type
pairings on the sub-domain boundaries ∂!j . As pointed out in Section 4.4, related

h-uniformly stable discrete duality pairings for standard BEM can be achieved by

employing dual meshes on each ∂!j . Summing up, standard operator preconditioning

remains feasible for separated sub-domains.

Instead of using C as a tool to graft a duality pairing onto ST (#) we may as well
use it to define a “new” operator

M
′

G := C
∗
S
′
#C : M̂T (#) → M̂T (#)′ , (5.3)

where we wrote

M̂T (#) := T (∂!1)× · · ·× T (∂!N) , (5.4)

for a “clipped multi-trace space”, that differs fromMT (#) by a missing contribution
from T∂!0 . The operator C

∗ is the formal adjoint of C. By means ofM
′
G we can state

a variational problem completely equivalent to (3.19): seek û ∈ M̂T (#) such that

〈
M

′
G û, v̂

〉

M̂T (#)
= −!T0 uinc,X1 v1 ∨ X2 v2 ∨ · · · ∨ XN vN "T (∂!0)

(2.8)
=

N∑

i=1

!Ti[0]uinc, vi"T (∂!i)
.

(5.5)

for all v̂ = (v1, . . . , vN ) ∈ M̂T (#).
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Restricting the pairing !·, ·"MT (#) to M̂T (#) gives another L2-type pairing

#
$u,$v

$
M̂T (#)

:=
N∑

i=1

#
Li $u,Li$v

$
T (∂!i)

, u, v ∈ M̂T (#) , (5.6)

that will induce a self-duality of M̂T (#). Harking back to (4.7), let us designate the

isomorphism induced by the pairing !·, ·"
M̂T (#)

by D̂′ : M̂T (#) → M̂T (#)′. It can

be used to convertM
′
G into a genuine boundary integral operatorMG : M̂T (#) →

M̂T (#) according toMG := (D̂′)−1 ◦M
′

G.

Working with MG has the benefit that its structure can be made explicit and we

do so for the case N = 2. To begin with we recast A0, which acts on functions in

T (∂!0) = T (∂!1)× T (∂!2) = M̂T (#). For û = (u1, u2), v̂ = (v1, v2) we find

'
A0 L0C

(
u1

u2

)
,L0 C

(
v1

v2

)(

T (∂!0)

=

!A1[0]u1, v1"T (∂!1)
+ !T1[0]G2[0]u2, v1"T (∂!1)

+

!T2[0]G1[0]u1, v2"T (∂!2)
+ !A2[0]u2, v2"T (∂!2)

.
(5.7)

To see this, we advise the reader to study the derivation of (4.13) by means of the jump

relations again, because similar manipulations yield the identity

A0 L0C

(
u1

u2

)
= (T0G0 −

1
2 Id)(X1 u1 ∨ X2 u2)

(4.11)
= T

+
1 (−G1[0]u1 −G2[0]u2) ∨ T

+
2 (−G1[0]u1 −G2[0]u2)−

1
2
(X1 u1 ∨ X2 u2)

(4.12)
= (−X1 T1[0]G1[0] +

1
2
X1)u1 ∨ (−X2 T2[0]G2[0] +

1
2
X2)u2−

X1 T1[0]G2[0]u2 ∨ X2 T2[0]G1[0]u1

= − X1(T1[0]G1[0]− 1
2
Id)u1 ∨ X2(T2[0]G2[0]− 1

2
Id)u2

X1 T1[0]G2[0]u2 ∨ X2 T2[0]G1[0]u1 .

(2.17)
= − X1(A1[0]u1 + T1[0]G2[0]u2)− X2(T2[0]G1[0]u1 + A2[0]u2) .

(5.8)

We conclude (5.7) because of !Xi u,Xi v"T (∂!i)
= −!u, v"T (∂!i)

. For the sake of a

compact operator notation we may abbreviate the “remote coupling integral operators”

R
j
i := Tj[0]Gi[0] , i (= j , (5.9)
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which evaluate a potential defined on one sub-domain boundary on the other. Then,

for N = 2,MG can be rephrased as

MG

(
u1

u2

)

=

(
A1[0] + A1 R

1
2

R21 A2[0] + A2

)(
u1

u2

)

, (5.10)

for u1 ∈ T (∂!1), u2 ∈ T (∂!2).
In Section 4.2 we established the Calderón identity (4.16) for the STF operator in

the case N = 1 and α0 = α1. Hardly surprising, a similar result remains valid for
N > 1 and separated sub-domains. For the sake of simplicity we largely restrict the

discussion toN = 2, see Figure 2.

First, we recall the null field property of the total potentialG belonging to a generic

domain ! with Lipschitz boundary ∂!.

Lemma 5.1 (Null field property). If u ∈ T (∂!) belongs to the space of Cauchy data
CD(∂!) for the differential equation (1.4), see Definition 2.5, thenGu = 0 in Rd \!.

An immediate consequence are important identities for the remote coupling opera-

tors.

Lemma 5.2 (Annihilation of remote coupling operators). The remote coupling opera-
tors Rj

i defined in (5.9) satisfy for i (= j

R
j
i R

i
j = 0 ,

R
j
i Ai[0] = − 1

2
R
j
i ,

Aj[0]R
j
i =

1
2
R
j
i .

(5.11)

Proof. The product of two different remote coupling operators vanishes:

R
j
i R

i
j = Tj [0]Gi[0]Ti[0]Gj [0] = Tj [0](0) = 0 ,

because Theorem 2.2 assertsTi[0]Gj [0](T (∂!j)) ⊂ CD(∂!i) and, thus, by Lemma 5.1

Gi[0]Ti[0]Gj [0] |!j
= 0 .

The same arguments can be applied to the other operator products, for instance,

R
j
i Ai[0] = Tj [0]Gi[0]

(
Ti[0]Gi[0]− 1

2
Id
)
= − 1

2
R
j
i .

Returning to N = 2, owing to the assumption α0 = α1 = α2, we can appeal to
Lemma 4.1 and obtain from (5.10)

MG = MG[0] + {compact} , MG[0] :=

(
2A1[0] R

1
2

R
2
1 2A2[0]

)
. (5.12)
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An immediate consequence of Lemma 5.2 and (4.9) is that (MG[0])
2 = Id, which

implies the Calderón identity

MG ◦MG = Id + {compact} , (5.13)

provided that αi = α0 for all i = 1, . . . ,N .

5.2 The gap idea

The situation of separated sub-domains is of little interest in itself, but it will serve as

a crucial stepping stone for the generalization of the STF to a first type of multi-trace

boundary integral formulation.

δ
!1 !2

!0

!1 !2

!0

Figure 3. Illustration of the “gap idea” for N = 2. Left: sub-domains separated by gap

of width δ > 0. Right: closed gap

Consider the situation sketched in Figure 3 (left) with the sub-domains separated

by a narrow gap of width δ > 0. We investigate what will happen to the operator

R
1
2[0] := T2[0]G1[0] as δ → 0. Keep in mind that

(G1[0]u1) |Rd\!1
∈ Hloc(L,R

d \!1) , u1 ∈ T (∂!1) . (5.14)

Hence, T2[0]G1[0]u1 is well defined as a function in T (∂!2) whenever ∂!2 ⊂ Rd \
!1. These conditions are still met even when δ = 0. Thus the operator M

′
G :

M̂T (#) → M̂T (#)′ as defined in (5.10) for N = 2 and in (5.3) for general sep-

arated sub-domains remains meaningful and will give rise to the global multi-trace
integral equation formulation (global MTF) for the transmission problem (1.8). Ma-

nipulations completely parallel to the derivation of (5.8) give the final variational form

of the global MTF [19, Sect. 8.2]: seek û = (u1, . . . , uN ) ∈ M̂T (#)

#
MG û, v̂

$
M̂T (#)

=
N∑

i=1

#
Ti[0]uinc,Li v̂

$
T (∂!i)

, (5.15)
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for all v̂ = (v1, . . . , vN ) ∈ M̂T (#) withMG : M̂T (#) → M̂T (#) given by

MG :=





A1[0] +A1 R
1
2 . . . . . . R

1
N

R21 A2+A2
...

...
. . .

...
... AN−1[0] +AN−1 R

N−1
N

R
N
1 . . . . . . R

N
N−1 AN [0] + AN





. (5.16)

5.3 Properties of global MTF

Owing to the derivation of the global MTF from the STF via a “zero gap reasoning”,

as explained in Section 5.2, we expect that

all properties of the classical STF for separated sub-domains carry over to

the global MTF.

The global MTF lives up to this expectation. Concrete results are given in the following

theorems. Firstly, we adapt Theorem 3.3 to the global MTF:

Theorem 5.3 (Coercivity of global MTF, [19, Sect. 10], [18, Sect. 9.5]). The bi-linear
form of the global MTF from (5.15) satisfies a (generalized) Gårding inequality on
M̂T (#).

The assertion made in Lemma 3.4 for the STF remains valid for the global MTF.

Theorem 5.4 (Uniqueness for global MTF, [19, Sect. 9], [18, Thm. 8.1]). The global
MTF operator from (5.16) is injective.

By virtue of a Fredholm alternative argument, the last two theorems imply existence

of solutions of (5.15) and the existence of a bounded inverse of MG. The special

Calderón identity (5.13) holds for the global MTFwithout restrictions on the geometry.

Theorem 5.5 (Calderón identity, [19, Sect. 11], [18, Sect. 11]). Provided that αi =
α0, i = 1, . . . ,N , the global MTF operator from (5.16) satisfies

(MG)
2 = Id+ {compact} .

5.4 Galerkin discretization

In Section 3.3 we introduced finite dimensional subspacesTD,h(∂!i) ⊂ TD(∂!i) and
TN,h(∂!i) ⊂ TN (∂!i) generated by piecewise polynomial functions on meshes of
∂!i. Writing Th(∂!i) := TD,h(∂!i) × TN,h(∂!i) the definition (5.4) immediately
suggests that we use

M̂T h(#) := Th(∂!1)× · · · × Th(∂!N) (5.17)
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as trial and test space for a boundary element Galerkin discretization of (5.15). Again,

the assertion of Theorem 3.6 for the STF has a counterpart for the global MTF.

Theorem 5.6 (Stability of Galerkin discretization, [19, Prop. 10.4], [18, Prop. 10.1]).

The Galerkin discretization of the global MTF (5.15) based on standard piecewise
polynomial boundary element spaces satisfies an h-uniform asymptotic discrete inf-
sup condition.

Remark 5.1. We emphasize that, in principle, the spaces Th(∂!i) need not match at
all, which allows the combinations of different types of boundary elements on different

sub-domains. /
Remark 5.2. It goes without saying that the system matrixM of the resulting linear

systems of equations inherits the structure of (5.16); its i-th diagonal block will agree
with the usual Galerkin matrix corresponding to Ai[0] + Ai on ST h(∂!i). For the
off-diagonal block related to the operators R

j
i [0] recall that, in case !i and !j have a

common interface, according to (5.9) the traces to be used on "ij are exterior traces

with respect to !i. Hence, the jump relations of Theorem 2.3 have to be taken into ac-

count and the integral representation formulas have to be supplemented by 1
2
-weighted

L2-pairings. Details can be found in [34, Sect. 5]. /

The global MTF (5.15) readily lends itself to efficient operator preconditioning as

discussed in Section 4.3:

(i) Obviously, MG : M̂T (#) → M̂T (#) is continuous, and so will be (MG)
2 :

M̂T (#) → M̂T (#). In terms of M
′

G := D̂′ ◦ MG this states the continuity

of (D̂′
−1

)∗M
′

G D̂′
−1

M
′

G : M̂T (#) → M̂T (#). Further, by Theorem 5.5

the latter operator will be a compact perturbation of the identity in the case of

constant α, compare (5.13).

(ii) The duality pairing !·, ·"
M̂T (#)

from (5.6) is a local L2-type pairing, which will

yield a sparse Galerkin matrix D, cf. Remark 4.2 for an explanation why this is
essential.

(iii) Uniformly stable discretizations of the pairing onM̂T h(∂!i) can be constructed
based on dual meshes, see Section 4.4.

Remark 5.3. In the context of operator preconditioning we may replaceM
′
G with the

fully decoupled local integral operators, that is, we may use the “diagonal precondi-

tioner”

D̂′
−1

A
′
GD̂

′
−1
: M̂T (#)′ → M̂T (#) ,

with

〈
A
′
Gû, v̂

〉
M̂T (#)

:=
N∑

i=1

!Ai ui, vi"T (∂!i)
, û, v̂ ∈ M̂T (#) . (5.18)
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Given an uniformly stable discrete duality pairing this will also provide a precondi-

tioner that is robust with respect to the resolution of the surface meshes. /

6 Local Multi-Trace Formulation

The idea to decouple the skeleton Cauchy traces into local contributions that guided

the development of the global multi-trace formulation of Section 5 can also be pursued

in a fairly different spirit. This led to the so-called localmulti-trace formulation, which

will be derived and explored in this section.

!0

!1 !2

"01

"02

"03

"12

Figure 4. Generic geometric setting forN = 2

The local MTF was first presented in [32] for the Helmholtz transmission problems

(1.1). Its extension to electromagnetic transmission problems (1.2) is work in progress

and has not been published yet (as of summer 2012). Formally, the adaptation of the

method to Maxwell’s transmission problems is straightforward and in the next section

we will also include this case.

6.1 Partial transmission conditions

First, let us examine the situation N = 2, that is a scatterer composed of only two

sub-domains, as sketched in Figure 4 for d = 2. For the purpose of presenting the

local multi-trace formulation this case is generic, completely captures the essence

of the methods, but still helps to avoid excessive notational complexity. With u ∈
Hrad(L,Rd) denoting the weak solution of the transmission problem (1.8) we write

$u := T# u ∈ ST (#) ⊂ MT (#) for its skeleton Cauchy trace as defined in Sec-
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tion 3.1. As in (3.15), from Theorem 2.6 we immediately conclude

( 12 Id− Ai)Li $u = 0 in T (∂!i) , i = 1, 2 , (6.1)

( 1
2
Id− A0)(L0 $u− T0 uinc) = 0 in T (∂!0) . (6.2)

The same simplification that permitted us to switch from (3.18) to (3.19) can be applied

to (6.2) and yields

( 1
2
Id− A0)L0$u = −T0 uinc . (6.3)

The next key manipulation of (6.1)–(6.2) starts from the local transmission conditions

TD,i u = TD,j u and TN,i u = −TN,j u on "ij in T (∂!0) . (3.9)

They are used to substitute the terms 1
2
Li$u in (6.1) and (6.3) with Cauchy traces from

adjacent sub-domains. This is done on each interface "ij and yields

A0 L0$u − 1
2
X1→0 L1$u − 1

2
X2→0 L2$u = −T0 uinc ,

− 1
2
X0→1 L0$u + A1 L1$u − 1

2
X2→1 L2$u = 0 ,

− 1
2 X0→2 L0$u − 1

2 X1→2 L1$u + A2 L2$u = 0 .

(6.4)

Here, we have introduced the local transmission operators Xi→j , which, if "ij is a

genuine interface,

(i) take a pair of functions on ∂!i as argument, corresponding to Dirichlet and Neu-

mann traces,

(ii) restrict both functions to "ij ,

(iii) flip the sign of the second function in order to take into account the transmission

conditions (3.9),

(iv) and, finally, extend both functions by zero to functions on ∂!j .

Formally, we can define

Xi→j :






L2(∂!i)× L2(∂!i) → L2(∂!j)× L2(∂!j)

u :=
(u
ϕ

)
1→ (Xi→j u)(x) :=

{( u(x)
−ϕ(x)

)
for x ∈ "ij ,

0 elsewhere on ∂!j .

(6.5)

The reader might be wondering, what made us rely on L2-spaces here; we are going
to answer this question in the next section.

Temporarily glossing over issues of proper function spaces, we have found that

Cauchy traces of solutions of the transmission problems (1.8) satisfy the boundary

integral equation (6.4). Turning the tables, now we boldly convert (6.4) into novel
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boundary integral equations for unknown local Cauchy traces: find ui ∈ T (∂!i)
satisfying

A0 u0 − 1
2
X1→0 u1 − 1

2
X2→0 u2 = −T0 uinc ,

− 1
2
X0→1 u0 + A1 u1 − 1

2
X2→1 u2 = 0 ,

− 1
2 X0→2 u0 − 1

2 X1→2 u1 + A2 u2 = 0 .

(6.6)

We have arrived at a boundary integral equation, which is set on the skeleton multi-

trace spaceMT (#)! We call (6.6) the local multi-trace formulation, due to the fact,
that, in contrast to the global multi-trace formulation (5.15) introduced in Section 5,

coupling of sub-domains relies on local transmission operators alone.

It is not difficult to state the local MTF for an arbitrary number of sub-domains: find

$u ∈ MT (#) that solves

Ai Li$u− 1
2

N∑

j=0
j $=i

Xj→i Lj $u =

{
−T0 uinc for i = 0 ,

0 else ,
i = 0, . . . ,N . (6.7)

Of course, we have set Xi→j := 0 in case there is no genuine interface "ij .

Having departed from a solution of the transmission problem tells us that its Cauchy

traces will satisfy (6.7). There is no guarantee yet that a solution of (6.7) has anything

to do with a solution of the transmission problem. This reverse conclusion holds thanks

to uniqueness of solutions of (6.7).

Theorem 6.1 (Uniqueness of solutions of local MTF boundary integral equations,

[32, Sect. 3.2.6]).

For uinc = 0 the local MTF integral equations (6.7) have the only solution $u = 0.

6.2 Local MTF: variational formulation

A rigorous statement of the local MTF (6.6) in trace spaces encounters massive ob-

stacles, because the local transmission operators Xi→j fail to be continuous mappings

T (∂!i) → T (∂!j). We elaborate this for the case of the Helmholtz transmission
problem and the corresponding trace spaces given in Concretization 2.1. First, we

remind that the mapping

L2(∂!i) → L2(∂!i) , w 1→ χijw , χij(x) =

{
1 , if x ∈ "ij ,

0 , elsewhere,
(6.8)

does not have a continuous restriction or extension as a mappingH
1
2 (∂!i) → H

1
2 (∂!i)

or H− 1
2 (∂!i) → H− 1

2 (∂!i), respectively, if "ij (= ∂!i. This peculiar property of

the trace spaces forces us to resort to a slightly modified function space framework in

order to obtain a meaningful variational formulation of (6.7).
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To begin with, let the space T∗("ij), ∗ = D,N , contain the restrictions of Dirich-
let/Neumann traces in T∗(∂!i) to "ij . It is endowed with the natural norm

‖u‖T∗("ij) := inf{‖v‖T∗(∂!i)
: v ∈ T∗(∂!i), v |"ij

= u} , ∗ = D,N .

These spaces can be assembled into “broken trace spaces” on ∂!i

T∗,pw(∂!i) :=
⊗

j
T∗("ij) , ∗ = D,N ,

where, of course, the product of spaces covers only genuine interfaces. We also write

Tpw(∂!i) := TD,pw(∂!i) × TN,pw(∂!i) for a space of “broken Cauchy traces” on
∂!i and it is convenient to introduce the “broken multi-trace space”

MT pw(#) := Tpw(∂!i)× · · · × Tpw(∂!N) . (6.9)

By restriction to interfaces, T∗(∂!i) can be embedded into T∗,pw(∂!i). The latter may
be a strictly larger space, and the L2 duality pairing between TD(∂!i) and TN (∂!i)
usually cannot be extended to a continuous bi-linear form on TD,pw(∂!i)× TN (∂!i)
or TD(∂!i) × TN,pw(∂!i), respectively. When feeding broken traces into one slot
of the L2 duality pairing, the other slot has to be supplied with traces satisfying cer-
tain constraints. These constraints are met by localized Dirichlet and Neumann traces

belonging to the spaces

T̃∗("ij) = {φ ∈ T∗("ij) : φ̃ ∈ T∗(∂!j)} , (6.10)

with norm

‖φ‖T̃∗("ij) =
∥∥∥φ̃

∥∥∥
T∗(∂!i)

, ∗ = D,N , ∗ = D,N , (6.11)

where φ̃ is the extension of φ to ∂!j by zero. In general, the norm of T̃∗("ij) is strictly

stronger than that of T∗("ij). Most importantly, the pairs of spaces TD("ij)–T̃N ("ij)

and T̃D("ij)–TN ("ij) are in duality with respect to the L2-pairing on "ij , cf. (2.2).
Gluing the spaces of localized Dirichlet and Neumann traces yields spaces with “zero

boundary conditions at the boundaries of the interfaces”

T̃∗(∂!i) =
⊗

j

T̃∗("ij) ⊂ T∗(∂!i) , ∗ = D,N , (6.12)

which can be assembled into the constrained Cauchy trace space T̃ (∂!i) := T̃D(∂!i)×
T̃N(∂!i). In analogy to (3.1) we set

M̃T (#) := T̃ (∂!0)× · · · × T̃ (∂!N) . (6.13)
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The relationships of the above spaces can be summarized as

T̃D(∂!i) ⊂ TD(∂!i) ⊂ TD,pw(∂!i) T̃N (∂!i) ⊂ TN (∂!i) ⊂ TN,pw(∂!i) ,
(6.14)

where the arrows connect spaces that are in duality with respect to the L2-pairing on
∂!i. Combine this with the continuity of the transmission operators

Xi→j : T (∂!i) → Tpw(∂!j) , (6.15)

to see that

($u,$v) →
#
Xi→j Li $u,Lj $v

$
T (∂!j)

becomes a continuous bi-linear form onMT (#)× M̃T (#).

Thus, M̃T (#) is a suitable test space for the weak variational formulation of (6.6),
because the resulting bi-linear form will be continuous. For the special situation N =
2 we arrive at the variational equation: seek (u1, u2, u3) ∈ MT (#) such that for all

(v1, v2, v3) ∈ M̃T (#)

!A0 u0, v0"T (∂!0)
−

#
1
2
X1→0 u1, v0

$
T (∂!0)

−
#
1
2
X2→0 u2, v0

$
T (∂!0)

= −!T0 uinc, v0"T (∂!0)
,

−
#
1
2
X0→1 u0, v1

$
T (∂!1)

+ !A1 u1, v1"T (∂!1)
−

#
1
2
X2→1 u2, v1

$
T (∂!1)

= 0 ,

−
#
1
2
X0→2 u0, v2

$
T (∂!2)

−
#
1
2
X1→2 u1, v2

$
T (∂!2)

+ !A2 u2, v2"T (∂!2)

= 0 .

(6.16)

In a general situation the variational problem for the local MTF reads [32, Problem 6]

as follows.

Seek $u ∈ MT (#) that satisfies

〈
M

′
L $u,$v

〉
= −

#
T0 uinc,L0$v

$
T (∂!0)

∀$v ∈ M̃T (#) , (6.17)

with a continuous operator

M
′

L := L
∗
i Ai Li − 1

2

N∑

j=0
j $=i

L
∗
i Xj→i Lj :MT (#) → M̃T (#)′ .

Continuity ofM
′
L is an immediate consequence of the L

2-type dualities expressed in

(6.14).
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Corollary 6.2 (Continuity of local MTF bi-linear form, [32, Sect 3.2.4]). There is a
constant C > 0 such that

∣∣∣
〈
M

′

L $u,$v
〉∣∣∣ ≤ C ‖$u‖MT (#)

∥∥$v
∥∥
M̃T (#)

∀$u ∈ MT (#), $v ∈ M̃T (#) .

6.3 Local MTF: Stability

A result in the theory of Sobolev spaces states that the function space H(D,!) as
introduced in (1.5) does not support a continuous trace onto the “wire basket”, that is,

onto the union of all boundaries of the interfaces. In other words, smooth functions

whose supports do not intersect
⋃

i,j ∂"ij are dense inH(D,!). This translates into
following density result for trace spaces.

Lemma 6.3. The constrained trace space M̃T (#) is a dense subspace ofMT (#).

Thus, sloppily speaking, the spaceM̃T (#) provides enough test functions to let the
variational equation (6.17) imply the integral equations (6.7). Solutions of the latter

are unique and so this remains true for the variational equation.

Theorem 6.4 (Uniqueness of solutions of variational local MTF). Solutions of the vari-
ational problem (6.17) are unique.

The local MTF bi-linear form also enjoys surprising coercivity properties.

Theorem 6.5 (Coercivity of local MTF bi-linear form, [32, Sect 3.2.7]). There exist
an isomorphism F : MT (#) → MT (#) and a compact operator K : MT (#) →
MT (#) such that for some constant C > 0 the following (generalized) Gårding
inequality holds

Re
{〈

M
′

L $u,F$u
〉
++!K v, v"T (∂!)

}
≥ C

∥∥$v
∥∥2
MT (#)

∀$u ∈ M̃T (#) . (6.18)

Proof. We restrict ourselves to the Helmholtz case, for which F = Id. Then note that

for ui =
(ui

ϕi

)
∈ T̃ (∂!i) and uj =

(uj

ϕj

)
∈ T̃ (∂!j)

!Xi→j ui, uj"T (∂!j)
=

[
ui,ϕj

]
"ij

− [uj ,ϕi]"ij = −!Xj→i uj , ui"T (∂!i)
.

We observe a cancellation of the real parts of “off-diagonal terms” in the local MTF

bi-linear form when written as in (6.16), which permits us to conclude

Re
〈
M

′
L$u,$u

〉
=

N∑

j=1

Re !Ai ui, ui"T (∂!i)
,

for $u = (u1, . . . , uN ) ∈ M̃T (#), and the assertion of the theorem is implied by

Theorem 2.7.
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At first glance, Theorems 6.4 and 6.5 seem to pave the way for an application of a

Fredholm alternative argument as in Section 3.2. A closer scrutiny, however, reveals

a fundamental mismatch between the norms that support continuity ofM
′

L, see Corol-

lary 6.2, and the MT (#)-norm, for which we have coercivity. More sophisticated
tools are needed to cope with this mismatch and they are summarized in the follow-

ing lemma, which is an extension of a results first obtained by J.L. Lions [37, Ch. III,

Thm. 1.1], see also [23].

Lemma 6.6 (Lemma 10 in [32]). Let H be a Hilbert space and $ a subspace of H
(not necessarily closed). Moreover, let m : H × $ → C and k : H × H → C be
bi-linear forms satisfying the following properties:

(i) For every ϕ ∈ $, the linear form u 1→ m(u,ϕ) is continuous inH .

(ii) The linear operator K : H → H ′ associated to the bi-linear form k(·, ·) is
compact and continuous.

(iii) There exists α > 0 such that

Re{m(ϕ,ϕ) + k(ϕ,ϕ)} ≥ α ‖ϕ‖2H , ∀ ϕ ∈ $. (6.19)

(iv) The bi-linear form u 1→ m(u,ϕ) is injective, i.e. m(u,ϕ) = 0 for all ϕ ∈ $,
implies u = 0.

Then, for l ∈ H ′ there exists u0 ∈ H solution of

m(u,ϕ) = 〈l,ϕ〉 , ∀ ϕ ∈ $, (6.20)

satisfying the stability estimate

‖u0‖H ≤
Cm

α
‖l‖H′ . (6.21)

where Cm > 0 is independent of l.

We apply this abstract lemma with

• the spacesH := MT (#), $ := M̃T (#) ⊂ MT (#),

• the bi-linear form m given by ($u,$v) →
〈
M

′

L$u,$v
〉
,

• the operator K from Theorem 6.5 providing K,

• (6.18) in place of the estimate (6.19),

• Theorem 6.4 guaranteeing injectivity ofm.

This gives existence of solutions of the local MTF variational problem (6.17). In ad-

dition, Theorem 6.4 ensures uniqueness, which permits us to conclude the following

main result, which amounts to the well-posedness of the local MTF variational prob-

lem.

Theorem 6.7. The local MTF operator M
′

L : MT (#) → M̃T (#)′ possesses a
continuous inverse (M

′

L)
−1 :MT (#)′ → MT (#).
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6.4 Boundary element Galerkin discretization

On an algorithmic level the boundary element Galerkin discretization of the local MTF

variational formulation (6.17) largely runs parallel to that of the global MTF explained

in Section 3.3. Both trial and test space in (6.17) are replaced with the piecewise

polynomial boundary element spaces introduced in Section 3.3, that is, we rely on

MT h(#) := Th(∂!0)× · · · × Th(∂!N ) . (6.22)

Note the difference with the multi-trace boundary element spaceM̂Th(#) from (5.17)
used for the global MTF: now ∂!0 also bears two discrete Cauchy traces.
Also be aware thatMT h(#) (⊂ M̃T (#), because TD,h(∂!i) ⊂ T̃D(∂!i) would

entail setting all basis functions associated with vertices or edges on boundaries of

interfaces "ij to zero. Nevertheless, we can just go ahead and plug functions in

MT h(#) into the variational equations (6.17), since they are all square integrable
and the terms involving the transmission operators remain well defined. In fact, all we

have to integrate are products of piecewise polynomials.

Eventually, we arrive at a linear system of equations, whose system matrix is of size∑N
i=0mi,mi := dim TD,h(∂!i) + dim TN,h(∂!i), and has the form





A1 X21 . . . . . . XN1

X12 A2 X32

...
...

. . .
. . .

. . .

. . .
. . .

. . .
...

... XN−2,N−1 AN−1 XN,N−1

X1N . . . . . . XN−1,1 AN





, (6.23)

where the matrices Ai ∈ Cmi,mi , i = 0, . . . ,N , arise from standard Galerkin BEM

discretization of the boundary integral operatorsAi as defined in (2.17). The matrices

Xij ∈ Rmj ,mi are sparse and Xij = 0, if !i and !j have no common genuine

interface.

Remark 6.1. Contrasting (6.23) with (5.16) reveals a substantial advantage of the local
MTF compared with the global version: since the global MTF relies on non-local

boundary integral operators to take into account the coupling between sub-domains,

its final system matrix will feature fully populated off-diagonal blocks throughout.

Even though they will allow efficient compression, handling them requires much more

effort than dealing with the sparseXij blocks in (6.23). /

The downside of the local MTF is its failure to fit natural trace space as discussed

at length in Section 6.2. This also compounds difficulties for the a priori convergence

analysis, which is still incomplete. A preliminary result is given in [32, Sect. 4] for the

case of the Helmholtz transmission problem in 2D only.
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Theorem 6.8 (Convergence of Galerkin discretization of local MTF, [32, Thm. 13]).

Consider the Galerkin discretization of (6.17) in the Helmholtz case with lowest or-
der piecewise polynomial (piecewise linear continuous/piecewise constant, cf. Con-
cretization 3.4) boundary elements.

IfM
′

L preserves the regularity of Cauchy traces (see [32, Conjecture 1] for a precise
statement), then the bi-linear form of the local MTF variational formulation satisfies
a discrete inf-sup condition uniform in the meshwidth, provided that the resolution of
the boundary element spaces is large enough.

Operator preconditioning of the discretized local MTF is a straightforward appli-

cation of the recipes outlined in Section 4 and, in particular, Section 4.4. It naturally

relies on the self-duality ofMT (#) with respect to the L2-type pairing !·, ·"MT (#)
from (3.4). As explained in Section 4.4, uniformly stable (with respect to the standard

trace norm ofMT (#)) discrete duality pairings are available forMT h(#) according
to (6.22). The role of the operator B can be played by

B ∼
N∑

i=0

L
∗
i Ai Li :MT (#) → MT (#)′ , (6.24)

which amounts to the operator of the STF, see (3.20), but now considered on the fully

decoupled multi-trace spaceMT (#), recall Remark 5.3.

Yet, operator preconditioning is also haunted by the non-standard function space

framework needed for local MTF; since A in (4.20) is the local MTF operatorM
′
L it

is actually unbounded onMT (#). Thus A has to be replaced with Ah : Vh → V ′
h

in (4.20) and we will inevitably incur a blow-up of ‖Ah‖ as the meshwidth h → 0.

Inverse inequalities linking the T (∂!i)-norm and T̃ (∂!i)-norm of boundary element

functions allow to quantify this blow-up. In the case of H
1
2 -conforming boundary

elements such estimates are known, see [39] and the so-called edge and face lemmas in

the theory of domain decomposition methods, see [55, Sect. 4.2.4] and [52, Sect. 4.6].

They suggest a behavior like

‖Ah‖ ≈ O(| log h|α) , α a small integer. (6.25)

Hence, a slight dependence of the performance of the preconditioner on the mesh-

width can be expected, but will be very moderate and hardly noticeable in numerical

computations. This expectation is bolstered by 2D numerical results reported in [32,

Sect. 5].
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