Eidgendossische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich

Concept Oriented Design of Numerical Software

C. Lage

Research Report No. 98-07
June 1998

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

Concept Oriented Design of Numerical Software!

C. Lage

Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich

Switzerland

Research Report No. 98-07 June 1998

Abstract

The continuously growing computing power of modern computers admits
to tackle numerical problems of extreme complexity. This complexity car-
ries over to the numerical methods applied to solve the problems. Whereas
the mathematical formulation of these methods does not raise any difficul-
ties, their implementation turns out to be the bottleneck in the realization of
numerical applications.

In the last years, in order to afford relief, object oriented methods were ap-
plied to promote reusable and extensible numerical software, since this kind of
flexibility is the key to manage complexity. It became evident that a carefully
chosen modularization of the considered methods is a necessary requirement
to provide flexible software components.

In this paper we give a brief review of object oriented methods to identify
the key issues that support a flexible software design and discuss a modular-
ization technique based on mathematical concepts. Finally, the application of
this concept oriented approach to boundary element methods is presented.

!Presented at the 14th GAMM-Seminar on Concepts of Numerical Software, Christian-
Albrechts-Universitiat Kiel, January 23th to 25th, 1998 (in press in Notes on Numerical Fluid
Mechanics, Vieweg, 1998).

1 Introduction

It is the concern of Numerical Analysis to develop and analyse algorithms
solving mathematical problems. Since the algorithms are intended for the
design of software to solve the initial problem, they have to meet several
requirements. The problems of stability, for example, affect the design of
an algorithm as well as limited resources. Here, one could think of the vast
memory requirements of boundary element methods which led to the devel-
opment of cluster and wavelet algorithms or more general the development
of parallel algorithms to address limited computing power. Hence, limited
resources result in complex algorithms to overcome the restrictions.

But not only limitations also the continuously growing computing power
of modern computers increases the complexity of the algorithms, because now
we are able to tackle numerical problems of high complexity which carries
over to the algorithms applied to solve the problems.

However, with growing complexity the implementation step gains in sig-
nificance. Today, the design of numerical software must be considered as an
autonomous task in the realization of numerical methods, which is one of
the major concerns of Scientific Computing. Unfortunately, it turns out to
become a true bottleneck blocking the employment of modern methods in
industrial applications.

Indeed, there already exists a huge number of software packages which
can be used to tackle extensive problems. Due to a modular structure, these
packages may be modified to meet the requirements of an extended problem
setting. But in most cases this kind of flexibility exists only in the scope of
the package and its initial objective. In general, the combination of modules
of different packages to realize a new type of problem is not possible or raises
many difficulties such that the result is not satisfying.

But reuse of software components, even if they are designed in a different
context than the current one, and extensibility are the fundamental require-
ments to manage the complexity of modern numerical methods and applica-
tions. They also imply an increased reliability of the constructed software,
since we refer to components that are already tested. In addition, we are
able to provide an executable prototype with limited functionality in early
stages of the development process. Hence, experiences with this prototype
can be exploited in the software design.

TYPES
Stack[X]

FUNCTIONS
empty: Stack[X] — Boolean
new: —» Stack[X]
push: X x Stack[X] — Stack[X]
pop: Stack[X] — Stack[X]
top: Stack[X] — X

PRECONDITIONS
pre pop(s: Stack[X]) = (not empty(s))
pre top(s: Stack[X]) = (not empty(s))
AXIOMS
For all x: X, s: Stack[X]:
empty(new())
not empty(push(x, s))
top(push(x,s)) = x
pop(push(x,s)) = s

Figure 1: Abstract data type specifying stacks [5].

2 Object Oriented Methods

The key to achieve the aims of reusability and extensibility is as already
indicated modularity, which means the construction of software by almost
independent or loosely coupled components, so-called modules. Clearly, these
modules are intended for reuse whereas the extension of software is given by
adding or replacing modules in the software architecture.

With continuously growing demands on the flexibility of the software
design the specification of modules has changed. Initially, in the sense of
modular programming, modules were considered as a set of correlative data
structures and procedures collected in a file. This promotes the principle of
information hiding. Nowadays, in the object oriented methodology, a module
is specified by an abstract data type. That means modularization is based
on units of fine grain.

The expression abstract data type stands for a specification of a class of
data structures not by an implementation as indicated by the term abstract,
but by a list of operations and properties, which are available on the data
structures. Let us consider an example shown in Figure 1. A stack is char-
acterized only by means of the operations which observe the last in first out
policy, e.g., push a new element, pop the top element or test whether the
stack is empty. Preconditions could be used to specify whether an operation

is available or not. Since declaring functions does not provide any semantic
information associated with the abstract data type, axioms may be added.

In the terminology of object oriented methods the formal specification by
means of abstract data types coincides with the definition of classes !, to say,
classes describe or form modules.

Note that with respect to the representation of modules nothing essential
has changed. An abstract data type may be expressed with the mechanisms
of modular programming languages as well as with the usage of classes in
modern object oriented languages. However, the latter will be more con-
venient. What has changed is the meaning of a module, namely from the
grouping of data structures and procedures in order to structure programs
to the classification of structures — now, each module serves to produce any
number of instances, in object oriented terminology objects, of what they
stand for.

Modularity is a necessary property to promote reusability and extensibil-
ity. However, the plain modularity described so far is not sufficient to achieve
a high degree of flexibility. To this end, we must be able to formulate generic
modules, i.e. modules which serve to capture common properties of related
modules and make these available to others. One may think of an interface
to a group of modules.

Generic modules form a generalization of modules they group whereas the
modules themselves are specializations of the generic module. It is exactly
this property to express hierarchies of modules which distinguishes object
oriented methods from traditional approaches.

To illustrate this kind of association we consider two modules, one rep-
resenting a stack and the other representing a queue (cf. Figure 2). Both
structures have in common that we can put elements on the stack or in the
queue and that we can get elements back. The only difference is that a stack
observes the last in first out whereas the queue provides the first in first out
strategy. The common operations, put and get, however, specify the generic
module bag. Users of this module can rely on the fact that they can put
something in the bag and that they will get it back. This contract, for in-
stance, can be used by a further module representing the traverse of trees,
hence, a kind of iterator, where the following algorithm is used:

next() {
n = b.get()
for all children c of n
b.put(c)
return n

}

'Most object oriented languages neglect the feature to specify semantics.

3

-7~
Vs N
N -

/

 Bag "~ T~
' ot ! Traverse
Noget) \ oftrees -

N /\/‘\ __/’
~_ _ - ’ ~
/ \

/ \ SN

\ Stack K

/ '\ LlstStack ‘,
’ ArrayStack Seo

~ -

Figure 2: Usage of generic modules.

Under the assumption of a proper initialization of the bag we have to get in
each step a node from the bag, put, if available, all children of the node into
the bag and return the node. Note that we have only used the operations
put and get. Therefore, we may replace the bag by the specializations stack
or queue. The former would result in a depth first traverse of the tree, the
latter in a breadth first traverse. So we modify the type of the traverse
without changing the iterator itself or in other words we could easily extend
software by attaching specialized modules to generic modules. Similarly,
varying implementations could be managed. The implementation of a stack,
for example, by means of arrays in order to model a bounded but efficient
version of a stack, or by means of lists to obtain an unbounded realization.

In the object oriented methodology generic modules are essentially pro-
vided by two mechanisms:

e type extension (inheritance, overloading) in connection with polymor-
phism (dynamic binding, dynamic types) and

e parameterized types (templates).

3 Concept Oriented Design

As discussed in the previous sections we must organize our software using
generic modules specified by abstract data types in order to develop reusable

s
-

Figure 3: Identifying modules by decomposition and composition.

and extensible software. The tools necessary to follow this rule are provided
by object oriented methods. However, the question how to identify or how
to construct a suitable modularization of a system arises immediately.

The first steps in applying object oriented methods for the design of
numerical software employed the same modules that were already known from
the traditional organization. But this approach merely led to a convenient
implementation without exhausting the new design method such that no
advantage became evident.

In the following we are going to discuss two approaches to identify mod-
ules known as

e decomposition (top-down) and
e composition (bottom-up).

The decomposition technique (cf. Figure 3) starts with a module enclos-
ing the complete system. This root module is recursively decomposed into
submodules until we reach a level of abstraction that could be easily imple-
mented. The advantage of this technique becomes clear immediately: at the
same time with the decomposition of modules we reduce the complexity of
the initial problem, therefore, problems with high complexity become man-
ageable. However, since the submodules are typically defined in the scope of
their generating modules, the decomposition, in general, does not produce
modules that are likely to be reused in another context.

The other way round, starting the design with elementary structures in
order to combine these to build abstractions of a higher level, as it is intended
by the composition technique, involves the danger to construct modules that
cannot be associated to entities of the problem domain. Hence, a small vari-
ation of the problem formulation may result in a redesign of several modules

showing that the degree of extensibility is low. In addition, no reduction of
complexity is achieved by this approach rendering this technique only appli-
cable for small problem sizes.

Obviously, these two methods could not give a satisfying recipe for iden-
tifying modules and it becomes evident why this task is the crucial point
in object oriented methods. Nevertheless, since we are interested in the de-
velopment of numerical software, there is a special situation: the considered
numerical methods are already formulated in an abstract way based on hi-
erarchical structured mathematical concepts. This motivates the following
approach: represent each concept by a module and combine these modules
according to the numerical algorithm to generate an implementation. This
defines concept oriented modularization. Chances are that the high reusabil-
ity and extensibility of mathematical concepts carry over to the modules.
In other words, we use the mathematical formulation to predict a stable
modularization of the complete system.

Unfortunately, we are confronted with the following problem: mathemati-
cal concepts are organized in hierarchies, for example, constant functions may
be generalized to polynomials and polynomials to functions. Each general-
ization step results in a reduction of information that may cause a severe loss
of efficiency. Consider the concept of a derivative implemented by numerical
differentiation, for example. The application of this operator to functions
yields a proper realization. On the other hand, if the function is a polyno-
mial or even a constant function this implementation is highly inefficient.
The obvious solution to overcome this problem is to preserve or recover the
lost type information, in order to select an appropriate implementation. The
latter could be related to the polymorphism by virtual functions of object
oriented methods. However, a slightly more general mechanism similar a
generic dispatch? is necessary as we will see in the next section.

4 Example: Petrov-Galerkin Discretization

In order to illustrate the sketched design technique let us consider a Petrov-
Galerkin discretization, the foundation of every finite element and boundary
element method. Let F' and G denote two Hilbert spaces, usually spaces of
functions, A : F' — G an operator. To solve the operator equation Af = ¢
numerically, where g € GG denotes a given right hand side, we choose finite
dimensional subspaces F,, and G}, of the space F' and the dual space of G,
respectively. Then, the Petrov-Galerkin discretization of the problem is given

2The programming language CLOS offers this kind of polymorphism.

- ~N
s ~

. Function \\\‘//S T
(ShpFnc)
-~ / - k \\ShthBQ‘
(ShPFNCA' gpornceY

~

Figure 4: Generic module ShpFnc and associated implementations.

by:
find f,, € F,, such that (o, Af, —g) =0 for all p € G.,, (1)

i.e., such that the projection of the defect vanishes. Here, the projection is
determined by the choice of the subspaces. Introducing bases

Fy =span{¢i, ..., ¢}, G, =span{pi,...,on} (2)

for the subspaces leads to a system of linear equations for the coefficients f
of the discrete solution f, = >_,(f); ¢

Af=g, (3)

where (A)i; = (i, AY;) and (g)i = (¢i, 9)-

Note that the system matrix may be dense, even if we use basis functions
with local support, since the application of A does not necessarily preserve
this property.

The major concepts of the discretization scheme are: operators, functions,
subspaces and basis. In addition, for the definition of the spaces we have
to provide some information about the geometry, in particular, the used
mesh or panelization. If we assume that basis functions are represented
by shape functions, which are basis functions restricted to a panel, then a
central module will be a class ShpFnc specifying a generic module, such that,
similarly to the example of the stack, arbitrary implementations of concrete
shape functions denoted by ShpFncA, ShpFncB, ShpFncC in Figure 4 may be
added.

In the following we are going to discuss the abstraction of the dual forms
that must be evaluated in order to assemble the right hand side and system

7

send_lterator()

Figure 5: Initialization of discrete functions using shape functions with at-
tached evaluation of [,(g) = (¢, 9).

matrix. To be more concrete let us assume that the dual form is given by the
L? inner product. Then, the elementary operation used to evaluate the right
hand side is to integrate the product of right hand side and shape function
over an arbitrary panel of the mesh:

(¢, 9) = /g(x) o(x) du.

A

At a glance, it is near at hand to attach this integration by means of a
virtual function l,(g) := (¢, g) to the class ShpFnc. Virtual functions are a
mechanism of object oriented methods to promote generic constructions and
ensures in our case that even if the evaluation of the dual form is called for
the interface the function call is transfered to the intended concrete subclass
which provides the correct implementation (see [7]). In this way we are
able to implement the initialization of discrete functions modelled by the
class Function without knowledge of concrete shape functions (Figure 5: the
initialization calls for an iterator which is able to list all shape functions of
the considered space. With this iterator the function [, (g) is invoked for each
shape function. The returned values are processed in order to assemble the
vector g in (3).

Though this construction makes sense, the following problem occurs: as-
sume that not the plain right hand side g, but the image of g with respect
to an operator V' is to be evaluated in the dual form, i.e. {,(g) := (¢, Vyg).
This is, for instance, the case for boundary integral equations derived from
boundary value problems by means of the direct method. We would have to
add new classes of shape functions implementing the new functionality. But
this increases the cohesion of the modules. Since spaces are responsible to
generate the necessary shape functions to describe the space, we have to add
a new space, which is from the mathematical point of view identical with the

- ~N
V' ~

\ Function —— /7 "~--,
/ Space -

i
~ P \

\\ _’//
- PR
- N s N -

\ - - =

Vs

-~ / \—_~\ ! h PR
TS DualForm — ShpFnc < -
(e TR
roy ' ShpFncA) ' ShpFncB
N /, \\\ P _,’/\—

Figure 6: Dual forms as an independent concept.

previous space, only to generate the new shape functions. Thus, the treat-
ment of the right hand side influences assembly and choice of spaces. This
association may cause unpredictable difficulties when extending or reusing
the design and should be avoided.

The solution is to follow the mathematical structure and realize dual
forms as an independent concept. Now, variations in the semantic of dual
forms could again easily be modelled by concrete specializations, classes Id
and V in Figure 6, without affecting other classes.

But now, another problem arises. Since we divide dual forms from shape
functions we have to identify operations supported by shape functions that
on the one hand provide enough information such that a dual form can be
evaluated, on the other hand are common to all shape functions, in order to
form an interface. If we assume, for example, that dual forms can always
be evaluated by numerical quadrature, an interface that offers the following
information will be possible:

e domain of integration,
e evaluation of mapping functions / Jacobian,
e evaluation of shape functions.

But it turns out that due to its generality such an interface is by far too
inefficient, as already indicated. If we implement iso-parametric elements
for instance we will not be able to exploit the fact that mapping and shape
functions are polynomials, because we are bound to the interface, which can
only admit pointwise evaluation of these functions without loosing generality.

So, we are in the above mentioned dilemma that the reduction of information
due to a generalization results in a loss of efficiency.

The subsequent solutions to this problem may be conceivable:

First, we may introduce for each case where the loss of efficiency would
be too high a separate module. But this is not very convincing, since adding
a further module would actuate a redesign of associated classes, similar to
the approach by virtual functions already discussed.

Second, use the union of all interfaces that come into question to form a
unifying interface, sometimes called a fat interface. This is somewhat more
promising, because adding a new interface would only result in a recompila-
tion of associated classes. However, this is still be unacceptable if we plan
to design a library. The major drawback of this technique is that the most
operations declared by the interface are meaningless in specializations and
could only be defined to raise an exception.

Till now, we tried to succeed by preserving the information that might
be lost. In the next suggestion we recover the information. For the common
interface we choose the intersection of all interfaces and in the implementation
of the dual form we add a selection mechanism driven by a type identification
of the actual shape function to choose an efficient algorithm. A crude example
of such a generic dispatch would be

(0, 9) {
if (typeof(p) = “ShpFncA”) {
integrate using the interface of ShpFncA
} else if (typeof(¢) = “ShpFncB”) {
integrate using the interface of ShpFncB

belse -+ {

integrate using the default interface of ShpFnc

}
}

Type identification (typeof()) is usually provided by the object oriented pro-
gramming language chosen or can be easily implemented by means of virtual
functions.

This construction supports the desired and necessary flexibility: we could
attach any kind of shape functions and dual forms without changing existing
classes. Note that we do not by-pass the principle of information hiding by
identifying the type, because we still communicate with shape functions using
an interface which, however, is more appropriate. Another, more advanced

10

send_lterator()
send_lterator()

A:DualForm

Figure 7: Evaluation of system matrix and right hand side.

implementation of a generic dispatch consists in using the type information
as index to retrieve the appropriate function call from a table.

It is straight forward to apply the approach of recovering information to
the dual forms of the left hand side to assemble the system matrix. The
only difference is that now the selection depends on the types of two shape
functions ¢ and ¢ instead of a single one (see Figure 7). In this case an
implementation using nested virtual functions (double dispatching) would
not be extensible at all (cf. [8, 13.8]).

Summing up, it may be said that the concept oriented design, which offers
the possibility to produce a stable, extensible and reusable modularization
of numerical problems, needs an extended understanding of polymorphism.
Typically, polymorphism is only driven by the declaring type, e.g., a function
call is passed from a generic module to the intended specialized module. Now,
in a second stage, we must be able to declare generic functions in the scope of
modules, i.e. functions whose parameter list contain generic modules. Calling
a generic function invokes a specialized function. The selection depends on
the actual instance of the generic modules in the parameter list, where we are
not restricted to a single module or modules, which are related in a special
way to the module declaring the functions.

11

5 A Framework for Boundary Element Meth-
ods

Using the discussed design technique we have develop a C++ class library for
boundary element methods called Concepts.

The integral equations we are interested in are integral equations of Fred-
holm type

Af=gon T (4f)(e) = [Kwy)f(w)dy
r
that originate from the reformulation of a boundary value problem

Lu=0inQCRY Bu=¢onTl =09

by means of the integral equation method, described for example in [1]. The
transformation is by no means unique. For Laplace’s equation with Dirichlet
boundary conditions

~Au=0inQCR} u=ypponl:=00

one could, for instance, formulate the following three boundary integral equa-
tions:

ansatz in €) equation on I
u=Vf VI=vp
u=Kf (31— K) f=—vp
u=Veoy—Kop VSON:(%[—FK)SOD
where
1 1
VN = 1 [(1)
T
1 _
K@) = 5 [) an 5)
T

The first and the second formulations are derived using a single and double
layer ansatz, respectively, yielding equations for the density f. Applying
Green’s representation formula leads to the third equation.

In general, the kernel functions are singular for x equal to y and are
smooth with growing distance of z and y.

In boundary element methods the discretization of the integral equation is
given by Petrov-Galerkin schemes where two choices of subspaces are of major

12

interest. Choosing Dirac functionals for the test space yields the collocation
method, where the dual form is simply a pointwise evaluation in collocation
points &;:

®)i=9(6&). (4), = [b)) dy

Choosing the L? inner product for the dual form describes the Galerkin
method. Hence, in the three dimensional case, we have to evaluate four
dimensional singular integrals to assemble the system matrix:

() = / oi)a(c) dy, (A),, = / oiv) / Kz, y)i;(y) dy d.

r r r

Since the foundation of the boundary element method is the Petrov-
Galerkin scheme, we can make use of the design presented in the previous
section. For the abstraction of the geometry, that is the boundary of the
domain, we use two stages. The first represents a splitting of the bound-
ary in elementary parts, so-called patches. It represents the physical view
of geometry. The second stage, the numerical view, provides an approxima-
tion of the boundary, for example, by a polyeder. The panels that could be
used in the approximation, like triangles, quadrilaterals, curved triangles, are
grouped by the class Panel (Figure 8). Spaces make use of the panels, offered
by a panelization via iterators, to generate basis functions which are repre-
sented by elements. An element denotes the collection of all shape functions
associated to one panel.

Let us have a closer look at the association shared by the class Space
and Element (Figure 9). By specialization of the class Space we could attach
concrete spaces to the model. During their initialization we select concrete
elements according to the semantic of the considered space and establish an
index that relates shape functions to basis functions. Functions of the spaces
are represented by their vector of coefficients with respect to the chosen basis.

We have already discussed the interplay of dual forms and elements. Dual
forms serve to provide the necessary informations to initialize functions and
operators.

Operators are characterized by their property to map functions. This
attribute is represented by the class Operator (Figure 9). A matrix with
matrix vector product, for example, could serve as an implementation of
an operator. This representation is given by the class OP_AllPurpose. The
name indicates that we could use this class for all discrete operators even
for the sparse mass matrix if necessary. But for the latter the class ldentity

13

- /\—_\
Ve 7 N —

{ Function ™ | Operator
/

- =

- ~

(DuaIForm/\ ‘\ Space /)
\ -
\/___/
_ /
PRGN \ Element ~—__~ “L_-
\ Patch - N \ Panel -

TN ' Panelization'
(Boundary —— " anetization,
\ P ~ o _

~

Figure 8: Top level structure of Concepts.

was added taking the sparse structure and the simplified initialization into
account. Further operators are linear combinations and solvers, since these
represent nothing else but the inverse of an operator. The shown iterative
solver can be initialized with all classes sharing the interface of an operator,
since they only need the mapping property.

With these classes the implementation for solving the boundary integral
equation

GI_K)f:g on T (6)

could be formulated as follows:

14

, ~

/
\ Element _
/ \/'__ OP 'de”t'ty {OP_AllPurpose’
\ E—L'rﬂ:”3) IE Dlrathx3| \\\‘” /*__,/”/
'\E_LinQuad3| N
e \ Operator | - OP_LiCO\
T N \map() 2 I
. SP_Linear . SP_Dirac | \
\ / N - % .. | OP_GMRes)
AR SRR \ OP.CG ' “~____---
' Space s . Function N
N _/ - /—_/

Figure 9: Space—element association and operators.

int main() {
Boundary gamma(” cube”);
Panelization pnl(gamma, 2);
SP_Linear trispc(pnl);
SP_Dirac tstspc(pnl);
DF_LaplaceDIp dlIp(2, 2, 0.25);
DF _ldentity id;
OP_AllPurpose K(tstspc, trispc, dlp);
OP_ldentity I(tstspc, trlspc, id);
OP_LiCo A(05, 1, -1.0, K);
OP_GMRes A_inverse(A, 1e-8, 100);
Function g(tstspc, id, " (x x y x 2)");
Function f(trlspc);

A inverse(g, f);

After the generation of physical and numerical informations of the geometry

15

represented by the objects gamma and pnl, respectively, the trial (trlspc) and
test space (tstspc) are chosen. Here, we apply piecewise linear functions and
Dirac delta functions concentrated in the vertices, i.e. a collocation method is
used for the discretization of (6).> In the next two lines the dual form induced
by the double-layer potential (cf. (5)) as well as the dual form associated with
the identity are declared and defined. In addition, parameters concerning the
quadrature rules, e.g., the number of Gaussian nodes, are given.

In the example, the integral operator is described by a linear combination
of the identity and the double-layer potential. Again, this representation is
carried over into the implementation by defining the object A of the class
OP_LiCo. This class is, as already mentioned, responsible for evaluating the
linear combination of two operators, in our example the linear combination
of the discrete identity and the discrete double-layer potential represented
by | and K, respectively.

The integral operator A in combination with further parameters, e.g., a
stopping criterion, is used to initialize the solver denoted in the listing by
Al inverse. In the last line A_inverse is applied to the given right hand side g
to solve equation (6).

It should be mentioned that the object oriented methodology, in partic-
ular polymorphism, does not necessarily lead to inefficient implementations.
For the presented approach the same efficiency compared to a traditional
implementation which offered only a restricted flexibility was reached.

Finally, in order to stress the flexibility of the modularization we want
to discuss two extensions. The drawback of the boundary element method
in contrast to finite elements is the dense system matrix. Though there is
a reduction of the spatial dimension the complexity to assemble the system
matrix for boundary elements in the three dimensional case exceeds the com-
plexity of this task in a corresponding finite element discretization of equal
mesh width. Due to the special kernel properties, namely the smoothness
far from the singularity, it is possible to construct sufficient approximations
of the system matrix in O(N(log N)!) instead of O(N?), N the number of
unknowns, operations. The same is true for the memory consumption.

One method, the panel clustering method, was proposed by Hackbusch
and Novak [2]. It is based on the replacement of the kernel by an approxi-
mation in regions where the kernel is smooth, so-called clusters, in order to
obtain a factorization of the xy-dependence:

k‘(ZL’, y) ~ km(xv y) = Z ﬁ(u,u) (I07 yO) Xu(:E; 170) Yu(y; yO) (7)

(v)ELm

3Setting tstspc = trlspc instead of choosing Dirac delta functions implements Galerkin’s
method.

16

PN
s ~

 Operator
\

-
~ o _ _
- AT T~ TS
N

' OP_PniClst

// \\—_ - o
[DG
. Space /
\/, < -
' Cluster ’
~ _

Figure 10: Embedding of the panel clustering method.

for all z, y satisfying
[y = yol + |z — 2ol < nlyo — ol

Approximations of this kind could be derived by expansion or interpolation
of the kernel. The advantage of the latter is that we only need kernel eval-
uations to assemble the approximation [3]. Hence, this approach is nearly
independent of the kernel.

The approximation of the kernel leads to an approximative decomposition
of the system matrix into a sparse matrix N and a finite sum of rank-M
modifications where M << N:

A~N+ > XF, Y, (8)

(o,7)EF

Whenever a matrix vector product is necessary we have to evaluate the com-
posed operation
Af ~Nf+ > X, (Fo(Y£)), (9)

(o,7)EF

in order to employ fast methods available for the computation of matrix
vector products with rank-M matrices. By evaluating (8) we would obtain a
dense matrix and nothing is gained.

The embedding of the panel clustering did not cause any changes of the
existing framework. A new implementation of the interface Operator using
the panel clustering algorithm and the construction of clusters based on the
information provided by the class Space is added (Figure 10). To apply the
panel clustering method in the previous example we only have to exchange
the OP_AllPurpose operator with the OP_PnlIClst operator.

17

The second method to generate a sparse approximation of the system
matrix uses expansions of the kernel by means of wavelets. Again, due to the
smoothness of the kernel in the far field regions expansion coefficients corre-
sponding to higher frequencies decrease rapidly. Since these coefficients de-
termine the entries of the system matrix most of them could be neglected. It
turns out that such a truncation of sufficient small entries yields a sparse ap-
proximation that preserves the convergence rates of the initial method. Un-
der certain assumptions a reduction to O(N) entries is possible (see Schneider
[6]). In our library we use discontinuous multi-wavelets that were analysed
by von Petersdorff and Schwab [9]; computational aspects are presented in
[4]. With this implementation boundary integral equations with up to one
million unknowns were solved.

Again, to realize wavelet methods we could extend the given framework
by using only specializations of the existing interfaces. A new wavelet ele-
ment must be made available, a space to setup these elements, dual forms
to support special quadrature schemes that become necessary for wavelets
and a new operator to realize the truncation and suitable storage schemes.
In contrast to panel clustering, most of the major class hierarchies must be
extended. But all extensions are caused by the mathematical method itself
and not by an improper modularization. In addition, it could be observed
that the chosen modularization promotes an incremental design of the con-
cepts. For example, we could check the new space and the new dual form
with the existing operator class OP_AllPurpose. In this way one can localize
errors more easily.

References

[1] W. Hackbusch. Integral Equations, Theory and Numerical Treatment,
volume 120 of ISNM. Birkhauser, Basel, 1995.

[2] W. Hackbusch and Z.P. Nowak. On the Fast Matrix Multiplication in
the Boundary Element Method by Panel Clustering. Numerische Math-
ematik, 54(4):463-491, 1989.

(3] Ch. Lage. Fast evaluation of singular kernel functions by cluster methods.
Technical report, Seminar fiir Angewandte Mathematik, ETH Ziirich,
CH-8092 Ziirich, 1998. In preparation.

[4] Ch. Lage and Ch. Schwab. Wavelet Galerkin algorithms for boundary
integral equations. Technical Report 97-15, Seminar fiir Angewandte
Mathematik, ETH Ziirich, CH-8092 Ziirich, 1997. To appear in STAM J.
Sci. Comput.

18

[5]

(6]

8]

9]

B. Meyer. Object-Oriented Software Construction. Series in Computer
Science. Prentice-Hall, New York, 1988.

R. Schneider. Multiskalen- und Wavelet-Matrizkompression: Analy-
sisbasierte Methoden zur effizienten Losung groSer wvollbesetzter Gle-
ichungssysteme. Advances in Numerical Mathematics. Teubner Verlag,
Stuttgart, 1998.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, second edition, 1991.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley,
Reading, Massachusetts, 1994.

T. von Petersdorft and Ch. Schwab. Fully discrete multiscale Galerkin
BEM. In Dahmen W., Kurdila P., and Oswald P., editors, Multiresolution
Analysis and Partial Differential Equations, Wavelet Analysis and its
Applications. Academic Press, 1997.

19

Research Reports

No. Authors Title
98-07 C. Lage Concept Oriented Design of Numerical
Software
98-06 N.P. Hancke, J.M. Melenk, A Spectral Galerkin Method for Hydrody-
C. Schwab namic Stability Problems
98-05 J. Waldvogel Long-Term Evolution of Coorbital Motion
98-04 R. Sperb An alternative to Ewald sums, Part 2: The
Coulomb potential in a periodic system
98-03 R. Sperb The Coulomb energy for dense periodic
systems
98-02 J.M. Melenk On n-widths for Elliptic Problems
98-01 M. Feistauer, C. Schwab Coupling of an Interior Navier-Stokes Prob-
lem with an Exterior Oseen Problem
97-20 R.L. Actis, B.A. Szabo, Hierarchic Models for Laminated Plates and
C. Schwab Shells
97-19 C. Schwab, M. Suri Mixed hp Finite Element Methods for Stokes
and Non-Newtonian Flow
97-18 K. Gerdes, D. Schotzau hp FEM for incompressible fluid flow - stable
and stabilized
97-17 L. Demkowicz, K. Gerdes, HP90: A general & flexible Fortran 90 hp-FE
C. Schwab, A. Bajer, code
T. Walsh
97-16 R. Jeltsch, P. Klingenstein Error Estimators for the Position of Disconti-
nuities in Hyperbolic Conservation Laws with
Source Terms which are solved using Opera-
tor Splitting
97-15 C. Lage, C. Schwab Wavelet Galerkin Algorithms for Boundary
Integral Equations
97-14 D. Schotzau, C. Schwab, Mixed hp - FEM on anisotropic meshes II:
R. Stenberg Hanging nodes and tensor products of bound-
ary layer meshes
97-13 J. Maurer The Method of Transport for mixed hyper-
bolic - parabolic systems
97-12 M. Fey, R. Jeltsch, The method of transport for nonlinear sys-
J. Maurer, A.-T. Morel tems of hyperbolic conservation laws in sev-
eral space dimensions
97-11 K. Gerdes A summary of infinite element formulations
for exterior Helmholtz problems
97-10 R. Jeltsch, R.A. Renaut, An Accuracy Barrier for Stable Three-Time-
J.H. Smit Level Difference Schemes for Hyperbolic
Equations
97-09 K. Gerdes, A.M. Matache, Analysis of membrane locking in hp FEM for

C. Schwab

a cylindrical shell

