
On single- and multi-trace implementations for
scattering problems with BETL

L. Kielhorn, ETH Zürich, Seminar of Applied Mathematics

Söllerhaus Workshop 2012



Why a BEM library?

I The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

I The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

I The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

I BETL aims to save the PhD-student, to support the engineer
with rapid developments of new BEMs, and to please the
mathematician (students have more time to focus on math)



Why a BEM library?

I The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

I The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

I The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

I BETL aims to save the PhD-student, to support the engineer
with rapid developments of new BEMs, and to please the
mathematician (students have more time to focus on math)



Why a BEM library?

I The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

I The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

I The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

I BETL aims to save the PhD-student, to support the engineer
with rapid developments of new BEMs, and to please the
mathematician (students have more time to focus on math)



Why a BEM library?

I The mathematician: Boundary integral equations (BIEs) are
an indispensable tool for the analysis of linear PDEs and their
BVPs. Lovely fractional Sobolev spaces!

I The application engineer: BIE-discretisation schemes are of
interest for a couple of real-world problems.

I The PhD-student: Come on, implementing Boundary Element
Methods is cumbersome, annoying, tedious and error proning.
It does not pay off!

I BETL aims to save the PhD-student, to support the engineer
with rapid developments of new BEMs, and to please the
mathematician (students have more time to focus on math)



Contents

A short overview on BETL

Boundary Element formulations for scattering problems

Conclusion & Outlook



BETL’s one and only purpose
Compute something like

A[i , j ] =

∫
supp(φi )

φi (x)

∫
supp(ψj )

G (y − x)ψj(y) dsy dsx

I BI operators are non-local, “Everything is connected with
everything!”

I G ≈ 1
|y−x| is rational and singular for y→ x. At least, here all

the beauty of BIOs is lost!



The workflow library-driven BEM Applications
I There exists a zoo of different BEMs =⇒ Avoid the all-in-one

solution
I Write specific applications utilizing three main libraries:

input, core, result

.inp input core result .out



The main design of the core library

A[i , j ] =

∫
supp(φi )

φi (x)

∫
supp(ψj )

G (y − x)ψj(y) dsy dsx

Discretization model BEM model

Element

FundSol

Mesh FESpace Kernel Quadrature

DoFHandler Integrator

BemOperator



The Finite Element Basis

I Lagrangian basis functions (Hat functions)

0

0 1

2

0 1

2

3

45

0 1

2

3 4

5

67

8 9

0

0 1

23

0 1

23

4

5

6

7

0 1

23

4 5

6

7

89

10

11 12 13

1415



The Finite Element Basis (cont’d)

I (Lowest order) Edge functions

0

12

0 1

2



The Dofhandler concept

I On basis of the Finite Element basis distribute the dofs

I Distribution of edge dofs

0

12

3 4

5

6 7

8

910

11

I Distribution of Lagrangian dofs (continuous/discontinuous)

0 1

23

4 5 6

7

8

0 1

23

4

5 6

7 8

9 10

11
12 13

1415



The design criteria of a BEM library

I Guarantee a robust and efficient runtime behavior!

I Develop flexible and easy-to-use interfaces!

I No redundancies. Implement things only once!

I Make use of well established libraries like, e.g., STL, BOOST,
MKL, SUPERLU, . . . !

I Separate data-structures from algorithms!

I Encapsulate data, i.e., avoid global variables!

I Make use of dynamic memory management!

=⇒ Use C++. Exploit the C++-Template-Mechanism



BETL in action – Compute the Single Layer Potential

// define the element type and instantiate the mesh

Mesh < element_t > mesh( input );

// define the boundary element basis

typedef FEBasis < element_t ,LINEAR ,Discontinuous ,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler < basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs( mesh.e_begin(), mesh.e_end () );

// the fundamental solution type and its instance

typedef FundSol < LAPLACE , SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

kernel_t kernel( fs );

// the integrator type and its instance

typedef GalerkinIntegrator < kernel_t , QuadratureRule <1,2> > integrator_t

integrator_t integrator( kernel )

// the type of the matrix generator and an instance

typedef DiscreteOperator < integrator_t , dofhandler_t > discrete_operator_t;

discrete_operator_t discrete_operator( integrator , dof_handler );

// finally , this computes the matrix A

discrete_operator.compute( );



BETL in action – Compute the Single Layer Potential

// define the element type and instantiate the mesh

Mesh < element_t > mesh( input );

// define the boundary element basis

typedef FEBasis < element_t ,LINEAR ,Discontinuous ,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler < basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs( mesh.e_begin(), mesh.e_end () );

// the fundamental solution type and its instance

typedef FundSol < LAPLACE , SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

kernel_t kernel( fs );

// the integrator type and its instance

typedef GalerkinIntegrator < kernel_t , QuadratureRule <1,2> > integrator_t

integrator_t integrator( kernel )

// the type of the matrix generator and an instance

typedef DiscreteOperator < integrator_t , dofhandler_t > discrete_operator_t;

discrete_operator_t discrete_operator( integrator , dof_handler );

// finally , this computes the matrix A

discrete_operator.compute( );



BETL in action – Compute the Single Layer Potential

// define the element type and instantiate the mesh

Mesh < element_t > mesh( input );

// define the boundary element basis

typedef FEBasis < element_t ,LINEAR ,Discontinuous ,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler < basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs( mesh.e_begin(), mesh.e_end () );

// the fundamental solution type and its instance

typedef FundSol < LAPLACE , SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

kernel_t kernel( fs );

// the integrator type and its instance

typedef GalerkinIntegrator < kernel_t , QuadratureRule <1,2> > integrator_t

integrator_t integrator( kernel )

// the type of the matrix generator and an instance

typedef DiscreteOperator < integrator_t , dofhandler_t > discrete_operator_t;

discrete_operator_t discrete_operator( integrator , dof_handler );

// finally , this computes the matrix A

discrete_operator.compute( );



BETL in action – Compute the Single Layer Potential

// define the element type and instantiate the mesh

Mesh < element_t > mesh( input );

// define the boundary element basis

typedef FEBasis < element_t ,LINEAR ,Discontinuous ,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler < basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs( mesh.e_begin(), mesh.e_end () );

// the fundamental solution type and its instance

typedef FundSol < LAPLACE , SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

kernel_t kernel( fs );

// the integrator type and its instance

typedef GalerkinIntegrator < kernel_t , QuadratureRule <1,2> > integrator_t

integrator_t integrator( kernel )

// the type of the matrix generator and an instance

typedef DiscreteOperator < integrator_t , dofhandler_t > discrete_operator_t;

discrete_operator_t discrete_operator( integrator , dof_handler );

// finally , this computes the matrix A

discrete_operator.compute( );



BETL in action – Compute the Single Layer Potential

// define the element type and instantiate the mesh

Mesh < element_t > mesh( input );

// define the boundary element basis

typedef FEBasis < element_t ,LINEAR ,Discontinuous ,LagrangeTraits > slp_basis_t;

// the dofhandler type and its instance

typedef DoFHandler < basis_t > dofhandler_t;

dofhandler_t dof_handler;

dof_handler.distributeDoFs( mesh.e_begin(), mesh.e_end () );

// the fundamental solution type and its instance

typedef FundSol < LAPLACE , SLP > fs_t;

fs_t fs;

// the kernel type and its instance

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

kernel_t kernel( fs );

// the integrator type and its instance

typedef GalerkinIntegrator < kernel_t , QuadratureRule <1,2> > integrator_t

integrator_t integrator( kernel )

// the type of the matrix generator and an instance

typedef DiscreteOperator < integrator_t , dofhandler_t > discrete_operator_t;

discrete_operator_t discrete_operator( integrator , dof_handler );

// finally , this computes the matrix A

discrete_operator.compute( );



BETL Applications



Transmission problem for acoustic scattering

uinc

us

uint

Ω−

Ω+

n
u = uint in Ω−, u = us + uinc in Ω+

−∆u − ω2
σu = 0 in Ωσ

JγDuK = 0 on Γ

JγNuK = 0 on Γ

+radiation condition for us
I Calderón operator:

Aω :=

(
−Kω Vω
Dω K ′ω

)
I BIEs

Ω− :
(
−1

2 I + Aω−

)(γ−Du
γ−N u

)
= 0

Ω+ :
(
−1

2 I − Aω+

)(γ+
Dus
γ+
N us

)
= 0



Acoustic scattering: Boundary Integral representations

I BIEs (
−1

2 I + Aω−

)(γ−Du
γ−N u

)
= 0

(
−1

2 I − Aω+

)(γ−Du
γ−N u

)
= −

(
γ−Duinc
γ−N uinc

)
I Subtract exterior BIEs from interior BIEs (1st kind)

(
Aω− + Aω+

)(γ−Du
γ−N u

)
=

(
γ−Duinc
γ−N uinc

)
I Add exterior and interior BIEs (2nd kind)

(I − A∆ω)

(
γ−Du
γ−N u

)
=

(
γ−Duinc
γ−N uinc

)
, ∆ω = ω− − ω+



On the discretisation of Ã = Aω− + Aω+
∧ Ã = I − A∆ω

I Galerkin scheme

〈Ã
(
γ−Du
γ−N u

)
,

(
ψ
ϕ

)
〉 = 〈

(
γ−Duinc
γ−N uinc

)
,

(
ψ
ϕ

)
〉

I Test- and trial-spaces may differ for 1st kind and 2nd kind
formulation

I Single layer and double layer operators are in place.
I But: What’s about an efficient implementation of the

hypersingular operator for the Helmholtz kernel?
I The hypersingular kernels in Aω− and Aω+ demand a

realisation via integration by parts
I The hypersingular operator in A∆ω is not hypersingular. Can

be implemented via a classical approach.



The hypersingular operator (needed for 1st kind form.)

I Continuous representation

〈Dωu,w〉 =

∫
Γ

∫
Γ
Gω(y − x) curlΓ,y u · curlΓ,x w dsy dsx

− ω2

∫
Γ

∫
Γ
Gω(y − x) u w ny · nx dsy dsx

I Discrete form for lowest order function spaces

Dh =
3∑

i=1

CiBVhB
TCT

i − ω2A

(
3∑

i=1

NiVhN
T
i

)
AT

Needed FE-spaces in BETL:

// pw linear discontinuous space :: V, B, N

typedef FEBasis <Element <3>,LINEAR ,Discontinuous ,LagrangeTraits > slp_fes_t;

// pw constant space :: B, C

typedef FEBasis <Element <3>,CONSTANT ,Discontinuous ,LagrangeTraits > const_fes_t;

// pw linear continuous space :: C, A

typedef FEBasis <Element <3>,LINEAR ,Continuous ,LagrangeTraits > lin_fes_t;



Creating the discrete operators Vh, C , N , B , A
I Recalling the discrete form

Dh =
3∑

i=1

CiBVhB
TCT

i − ω2A

(
3∑

i=1

NiVhN
T
i

)
AT

I Dofhandler types
typedef DoFHandler < slp_fes_t > slp_dh_t;

typedef DoFHandler < const_fes_t > const_dh_t;

typedef DoFHandler < lin_fes_t > lin_dh_t;

I With an integrator type the bem-operator’s definition is
typedef DiscreteOperator < integrator_t , slp_dh_t > slp_operator_t;

I . . . and the sparse operators’ definitions read
typedef curl_operator < const_fes_t , lin_fes_t > curl_op_t;

typedef normal_operator < slp_fes_t , slp_fes_t > normal_op_t;

typedef adjacency_operator < const_fes_t , slp_fes_t > B_op_t;

typedef adjacency_operator < lin_fes_t , slp_fes_t > A_op_t;

I Next step: Create instances and perform the computations
slp_operator_t slp_operator( integrator , slp_dh );

B_op_t B_op ( const_dh , slp_dh );

slp_operator.compute( );

B_op.compute( ); // ... and do the same for all other operators !



What—in fact— has to be done. . .

I Once the operators have been computed the discrete Calderón
operator is given by

Ah(Vh,Kh) =

[
−Kh BVhB

T

Dh(Vh) K>h

]
I BETL provides methods to build block system out of matrices

or blocks of matrices

I However, BETL encapsulates the Calderón operator in a
simple structure

// declare calderon operator type

typedef driver :: helmholtz :: CalderonOperator < NO_ACCELERATION > calderon_op_t;

// create instances of calderon operators

calderon_op_t calderon_ext( omega_ext );

calderon_op_t calderon_int( omega_int );

// initialize it with element iterators

calderon_ext.initialize( begin , end );

calderon_int.initialize( begin , end );

// compute them

calderon_ext.compute( );

calderon_int.compute( );



Notes on the 2nd kind formulation
I 2nd kind formulation demands the implementation of new

kernels for V∆ω, K∆ω, and D∆ω
// skeleton for the implementation of V_\Delta\omega

class FundSol < HELMHOLTZ_DIFF , SLP > {

FundSol( complex_t omega_1 , complex_t omega_0 ) { /* ... */ }

void operator ()( const ArgRad r, const ArgGP X, const ArgGP Y,

ResultType& result )

{ /* your implementation goes here ... */ }

};

I Now you can use it in the same way as the built-in functions
// define and instantiate the modified Green ’s function

typedef FundSol < HELMHOLTZ_DIFF , SLP > fs_t;

fs_t fs( omega_int , omega_ext );

// declare a GalerkinKernel in the same way as before

typedef GalerkinKernel < fs_t , dofhandler_t :: FunctionType > kernel_t;

I Naturally, everything can be encapsulated in a simple data
structure again

// declare calderon operator type

typedef driver :: helmholtz_diff :: CalderonOperator < ACA > calderon_op_t;

// create instance

calderon_op_t calderon( omega_int , omega_ext );

// initialize it with element iterators

calderon.initialize( begin , end );

// compute it

calderon.compute( );

// ... compute mass matrix -> glue everything together ...



Enhancing the scheme...

I The first kind formulation(
Ah,ω− + Ah,ω+

) [u
t

]
=

[
MND 0

0 MDN

] [
uinc
t inc

]
is just a special case of the classical Single Trace Formulation

D∑
d=0

L∗dAh,ωd
Ld

[
u
t

]
= L∗extM

[
uinc
t inc

]
I Ld are localisation operators

Ld : dofs on Γ → dofs on Γd

I Thanks to their sparsity the implementation of the
Localisation operators can be easily done. BETL provides
generic routines for creating sparse matrices.



A final enhancement

I Multi-trace formulations usually reveal the following matrix
structure

(
diag(Aωd

) +

[
A00
ωext

1
2M

01 + A01
ωext

1
2M

10 + A10
ωext

A11
ωext

])
[
u0

t0

]
[
u1

t1

]
 = f (uinc)

I What extra work has to be done from an implementation
point of view? In fact not much:

// declare calderon operator type

typedef driver :: helmholtz :: CalderonOperator < ACA > calderon_op_t;

// create instance

calderon_op_t A_01( omega_ext );

// initialize it with different element iterators for test - and trial -spaces

A_01.initialize( begin_test , end_test ,

begin_trial , end_trial );

// compute it!

A_01.compute( );

// do the same with the mass matrix

typedef identity_operator < dofhandler_test_t , dofhandler_trial_t > id_op_t;

id_op_t M_01( dofhandler_test , dofhandler_trial );



Tiny case study: ωext = 1, ωint = 2, rsphere = 0.5
I Single trace formulation results (#Elements: 3648)

I 2nd kind formulation results (#Elements: 2048)



BETL’s homepage
I Visit BETL at: www.sam.math.ethz.ch/betl

www.sam.math.ethz.ch/betl


Conclusion

I BETL is an efficient, modular, extendable and an easy-to-use
BEM library

I BETL provides Laplace- and Helmholtz-type fundamental
solutions

I BETL provides flat/curved triangles/quadrilaterals

I BETL provides constant, linear, and quadratic FE-Spaces for
Nodal based Functions (continuous/discontinuous)

I BETL provides lowest order edge-elements for, e.g., Eddy
Current simulations (continuous/discontinuous)

I BETL provides preconditioners for the most common integral
operators

I Operator preconditiong via dual meshes (Implementation for
Lagrangian FE-spaces is finished. Implementation for Edge
based FE-spaces is almost finished)

I ABPX (Artificial Bramble-Pasciak-Xu) for the Laplacian single
layer potential (G.Of)



Conclusion

I BETL is interfaced with Fast Boundary Element Methods
I BETL utilizes AHMED’s parallelism (OpenMP,MPI) [T.Klug,

TU Munich]
I BETL is interfaced with classical Fast Multipole Methods

(FMM) [by G.Of, TU Chemnitz/Graz] (experimental)
I BETL is interfaced with a directional FMM [by M.Messner &

E.Darve] (experimental)

I BETL provides a set of integrators (complete generic
integrators as well as semi-analytic integrators)

I BETL has been tested with gnu & Intel compilers

I BETL utilises cmake as a build system: Linux, MacOS X &
Windows

I BETL relies on well tested open-source libraries



Conclusion

I Up to now BETL has been applied to
I Electrostatic problems
I Magnetostatic problems
I Optimization problems
I Eddy current problems
I Single-/Multi-trace formulations for the Helmholtz operator

I What the BETL does not offer?
I No n-d discretizations of BI operators (with n 6= 3)
I No collocation schemes
I No evaluations of representation formulae
I No adaptive integrators (quasi-singular kernels!)
I No support for heterogeneous meshes
I No adaptivity at all (e.g., hp-BEM demands modifications on

the ‘model analysis’, i.e., modifications on the dofhandler)



Outlook

I Improve the documentation

I Improve the test routines

I Apply BETL to optimization problems

I Apply BETL to real-world problems again

I Implement stable quadrature schemes [based on work of
C.Schwab]

I Implement higher order spaces for edge-functions

I Improve the MPI-parallelisation (load-balancing!)

I Incorporate NURBS as FE-Space (isogeometric-approach)


	A short overview on BETL
	Boundary Element formulations for scattering problems
	Conclusion & Outlook

