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Systems with multiple RHSs

Given is a nonsingular linear system with s RHSs,

Ax = b (1)

where
A ∈ CN×N , b ∈ CN×s , x ∈ CN×s . (2)

Using Gauss elimination we can solve it much more efficiently
than s single linear systems with different matrices, since the
LU decomposition of A is computed only once.

It does not matter if all the RHSs are known at the beginning or
are produced one after another while the systems are solved.
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Systems with multiple RHSs (cont’d)

If iterative methods are applied, it is hard to solve (1)–(2) much
faster than s systems with single RHS.

Two approaches:

• using the (iterative) solution of a seed system for solving
subsequently the other systems faster,

• using block iterations: treat several RHSs at once.

In the second case, all RHSs are needed at once.

Most iterative methods are generalized easily to block methods,
but the stability of block methods requires extra effort.
Block methods may be, but need not be much faster than
solving the s systems separately.

Related iterative methods for eigenvalues allow us to find
multiple eigenvalues and corresponding eigenspaces.
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Block Krylov space methods

We seek approximate solutions of the form

xn ∈ x0 + B�
n (A, r0) , (3)

where the block Krylov space B�
n :≡ B�

n (A, r0) is defined by

B�
n (A, r0) :≡ block span (r0, Ar0, . . . , An−1r0) ⊂ CN×s (4)

:≡

{
n−1∑
k=0

Ak r0γk ; γk ∈ Cs×s (k = 0, . . . , n − 1)

}
.

(5)

DEFINITION. A (complex) block vector is a matrix y ∈ CN×s.

Hence, the elements of B�
n are block vectors.
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Block Krylov space methods (cont’d)

This means that for an individual approximation x (j) holds

x (j)
n ∈ x (j)

0 + Bn(A, r0) , (6)

where
Bn :≡ Bn(A, r0) :≡ K(1)

n + · · ·+K(s)
n , (7)

with the s “usual” Krylov spaces for the s systems,

K(j)
n :≡ Kn(A, r (j)

0 ) :≡

{
n−1∑
k=0

Ak r (j)
0 βk ,j ; βk ,j ∈ C (∀k)

}
. (8)

In other words, each approximation x (j) is from a space that is
as large as all s “usual” Krylov spaces together: dimBn ≤ ns .

B�
n is a Cartesian product of s copies of Bn :

B�
n = Bn × · · · × Bn︸ ︷︷ ︸

s times

.
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Block Krylov space methods (cont’d)

Main reasons for using block Krylov spaces:

The search space for each x (j) is much bigger, namely as
big as all s Krylov spaces together.
But do these extra dimensions really help much?
In some implementations, s matrix-vector products with A
can be computed at once, and this is much faster than s
separate matrix-vector products, even on sequential
computers (due to better usage of cached data).

Work on block methods started in the 1970ies with block
Lanczos for symmetric EVal problems and block CG.

Nearly all work for nonsymmetric matrices since 1990.

There are on the order of 100 publications on block methods.
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Deflation

The extra challenge comes from the possible linear
dependence of the residuals (of the s systems).

In most block methods such a dependence requires an explicit
reduction of the number of RHSs. We call this deflation.

(The term “deflation” is also used with different meanings.)

In the literature on block methods deflation is only treated in a
few papers, and there are hardly any investigations about its
necessity and its effects.

Deflation may be possible at startup or in a later step.

In particular: when “one of the systems converges”.
Actually: when “a linear combination of the s systems
converges”.
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Deflation (cont’d)

EXAMPLES (of extreme cases)

1 r0 is made up of s identical vectors r ,

r0 :=
(

r r r . . . r
)

.

These might come from different b(i) and suitably chosen
x (i)

0 :
r = b(i) − Ax (i)

0 (i = 1, . . . , s)

Here, it suffices to solve one system.
2 r0 :=

(
r Ar A2r . . . As−1r

)
.

Here, even if rank r0 = s , still
rank

(
r0 Ar0

)
≤ s + 1 .

3 r0 has s columns that are linear combinations of s
eigenvectors of A. Then rank

(
r0 Ar0

)
≤ s .

Hence, one block iteration is enough to solve all systems.
A non-block solver may require s2 iterations.
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The grade

Recall from single RHS case (s = 1):

Characteristic properties of grade ν̄(y, A) of y with resp. to A:

dim Kn(A, y) =

{
n if n ≤ ν̄ ,
ν̄ if n ≥ ν̄ ;

ν̄ = min
{

n
∣∣ dim Kn(A, y) = dim Kn+1(A, y)

}
;

ν̄ = min
{

n
∣∣ A−1y ∈ Kn(A, y)

}
≤ ∂χ̂A,

where ∂χ̂A :≡ degree of minimal polynomial of A;

ν̄ = min
{

n
∣∣ x? ∈ x0 +Kn(A, r0)

}
,

where Ax? = b, r0 :≡ b− Ax0.
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The block grade

In multiple RHS case (s > 1):

Introduce block grade ν̄(y, A) of y with respect to A with
characteristic properties:

ν̄ = min
{

n
∣∣ dim Bn(A, y) = dim Bn+1(A, y)

}
;

ν̄ = min
{

n
∣∣ A−1y ∈ B�

n (A, y)
}
≤ ∂χ̂A,

where ∂χ̂A :≡ degree of minimal polynomial of A;

ν̄ = min
{

n
∣∣ x? ∈ x0 + B�

n (A, r0)
}
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The block grade (cont’d)

In the single RHS case, in exact arithmetic, computing x?

requires
dim Kν̄ = ν̄ MVs.

In the multiple RHS case, in exact arithmetic, computing x?

requires
dim Bν̄ ∈ [ν̄, s · ν̄] MVs.

This is a big interval!

Block methods are most effective (compared to single RHS
methods) if

dim Bν̄ � s · ν̄ .

More exactly: block methods are most effective if

dim Bν̄(r0, A) �
s∑

k=1

dim K
ν̄(r (k)

0 , A)
.
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The block grade (cont’d)

In other words: block methods are most effective (compared
to single RHS methods) if deflation is possible and used!

However, exact deflation is rare, and we need approximate
deflation depending on a deflation tolerance in RRQR.

Approximate deflation introduces a deflation error.

The deflation error may deteriorate the convergence speed
and/or the accuracy of the computed solution.

Restarting the iteration can be useful from this point of view.
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Symmetric block Lanczos algorithm

In the 1970ies a number of people started around the same
time with block Lanczos for symmetric EVal problems.

It is hard to tell now who had the idea first.

Cullum/Donath [[IEEE Decision Control/’74], [’74]
(symmetric, EV)

Kahan/Parlett [Sparse Matrix Comp./’76] (symmetric, EV)

Underwood [’75Diss] (symmetric, EV + CG)

Golub/Underwood [Math. Software/’77] (symmetric, EV)

Lewis [’77Diss] (symmetric)

Cullum [’78BIT] (symmetric, EV)
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Symmetric block Lanczos algorithm (cont’d)

Algorithm (SYMMETRIC BLOCK LANCZOS ALGORITHM)

Start: Given ỹ0 ∈ CN×s let

y0 ρ0 := ỹ0 (QR factorization: ρ0 ∈ Cs×s, y0 ∈ CN×s)

Loop:

for n = 1, 2, . . . do
ỹ := Ayn−1 (s MVs in parallel)
ỹ := ỹ− yn−2β

?
n−2 if n > 1 (s2 SAXPYs in parallel)

αn−1 := y?
n−1ỹ (s2 SDOTs in parallel)

ỹ := ỹ− yn−1αn−1 (s2 SAXPYs in parallel)
yn βn−1 := ỹ (QR factorization: βn−1 ∈ Cs×s)

end

Need to add stopping criterion and deflation.
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Symmetric block Lanczos with deflation

Deflation (not [?] treated in old papers): We apply in both

y0︸︷︷︸
Q

ρ0︸︷︷︸
R

:= ỹ0 and yn︸︷︷︸
Q

βn−1︸ ︷︷ ︸
R

:= ỹ

a (high) rank-revealing QR factorization (RRQR).

Columns in y0 or yn that are multiplied only with small elements
of ρ0 or ηn,n−1, respectively, can be deleted  deflation.

s is replaced by sn, where s ≥ s0 ≥ s1 ≥ . . . .

Two types: initial deflation and Lanczos deflation.

ρ0 and βn−1 are upper triangular up to a column permutation.

In case of deflation ρ0 and βn−1 are (nearly) singular.

Martin H. Gutknecht Block Krylov Space Solvers: a Survey



Symmetric block Lanczos with deflation

Deflation (not [?] treated in old papers): We apply in both

y0︸︷︷︸
Q

ρ0︸︷︷︸
R
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Symmetric block Lanczos with deflation (cont’d)

HHQR for Lanczos deflation in detail :

ỹ =:
(

yn y∆
n

) (
ρn ρ�

n
o ρ∆

n

)
πT

n =:
(

yn y∆
n

) (
βn−1
β∆

n−1

)
,

where: πn is an sn−1 × sn−1 permutation matrix,
yn is an N × sn block vector with full numerical

column rank, which goes into the basis,
y∆

n is an N × (sn−1 − sn) matrix that will be deflated
(deleted),

ρn is an sn × sn upper triangular, nonsingular matrix,
ρ�

n is an sn × (sn−1 − sn) matrix,
ρ∆

n is an upper triangular (sn−1 − sn)× (sn−1 − sn)
matrix with ‖ρ∆

n ‖F = O(σsn+1), where σsn+1 is the
largest singular value of ỹ smaller or equal to tol.
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Symmetric block Lanczos with deflation (cont’d)

The fundamental block Lanczos relation AYm = Ym+1Tm (with a
block tridiagonal matrix Tm extended at the bottom with sm
rows) is in case of inexact deflation replaced by

AYm = Ym+1Tm + Y∆
m+1T∆

m ,

where

T∆
m :≡


o o · · · o

β∆
0 o · · · o

β∆
1

. . .
...

. . . o
β∆

m−1


is (s − sm)× tm−1, where tm :≡

∑m
k=0 sk .

Is deflation important? YES!
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Symmetric block Lanczos: numerical experiments

EXPERIMENT (1)

A is a sparse 100× 100 random matrix.
In the block vector ỹ0 each of the first two columns is a random linear
combinations of 20 distinct eigenvectors of A. The third column is a
linear combination of 5 other eigenvectors.
Hence these 45 eigenvectors are an orthonormal basis for the
A-invariant subspace

B20
(
A, ỹ0

)
= K20

(
A, ỹ(1)

0

)
⊕ K20

(
A, ỹ(2)

0

)
⊕ K5

(
A, ỹ(3)

0

)
.

Constructing y0, . . . , y4 we expect no problems. However, the
Krylov subspace K5

(
A, ỹ(3)

0

)
is exhausted.

The smallest eigenvalue of β4 is close to 10−10.
Proceeding without deflation we construct a highly
indetermined vector in order to complete the block vector y5.
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Symmetric block Lanczos: experiments (cont’d)

One might hope that this vector does not disturb the Lanczos
process, and that it does not influence the construction of the
Krylov subspaces Kn

(
A, ỹ(1)

0

)
and Kn

(
A, ỹ(2)

0

)
.

In particular one might hope that the corresponding columns in
the block vector y6 remain orthogonal to all previously
constructed vectors.

However, this experiment shows that the orthogonality is
lost.
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Symmetric block Lanczos: experiments (cont’d)
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Figure: Experiment 1: The vector corresponding to a singular value of
approximately 10−10 is highly indetermined. It is not orthogonal to the
vectors of the previous blocks. However, it is orthogonal to the two
other vectors of the block vector y5.
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Symmetric block Lanczos: experiments

m

n

The loss of orthogonality: log
10

 (y
n
H y

m
 − δ

nm
)

5 10 15 20

2

4

6

8

10

12

14

16

18

20 −16

−14

−12

−10

−8

−6

−4

−2

Figure: Experiment 1: The block vector y6 is far away from being
orthogonal to all previous blocks.
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Symmetric block Lanczos: experiments (cont’d)
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Figure: Experiment 1: Colormap of the matrix V = log |Y?
20Y20 − I20|.

Orthogonality is completely lost after ignoring the exhausted Krylov
space.
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Block Lanczos and block CG: more references

O’Leary [’78/’80LAA] (nonsym./symmetric: BiCG/CG)
First statement of block BICG, but there is only a very short
discussion of the added problems in the nonsymmetric case.

Ruhe [’79MathComp] (symmetric, band, EV)
Ruhe shows that the orthonormal basis can be built up vector
by vector. He also discusses reorthogonalization: it suffices to
reorthogonalize against yn−1.
However, his alg. does not allow RRQR: no pivoting possible.
Therefore less stable than our current implementation.

Parlett [’80Book] (symmetric, block and band, EV)

Saad [’80SINUM] (symmetric, EV, convergence)

O’Leary [’87Par. Comp.] (symmetric)
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Block Lanczos and block CG: more references (cont’d)

Boley/Golub [’91Syst. Control Lett.] (nonsymmetric, control)

Kim/Craig [’90Int. J. Num. Meth. Eng.] (nonsymmetric, EV)

Broyden [’92/’93Optim. Methods Softw.]
(sym., indef., nonsym., look-ahead)

Broyden [’94/’95Optim. Methods Softw.]
(sym., indef., nonsym., look-ahead)

Grimes/Lewis/Simon [’88/’94SIMAX] (symmetric, EV)

Kim/Chronopoulos [’92JCAM] (nonsymmetric)

Ruiz [’92Diss] (Bl-CG and symmetric block Lanczos)

Nikishin/Yeremin [’93/’95SIMAX] (symmetric, defl.)
First detailed treatment of deflation for CG.
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Block Lanczos and block CG: more references (cont’d)

Aliaga/Hernández/Boley [Lanczos/’94]
(nonsym., look-ahead (cluster), model red.)

Bai [5th SIAM ALA/’94] (nonsym., EV, spectral trafo)
Cullum [Lanczos/’94] (symmetric, EV)
Cullum [Lanczos/’94] (nonsym., EV)
Freund [AT VIII/’95] (nonsym., band, matrix Padé)

Boyse/Seidl [’94/’96SISC] (compl. symmetric, QMR)
Simoncini [’94/’97SIMAX]

(nonsym., block-2-term, band, deflation, QMR)
Ye [’94/’96Num. Alg.] (symmetric, EV, adapt. block size)
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Block Lanczos and block CG: more references (cont’d)

Aliaga/Boley/Freund/Hernández [’96/’99/00MathComp]
(nonsym., band, defl., look-ahead, QMR)

Bai/Day/Ye [’97 /’99SIMAX]
(nonsym., EV, adapt. block size, look-ahead, ABLE)

Freund/Malhotra [’97LAA] (nonsym., band, defl., Bl-QMR)
Malhotra/Freund/Pinsky [’97Comp. Meth. Appl. Mech. Eng.]

(appl. to radiation/scattering probs.)
Freund [Systems, Control 21st Cent./’97]

(nonsym., band, model red.)
Freund [Appl. Comput. Control, Signals, Circuits/’99]

(nonsym., band, model red.)
Freund [’99/’00JCAM] (nonsym., band, model red.)
Freund [’99/’01JCAM] (nonsym., band, block Hankel, FOPs)
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Block Lanczos and block CG: more references (cont’d)

Broyden [’97Optim. Methods Softw.] (indef. sym., nonsym.)
Broyden [Alg. large scale lin. sys./’98] (indef. sym., look-ahead)
Dai [’98] (symmetric)
Dai [’98] (nonsymmetric)
El Guennouni/Jbilou/Sadok [’99] (nonsym.)
El Guennouni/Jbilou/Sadok [’99] (BlBiCGStab)
El Guennouni [’00Diss] (nonsym.)
El Guennouni/Jbilou [’00]

(nonsym., bl/gl-BiCGStab, deflation, seed BiCGStab)
Jbilou/Sadok [’97 ] (nonsym., global, Lanczos-based)
Yeung/Chan [’97 /’99SISC] (nonsym., 1 eq., ML(k)BiCGStab)
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Block Lanczos and block CG: more references (cont’d)

Bai/Freund [’00/’01SISC] (symmetric, band, EV, model red.)
Bai/Freund [’00/’01LAA] (nonsym.?, band, Padé, model red.)
Baglama/Calvetti/Reichel [preprint]

(nonsym., implic. restarted)
Kilmer/Miller/Rappaport [’99/’01SISC]

(Bl-QMR combined with seeds)
Meerbergen/Scott [’00]

(sym., EV, partial reorth., impl. restarts, EA16)
Hsu [’03] (symmetric, EV, block size choice)
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Block GMRES, block MINRES and related methods

It is seemingly straightforward to define and implement block
GMRES (BLGMRES), but some questions come up quickly.

First, we apply block Arnoldi process to create an
orthonormal basis of Bn(A, r0).
Then, we determine simultaneously the coordinates of the
s systems, i.e., solve them at once in coordinate space.
This requires to solve a least square problem with s RHSs
in every iteration.
To solve it we update the QR decomposition of a
rectangular block Hessenberg matrix to which s columns
and rows are added in every iteration.

For block MINRES (BLMINRES) we start instead from the
symmetric block Lanczos process.
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Block Arnoldi/GMRES with deflation: introduction

Algorithm (m STEPS OF BLOCK ARNOLDI ALGORITHM)

Start: Given ỹ0 ∈ CN×s let

y0 ρ0 := ỹ0 (QR factorization: ρ0 ∈ Cs×s, y0 ∈ CN×s)

Loop:

for n = 1 to m do
ỹ := Ayn−1 (s MVs in parallel)
for k = 0 to n − 1 do (blockwise MGS)

ηk ,n−1 := y?
k ỹ (s2 SDOTs in parallel)

ỹ := ỹ− yk ηk ,n−1 (s2 SAXPYs in parallel)
end
yn ηn,n−1 := ỹ (QR factorization: ηn,n−1 ∈ Cs×s)

end
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Block Arnoldi/GMRES with deflation: intro (cont’d)

We apply in both

y0︸︷︷︸
Q

ρ0︸︷︷︸
R

:= ỹ0 and yn︸︷︷︸
Q

ηn,n−1︸ ︷︷ ︸
R

:= ỹ

a (high) rank-revealing QR factorization (RRQR).

Columns in y0 or yn that are multiplied only with small elements
of ρ0 or ηn,n−1, respectively, can be deleted  deflation.

s is replaced by sn, where s ≥ s0 ≥ s1 ≥ . . . .

Two types: initial deflation and Arnoldi deflation.

ρ0 and ηn,n−1 are upper triangular up to a column permutation.

In case of deflation ρ0 and ηn,n−1 are (nearly) singular.
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Block Arnoldi/GMRES with deflation: intro (cont’d)
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Block Arnoldi/GMRES with deflation: intro (cont’d)

We apply in both

y0︸︷︷︸
Q

ρ0︸︷︷︸
R

:= ỹ0 and yn︸︷︷︸
Q

ηn,n−1︸ ︷︷ ︸
R

:= ỹ

a (high) rank-revealing QR factorization (RRQR).

Columns in y0 or yn that are multiplied only with small elements
of ρ0 or ηn,n−1, respectively, can be deleted  deflation.

s is replaced by sn, where s ≥ s0 ≥ s1 ≥ . . . .

Two types: initial deflation and Arnoldi deflation.

ρ0 and ηn,n−1 are upper triangular up to a column permutation.

In case of deflation ρ0 and ηn,n−1 are (nearly) singular.
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Block GMRES with deflation: introduction (cont’d)

rn = Yn+1 (e1ρ0 − Hnkn)︸ ︷︷ ︸
≡: qn

Ass.: Hn has full rank.
(This is most likely even when some ηn,n−1 is singular.)

(1) Initial deflation:

r0 rank-deficient =⇒ ρ0, kn, qn, rn, xn − x0 rank-def.

 initial deflation reduces # MVs, but introduces errors
if not exact .
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Block GMRES with deflation: introduction (cont’d)

rn = Yn+1 (e1ρ0 − Hnkn)︸ ︷︷ ︸
≡: qn

Ass.: Hn has full rank.
(This is most likely even when some ηn,n−1 is singular.)

(1) Initial deflation:

r0 rank-deficient =⇒ ρ0, kn, qn, rn, xn − x0 rank-def.

 initial deflation reduces # MVs, but introduces errors
if not exact .
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Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: ỹ in block Arnoldi rank-deficient

Rather unlikely, because we start from Ayn−1.

Unless we deflate, search space contains extra basis
vectors:

R(Yn) % Bn

But they are unlikely to help much, since the block solution
lies in x0 + Bn for some n.

 Arnoldi deflation reduces cost (MVs) too, but is rare;
in particular if the restart period m is small.
The block Arnoldi matrix relation is valid only with
an error term.

Hence:
• We deflate at startup and each restart if r0 is rank-deficient.

• We may deflate in the Arnoldi process if ỹ is rank-deficient.
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Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: ỹ in block Arnoldi rank-deficient
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Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: ỹ in block Arnoldi rank-deficient

Rather unlikely, because we start from Ayn−1.

Unless we deflate, search space contains extra basis
vectors:

R(Yn) % Bn

But they are unlikely to help much, since the block solution
lies in x0 + Bn for some n.

 Arnoldi deflation reduces cost (MVs) too, but is rare;
in particular if the restart period m is small.
The block Arnoldi matrix relation is valid only with
an error term.

Hence:
• We deflate at startup and each restart if r0 is rank-deficient.

• We may deflate in the Arnoldi process if ỹ is rank-deficient.
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Block Arnoldi and block GMRES: references

Vital [’90Diss] (Bl-GMRES)
Sadkane [’93NM] (nonsym., block Arnoldi-Chebyshev)
Sadkane [’93NM] (nonsym., block Arnoldi / Davidson, EV)

Chapman/Saad [’95/’97NLAA] (Bl-GMRES, FGMRES, ...)
Jia [’94Diss] (nonsym., EV, “general. Lanczos” ⊃ Bl-Arnoldi)
Jia [’94/’98NM] (nonsym., EV, “general. Lanczos” ⊃ Bl-Arnoldi)
Jia [’98LAA] (nonsym., EV, Bl-Arnoldi)
Jbilou [’99JCAM] (nonsym., residual smoothing)
Li [’97Par. Comp.] (parallelization of BLGMRES)
Saad [’96Book] (overview of BLGMRESversions)
Simoncini/Gallopoulos [’94/’96LAA] (BLGMRES, convergence)
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Block Arnoldi and block GMRES: references (cont’d)

Cullum/Zhang [’98/’02SIMAX]
(two-sided BLGMRES, deflation, control, rel. to Lanczos)

El Guennouni/Jbilou/Riquet [’00/’02NumAlg] (Sylvester eq.)
Fattebert [’98/’98ETNA] (Rayleigh quot. iter., gen. EV)
Jbilou [’99JCAM] (nonsym., block smoothing)
Jbilou/Messaoudi/Sadok [’99ApNuM]

(nonsym., global FOM/GMRES)
Langou [’03Diss] (BLGMRES)
Saad [’03Book] (overview of BLGMRES versions)
Robbé/Sadkane [’02LAA] (error bounds for BLGMRES)
Robbé/Sadkane [’02Num. Alg.]

(BLGMRES, BLFOM for Sylvester eq.)
Robbé/Sadkane [’04] (BLGMRES and BLFOM with deflation)

Schmelzer [’04Dipl] (BLMINRES and BLSYMMLQ w/deflation)

da Cunha/Becker [’05] (BLGMRES w/deflation)
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Thanks for listening and come to ...
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