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Systems with multiple RHSs

Given is a nonsingular linear system with s RHSs,

(1)

where
AcCVN — pechN*s,  xechNxs, )
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Systems with multiple RHSs

Given is a nonsingular linear system with s RHSs,

(1)

where
AcCVN — pechN*s,  xechNxs, )

Using Gauss elimination we can solve it much more efficiently
than s single linear systems with different matrices, since the
LU decomposition of A is computed only once.

It does not matter if all the RHSs are known at the beginning or
are produced one after another while the systems are solved.
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Systems with multiple RHSs

If iterative methods are applied, it is hard to solve (1)—(2) much
faster than s systems with single RHS.

Two approaches:

e using the (iterative) solution of a seed system for solving
subsequently the other systems faster,

e using block iterations: treat several RHSs at once.

In the second case, all RHSs are needed at once.
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Systems with multiple RHSs

If iterative methods are applied, it is hard to solve (1)—(2) much
faster than s systems with single RHS.

Two approaches:

e using the (iterative) solution of a seed system for solving
subsequently the other systems faster,

e using block iterations: treat several RHSs at once.

In the second case, all RHSs are needed at once.

Most iterative methods are generalized easily to block methods,
but the stability of block methods requires extra effort.

Block methods may be, but need not be much faster than
solving the s systems separately.

Related iterative methods for eigenvalues allow us to find
multiple eigenvalues and corresponding eigenspaces.
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Block Krylov space methods

We seek approximate solutions of the form

Xp € Xo + BE(A, ro) , (3)

where the block Krylov space 5 := BL(A. 1) is defined by

BL(A, ro) := block span (rg,Arg, ..., A" 'rg) c CN*s  (4)

n—1
= {ZAkro’yk; v €EC*® (k=0,...,n— 1)}
k=0
)
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Block Krylov space methods

We seek approximate solutions of the form

Xp € Xo + BE(A, ro) , (3)

where the block Krylov space 5 := BL(A. 1) is defined by

BL(A, ro) := block span (rg,Arg, ..., A" 'rg) c CN*s  (4)
n—1
= {ZAkrO’Yk? v, €C®(k=0,....,n— 1)}_
k=0
(5)
DEFINITION. A (complex) block vector is a matrix y € CN*s.

Hence, the elements of B are block vectors.
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Block Krylov space methods

This means that for an individual approximation x) holds

X e XY + Bu(A, 1), (6)
where
By = Ba(A. 1) =KW 4+ 4 k9 (7)

with the s “usual” Krylov spaces for the s systems,

K9 = Ka(A, ) - {ZA" ) Brj ﬁkJGC(Vk)} (8)

k=0
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Block Krylov space methods

This means that for an individual approximation x) holds

X € XY + Ba(A, 1), (6)
where
Bn = Ba(Arg) = KM 4. k) 7)

with the s “usual” Krylov spaces for the s systems,
K9 = KA, 1) - {ZA"rO’)ﬁkj, Brj€C (Vk)} 8)
k=0

In other words, each approximation xU) is from a space that is
as large as all s “usual” Krylov spaces together: dimB, < ns.
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Block Krylov space methods

This means that for an individual approximation x) holds

XD e XY 4 Ba(A, ), (6)
where
Bn = Ba(Arg) = KM 4. k) 7)

with the s “usual” Krylov spaces for the s systems,

K9 = KA, 1) - {ZA"rO’)ﬁkj, Brj€C (Vk)} (8)
k=0

In other words, each approximation xU) is from a space that is
as large as all s “usual” Krylov spaces together: dimB, < ns.

BH is a Cartesian product of s copies of B, :

BE:BnX

XBn

s times
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Block Krylov space methods

Main reasons for using block Krylov spaces:

@ The search space for each xU) is much bigger, namely as
big as all s Krylov spaces together.

But do these extra dimensions really help much?

@ In some implementations, s matrix-vector products with A
can be computed at once, and this is much faster than s
separate matrix-vector products, even on sequential
computers (due to better usage of cached data).
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Block Krylov space methods

Main reasons for using block Krylov spaces:

@ The search space for each xU) is much bigger, namely as
big as all s Krylov spaces together.
But do these extra dimensions really help much?

@ In some implementations, s matrix-vector products with A
can be computed at once, and this is much faster than s
separate matrix-vector products, even on sequential
computers (due to better usage of cached data).

Work on block methods started in the 1970ies with block
Lanczos for symmetric EVal problems and block CG.

Nearly all work for nonsymmetric matrices since 1990.
There are on the order of 100 publications on block methods.
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Deflation

The extra challenge comes from the possible linear
dependence of the residuals (of the s systems).

In most block methods such a dependence requires an explicit
reduction of the number of RHSs. We call this deflation.

(The term “deflation” is also used with different meanings.)
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Deflation

The extra challenge comes from the possible linear
dependence of the residuals (of the s systems).

In most block methods such a dependence requires an explicit
reduction of the number of RHSs. We call this deflation.

(The term “deflation” is also used with different meanings.)

In the literature on block methods deflation is only treated in a
few papers, and there are hardly any investigations about its
necessity and its effects.

Deflation may be possible at startup or in a later step.

In particular: when “one of the systems converges”.
Actually: when “a linear combination of the s systems
converges”.
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Deflation

EXAMPLES (of extreme cases)
@ ry is made up of s identical vectors r,
ro=(r rr ... r).
These might come from different b() and suitably chosen
xé’):
r=b0—Ax{?  (i=1,....5)
Here, it suffices to solve one system.
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Deflation

EXAMPLES (of extreme cases)

Q ro:=(r Ar A%r ... AS'r).
Here, evenif rankryg = s, still
rank (ro Arg ) <s+1.
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Deflation

EXAMPLES (of extreme cases)

© rj has s columns that are linear combinations of s
eigenvectors of A. Then rank (ryp Ary ) <s.
Hence, one block iteration is enough to solve all systems.
A non-block solver may require s? iterations.
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The grade

Recall from single RHS case (s = 1):

Characteristic properties of grade 7(y, A) of y with resp. to A:

@ | dim KCph(A,y) = { g itn
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The grade

Recall from single RHS case (s = 1):

Characteristic properties of grade 7(y, A) of y with resp. to A:

. n if n
@ | dim KCph(A,y) = { 5 i

o | 7=min{n| dim Ks(A,y) =dim Kr:1(AY)} ;
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The grade

Recall from single RHS case (s = 1):

Characteristic properties of grade 7(y, A) of y with resp. to A:

. n if n
@ | dim KCph(A,y) = { 5 :f n

o | 7=min{n| dim Ks(A,y) =dim Kr:1(AY)} ;

@ | 7=min {n \ Ay e ICn(A,y)} < OXa,

where 0xa := degree of minimal polynomial of A;
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The grade

Recall from single RHS case (s = 1):

Characteristic properties of grade 7(y, A) of y with resp. to A:

. n if n
@ | dim KCph(A,y) = { 5 :f n

o | 7=min{n| dim Ks(A,y) =dim Kr:1(AY)} ;

| v

min {n \ Ay e ICn(A,y)} < OXA,

where 0xa := degree of minimal polynomial of A;

| v=min{n \ X, € Xo + Kn(A, 1)},

where Ax, = b, ry:=b — Axg.
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The block grade

In multiple RHS case (s > 1):

Introduce block grade 7(y, A) of y with respect to A with
characteristic properties:

o | v=min{n| dim By(A,y) = dim B,1(A,y)} ;
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The block grade

In multiple RHS case (s > 1):

Introduce block grade 7(y, A) of y with respect to A with
characteristic properties:

| v

min {n | dim B,(A,y) = dim B, 1(A,y)} ;

@ | 7 = min {n |A7ly e BE(A,V)} < OXa,

where dxa := degree of minimal polynomial of A;
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The block grade

In multiple RHS case (s > 1):

Introduce block grade 7(y, A) of y with respect to A with
characteristic properties:

o | v=min{n| dim By(A,y) = dim B,1(A,y)} ;

| v

min {n |A7ly e BE(A,V)} < OXaA,

where dxa := degree of minimal polynomial of A;

0| 7= min{n | x, € x0+BE(A,ro)} ;

where Ax, = b, ry:=b — Axg.
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The block grade (cont'd)

In the single RHS case, in exact arithmetic, computing X,
requires

dim K:p =7 MVs.

In the multiple RHS case, in exact arithmetic, computing x,
requires
dim By € [v, s-7] MVs.

This is a big interval!

Block methods are most effective (compared to single RHS
methods) if
dim B; < s-7.

More exactly: block methods are most effective if

s
dim By, a) < Zdim ,Cﬁ
k=1
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The block grade (cont'd)

In other words: block methods are most effective (compared
to single RHS methods) if deflation is possible and used!

However, exact deflation is rare, and we need approximate
deflation depending on a deflation tolerance in RRQR.

Approximate deflation introduces a deflation error.

The deflation error may deteriorate the convergence speed
and/or the accuracy of the computed solution.

Restarting the iteration can be useful from this point of view.
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Symmetric block Lanczos algorithm

In the 1970ies a number of people started around the same
time with block Lanczos for symmetric EVal problems.

It is hard to tell now who had the idea first.

Cullum/Donath [[/IEEE Decision Control/’74), ['74]
(symmetric, EV)

Kahan/Parlett [Sparse Matrix Comp./’76] (symmetric, EV)
Underwood ['75piss] (symmetric, EV + CG)
Golub/Underwood [Math. Software/’77] (symmetric, EV)
Lewis ["77piss] (Symmetric)

Cullum [78gt] (symmetric, EV)
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Symmetric block Lanczos algorithm

Algorithm (SYMMETRIC BLOCK LANCZOS ALGORITHM)

Start: Giveny, € CN*$ Jet
Yo Po = Yo (QR factorization: py € CS*S, yo € CN*9)
Loop:
forn=1,2,...do
y = Ay,_1 (8 MVs in parallel)
Y =Y—YnoB8, ifn>1 (s? SAXPYs in parallel)
an_1:=Y5 Y (s? SDOTSs in parallel)
Y=YV i0n_q (s? SAXPYs in parallel)
YnBn1:=Y (QR factorization: 3,_; € C5%9)
end

Need to add stopping criterion and deflation.
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Symmetric block Lanczos with deflation

Deflation (not [?] treated in old papers): We apply in both

Yo Po =Yo and Vo Bp1:=Y
~ N~ N~
Q R Q R

a (high) rank-revealing QR factorization (RRQR).
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Symmetric block Lanczos with deflation

Deflation (not [?] treated in old papers): We apply in both

Yo Po =Yo and Vo Bp1:=Y
~ N~ N~
Q R Q R

a (high) rank-revealing QR factorization (RRQR).

Columns in yq or y, that are multiplied only with small elements
of py or n, ,_1, respectively, can be deleted ~» deflation.

sis replaced by s,, where s > s5 > 51 > ....

Two types: initial deflation and Lanczos deflation.
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Symmetric block Lanczos with deflation

Deflation (not [?] treated in old papers): We apply in both

Yo Po =Yo and Vo Bp1:=Y
~ N~ N~
Q R Q R

a (high) rank-revealing QR factorization (RRQR).

Columns in yq or y, that are multiplied only with small elements
of py or n, ,_1, respectively, can be deleted ~» deflation.

sis replaced by s,, where s > s5 > 51 > ....
Two types: initial deflation and Lanczos deflation.

po and B,,_4 are upper triangular up to a column permutation.
In case of deflation py and 3,_4 are (nearly) singular.
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Symmetric block Lanczos with deflation (cont’d)

HHQR for Lanczos deflation in detail:

~ L] B,
y=(¥n vﬁ)(p” ”Z)wl = (¥n v$)< . )
o pn n—1
where: m, isan s,_1 x S,_1 permutation matrix,

Yy is an N x s, block vector with full numerical
column rank, which goes into the basis,

y5 isan N x (s,_1 — sp) matrix that will be deflated
(deleted),

pn is an s, x s, upper triangular, nonsingular matrix,
pis an s, x (sp_1 — sp) Matrix,

p5 is an upper triangular (S,_1 — Sn) X (Sn—1 — Sn)
matrix with ||p4||F = O(os,+1), Where o, 1 is the
largest singular value of y smaller or equal to tol.
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Symmetric block Lanczos with deflation (cont’d)

The fundamental block Lanczos relation AY, = Y ;1T ,, (with a
block tridiagonal matrix T, extended at the bottom with s,
rows) is in case of inexact deflation replaced by

AYp =Y T, + YnAq.HI# )

where
IBOA o c. o
A A
Im = 1
o
A
m—1

is (S — Sm) X tm_1, Where ty, := Y7 k.
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Symmetric block Lanczos with deflation (cont’d)

The fundamental block Lanczos relation AY, = Y ;1T ,, (with a
block tridiagonal matrix T, extended at the bottom with s,
rows) is in case of inexact deflation replaced by

AYp =Y T, + YnAq.HI# )

where
IBOA o c. o
A A
Im = 1
o
A
m—1

is (S — Sm) X tm_1, Where ty, := Y7 k.

Is deflation important?
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Symmetric block Lanczos with deflation (cont’d)

The fundamental block Lanczos relation AY, = Y ;1T ,, (with a
block tridiagonal matrix T, extended at the bottom with s,
rows) is in case of inexact deflation replaced by

AYp =Y T, + YnAq.HI# )

where
IBOA o c. o
A A
Im = 1
o
A
m—1

is (S — Sm) X tm_1, Where ty, := Y7 k.

Is deflation important? YES!
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Symmetric block Lanczos: numerical experiments

EXPERIMENT (1)

A is a sparse 100 x 100 random matrix.

In the block vector Yg each of the first two columns is a random linear
combinations of 20 distinct eigenvectors of A. The third column is a
linear combination of 5 other eigenvectors.

Hence these 45 eigenvectors are an orthonormal basis for the
A-invariant subspace

Bao (A, ¥o) = Kzo (A,vg”) ® Koo (A,yff)) @ Ks (A,yff)).

Constructing yo, . . ., Y4 We expect no problems. However, the
Krylov subspace s (A, \79) is exhausted.
The smallest eigenvalue of 3, is close to 10~1°.

Proceeding without deflation we construct a highly
indetermined vector in order to complete the block vector ys.
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Symmetric block Lanczos: experiments (cont’d)

One might hope that this vector does not disturb the Lanczos
process, and that it does not influence the construction of the

Krylov subspaces K, <A,Vg1)) and KCp (A,V82)>.
In particular one might hope that the corresponding columns in

the block vector yg remain orthogonal to all previously
constructed vectors.

However, this experiment shows that the orthogonality is
lost.

Martin H. Gutknecht Block Krylov Space Solvers: a Survey



Symmetric block Lanczos: experiments (cont’d)

2

The loss of orthogonality: Iog10 (y': Yo ™ Snm)
4
6
8

5 10 15
m

Figure: Experiment 1: The vector corresponding to a singular value of
approximately 10~ is highly indetermined. It is not orthogonal to the
vectors of the previous blocks. However, it is orthogonal to the two
other vectors of the block vector ys.
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Symmetric block Lanczos: experiments

The loss of orthogonality: Iog (y Yin

-4
-10
-12
-14
-16

Figure: Experiment 1: The block vector ys is far away from being
orthogonal to all previous blocks.
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Symmetric block Lanczos: experiments (cont’d)

The loss of orthogonality: Iogw (y: Yo ™ énm)

Figure: Experiment 1: Colormap of the matrix V = log |Y3,Y20 — l2o|.
Orthogonality is completely lost after ignoring the exhausted Krylov
space.
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Block Lanczos and block CG: more references

O’Leary ['78/°80.aa] (nonsym./symmetric: BiCG/CG)
First statement of block BICG, but there is only a very short
discussion of the added problems in the nonsymmetric case.

Ruhe ["79viathcomp] (Symmetric, band, EV)

Ruhe shows that the orthonormal basis can be built up vector
by vector. He also discusses reorthogonalization: it suffices to
reorthogonalize against y,_1.

However, his alg. does not allow RRQR: no pivoting possible.

Therefore less stable than our current implementation.

Parlett ['80gq0k] (Symmetric, block and band, EV)
Saad ['80ginum] (symmetric, EV, convergence)
O'Leary ['87par. comp.] (Symmetric)
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Block Lanczos and block CG: more references (cont’d)

Boley/Golub [91syst. control Lett.] (MONSymmetric, control)
Kim/Craig ['904nt, o, Num. Meth. Eng.] (nONSymmetric, EV)

Broyden ['92/°930ptim. Methods Softw.]
(sym., indef., nonsym., look-ahead)

Broyden ['94/°98¢ptim. Methods Softw. ]
(sym., indef., nonsym., look-ahead)

Grimes/Lewis/Simon ['88/°94gmax] (symmetric, EV)
Kim/Chronopoulos ['92,cam] (nonsymmetric)
Ruiz ['92p;ss] (BI-CG and symmetric block Lanczos)

Nikishin/Yeremin ['93/°95gmax] (symmetric, defl.)
First detailed treatment of deflation for CG.
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Block Lanczos and block CG: more references (cont’d)

Aliaga/Hernandez/Boley [Lanczos/’94]
(nonsym., look-ahead (cluster), model red.)
Bai [5th SIAM ALA/’94] (nonsym., EV, spectral trafo)
Cullum [Lanczos/’94] (symmetric, EV)
Cullum [Lanczos/’94] (nonsym., EV)
Freund [AT VIIIF95] (nonsym., band, matrix Padé)

Boyse/Seidl ['94/°96gsc] (compl. symmetric, QMR)
Simoncini ['94/°97 gimax]

(nonsym., block-2-term, band, deflation, QMIR)
Ye ['94/96num. aig.] (Symmetric, EV, adapt. block size)
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Block Lanczos and block CG: more references (cont’d)

Aliaga/Boley/Freund/Hernandez ['96/°99/00\iathcomp]

(nonsym., band, defl., look-ahead, QMR)

Bai/Day/Ye [,97/,998IMAX]

(nonsym., EV, adapt. block size, look-ahead, ~ ABLE)
Freund/Malhotra ['97 aa] (nonsym., band, defl., ~ B1-QMR)
Malhotra/Freund/Pinsky ["97 comp. Meth. Appl. Mech. Eng.]

(appl. to radiation/scattering probs.)

Freund [Systems, Control 21st Cent./’97]

(nonsym., band, model red.)

Freund [Appl. Comput. Control, Signals, Circuits/’99]

(nonsym., band, model red.)

Freund ['99/°00,cam] (nonsym., band, model red.)
Freund ['99/°01 jcam] (nonsym., band, block Hankel, FOPs)
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Block Lanczos and block CG: more references (cont’d)

Broyden [,97Optim. Methods Softw.] (indef- sym., nonsym-)
Broyden [Alg. large scale lin. sys./’98] (indef. sym., look-ahead)
Dai ['98] (symmetric)
Dai ['98] (nonsymmetric)
El Guennouni/Jbilou/Sadok ['99] (nonsym.)
El Guennouni/Jbilou/Sadok ['99] (BIBiCGStab)
El Guennouni ['00pjss] (nonsym.)
El Guennouni/Jbilou ['00]

(nonsym., bl/gl-BiCGStab, deflation, seed BiCGStab)
Jbilou/Sadok ['97] (nonsym., global, Lanczos-based)
Yeung/Chan ['97/'99gsc] (nonsym., 1 eq., ML(k)BiCGStab)
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Block Lanczos and block CG: more references (cont’d)

Bai/Freund ['00/’01g5c] (symmetric, band, EV, model red.)
Bai/Freund ['00/°01aa] (nonsym.?, band, Pade, model red.)
Baglama/Calvetti/Reichel [preprint]

(nonsym., implic. restarted)
Kilmer/Miller/Rappaport ['99/°01g5c]

(BI-QMR combined with seeds)
Meerbergen/Scott ['00]

(sym., EV, partial reorth., impl. restarts, ~~ EA16)
Hsu ['03] (symmetric, EV, block size choice)
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Block GMRES, block MINRES and related methods

It is seemingly straightforward to define and implement block
GMREs (BLGMRES), but some questions come up quickly.

@ First, we apply block Arnoldi process to create an
orthonormal basis of B(A, tp).

@ Then, we determine simultaneously the coordinates of the
s systems, i.e., solve them at once in coordinate space.

@ This requires to solve a least square problem with s RHSs
in every iteration.

@ To solve it we update the QR decomposition of a
rectangular block Hessenberg matrix to which s columns
and rows are added in every iteration.

For block MINRES (BLMINRES) we start instead from the
symmetric block Lanczos process.
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Block Arnoldi/GMRES with deflation: introduction

Algorithm (m STEPS OF BLOCK ARNOLDI ALGORITHM)
Start: Giveny, € CN*$ Jet

Yo po := Yo (QR factorization: py € CS*S, yo € CN*9)

Loop:
for n=1to mdo
y = Ay,_1 (8 MVs in parallel)
fork =0ton—1do (blockwise MGS)
Mkt =YY (s? SDOTSs in parallel)
V=Y —YkNkn1 (s? SAXPYs in parallel)
end
Yo nnt =Y (QR factorization: 7, , ¢ € C**¥)
end :
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Block Arnoldi/GMRES with deflation: intro (cont'd)

We apply in both

Yo pPo =VYo and Yn Mpp1:=Y
~— —~
Q R Q R

a (high) rank-revealing QR factorization (RRQR).
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Block Arnoldi/GMRES with deflation: intro (cont'd)

We apply in both

Yo pPo =Yo and Yn Mpn1 = 37
N~ N
Q R Q R

a (high) rank-revealing QR factorization (RRQR).

Columns in yq or y, that are multiplied only with small elements
of pg or n, ,_1, respectively, can be deleted ~»  deflation.

sis replaced by s,, where s > s95>s51 > ....

Two types: initial deflation and Arnoldi deflation.
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Block Arnoldi/GMRES with deflation: intro (cont'd)

We apply in both

Yo po =Yo and Yo NMpnt:=Y
N~ N ——
Q R Q R

a (high) rank-revealing QR factorization (RRQR).

Columns in yq or y, that are multiplied only with small elements
of pg or n, ,_1, respectively, can be deleted ~»  deflation.

sis replaced by s,, where s > s95>s51 > ....
Two types: initial deflation and Arnoldi deflation.

po and n, ,_¢ are upper triangular up to a column permutation.
In case of deflation py and n,, ,_4 are (nearly) singular.
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Block GMRES with deflation: introduction (cont’d)

rn="Yni1(€1po — Hykn)
—_—
=:qn

Ass.: H,, has full rank.
(This is most likely even when some n,, ,_4 is singular.)

(1) Initial deflation:

ro rank-deficient = pg, Kn, Qn, Fn, Xn — Xo rank-def.
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Block GMRES with deflation: introduction (cont’d)

rn="Yni1(€1po — Hykn)
—_—
=:qn

Ass.: H,, has full rank.
(This is most likely even when some n,, ,_4 is singular.)

(1) Initial deflation:
ro rank-deficient = pg, Kn, Qn, fn, Xn — Xo rank-def.

~s Initial deflation reduces # MVs, but introduces errors
if not exact.
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Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: y in block Arnoldi rank-deficient
Rather unlikely, because we start from Ay,_1.

Unless we deflate, search space contains extra basis
vectors:
R(Yn) 2 Bn

But they are unlikely to help much, since the block solution
lies in xo + B, for some n.
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Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: y in block Arnoldi rank-deficient
Rather unlikely, because we start from Ay,_1.

Unless we deflate, search space contains extra basis
vectors:

R(Yn) 2 Bn
But they are unlikely to help much, since the block solution
lies in Xg + B, for some n.

~  Arnoldi deflation reduces cost (MVs) too, but is rare;
in particular if the restart period m is small.
The block Arnoldi matrix relation is valid only with
an error term.

Martin H. Gutknecht Block Krylov Space Solvers: a Survey



Block GMRES with deflation: introduction (cont’d)

(2) Arnoldi deflation: y in block Arnoldi rank-deficient
Rather unlikely, because we start from Ay,_1.

Unless we deflate, search space contains extra basis
vectors:

R(Yn) 2 Bn
But they are unlikely to help much, since the block solution
lies in Xg + B, for some n.

~  Arnoldi deflation reduces cost (MVs) too, but is rare;
in particular if the restart period m is small.
The block Arnoldi matrix relation is valid only with
an error term.

Hence:
o We deflate at startup and each restart if rq is rank-deficient.
e We may deflate in the Arnoldi process if y is rank-deficient.
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Block Arnoldi and block GMRES: references

Vital ['90p;ss] (BI-GMRES)
Sadkane ["93nm] (nonsym., block Arnoldi-Chebyshev)
Sadkane ["93nym] (nonsym., block Arnoldi / Davidson, EV)

Chapman/Saad ['95/°97n1aa] (BI-GMRES, FGMRES, ...)

Jia ['94piss] (nonsym., EV, “general. Lanczos” > Bl-Arnoldi)
Jia ['94/°98\w] (nonsym., EV, “general. Lanczos” O Bl-Arnoldi)
Jia ['98.aa] (nonsym., EV, BI-Arnoldi)

Jbilou ['99cam] (nonsym., residual smoothing)

Li [97par. comp.] (parallelization of BLGMRES)

Saad ['96ggok] (overview of BLGMRESversions)
Simoncini/Gallopoulos ['94/°96_aa] (BLGMRES, convergence)
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Block Arnoldi and block GMRES: references (cont’d)

CuIIum/Zhang [’98/’028IMAX]
(two-sided BLGMRES, deflation, control, rel. to Lanczos)

El Guennouni/Jbilou/Riquet ['00/°02numaig] (Sylvester eq.)
Fattebert ['98/°98e1na] (Rayleigh quot. iter., gen. EV)
Jbilou ['99cam] (nonsym., block smoothing)
Jbilou/Messaoudi/Sadok ["99apnum]

(nonsym., global FOM/GMRES)
Langou ['03pjss] (BLGMRES)
Saad ['03gok] (overview of BLGMRES versions)
Robbé/Sadkane ['02_aa] (error bounds for BLGMRES)
Robbé/Sadkane ["02nym. alg.]

(BLGMRES, BLFOM for Sylvester eq.)
Robbé/Sadkane ['04] (BLGMRES and BLFOM with deflation)

Schmelzer ['04p;,] (BLMINRES and BLSYMMLQ w/deflation)
da Cunha/Becker ['05] (BLGMRES w/deflation)
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Thanks for listening and come to ...

6th International Congress on
Industrial and Applied Mathematics

= Zurich, Switzerland

ls' 16 - 20 July 2007
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