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Abstract

In the years of 1586 to 1592 the Swiss instrument maker and math-
ematician Jost Bürgi devised and documented an ingenious algorithm
for efficiently and precisely calculating tables of the sine function. The
manuscript Fundamentum Astronomiæ explaining this method and
Bürgi’s tables had been considered as lost, but have been rediscov-
ered in 2013 by Menso Folkerts in the University Library of Wroclaw
(Poland). In this paper we explain and discuss Bürgi’s algorithm, re-
ferred to as Artificium or Kunstweg, with the tools of modern Linear
Algebra. By considering the difference table of the sine function and
by using matrices and eigenvalue problems, we develop a theory of the
algorithm and discuss the rate of convergence.

Key words: Jost Bürgi, table of sines, differences, matrices, eigenvalue prob-
lem, convergence quotient.

1 Introduction

Consider a right angle to be divided into n equal parts. Approximately 1586,
Jost Bürgi found an elegant algorithm, referred to as Artificium, for efficiently
calculating the sines of all subdividing angles, which he documented in Fun-
damentum Astronomiæ, [?]. Bürgi’s Artificium algorithm and the resulting
table were considered as lost, but both documents had been rediscovered
2013 in the University Library of Wroclaw (Poland) by Menso Folkerts [?],
[?], [?]. More recent texts are [?], [?].
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Figure 1: Bürgi’s example n = 9 from Fundamentum Astronomiæ,
numbers in the hexagesimal system.
(C) University Library Wroclaw, Sig. IV Q 38a, fol. 36r

2 The Artificium algorithm:

Introductory example

Jost Bürgi’s Artificium simultaneously finds all sine values

sin

(
k π

2

n

)
, k = 1, . . . , n, n ∈ N, n > 1 (1)

by a convergent algorithm that can be pushed to any desired accuracy.

In Fundamentum Astronomiæ, [?], Bürgi uses the example n = 9 where,
according to the customs of the 16th century, quantities used in astronomy
are represented in the hexagesimal number system (Fig. 1). For finding the
“sines of all degrees of the right angle” Bürgi suggests n = 90.

As an introductory example we will use the simpler case

n = 3 : sin(30o) =
1

2
, sin(60o) =

√
3

2
, sin(90o) = 1 . (2)

Bürgi’s algorithm generates a table, beginning with the rightmost column
a and working from right to left. The numbers printed in italics are not
carried along.



sin(0o) 0 0 0 0 0 0
2911 780 209 56 15

sin(30o) 2911 780 209 56 15 4
2131 571 153 41 11

sin(60o) 5042 1351 362 97 26 7
780 209 56 15 4

sin(90o) 5822 1560 418 112 30 8
-780 -209 -56 -15 -4

. . . f e d c b a

We briefly describe the algorithm by the following three steps. Step 0
below defines the initial column a; Steps 1 and 2 generate columns b and c
to the left, and their repetition generates columns d and e, etc. The symbol
( )′ means transposition of a vector or a matrix.

0. Initial column: a = (a1, a2, . . . , an)′ ∈ Rn, (almost) arbitrary, for ex-
ample, but not necessarily, approximations for multiples of sine values,
f · sin(k π

2
/n), k = 1, . . . , n, rounded to integers. f 6= 0 is an arbitrary

factor, e.g. f = 8 in the introductory example.

1. Next column to the left: b = (b1, b2, . . . , bn)′ = cumulative sum of the
aj from bottom to top, first bn = an/2, then bk = bk+1 + ak, k =
n− 1, . . . , 1.

2. Further column to the left: c = (c1, c2, . . . , cn)′ = cumulative sum of
the bk from top to bottom, first c1 = b1, then ck = ck−1 + bk, k =
2, . . . , n.

Clearly, as a consequence of the use of cumulative sums, the complete
Artificium table is the difference table of the leftmost column, with a sign
change in columns 3,5,.. . For discussing the details of the algorithm we will
therefore look at the difference table of the sine function in Section 3.

Since the initial column a is close to a multiple of sin(k π/6) and we need
to get sin(π/2) = 1, it seems natural to normalize the leftmost column by
dividing it by its bottom element, with the result (0, 0.5, 0.86602542, 1)’.
This is in fact the final step in the Artificium algorithm.

For our choice of the initial column in the case n = 3 the approximations
for for the first element, sin(π/6) happen to be exact. The normalized second
elements of the odd columns, a2/a3, c2/c3, e2/e3, . . . approximate sin(2 π/6)
with increasing accuracy. In the table below, the three lines list (1) the nor-
malized second elements in rational form, (2) the errors, i.e. the differences to
sin(π/3) =

√
3/2 = 0.86602540 and (3) the ratios of two consecutive errors.

The errors are nearly in a geometric sequence with an almost constant ra-
tio of consecutive terms. In Section 5 the limit of the ratios (the convergence

quotient) will be identified as
(
2 +
√

3
)2

= 13.92820.



. . . , c2/c3, a2/a3 1351/1560 362/418 97/112 26/30 7/8

. . . , a2/a3 −
√

3/2 2.3724e-7 3.3043e-6 4.6025e-5 6.4126e-4 8.9746e-3
Ratio to next error 13.92823 13.92855 13.93299 13.99526

3 The difference table of the sine function

At the end of the 16th century trigonometry was still in the process of being
developed. The trigonometric addition formulas were used in order to sim-
plify multiplications of long numbers. This process, known as Prosthaphære-
sis, is partially attributed to Bürgi, and was also used by him around 1590,
[?]. It is based on the identity

cos(α) · cos(β) =
1

2

(
cos(α + β) + cos(α− β)

)
(3)

and allows to calculate a product by table-look-ups and simple operations
(additions and a halving).

At the beginning of the next century Bürgi found a simpler and more effec-
tive method for simplifying multiplications: his famous Progreß Tabulen [?],
[?], [?], a table of the exponential function fn = 1.0001n, n = 0, . . . , 23027,
published 1620 in Prag. Together with John Napier, who independently pub-
lished his table of the log-sine function in 1614, Bürgi laid the grounds for
logarithmic calculation which remained the basis of all scientific computa-
tions for more than three centuries, see also [?].

In the following, we will use the tools of modern mathematics for explain-
ing and discussing the Artificium algorithm. By putting α =

(
π−(y−x)

)
/2,

β = (y + x)/2 we obtain

sin y − sinx = 2 sin
(y − x

2

)
cos
(y + x

2

)
, (4)

an identity useful for investigating the difference table of the sine function
f(x) = sin x (Fig. 2). Using three arguments and 2 δ > 0 as their mutual
difference we obtain the difference table with first and second differences ∆1

and ∆2:

f(x) ∆1 ∆2

sin(x− 2 δ)
2 sin δ · cos(x− δ)

sinx −4 sin2 δ · sinx
2 sin δ · cos(x+ δ)

sin(x+ 2 δ)

(5)
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Figure 2: The function y = f(x) = sin(x), dashed: first derivative f ′(x) = cos(x)

dashdot: 2nd derivative f ′′(x) = − sin(x)

There immediately follows: The second difference is proportional (with a
negative factor) to the value of the sine function on the same line. Bürgi
might have observed this theoretically and experimentally as well, perhaps
with equidistant angles in more than three rows and numerical sine approx-
imations.

The inverse operation of calculating the difference table is forming the
cumulative sums from right to left, from bottom to top in the odd columns
to compensate the omission of the negative sign of ∆2 in Equ. (??). Since
calculating differences of almost equal numbers results in a loss of accuracy
(is numerically unstable), Bürgi could have hoped that the inverse process
would result in a stable and convergent algorithm.

The initial conditions for the cumulative sums take care of the symmetries
of the sine und cosine functions at x = 0 and x = 90o, see the entries of the
introductory example printed in italics. The columns at their boundaries
behave like odd functions, the odd columns a, c, . . . at x = 0, the even
columns b,d, . . . at x = 90o. This results in the rules of Step 2 and 1: For
the odd columns the initial value on top is always 0 (not carried along),
for the even column b we would have to define bn+1 = −bn, which implies
bn = an/2, taking into account that column a is the negative difference of
column b.

Obviously, the Artificium algorithm finds the sine values only up to an
(unknown) factor. To satify sin(90o) = 1 every element of the leftmost
column needs to be normalized by dividing it by its bottom element. This is
summarized in Theorem 1 below. In the remaining sections a proof will be



given in several steps.

Theorem 1. For (almost) arbitrary initial columns a = (a1, . . . , an)′

with n > 1, the normalized odd columns ak/an, ck/cn, ek/en, . . . converge to

sin(k π/2
n

), k = 1, . . . , n. 2

4 Vectors and Matrices

We will use modern Linear Algebra in order to prove Theorem 1. First, the
Artificium algorithm will be described in terms of vectors and matrices. Be-
ginning with the column vector a = (a1, a2, . . . , an)′ ∈ Rn, we also introduce
the vector

ã = (a1, a2, . . . , an−1,
an
2

)′ = H · a , (6)

where H ∈ Rn×n is the diagonal matrix with diagonal elements 1, 1, . . . , 1, 1
2
.

Furthermore, let T be the lower triangular matrix T =
(
tkj
)
∈ Rn×n, filled

with ones, tkj = 1 if k ≥ j, 0 otherwise. Then the columns b, c of the
Artificium table may be written as

b = T′ ã, c = T b . (7)

Therefore, the combined Steps 1 and 2 of the Artificium algorithm are

c = M a with M = T ·T′ ·H ; (8)

M will be called the Bürgi matrix, it had already been mentioned by
Folkerts/Launert/Thom [?]. E.g., for n = 5 Equ. (??) yields

M =


1 1 1 1 0.5
1 2 2 2 1
1 2 3 3 1.5
1 2 3 4 2
1 2 3 4 2.5

 ∈ R5×5. (9)

The matrix T has a simple inverse: by introducuing the unit matrix
I ∈ Rn×n and the unit subdiagonal matrix L ∈ Rn×n, T may be written as
a Taylor series,

T = I + L + L2 + · · ·+ Ln−1 = (I− L)−1. (10)

Therefore, also M has a simple inverse; Equ. (??) yields

M−1 = H−1 (I− L)′ (I− L) (11)



for the inverse of the Bürgi matrix, e.g. for n = 5:

M−1 =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−2 2

 . (12)

In summary, the mapping induced by M−1,

y = M−1 x with x =
(
x1, x2, . . . , xn

)′
(13)

generates the negative second differences of the vector x̃ =
(
0; x;xn−1

)
, where

the supplemented components x̃0 and x̃n+1 exactly model the behaviour of
the sine funtion at 0 and at π/2. Therefore, the Artificium algorithm inverts
the formation of the difference table of the sine function in the interval [0, π

2
]

up to an unknown factor. Bürgi takes care of this factor by normalizing the
leftmost column to sin(π/2) = 1 by dividig it by its nth element.

5 Eigenvectors and Eigenvalues

We now consider the sequence of the odd columns (from right to left) of the
Artificium table, and use the upper index j to count the number of iteration
steps: a(0) := a ∈ Rn for the initial column and a(1) := c, a(2) := e, . . . for
the further odd columns, with components a(j) =

(
a
(j)
1 , a

(j)
2 , . . . , a

(j)
n

)′
. Then

the algorithm including the normalization may be written as

a(j) = M a(j−1) , s(j) =
a(j)

a
(j)
n

, j = 1, 2, . . . , (14)

where s(j) =
(
s
(j)
1 , s

(j)
2 , . . . , s

(j)
n

)′
is the vector of the jth approximations for

the sine values. This is the well-known power iteration, published 1929 by
Richard von Mises (1883-1953) and Hilda Geiringer (wife, 1893-1973). It is
closely related to the eigenvalues λi (i = 1, . . . , n) of M and the corresponding
eigenvectors vj. If the eigenvalue λ1 of maximum magnitude is simple, the
power iteration converges direction-wise to the corresponding eigenvector v1

satisfying M v1 = v1 λ1.

In order to discuss the convergence speed of the power iteration (??) we
need to solve the eigenvalue problem of the Bürgi matrix M.

Theorem 2. There exists a regular matrix V and a diagonal matrix D
such that M is similar to D, i.e.

M V = V D . (15)



The matrix V =
(
vki
)

with

vki = sin
(
k (i− 1

2
)
π

n

)
, k, i = 1, . . . , n (16)

contains n linearly independent eigenvectors of M as its columns (i fixed),
and D contains the eigenvalues

λi =
1

4 sin2
(
(i− 1

2
) π
2n

) with λ1 > λ2 > · · · > λn (17)

on its diagonal. 2

Proof. Multiplying the eigenvector condition Equ. (??) from the left with
M−1 and from the right with D−1 yields M−1 V = V D−1, i.e. M−1 has the
same eigenvectors as M, but the reciprocal eigenvalues. We will therefore
first consider the simpler eigenvalue problem of M−1.

Consider now the image w =
(
w1, w2, . . . , wn

)′
of the ith column vi =(

v1i, v2i, . . . , vni
)′

of V under the mapping induced by M−1. Our goal is to
take advantage of the tridiagonal, almost periodic stucture of M−1 seen in
Equ. (??). Using the abbreviation ωi = (i − 1

2
) π
n

and observing v0i = 0 and
vn+1,i = vn−1,i we obtain

wk = − sin
(
(k − 1)ωi

)
+ 2 vki − sin

(
(k + 1)ωi

)
, k = 1, 2, . . . , n .

The addition formula of the sine function yields wk = 2 (1 − cosωi) vki.
Therefore, the ith column of V is in fact an eigenvector, and the corre-
sponding eigenvalue of M−1 is 2 (1 − cosωi) = 4 sin2(ωi/2). This directly
yields Equ. (??) for the eigenvalues of M. 2

6 Rate of Convergence

We will now investigate the power iteration for finding the eigenvector v1 of
M associated with the unique eigenvalue λ1 of maximum magnitude, with
the goal of proving its convergence. We will also get results on the speed of
convergence. As a consequence of of Bürgi’s normalizing division, Equ. (??)
implies snj = 1. On the other hand, Equ. (??) with k = n, i = 1 implies
vn1 = 1, i.e. the eigenvector v1 as stated in Theorem 2, satisfies the same nor-
malization as Bürgi’s approximations sj. We can therefore restate Theorem
1 as

lim
j→∞

s(j) = v1 =
(
v11, . . . , vn1

)′
with vk1 = sin

(
k
π/2

n

)
, k = 1, . . . , n ,



or equivalently by introducing the error vector e(j) =
(
e
(j)
1 , . . . , e

(j)
n

)′
:

e
(j)
k = s

(j)
k − sin

(
k
π/2

n

)
→ 0 as j →∞ . (18)

Power iteration becomes much more transparent if the matrix M is rep-
resented in the coordinate system of its linearly independent eigenvectors.
To do so, write Equ. (??) as

a(j) = M V V−1 a(j−1) .

Multiplying both sides from the left by V−1 and using Equ. (??) yields

u(j) = D u(j−1) with u(j) = V−1 a(j) or a(j) = V u(j) . (19)

Compared to Equ. (??), the repeated multiplication is done here simply by
the diagonal matrix D. The vector u(j) can now be stated explicitly as

u(j) = Dj u(0) with u(0) = V−1 a(0) , (20)

where the jth power Dj of D is also diagonal. u(0) will be called the modified
initial vector; the matrix V−1 needed here is given by

V−1 =
2

n
V′H , (21)

which is easily verified with elementary trigonometry by calculating V V′

using the explicit definition of V in Equ. (??).

To summarize, the jth approximations a
(j)
k of the Artificium algorithm

may be represented by a set of explicit expressions, originating from (??),
(??), (??) above and using the eigenvectors vki (??) and the eigenvalues λi
(??). Choose the initial column a(0) ∈ Rn and evaluate

u
(0)
i =

2

n

n∑
k=1

′ sin
(
k (i− 1

2
)
π

n

)
a
(0)
k , Σ′ : last term with half weight (22)

u
(j)
i = u

(0)
i · λ

j
i , i = 1, . . . , n , λi =

1

4 sin2
(
(i− 1

2
) π
2n

) (23)

a
(j)
k =

n∑
i=1

sin
(
k (i− 1

2
)
π

n

)
u
(j)
i , k = 1, . . . , n . (24)

Therefore, the rate of convergence depends on the eigenvalues λi as well as
on the choice of the initial column a(0).



The initial column a(0) needs to be chosen such that u
(0)
1 6= 0, i.e. a(0)

needs to have a non-vanishing component in the direction of v1. In the
introductory example of Section 2 the vector a(0) = v2 = (1, 0,−1)′ in the
direction of the second eigenvector would be an unhappy choice. In exact
arithmetic, power iteration yields only vectors of the same direction. A prac-
tical realization in Matlab (precision 15 digits) would save the situation: after
37 iterations the first eigenvector is finally reached.

To begin with, assume in addition to u
(0)
1 6= 0 also u

(0)
2 6= 0. As a conse-

quence of the inequality in Equ. (??) the first term (i = 1) of the sum for a
(j)
k

in Equ. (24) approximates a
(j)
k , and the second term (i = 2) approximates

the error e
(j)
k for large j:

a
(j)
k = u

(0)
1 λ j

1 sin
(
k
π

2n

)
+ u

(0)
2 λ j

2 sin
(
k

3 π

2n

)
+ . . .

a
(j)
n = u

(0)
1 λ j

1 − u
(0)
2 λ j

2 + . . . .
(25)

The ratio s
(j)
k of the two expressions is

s
(j)
k =

a
(j)
k

a
(j)
n

= sin
(
k
π

2n

)
+ e

(j)
k ,

where the error (??) is approximately

e
(j)
k =

u
(0)
2

u
(0)
1

(
λ2
λ1

)j (
sin
(
k
π

2n

)
+ sin

(
k

3π

2n

))
+ . . . . (26)

To generalize this particular case, assume now that u
(0)
2 = 0 to be also

possible. Then we have the following theorem based on the modified initial
column u(0):

Theorem 3. Consider an Artificium with the modified initial column
u(0) =

(
u
(0)
1 , . . . , u

(0)
n

)
of (??) with u

(0)
1 6= 0. Let r ≥ 2 be smallest index with

u
(0)
r 6= 0. Then we have as a generalization of Equ. (??)

e
(j)
k =

u
(0)
r

u
(0)
1

(
λr
λ1

)j (
(−1)r sin

(
k
π

2n

)
+ sin

(
k

(2 r − 1) π

2n

))
+ . . . . (27)

We define the convergence quotient of the Artificium as the ratio q
(j)
k =

e
(j−1)
k /e

(j)
k of two consecutive errors. In our first-term approach the limiting

convergence quotient,

Qr = lim
j→∞

q
(j)
k =

λ1
λr
, r ≥ 2 , (28)

independent of j and k, is a good approximation for q
(j)
k . For large n we have

Qr ≈ (2 r − 1)2.



7 Examples

In the list below we give a few typical examples of initial columns and con-
vergence quotients. For simplicity the upper index of the initial column is
suppressed: a

(0)
k = ak.

The case n = 3 is the introductory example of Section 2; the case n = 9
below is Bürgi’s example. Both cases yield r = 3. If n is a multiple of 3,
n = 3m, integer initial columns leading to r = 3 and Q3 bounded by 25 are
not difficult to find; certainly Bürgi had a good intuition.

The case n = 4 is one of the many examples with r = 2, where integer
initial columns are difficult to find or do not exist. Then the convergence is
fairly slow, Q2 ≈ 9. For n = 15 we found an integer initial column close to a
multiple of the sines to be calculated, yielding r = 4 and Q4 = 46.9.

The final two examples considering values of n divisible by 15, n =
15m, were found by Grégoire Nicollier [?]. They are characterized by initial
columns with only a few non-zero elements. The last example shows a re-
markable initial column leading to r = 6 and Q6 ≈ 121, however only with ir-
rational components (involving the golden ratio φ = (1+

√
5)/2 = 1.618034).

n=3: a = (4, 7, 8)′, u2 = 2
3

(
1 · a1 + 0 · a2 − 1 · a3

2

)
= 0, r = 3 ⇒

Q3 =
λ1
λ3

=
sin2(75o)

sin2(15o)
= 7 + 4

√
3 = 13.92820

n=4: a = (4, 7, 9, 10)′, u2 = 0.20111, r = 2 ⇒

Q2 =
λ1
λ2

=
sin2(33.75o)

sin2(11.25o)
= 8.10973

n=9: a = (2, 4, 6, 7, 8, 9, 10, 11, 12)′, u2 = 0, r = 3 ⇒

Q3 =
λ1
λ3

=
sin2(25o)

sin2(5o)
= 23.51281

n=15: a = (1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12)′, u2 = u3 = 0,

r = 4 ⇒ Q4 =
λ1
λ4

=
sin2(21o)

sin2(3o)
= 46.88760

n=15 m: ak = 1 if k = 2m or k = 10m or k = 12m, ak = 0 otherwise,
r = 4 ⇒ Q4 ≈ 49, e.g. Q4 = 48.94 for n=90 (Nicollier)

n=15 m: ak = 1 if k = m or k = 11m, ak = φ if k = 7m or k = 13m,
ak = 0 otherwise, r = 6 ⇒

Q6 =
λ1
λ6
≈ 121, goes back to Q4 ≈ 49 after a few steps if φ is

only approximated, e.g. by φ ≈ 8

5
(Grégoire Nicollier, Sion)
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Entschlüsselung eines Rätsels. Nova Kepleriana, Verlag der Bayrischen
Akademie der Wissenschaften, C.H. Beck, München.

[8] Lutstorf Heinz, 2005: Die Logarithmentafeln Jost Bürgis. Bemerkun-
gen zur Stellenwert- und Basisfrage, mit Kommentar zu Bürgis
Gründlichem Unterricht. Schriftenreihe A, 3, ETH Bibliothek, Zürich.
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