Finding Clusters of Primes, II Progress Report 2006 - 2015

Jörg Waldvogel and Peter Leikauf Seminar for Applied Mathematics SAM Swiss Federal Institute of Technology ETH, CH-8092 Zürich

February 2007, May 2013, April 2015

1 Review of Earlier Results.

This project was initiated in the year 2000 with the development of the software system PMP, "Poor Man's Parallelizer" by Peter Leikauf. PMP is a simple but robust system for parallelizing large computational efforts for workstations connected to the internet and/or for cluster computers. It is particularly well suited for easily parallelizable tasks with low data traffic. For details see the link Projects/pmp.pdf on the website [10].

In the current application of our parallelization software we are using an algorithm involving sieving techniques for locating and counting clusters of prime numbers. Whereas the distribution of primes seems to be fairly regular, the distribution of twin primes and longer clusters is largely unknown and is characterized by large-scale anomalies. Collecting experimental data on these anomalies is one of the reasons for the interest in clusters of primes. Research in the theory of prime numbers has again become fashionable with the invention of the RSA coding scheme [9] in 1978, and a world-wide competition for prime number records is still going on [7].

Another challenge of finding clusters of prime numbers is the unproven prime k-tuple hypothesis, which is concerned with patterns of natural numbers that occur repeatedly with all elements being prime. The hypothesis states that any pattern that is not forbidden by simple divisibility considerations occurs infinitely often in the sequence of primes. Collecting data in support of this hypothesis is our current goal.

The discovery of a dense cluster of 18 primes among 71 consecutive integers in the range of $3 \cdot 10^{24}$ on November 13, 2000 was the first success of the project. This computation is about 50 times harder than finding the three 23-digit clusters of 17 primes among 67 consecutive integers, discovered by Tony Forbes [3], and independently by J. Waldvogel [10], both in 1998. Our discovery was immediately announced in the number theory press [6], and also got coverage in the web journal of ETH (ETH Life, December 6, 2000, [2]). For previous reports and more details see the links

Projects/clprimes01.pdf	Projects/cl18.pdf
Projects/clprimes03.pdf	Projects/paricode.gp

on the website [10]. Dense clusters of primes receive particular attention on the website [4], continuously actualized by Tony Forbes. The successes of our implementation bear the danger of monopolizing this site and taking away all the fun!

2 Some Particular Patterns

In this section we pick a few "exotic" admissible patterns with no obvious prime instances. If the Hardy-Littlewood (HL) estimates indicate any chance of reoccurrences in the range accessible with the current hardware and software, we tried to locate a few prime instances of the patterns.

We will consider four patterns of 16 or 18 elements, all of them being tight repetitions of well-known short patterns, as well as a remarkable "quadratic" pattern of 21 primes. In all cases the search for prime instances was successful, thus accumulating more experimental data on the prime k-tuple hypothesis. To begin, we briefly state this famous conjecture in its strong form put forth by Hardy and Littlewood [5].

Let $\mathbf{c} = [c_1, c_2, \ldots, c_k]$ be a monotonically increasing sequence of $k \in \mathbb{N}$ integers, exclusively odd or exclusively even, called a *pattern*. The counting function $\pi_{\mathbf{c}}(x)$ of the pattern \mathbf{c} is defined as the number of shifts $s, 0 \leq s \leq x$, such that every element of $\mathbf{c}_s := [s + c_1, s + c_2, \ldots, s + c_k]$ is a prime (called a *prime instance* of \mathbf{c}). The conjecture states the asymptotic relationship

$$\pi_{\mathbf{c}}(x) \sim h_{\mathbf{c}} \cdot R_k(x) \text{ as } x \to \infty.$$

Instead of the conventional logarithmic integrals we prefer to use the generalized Riemann functions

$$R_k(x) := \sum_{j=0}^{\infty} \frac{(\log x)^j}{(k-1+j)! \, j \, \zeta(1+j)}$$

The number $h_{\mathbf{c}}$ is the Hardy-Littlewood constant of the pattern \mathbf{c} ,

$$h_{\mathbf{c}} := 2^{k-1} \cdot \prod_{q} \frac{1 - q^{-1} r_{\mathbf{c}}(q)}{(1 - q^{-1})^{k}},$$

where the product is taken over all odd primes q, and $r_{\mathbf{c}}(q)$ is the number of distinct residue classes mod q in the pattern \mathbf{c} . Note that for k = 1 we have $h_{[0]} = 1$, and non-amissible patterns \mathbf{c} yield $h_{\mathbf{c}} = 0$. Despite the slow convergence of the above infinite product Hardy-Littlewood constants may be efficiently computed to arbitrary precision by means of the prime zeta function, see, e.g. [8].

2.1 Nine Close Prime Twins

Except for the singular situation of the overlapping twins (3,5) and (5,7), two twin primes may only occur at a distance of 6n-2, n = 1, 2, ..., as is seen by a simple consideration of residue classes mod 3. The closest admissible arrangement of 9 prime twins spans an interval of length 104 and comes in 4 types represented by the patterns

c1=[-31,-29, -19,-17, -13,-11, 11, 13, 17,19, 29,31, 41,43, 59,61, 71,73] c2=[-43,-41, -31,-29, -19,-17,-13,-11, -1, 1, 11,13, 17,19, 41,43, 59,61]

and their mirror images $\mathbf{c_1}'$ and $\mathbf{c_2}'.$ The Hardy-Littlewood constants are found to be

$$h_1 = 23041978.71272$$
, $h_2 = 18433582.97017 = \frac{4}{5} \cdot h_1$;

the corresponding estimated frequencies $HL_1(x)$, $HL_2(x)$ for the patterns c_1, c_2 , respectively, are

We extended the search up to 10^{24} , except for the case c_2' , where the range had to be doubled. The initial primes of the existing 9 instances are given in the table below; the total HL count is 6.1. We also indicate the differences in the patterns; the occurrence of an additional prime between two twins is indicated by a plus sign +.

```
Initial Prime
                                    Differences in the Pattern
c1
                                                              (to 1e24)
1
   39582971901830749382519
                             2
                                10 2 4
                                        2 22 2 4 2 10 2 10 2 16 2 10 2
                                        2 22 2 4 2 10 2 10 2 16 2 10 2
2
   85002283332977673203069
                             2 6+4 2 4
                                10 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2
3
  111871787983521806791079
                            2
                             2
                                10 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2
  237848512839161942948759
4
c1'
                                                              (to 1e24)
                                10 2 16 2 10 2 10 2 4 2 22 2
   35902987875008630158997
                             2
                                                              4 2 10 2
1
2
  681954129502801901959427
                             2
                                10 2 16 2 10 2 10 2 4 2 22 2
                                                              4 2 10 2
c2
                                                              (to 1e24)
                               10 2 10 2 4 2 10 2 10 2 4 2 22 2 10+6 2
1
  670962238726376003928317
                             2
                             2 10 2 10 2 4 2 10 2 10 2 4 2 22 2 16 2
  785878473089354651160797
2
c2'
                                                              (to 2e24)
1 1063660630652819772482009 2 16 2 18+4 2 4 2 10 2 10 2 4 2 10 2 10 2 10 2
```

2.2 Four Close Quadruplets

A striking short pattern is the arrangement of two twins in the same decade, such as [11, 13, 17, 19], referred to as a *prime quadruplet*. Its HL constant is $h_4 = 4.1511808632$; in a large interval Δ near a much larger x we expect to find about $h_4 \cdot \Delta/(\log x)^4$ quadruplets.

Prime quadruplets may accumulate as closely as in the pattern $\mathbf{c_8} = [-19, -17, -13, -11, 11, 13, 17, 19]$, since $\mathbf{c_8}$ is admissible. With its HL constant $h_8 = 288.1001283176$, $\mathbf{c_8}$ is expected to reoccur in terms of positive primes in the range of 4 000 000. In fact, the first pair of quadruplets occurs somewhat prematurely at 1 006 301, and up to $x = 2 \cdot 10^8$ there are 10 instances, whereas the HL estimate is 6.

Two pairs $\mathbf{c_8}$ of quadruplets in their closest arrangement are separated by a gap of length 382, i.e. the pattern

 $\mathbf{c_{16}} = [-229, -227, -223, -221, -199, -197, -193, -191, 191, 193, 197, 199, 221, 223, 227, 229]$

is admissible. In this case, however, it is not possible to represent the pattern by a sequence of small primes: $221 = 13 \cdot 17$! The HL constant is found to be

 $h_{16} = 9350784.9154303126$. A search up to $x = \frac{4}{3} \cdot 10^{19}$ turned up two fairly close occurrences near $1.1 \cdot 10^{19}$ and $1.2 \cdot 10^{19}$, whereas the Hardy-Littlewood count yields $HL(x) = h_{16} \cdot R_{16}(x) = 1.003$. Below we show the initial primes of these instances; we again indicate the sequences of differences in the pattern; Q stands for [2,4,2], and a plus sign + indicates additional primes in the large gaps of the pattern.

Initial Prime Differences in the Pattern 11281963036964038421 Q 22 Q 42+42+196+12+2+70+18 Q 22 Q 12114914563464663491 Q 22 Q 22+32+28+8+34+14+54+162+28 Q 22 Q

Four quadruplets in their *closest* arrangement span an interval of only 218 and occur in the pattern

 $\mathbf{C_{16}} = [-19, -17, -13, -11, 11, 13, 17, 19, 101, 103, 107, 109, 191, 193, 197, 199]$ or in its mirror image $\mathbf{C_{16}}'$; the common HL constant is $H_{16} = 6042367.03907$. For $x = \frac{4}{3} \cdot 10^{19}$ the Hardy-Littlewood count yields 0.648 for each pattern. Both patterns have early first occurrences, namely $\mathbf{C_{16}}$ at the HL count of 0.262, $\mathbf{C_{16}}'$ even at 0.066. In the table below we use the same coding scheme as above.

Patt	Initial Prime		Differend	cea	s in the	Pa	attern	
C16	3051450534439926131	Q	22	Q	82	Q	12+16+6+8+40	Q
C16'	300000224101777931	Q 10+8+4	+26+12+22	Q	4+54+24	Q	12+10	Q

2.3 Three Close Sixtuplets and Two Close 9-Tuplets

Being able to detect occurrences of clusters of 18 primes, we have a chance of displaying instances of three sixtuplets [97, 101, 103, 107, 109, 113] as well as two 9-tuplets [13, 17, 19, 23, 29, 31, 37, 41, 43] in their closest arrangements. The patterns are $\mathbf{c_6}$ and $\mathbf{c_9}$ below, spanning intervals of length 436 and 90, having the HL constants $h_6 = 92680700.00031$ and $h_9 = 19311372.63543$, respectively.

```
\begin{array}{l} c6{=}\left[-113,-109,-107,-103,-101,-97,97,101,103,107,109,113,307,311,313,317,319,323\right]\\ c9{=}\left[-47,-43,-41,-37,-31,-29,-23,-19,-17,\ 13,17,19,23,29,31,37,41,43\right]. \end{array}
```

As it happened in the pattern $\mathbf{c_{16}}$ of Section 2.2, $\mathbf{c_6}$ cannot be represented in terms of small primes: $319 = 11 \cdot 29$, $323 = 17 \cdot 19$! The two patterns were searched up to 10^{23} , corresponding to HL counts of 1.33 and 0.277; at the first occurrences given below the actual HL counts are 0.85 and 0.0026, respectively We were lucky to capture the extremely early occurrence of $\mathbf{c_9}$!

```
      Patt.
      Initial Prime
      Differences in the Pattern

      c6
      50038627250687303646277
      4
      2
      4
      56+138
      4
      2
      4
      38+90+10+56
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
      4
      2
```

2.4 21 Primes in a Quadratic Pattern

Leonhard Euler (1707-1783), the mathematical giant of the eighteenth century, made the stunning discovery that the quadratic polynomial $f(n) := n^2 + n + c$ with c = 41 has only prime values for n = 0, 1, 2, ..., 39. Also for $n \ge 40$ prime values of f(n) are extraordinarily abundant. One of the reasons for this is the obvious symmetry relation

 $f(n) \mod p = f(p - n - 1) \mod p$ for every prime p.

This implies that a finite pattern [f(n), n = 0, 1, ..., N-1] of arbitrary length N occupies at most ceil(p/2) residue classes modulo any prime p. Therefore at least floor(p/2) residue classes mod p are empty, hence the pattern is admissible.

As a consequence, quadratic patterns

$$[n^2 + n + c, n = 0, 1, \dots, N - 1]$$

of N elements are candidats to yield prime instances of rather long patterns of this preassigned structure. In fact, it was established that the first reoccurrence of the quadratic pattern

 $\mathbf{C} = [41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461]$

of N = 21 (non-consecutive) primes begins at

 $x = 2\,34505\,01594\,32353\,29417$.

The HL constant of **C** is found to be H = 3916679971309.28168, and for the HL count we obtain $H \cdot R_{21}(x) = 0.0139$, hence we again profited from a rather early occurrence.

It is unlikely that the linearly growing sequence [2,4,6,8,...] persists throughout the entire pattern as the sequence of differences between consecutive primes. Rather, it will occasionally be broken by additional primes in the ever longer gaps of the pattern. The above instance has the difference pattern

2 4 6 8 10 12 14 16 18 20 4+18 14+6+4 26 10+18 30 32 22+12 36 24+14 40

where plus signs + again denote additional primes interrupting the gaps of the preassigned pattern.

If the prime k-tuple hypothesis is true, instances of \mathbf{C} in terms of *consecutive* primes must exist. To locate one of these, however, is beyond the possibilities of our current technique.

3 Migrating from Asgard to Hreidar

After almost five years of continuous operation on Asgard the more powerful hardware Hreidar became available in Spring 2005. Migration from the ailing Asgard to Hreidar, including tests of the adapted software, took place from May 11 to May 18, 2005. The authors thank the steering committee for again generously allotting idle computing power to this project. We also express our sincere thanks to George Sigut for his competent help during the migration process.

Our system consisting of the parallelizing software PMP and the searching algorithm (coded in PARI [1], the innermost loop in C++) proved to be very easy to migrate. E.g., the doubling of the word length from 32 to 64 bits could be handled by merely redfining a parameter called **bits**.

Migration took place while a long run was under way: the first block of length 10^{24} for the pattern C_2 , see Section 4 below. No data were lost; after migration, and also after a subsequent change of configuration, the search resumed exactly where it was stopped. The only losses (besides the week of migration) were the 337 tasks (or 0.07 %) that were interrupted. More details of the long run are given in the table below.

Dates 2005	Days	%	Tasks	%	Tsk/Day	Machine	Nodes
01/06 - 05/11	124.9	62.0	250425	50.17	2005	Asgard	100
05/18 - 07/19	61.9	30.7	95686	19.17	1545	Hreidar	32
07/19 - 08/03	14.8	7.3	153426	30.73	10362	Hreidar	32 + 32
Total	201.6	100.0	499537	100.07	2476		

4 The Quest for a Maximally Dense 19-Tuple

Both of the patterns

 $\mathbf{c}_1 = [13, 17, 19, \dots, 79, 83, 89], \quad \mathbf{c}_2 = [37, 41, 43, \dots, 107, 109, 113],$

consisting of 19 consecutive primes and encompassing 77 consecutive natural numbers each, are admissible, i.e. their elements leave at least one residue class unoccupied modulo every prime. Together with their mirror images $\mathbf{c}'_1 = [-89.. - 13]$ and $\mathbf{c}'_2 = [-113.. - 37]$ they constitute the four different patterns in which 19 primes can be arranged as densly as possible. The Hardy-Littlewood constants associated with \mathbf{c}_1 (or \mathbf{c}'_1) and \mathbf{c}_2 (or \mathbf{c}'_1) are found to be

$$h_1 = 172\,98850.522\,, \quad h_2 = 585\,49955.614 = \frac{44}{13} \cdot h_1\,,$$

respectively; therefore the pattern \mathbf{c}_2 is expected to occur 3.4 times more often than \mathbf{c}_1 . The average number of occurrences of \mathbf{c}_2 in a large interval Δ near a much larger x is about $h_2 \Delta (\log x)^{-19}$. From this we infer that the chances of the pattern \mathbf{c}_2 reoccurring at an $x < 5 \cdot 10^{25}$ are about 93%. This is also the chance of its mirror image ocurring in the same range.

In the Initial Report 2001, Projects/clprimes01.pdf, the idea of a search for a 19-tuple of maximum density was rejected because at that time the available hardware (the idle time of 128 nodes of Asgard) would have required an excessively long search time (up to five years).

With the installation of Hreidar the situation has changed. With the idle time of 64 nodes of Hreidar available, the speed increased about 5-fold. The quest for a 19-tuple of maximum density is on again!

We are again working in blocks of length $\Delta = 10^{24}$. In an initial attempt we were directly heading for one of the more abundant patterns, \mathbf{c}_2 . This resulted in a computation time of about 28 days per block. Unfortunately, 7 blocks done in this way produced no output. Of course, these 7 blocks have been recorded as non-carriers of Pattern \mathbf{c}_2 , but obviously a change of strategy was needed.

We decided to look for the sub-patterns

$$\mathbf{C}_2 = [41, 43, \dots, 107, 109], \quad \mathbf{C}'_2 = [-109, -107, \dots, -43, -41]$$

of 17 elements, obtained by deleting the two boundary elements from the original patterns \mathbf{c}_2 , \mathbf{c}'_2 . Deleting any other two elements from the original patterns would have resulted in a larger computational effort. From a list of subpatterns the original patterns may easily be sorted out by checking the deleted elements for primality.

One advantage of this strategy is that output is generated at a reasonable rate. With the Hardy-Littlewood constant h = 3175403.027 the estimated

number $N(x) \approx h \Delta (\log x)^{-17}$ of occurrences in a block of length $\Delta = 10^{24}$ centered at $x = X \cdot 10^{24}$ is given in the following table.

X	+0.5	+1.5	+2.5	+3.5	+4.5	+5.5	+6.5	+7.5	+8.5	+9.5	sum
0	11.110	6.7601	5.7584	5.1955	4.8154	4.5338	4.3130	4.1330	3.9822	3.8531	54.45
10	3.7408	3.6417	3.5533	3.4738	3.4016	3.3357	3.2751	3.2192	3.1673	3.1190	88.38
20	3.0738	3.0314	2.9915	2.9538	2.9182	2.8845	2.8524	2.8219	2.7928	2.7650	117.47
30	2.7384	2.7130	2.6885	2.6651	2.6425	2.6208	2.5998	2.5796	2.5601	2.5412	143.82
40	2.5229	2.5053	2.4881	2.4715	2.4554	2.4397	2.4245	2.4097	2.3954	2.3813	168.31
50	2.3677	2.3544	2.3414	2.3288	2.3164	2.3044	2.2926	2.2811	2.2699	2.2589	191.43
60	2.2481	2.2376	2.2273	2.2172	2.2073	2.1976	2.1881	2.1788	2.1697	2.1607	213.46
70	2.1519	2.1433	2.1348	2.1264	2.1183	2.1102	2.1023	2.0945	2.0869	2.0794	234.61
80	2.0720	2.0647	2.0575	2.0505	2.0436	2.0367	2.0300	2.0234	2.0168	2.0104	255.01
90	2.0040	1.9978	1.9916	1.9855	1.9795	1.9736	1.9678	1.9620	1.9564	1.9508	274.78
100	1.9452	1.9398	1.9344	1.9291	1.9239	1.9186	1.9135	1.9084	1.9034	1.8985	294.00
110	1.8936	1.8887	1.8840	1.8793	1.8746	1.8700	1.8654	1.8609	1.8564	1.8520	312.72
120	1.8477	1.8434	1.8391	1.8349	1.8307	1.8265	1.8224	1.8184	1.8144	1.8104	331.01

The second advantage is the possibility of comparing actual counts with the HL estimates; in this way one might get an idea which pattern will occur earlier. Since the distribution of long patterns tends to have largescale anomalies, this argument – although not well founded – may sometimes work. The price for these benefits is a somewhat larger computational effort: one block of length $\Delta = 10^{24}$ roughly takes 38 days (instead of 28 days for \mathbf{c}_2).

In the table below we summarize the current status (February 24, 2016) of the search for \mathbf{C}_2 and \mathbf{C}'_2 in the first 142 blocks. A digit in the table indicates the number of patterns \mathbf{C}_2 or \mathbf{C}'_2 located in the corresponding block. A question mark (?) means: the block has been screened for the 19-tuple \mathbf{c}_2 with a *negative* result; the number of 17-tuples \mathbf{C}_2 in the corresponding block is not known. Assuming an average turnout of 44 % (see below) we estimate the total number in the first 3 and the remaining 4 blocks of this type to be about 8 and 6, respectively. In all other cases (+) nothing has been done so far.

Blocks	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50
C2	6???3	1++++	??+++	+++++	+++++	+++??	+++++	+++++	+++++	+++++
C2'	92466	25654	34422	73353	43221	51325	16034	22533	25032	28223
Blocks	51-55	56-60	61-65	66-70	71-75	76-80	81-85	86-90	91-95	96-100
C2'	64421	45062	20122	00215	40103	20113	02121	52242	01530	34342
Blocks	101-05	06-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-150
C2'	14103	12301	12211	21001	32121	11112	21221	11242	33+++	+++++

We infer that the first pattern is deficient in the regions considered; $\mathbf{C}_2, \ \mathbf{C}_2'$ produce about 44 % or 97 %, respectively, of the expected number of patterns. Not too bad a sign for continuing the search for a 19-tuple with the pattern $\mathbf{C}_{2}^{\prime}!$

Being unable to report a 19-tuple (among 77 integers) at this time, we will at least report the initial primes of all 357 subpatterns (17 primes among 69 integers) found so far. In the figure below the number of patterns \mathbf{C}_2 is plotted versus the initial prime x of the pattern, together with the Hardy-Littlewood estimate HL(x). The locations of Patterns [-113..-41] with an additional prime at a distance of 4 on the lower side are marked with an asterisk; a circle marks Patterns [-109..-37].

The Prime 17–Tuples of Pattern [–109,...,–41] and its HL Count

In the Appendix all initial primes of Patterns \mathbf{C}_2 and \mathbf{C}_2' found so far are listed. The "near misses" with 18 primes among 73 integers are marked

by asterisks. The position of the asterisk (left or right) indicates the side of the pattern (lower or upper) carrying the additional prime at a distance of 4. Hence the instance near $4.52 \cdot 10^{23}$ has the pattern of [41..113]; the one near $1.27 \cdot 10^{23}$ begins 4 units earlier and has the pattern of [-113..-41]. The instances near $3.24 \cdot 10^{24}$, $3.38 \cdot 10^{24}$ and $4.52 \cdot 10^{24}$ have the pattern of [-109..-37]. We are waiting for an entry framed by two asterisks.

References

- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier: The software package PARI (freeware). http://pari.math.u-bordeaux.fr/
- [2] ETH Life, Die tägliche Webzeitung der ETH, 6. Dezember 2000, Archiv. Prozessoren malochten 100 Tage. http://www.ethlife.ethz.ch/articles/tages/Waldvogel.html
- [3] Tony Forbes: Prime clusters and Cunningham chains. Math. of Comp. 68 (1999) 1739-1747.
- [4] Tony Forbes: *Prime* k-*tuplets*. http://anthony.d.forbes.googlepages.com/ktuplets.htm
- [5] G.H. Hardy and J.E. Littlewood: Some problems of Partitio Numerorum III. Acta Math. 44, 1922, 1-70.
- [6] Number theory news. http://www.utm.edu/research/primes/
- [7] Paulo Ribenboim: The New Book of Prime Number Records, 3rd ed. Springer 1996, 541 pp.
- [8] Hans Riesel: Prime Numbers and Computer Methods for Factorization, 2nd ed. Birkhäuser 1994, 464 pp.
- R.L. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21 (1978) 121-126.
- [10] J. Waldvogel: *Homepage*. http://www.math.ethz.ch/~waldvoge/Projects/

Appendix: Subpatterns found so far

C2=[41..109]

- 1 41 2 112650791633055206521031 3 272064438851059718733911
- 4 452098732111641436261481*
- 5 636277672291047674637791
- 6 649410249467730311490971

- 30 6423359383060950425435231
- 31 6462943397426544261913571
- 32 6515331587478752597979311
- 33 6657401626856646647681591
- $34 \quad 6732639026163593595722561 \\$

- 1 4169958545122711795353941
- 2 4262842381283978056404881
- 3 4355781833464360551222011
- 4 5332857791735927206954241

	C2'=[-10941]		C2'=[-10941]
35	7068848143689559074537581	72	16152301493077394927542151
36	7069902747669768688311521	73	16423284953192882928833561
37	7106614823259270051322481	74	16906332397375773026034251
38	7167564348232179592490681		
39	7518303244972092457804811	75	17173948166155769230872521
40	7558395658997171017779641	76	17209884144375743712871871
		77	17943521643579660773334581
41	8019983382743326416141611		
42	8351014354384188300523601	78	18322687280025547085907131
43	8394208478031243473535821	79	18373102734662381624408381
44	8796828522725933171551961	80	18453788042746003529722031
45	8941097330542117721700611	81	18473759960272367077727291
		82	18561322841562422318937431
46	9451163321791831501251281		
47	*9867358577329746770637251	83	19583322299892820386527501
48	9980642183707047492649901	84	19701331508947654781495171
49	9982676186512737822143921	85	19848748297189344094491821
50	10384473055093816251062381	86	20554940850499841671725731
51	10508599120346583663997481	87	20578602413614392636038441
52	10809519785591093308761911	88	20620171249006398317408051*
		89	20698687588834882254127391
53	11360432123283992291743091		
54	11633244241482020341414121	90	21111317185520011816015541
55	11836184125186489787548721	91	21156265866707710160101571*
56	11985312529091443124703011	92	21800648661381114847852421
57	12110376481437954916306001	93	22245161817448111292030171
58	12276728127624397775858411	94	22354968551813917951601561
59	12314036812755277924784351		
60	12685651643704874036352041	95	23497539251772545287798361
		96	23903291173457833917479591
61	13114239319848333922324961		
62	13627173426996373227623531	97	24705065946193416530736881
62	1/202062076710050122710021	00,	25224150004266262007720471
67	14323903070718030133719031	00	25254150994500502207759471
04	14730444793490364934251341	100	25203004554515401006505001
GE	15207020490404445010527101	100	25347045369795196672250341*
60	15307029460404445010527191	101	25720050749002154610197051
00 67	15399775927777730924905361	102	25947645160924472931625571
07	1541461/62301364809/848681	100	00015205100211005250050401
UQ CO	10420094070000000000000000000000000000000	103	20210300106311200350059461
700	101000/10100200820/1024031	104	07425502504000400520404204
71	157260577720010901002303001	104	21433303304202409330404301
ι⊥	10120901442202211400110481	100	21004401007247700171101001
		TOP	21992100900000119142004901*

	C2'=[-10941]		C2'=[-10941]
107	28587021849984636782823971	140	39420784963838416751763041
108	28725150350219399690954231	141	39658640177366254707662891
		142	39968706603255248587728851
109	29004431262862944827208161		
110	29074293657139332704181971	143	40354075779696330156755141
111	29277232560082331577572711	144	40477618815825993983000711
112	29556637195454908075096451		
113	29830012818163367509479671	145	41190653587018584204355691
		146	41264351829674953112072831
114	30135761176379845423617071	147	41539341349561725519019061
		148	41650534847605510089523151
115	31106642710562216131023581*	149	41989356607743797871598871
116	31510656371837402820570401		
117	31608481544717546095066331	150 [,]	*43057544631003403144463711
118	31822805936385714871330601	151,	*43081312682299678694677661
119	31833515366979568095753791	152	43639771287915229286719751
120	31952914340689883091961301		
		153	44074115153125883294198621
121	33829984544463298215414281	154	44990099513628683912367761
122	33913658953315256103198101		
123	33976782450455103262193081	155	45194463980789514206295371
		156	45823488455412958189729721
124	34334530034601738614102321		
125	34684881315519357142930601	157	46046178308566762114318421
126	34693709964786919060614491*	158	46338719607904299051165581
127	34726172589975186357467321	159	46382445063348951534677591
		160	46411470092639897829243551
128	35206610962106249577971951	161	46535014899155334046114511
129	35294838755236934864120021	162	46724900004576789333778331
		163	46737381948653913664277021
130	36161238381434666136466721	164	46924193138242798802093561
131	36804465681616726803009191		
		165	47319504598099378910445071
132	37075366741403316541274951	166	47941602150408861630295451
133	37172881033460259725948201		
134	37351011223126811387256971	167	48460984964043175125051341
135	37582909908839139171356921	168	48977382368352401727753881
136	37775177885317182474574301*		
		169	49204467559453403756919251
137	38248491989646598057728221	170	49380784584721484163799421
138	38290339015423224921781481	171	49614367573544827286513171
139	38637290403827870627172191		

	C2'=[-10941]	
172	50347935949163794523932241	20
173	50417056266422176534833521	20
174	50488211153394006095463251	
175	50538768446856074445690521	20
176	50686159063842560657028521	
177	50998141230342992907120791	20
		21
178	51070898064266935599875021	
179	51125255743844986826912681	21
180	51285415832156224102724231	21
181	51845170207066461273918761	
		21
182	52289236400633467028713811	21
183	52627557253361499365946881*	
184	52733694034272812983872341	21
185	\$52739555754897822763982921	
100		21
186	53407151211001995334827791	21
187	53699155143112186922273951	21
188	54396744504388395445315871	21
100	04050744004000050440010071	21
180	55188015736870184544985601	22
100	55130313730370104344983001	ററ
101	55239999009004032307014421	22
100	×55407250710075001100205641	22
192,	55497552712075621192595041	22
102	56010280872072206015254001	ZZ
193	50010209075072590015554091	00
194	56554948329052098487101431*	22
195	50620029403506045980777171	00
196	56642147704707425175975551	22
197	56878958227279168894733711	22
100		22
198	\$58152298245071252378776511	~~
199	58294052542943324304066761	22
200	58315179945493641391070741	23
201	58369684176795608197370681	
202	58452250931326222211691341	23
203	58746285490202984469986081	
		23
204	59254704899192057469313991	
205	59707386038150921446876391	23
		~ ~ ~

	C2'=[-10941]
206	60304943454164475662515811
207	60345830722463589716392871
208	62211719897992766461309841
209	63272429276964882378544031
210	63903650083918050249763811*
211	64134699112056277346421671
212	64346006281871430315809501*
213	67561119397307272642795781
214	67794768223026847025213081
215	68043200340623206051953491
216	69104237948198904502931771
217	69332569607885253700760621
218	69392624402544960288451571
219	69600129710869392547182161
220	69932640879222499484105891
221	70336143673221212631084131
222	70459639345868511686577521
223	70499479425744733653419021
224	70989971724968493144557501
225	72734592371778625139601641
226	74211979717443719191660511
227	74886662719031724143222531
228	74928553149966759228885791
229	75130928599154991515842781
230	75967291917711703674164891
231	77435265650320546710691841
232	78095290682304930734579771
233	79552926097713001543119401
234	79623643523636900388931121
235	79743356926907028732517031

	C2'=[-10941]		C2'=[-10941]
236	81790103060147606413849451	266	95247248197635330180534041
237>	*81928700810343676214635601	267	95536904259961414743232631
		268	95588894891587566449009921
238	82535645126695012712880311		
		269	96620942409228127360499921
239	83163723992167497560211221	270	96632388117810924397238111
240	83200847503806790467069251	271	*96822528705764010248629421
		272	96957752342065788532028561
241	84757094727049674913002911		
		273	*97185033888313518629942351
242	85235564164289258392843061	274	97897240071889550869026341
243	85267341076275051682057961	275	97990071755353143269543531
244	85389220242535462976082251		
245	85799800160042023928322341*	276	98285596810503098975348261
246	85984419704737637198144921	277	98911690780929584204026271
		278	*98939393003568465298240181
247	86386503913904177739725861	279	98956470454266970033829231
248	86423046942480960718526411		
		280	99288173733479552086675301
249	87105045069546822910581881	281	99767083494105820431999251
250	87265775628916512266839091		
		282	100920514955514684696796421
251	88463224850998331042678861		
252	88739768237002271090001191	283	101012387005596252151255181
253	88755597497974393054188011	284	101190723975134428857942611
254	88925664871899160394339141	285	101532044207218432360212551
		286	101630255942059554216146531
255	89245134321229378500478361		
256	89886550819541134968699281*	287	102996598093096156644194891
257	91450674254305715042573771	288	104325378942756900925326221
201	01100011201000110012010111	289	104350285223660019868484051
258	92037088913118518577317801	290	104863834898014649651804501
259	92099516902136090302205141	200	101000001000011010001001001
260	92101045501758290042305151	291	105256141780180383585853151
261	92196665663419186384604981	201	100200111100100000000000000000000000000
262	92480366996751441113616101	292	106323683748837481199653271
		293	106378402740750551747986541
263	93056813193542798564164091	_00	
264	93606240245355109740618041	294	107006105031999674188287491
265	93819139199993179590677951*	295	107080299048686295009137351
-		296	107121110829656976022940861

	C2'=[-10941]
266	95247248197635330180534041
267	95536904259961414743232631
268	95588894891587566449009921
269	96620942409228127360499921
270	96632388117810924397238111
271	*96822528705764010248629421
272	96957752342065788532028561
273	*97185033888313518629942351
274	97897240071889550869026341
275	97990071755353143269543531
276	98285596810503098975348261
277	98911690780929584204026271
278	*98939393003568465298240181
279	98956470454266970033829231
280	99288173733479552086675301
281	99767083494105820431999251
282	100920514955514684696796421
283	101012387005596252151255181
284	101190723975134428857942611*
285	101532044207218432360212551
286	101630255942059554216146531
287	102996598093096156644194891
288	104325378942756900925326221
289	104350285223660019868484051
290	104863834898014649651804501
291	105256141780180383585853151
292	106323683748837481199653271
293	106378402740750551747986541
294	107006105031999674188287491
295	107080299048686295009137351

	C2'=[-10941]		C2'=[-10941]
297	109213174969271098379583821	321	128258283883321490314656131
298	110200631471916014446877351	322	129147422114266372835458331
		323	129991530649412842189729841
299	111004772046624579644110481		
300	111781115172101949314370521	324	130141997309277697869235001
		325	130617237643414983513932771
301	112011502056952356092854511		
302	112130618794503459819398621	326	13141/312/946054806684/5341
303	113700965778596253535017431	327	132217273862041931492499461
		328	132295304994724352125654901
304	114653522511334193984286581		
		329	133168830422865624613666331
305	115372763336437245111072491	330	133221121010717785317291911
306	115862731750447659968270171	004	
207.	110070500021004000020010571	331	134814184120002985070663081
307*	1109/05209319846200368165/1	220	125465565664067512792506991
308*	4119350280243928922603134611	33Z	135405505604907513782590661
3004	119330200243920922003134011	333	136154045050562714408062721
309	120329545398544404239146721	000	10010101000002111100002121
310	120529078430374537786952981	334	137854928297624635154857691
311	120737348813410424444589131	335	137958674217592315810642811
312	121066461556410591946064231	336	138201829509410126825705231
313	121383609931718248199865671	337	138585760086748307155542611
		338	138601732008002676622689371
314	122435787700186403915321741	339×	*138608012676032357413775711
315	123204742436259254249128541	340	139305641428837702849340201
316	123337494358235211025381301	341	139636066510349396136649391
010	120007434000200211020001001	041	10500000010045050100045051
317	124013212267672524347831171	342	140207786639766762247801361
		343	140385237967708813985355341
318	125459860488089856533024111	344	140440881989219134464080831
319	126917233130013605562352961	345	141135367086076411070442311
		346	141430590840510059626978331*
320	127720949153422449334760141	347	141589445556152778750375701