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1 Review of Earlier Results.

This project was initiated in the year 2000 with the development of the
software system PMP, “Poor Man’s Parallelizer” by Peter Leikauf. PMP is
a simple but robust system for parallelizing large computational efforts for
workstations connected to the internet and/or for cluster computers. It is
particularly well suited for easily parallelizable tasks with low data traffic.
For details see the link Projects/pmp.pdf on the website [10].

In the current application of our parallelization software we are using an
algorithm involving sieving techniques for locating and counting clusters of
prime numbers. Whereas the distribution of primes seems to be fairly reg-
ular, the distribution of twin primes and longer clusters is largely unknown
and is characterized by large-scale anomalies. Collecting experimental data
on these anomalies is one of the reasons for the interest in clusters of primes.
Research in the theory of prime numbers has again become fashionable with
the invention of the RSA coding scheme [9] in 1978, and a world-wide com-
petition for prime number records is still going on [7].

Another challenge of finding clusters of prime numbers is the unproven
prime k-tuple hypothesis, which is concerned with patterns of natural num-
bers that occur repeatedly with all elements being prime. The hypothesis
states that any pattern that is not forbidden by simple divisibility consider-
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ations occurs infinitely often in the sequence of primes. Collecting data in
support of this hypothesis is our current goal.

The discovery of a dense cluster of 18 primes among 71 consecutive inte-
gers in the range of 3 · 1024 on November 13, 2000 was the first success of the
project. This computation is about 50 times harder than finding the three
23-digit clusters of 17 primes among 67 consecutive integers, discovered by
Tony Forbes [3], and independently by J. Waldvogel [10], both in 1998. Our
discovery was immediately announced in the number theory press [6], and
also got coverage in the web journal of ETH (ETHLife, December 6, 2000,
[2]). For previous reports and more details see the links

Projects/clprimes01.pdf Projects/cl18.pdf

Projects/clprimes03.pdf Projects/paricode.gp

on the website [10]. Dense clusters of primes receive particular attention on
the website [4], continuously actualized by Tony Forbes. The successes of our
implementation bear the danger of monopolizing this site and taking away
all the fun!

2 Some Particular Patterns

In this section we pick a few “exotic” admissible patterns with no obvious
prime instances. If the Hardy-Littlewood (HL) estimates indicate any chance
of reoccurrences in the range accessible with the current hardware and soft-
ware, we tried to locate a few prime instances of the patterns.

We will consider four patterns of 16 or 18 elements, all of them being tight
repetitions of well-known short patterns, as well as a remarkable “quadratic”
pattern of 21 primes. In all cases the search for prime instances was success-
ful, thus accumulating more experimental data on the prime k-tuple hypo-
thesis. To begin, we briefly state this famous conjecture in its strong form
put forth by Hardy and Littlewood [5].

Let c = [c1, c2, . . . , ck ] be a monotonically increasing sequence of k ∈ N

integers, exclusively odd or exclusively even, called a pattern. The counting
function πc(x) of the pattern c is defined as the number of shifts s, 0 ≤ s ≤ x,
such that every element of cs := [s+ c1, s+ c2, . . . , s+ ck ] is a prime (called
a prime instance of c). The conjecture states the asymptotic relationship

πc(x) ∼ hc · Rk(x) as x → ∞ .



Instead of the conventional logarithmic integrals we prefer to use the gener-
alized Riemann functions

Rk(x) :=
∞∑

j=0

(log x)j

(k − 1 + j)! j ζ(1 + j)
.

The number hc is the Hardy-Littlewood constant of the pattern c,

hc := 2k−1
·
∏

q

1− q−1 rc(q)

(1− q−1)k
,

where the product is taken over all odd primes q, and rc(q) is the number
of distinct residue classes mod q in the pattern c. Note that for k = 1 we
have h[0] = 1, and non-amissible patterns c yield hc = 0. Despite the slow
convergence of the above infinite product Hardy-Littlewood constants may
be efficiently computed to arbitrary precision by means of the prime zeta
function, see, e.g. [8].

2.1 Nine Close Prime Twins

Except for the singular situation of the overlapping twins (3,5) and (5,7), two
twin primes may only occur at a distance of 6n− 2, n = 1, 2, . . . , as is seen
by a simple consideration of residue classes mod 3. The closest admissible
arrangement of 9 prime twins spans an interval of length 104 and comes in 4
types represented by the patterns

c1=[-31,-29, -19,-17, -13,-11, 11, 13, 17,19, 29,31, 41,43, 59,61, 71,73]

c2=[-43,-41, -31,-29, -19,-17,-13,-11, -1, 1, 11,13, 17,19, 41,43, 59,61]

and their mirror images c1
′ and c2

′. The Hardy-Littlewood constants are
found to be

h1 = 23041978.71272 , h2 = 18433582.97017 =
4

5
· h1 ;

the corresponding estimated frequencies HL1(x), HL2(x) for the patterns
c1, c2, respectively, are

x 1023 5 · 1023 1024 2 · 1024

HL1(x) 0.33 0.94 1.50 2.38
HL2(x) 0.26 0.75 1.20 1.90



We extended the search up to 1024, except for the case c2
′, where the range

had to be doubled. The initial primes of the existing 9 instances are given in
the table below; the total HL count is 6.1. We also indicate the differences
in the patterns; the occurrence of an additional prime between two twins is
indicated by a plus sign +.

Initial Prime Differences in the Pattern

c1 (to 1e24)

1 39582971901830749382519 2 10 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2

2 85002283332977673203069 2 6+4 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2

3 111871787983521806791079 2 10 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2

4 237848512839161942948759 2 10 2 4 2 22 2 4 2 10 2 10 2 16 2 10 2

c1’ (to 1e24)

1 35902987875008630158997 2 10 2 16 2 10 2 10 2 4 2 22 2 4 2 10 2

2 681954129502801901959427 2 10 2 16 2 10 2 10 2 4 2 22 2 4 2 10 2

c2 (to 1e24)

1 670962238726376003928317 2 10 2 10 2 4 2 10 2 10 2 4 2 22 2 10+6 2

2 785878473089354651160797 2 10 2 10 2 4 2 10 2 10 2 4 2 22 2 16 2

c2’ (to 2e24)

1 1063660630652819772482009 2 16 2 18+4 2 4 2 10 2 10 2 4 2 10 2 10 2

2.2 Four Close Quadruplets

A striking short pattern is the arrangement of two twins in the same decade,
such as [11, 13, 17, 19 ], referred to as a prime quadruplet. Its HL constant is
h4 = 4.1511808632; in a large interval ∆ near a much larger x we expect to
find about h4 ·∆/(log x)4 quadruplets.

Prime quadruplets may accumulate as closely as in the pattern c8 =
[−19,−17,−13,−11, 11, 13, 17, 19 ], since c8 is admissible. With its HL con-
stant h8 = 288.1001283176, c8 is expected to reoccur in terms of positive
primes in the range of 4 000 000. In fact, the first pair of quadruplets oc-
curs somewhat prematurely at 1 006 301, and up to x = 2 · 108 there are 10
instances, whereas the HL estimate is 6.

Two pairs c8 of quadruplets in their closest arrangement are separated
by a gap of length 382, i.e. the pattern

c16 = [−229,−227,−223,−221,−199,−197,−193,−191, 191, 193, 197, 199, 221, 223, 227, 229]

is admissible. In this case, however, it is not possible to represent the pattern
by a sequence of small primes: 221 = 13 ·17 ! The HL constant is found to be



h16 = 9350784.9154303126. A search up to x = 4
3
· 1019 turned up two fairly

close occurrences near 1.1 · 1019 and 1.2 · 1019, whereas the Hardy-Littlewood
count yields HL(x) = h16·R16(x) = 1.003. Below we show the initial primes of
these instances; we again indicate the sequences of differences in the pattern;
Q stands for [2,4,2], and a plus sign + indicates additional primes in the large
gaps of the pattern.

Initial Prime Differences in the Pattern

11281963036964038421 Q 22 Q 42+42+196+12+2+70+18 Q 22 Q

12114914563464663491 Q 22 Q 22+32+28+8+34+14+54+162+28 Q 22 Q

Four quadruplets in their closest arrangement span an interval of only
218 and occur in the pattern

C16 = [−19,−17,−13,−11, 11, 13, 17, 19, 101, 103, 107, 109, 191, 193, 197, 199]

or in its mirror imageC16

′; the common HL constant isH16 = 6042367.03907.
For x = 4

3
· 1019 the Hardy-Littlewood count yields 0.648 for each pattern.

Both patterns have early first occurrences, namely C16 at the HL count of
0.262, C16

′ even at 0.066. In the table below we use the same coding scheme
as above.

Patt. Initial Prime Differences in the Pattern

C16 3051450534439926131 Q 22 Q 82 Q 12+16+6+8+40 Q

C16’ 300000224101777931 Q 10+8+4+26+12+22 Q 4+54+24 Q 12+10 Q

2.3 Three Close Sixtuplets and Two Close 9-Tuplets

Being able to detect occurrences of clusters of 18 primes, we have a chance of
displaying instances of three sixtuplets [97, 101, 103, 107, 109, 113 ] as well as
two 9-tuplets [13, 17, 19, 23, 29, 31, 37, 41, 43 ] in their closest arrangements.
The patterns are c6 and c9 below, spanning intervals of length 436 and 90,
having the HL constants h6 = 92680700.00031 and h9 = 19311372.63543,
respectively.

c6=[-113,-109,-107,-103,-101,-97,97,101,103,107,109,113,307,311,313,317,319,323]

c9=[-47,-43,-41,-37,-31,-29,-23,-19,-17, 13,17,19,23,29,31,37,41,43].

As it happened in the pattern c16 of Section 2.2, c6 cannot be represented
in terms of small primes: 319 = 11 · 29 , 323 = 17 · 19 ! The two patterns
were searched up to 1023, corresponding to HL counts of 1.33 and 0.277; at
the first occurrences given below the actual HL counts are 0.85 and 0.0026,
respectively We were lucky to capture the extremely early occurrence of c9 !



Patt. Initial Prime Differences in the Pattern

c6 50038627250687303646277 4 2 4 2 4 56+138 4 2 4 2 4 38+90+10+56 4 2 4 2 4

c9 54014646858393564377 4 2 4 6 2 6 4 2 30 4 2 4 6 2 6 4 2

2.4 21 Primes in a Quadratic Pattern

Leonhard Euler (1707-1783), the mathematical giant of the eighteenth cen-
tury, made the stunning discovery that the quadratic polynomial f(n) :=
n2 + n + c with c = 41 has only prime values for n = 0, 1, 2, . . . , 39. Also
for n ≥ 40 prime values of f(n) are extraordinarily abundant. One of the
reasons for this is the obvious symmetry relation

f(n) mod p = f(p− n− 1) mod p for every prime p .

This implies that a finite pattern [f(n), n = 0, 1, . . . , N−1] of arbitrary length
N occupies at most ceil(p/2) residue classes modulo any prime p. Therefore
at least floor(p/2) residue classes mod p are empty, hence the pattern is
admissible.

As a consequence, quadratic patterns

[n2 + n+ c, n = 0, 1, . . . , N − 1]

of N elements are candidats to yield prime instances of rather long patterns
of this preassigned structure. In fact, it was established that the first reoc-
currence of the quadratic pattern

C = [41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461]

of N = 21 (non-consecutive) primes begins at

x = 2 34505 01594 32353 29417 .

The HL constant of C is found to be H = 3916679971309.28168, and for the
HL count we obtain H · R21(x) = 0.0139, hence we again profited from a
rather early occurrence.

It is unlikely that the linearly growing sequence [2,4,6,8,...] persists
throughout the entire pattern as the sequence of differences between con-
secutive primes. Rather, it will occasionally be broken by additional primes
in the ever longer gaps of the pattern. The above instance has the difference
pattern

2 4 6 8 10 12 14 16 18 20 4+18 14+6+4 26 10+18 30 32 22+12 36 24+14 40



where plus signs + again denote additional primes interrupting the gaps of
the preassigned pattern.

If the prime k-tuple hypothesis is true, instances of C in terms of con-
secutive primes must exist. To locate one of these, however, is beyond the
possibilities of our current technique.

3 Migrating from Asgard to Hreidar

After almost five years of continuous operation on Asgard the more powerful
hardware Hreidar became available in Spring 2005. Migration from the ailing
Asgard to Hreidar, including tests of the adapted software, took place from
May 11 to May 18, 2005. The authors thank the steering committee for
again generously allotting idle computing power to this project. We also
express our sincere thanks to George Sigut for his competent help during the
migration process.

Our system consisting of the parallelizing software PMP and the searching
algorithm (coded in PARI [1], the innermost loop in C++) proved to be very
easy to migrate. E.g., the doubling of the word length from 32 to 64 bits
could be handled by merely redfining a parameter called bits.

Migration took place while a long run was under way: the first block of
length 1024 for the pattern C2, see Section 4 below. No data were lost; after
migration, and also after a subsequent change of configuration, the search
resumed exactly where it was stopped. The only losses (besides the week
of migration) were the 337 tasks (or 0.07 %) that were interrupted. More
details of the long run are given in the table below.

Dates 2005 Days % Tasks % Tsk/Day Machine Nodes

01/06 - 05/11 124.9 62.0 250425 50.17 2005 Asgard 100
05/18 - 07/19 61.9 30.7 95686 19.17 1545 Hreidar 32
07/19 - 08/03 14.8 7.3 153426 30.73 10362 Hreidar 32+32

Total 201.6 100.0 499537 100.07 2476

4 The Quest for a Maximally Dense 19-Tuple

Both of the patterns

c1 = [13, 17, 19, . . . , 79, 83, 89] , c2 = [37, 41, 43, . . . , 107, 109, 113] ,



consisting of 19 consecutive primes and encompassing 77 consecutive natural
numbers each, are admissible, i.e. their elements leave at least one residue
class unoccupied modulo every prime. Together with their mirror images
c

′

1 = [−89.. − 13] and c
′

2 = [−113.. − 37] they constitute the four different
patterns in which 19 primes can be arranged as densly as possible. The
Hardy-Littlewood constants associated with c1 (or c

′

1) and c2 (or c
′

1) are
found to be

h1 = 172 98850.522 , h2 = 585 49955.614 =
44

13
· h1 ,

respectively; therefore the pattern c2 is expected to occur 3.4 times more
often than c1. The average number of occurrences of c2 in a large interval ∆
near a much larger x is about h2∆(log x)−19. From this we infer that the
chances of the pattern c2 reoccurring at an x < 5 · 1025 are about 93%. This
is also the chance of its mirror image ocurring in the same range.

In the Initial Report 2001, Projects/clprimes01.pdf, the idea of a
search for a 19-tuple of maximum density was rejected because at that time
the available hardware (the idle time of 128 nodes of Asgard) would have
required an excessively long search time (up to five years).

With the installation of Hreidar the situation has changed. With the idle
time of 64 nodes of Hreidar available, the speed increased about 5-fold. The
quest for a 19-tuple of maximum density is on again!

We are again working in blocks of length ∆ = 1024. In an initial attempt
we were directly heading for one of the more abundant patterns, c2. This
resulted in a computation time of about 28 days per block. Unfortunately,
7 blocks done in this way produced no output. Of course, these 7 blocks
have been recorded as non-carriers of Pattern c2, but obviously a change of
strategy was needed.

We decided to look for the sub-patterns

C2 = [41, 43, . . . , 107, 109] , C
′

2 = [−109,−107, . . . ,−43,−41]

of 17 elements, obtained by deleting the two boundary elements from the
original patterns c2, c

′

2. Deleting any other two elements from the original
patterns would have resulted in a larger computational effort. From a list of
subpatterns the original patterns may easily be sorted out by checking the
deleted elements for primality.

One advantage of this strategy is that output is generated at a reasonable
rate. With the Hardy-Littlewood constant h = 31 75403.027 the estimated



number N(x) ≈ h∆(log x)−17 of occurrences in a block of length ∆ = 1024

centered at x = X · 1024 is given in the following table.

X +0.5 +1.5 +2.5 +3.5 +4.5 +5.5 +6.5 +7.5 +8.5 +9.5 sum

0 11.110 6.7601 5.7584 5.1955 4.8154 4.5338 4.3130 4.1330 3.9822 3.8531 54.45
10 3.7408 3.6417 3.5533 3.4738 3.4016 3.3357 3.2751 3.2192 3.1673 3.1190 88.38
20 3.0738 3.0314 2.9915 2.9538 2.9182 2.8845 2.8524 2.8219 2.7928 2.7650 117.47
30 2.7384 2.7130 2.6885 2.6651 2.6425 2.6208 2.5998 2.5796 2.5601 2.5412 143.82
40 2.5229 2.5053 2.4881 2.4715 2.4554 2.4397 2.4245 2.4097 2.3954 2.3813 168.31
50 2.3677 2.3544 2.3414 2.3288 2.3164 2.3044 2.2926 2.2811 2.2699 2.2589 191.43
60 2.2481 2.2376 2.2273 2.2172 2.2073 2.1976 2.1881 2.1788 2.1697 2.1607 213.46
70 2.1519 2.1433 2.1348 2.1264 2.1183 2.1102 2.1023 2.0945 2.0869 2.0794 234.61
80 2.0720 2.0647 2.0575 2.0505 2.0436 2.0367 2.0300 2.0234 2.0168 2.0104 255.01
90 2.0040 1.9978 1.9916 1.9855 1.9795 1.9736 1.9678 1.9620 1.9564 1.9508 274.78

100 1.9452 1.9398 1.9344 1.9291 1.9239 1.9186 1.9135 1.9084 1.9034 1.8985 294.00
110 1.8936 1.8887 1.8840 1.8793 1.8746 1.8700 1.8654 1.8609 1.8564 1.8520 312.72
120 1.8477 1.8434 1.8391 1.8349 1.8307 1.8265 1.8224 1.8184 1.8144 1.8104 331.01

The second advantage is the possibility of comparing actual counts with
the HL estimates; in this way one might get an idea which pattern will
occur earlier. Since the distribution of long patterns tends to have large-
scale anomalies, this argument – although not well founded – may sometimes
work. The price for these benefits is a somewhat larger computational effort:
one block of length ∆ = 1024 roughly takes 38 days (instead of 28 days for
c2).

In the table below we summarize the current status (February 24, 2016)
of the search for C2 and C

′

2 in the first 142 blocks. A digit in the table
indicates the number of patternsC2 orC

′

2 located in the corresponding block.
A question mark (?) means: the block has been screened for the 19-tuple
c2 with a negative result; the number of 17-tuples C2 in the corresponding
block is not known. Assuming an average turnout of 44 % (see below) we
estimate the total number in the first 3 and the remaining 4 blocks of this
type to be about 8 and 6, respectively. In all other cases (+) nothing has
been done so far.

Blocks 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

C2 6???3 1++++ ??+++ +++++ +++++ +++?? +++++ +++++ +++++ +++++

C2’ 92466 25654 34422 73353 43221 51325 16034 22533 25032 28223

Blocks 51-55 56-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95 96-100

C2’ 64421 45062 20122 00215 40103 20113 02121 52242 01530 34342

Blocks 101-05 06-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-150

C2’ 14103 12301 12211 21001 32121 11112 21221 11242 33+++ +++++



We infer that the first pattern is deficient in the regions considered;
C2, C

′

2 produce about 44 % or 97 %, respectively, of the expected num-
ber of patterns. Not too bad a sign for continuing the search for a 19-tuple
with the pattern C

′

2!
Being unable to report a 19-tuple (among 77 integers) at this time, we

will at least report the initial primes of all 357 subpatterns (17 primes among
69 integers) found so far. In the figure below the number of patterns C

′

2 is
plotted versus the initial prime x of the pattern, together with the Hardy-
Littlewood estimate HL(x). The locations of Patterns [-113..-41] with an
additional prime at a distance of 4 on the lower side are marked with an
asterisk; a circle marks Patterns [-109..-37].
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In the Appendix all initial primes of Patterns C2 and C
′

2 found so far
are listed. The “near misses” with 18 primes among 73 integers are marked



by asterisks. The position of the asterisk (left or right) indicates the side
of the pattern (lower or upper) carrying the additional prime at a distance
of 4. Hence the instance near 4.52 · 1023 has the pattern of [41..113]; the
one near 1.27 · 1023 begins 4 units earlier and has the pattern of [-113..-41].
The instances near 3.24 · 1024, 3.38 · 1024 and 4.52 · 1024 have the pattern of
[-109..-37]. We are waiting for an entry framed by two asterisks.
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[2] ETHLife, Die tägliche Webzeitung der ETH, 6. Dezember 2000,
Archiv. Prozessoren malochten 100 Tage.
http://www.ethlife.ethz.ch/articles/tages/Waldvogel.html

[3] Tony Forbes: Prime clusters and Cunningham chains. Math. of Comp.
68 (1999) 1739-1747.

[4] Tony Forbes: Prime k-tuplets.
http://anthony.d.forbes.googlepages.com/ktuplets.htm

[5] G.H. Hardy and J.E. Littlewood: Some problems of Partitio Numero-

rum III. Acta Math. 44, 1922, 1-70.

[6] Number theory news. http://www.utm.edu/research/primes/

[7] Paulo Ribenboim: The New Book of Prime Number Records, 3rd ed.
Springer 1996, 541 pp.

[8] Hans Riesel: Prime Numbers and Computer Methods for Factorization,
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Appendix: Subpatterns found so far

C2=[41..109] C2’=[-109..-41]

1 41 1 71542018620258822095351

2 112650791633055206521031 2 110251111115724441042071

3 272064438851059718733911 3 *127372818047327460718001

4 452098732111641436261481* 4 359103301162581793637711

5 636277672291047674637791 5 472773823866578374260011

6 649410249467730311490971 6 668134176357714775428611

7 842902600507150788234521

8 979634834795806543814351

9 980351128284287125225751

10 1448301799940226082771811

11 1791530392243173635753591

12 2287676808438268517289911

13 2638263731291524361295161

14 2861160868941024590320271

15 2965402830695807653891631

16 3239304711211315285839191*

17 3381058510131934598816741*

18 3491478433645050966237011

19 3663823986030922159656101

20 3774602330694614789940461

21 3878542221422020936683791

1 4169958545122711795353941 22 4184454523805320162938431

2 4262842381283978056404881 23 4225209451302652505772971

3 4355781833464360551222011 24 4386179912950387994201651

25 4522878605388339260634461*

4 5332857791735927206954241 26 4716202264464890619359831

27 4869723749184137214270791

28 *5188248562214464094307851

29 5413131850555132198264661

30 6423359383060950425435231

31 6462943397426544261913571

32 6515331587478752597979311

33 6657401626856646647681591

34 6732639026163593595722561



C2’=[-109..-41] C2’=[-109..-41]

35 7068848143689559074537581 72 16152301493077394927542151

36 7069902747669768688311521 73 16423284953192882928833561

37 7106614823259270051322481 74 16906332397375773026034251

38 7167564348232179592490681

39 7518303244972092457804811 75 17173948166155769230872521

40 7558395658997171017779641 76 17209884144375743712871871

77 17943521643579660773334581

41 8019983382743326416141611

42 8351014354384188300523601 78 18322687280025547085907131

43 8394208478031243473535821 79 18373102734662381624408381

44 8796828522725933171551961 80 18453788042746003529722031

45 8941097330542117721700611 81 18473759960272367077727291

82 18561322841562422318937431

46 9451163321791831501251281

47 *9867358577329746770637251 83 19583322299892820386527501

48 9980642183707047492649901 84 19701331508947654781495171

49 9982676186512737822143921 85 19848748297189344094491821

50 10384473055093816251062381 86 20554940850499841671725731

51 10508599120346583663997481 87 20578602413614392636038441

52 10809519785591093308761911 88 20620171249006398317408051*

89 20698687588834882254127391

53 11360432123283992291743091

54 11633244241482020341414121 90 21111317185520011816015541

55 11836184125186489787548721 91 21156265866707710160101571*

56 11985312529091443124703011 92 21800648661381114847852421

57 12110376481437954916306001 93 22245161817448111292030171

58 12276728127624397775858411 94 22354968551813917951601561

59 12314036812755277924784351

60 12685651643704874036352041 95 23497539251772545287798361

96 23903291173457833917479591

61 13114239319848333922324961

62 13627173426996373227623531 97 24705065946193416530736881

63 14323963076718850133719031 98*25234150994366362207739471

64 14730444793496584954251341 99 25263664554515461668503801

100 25347043389795198872250341*

65 15307029480404445010527191 101 25726650749602154810197631

66 15399775927777730924905361 102 25947645160924472931625571

67 15414617623013648097848681

68 15426394378504824654259211 103 26215385108311265356059461

69 15700071010820082671524631

70*15722057448876967802383661 104 27435503504282409530404301

71 15726957442202271450775481 105 27804461307247785171181061

106 27992165933083119142384901*



C2’=[-109..-41] C2’=[-109..-41]

107 28587021849984636782823971 140 39420784963838416751763041

108 28725150350219399690954231 141 39658640177366254707662891

142 39968706603255248587728851

109 29004431262862944827208161

110 29074293657139332704181971 143 40354075779696330156755141

111 29277232560082331577572711 144 40477618815825993983000711

112 29556637195454908075096451

113 29830012818163367509479671 145 41190653587018584204355691

146 41264351829674953112072831

114 30135761176379845423617071 147 41539341349561725519019061

148 41650534847605510089523151

115 31106642710562216131023581* 149 41989356607743797871598871

116 31510656371837402820570401

117 31608481544717546095066331 150*43057544631003403144463711

118 31822805936385714871330601 151*43081312682299678694677661

119 31833515366979568095753791 152 43639771287915229286719751

120 31952914340689883091961301

153 44074115153125883294198621

121 33829984544463298215414281 154 44990099513628683912367761

122 33913658953315256103198101

123 33976782450455103262193081 155 45194463980789514206295371

156 45823488455412958189729721

124 34334530034601738614102321

125 34684881315519357142930601 157 46046178308566762114318421

126 34693709964786919060614491* 158 46338719607904299051165581

127 34726172589975186357467321 159 46382445063348951534677591

160 46411470092639897829243551

128 35206610962106249577971951 161 46535014899155334046114511

129 35294838755236934864120021 162 46724900004576789333778331

163 46737381948653913664277021

130 36161238381434666136466721 164 46924193138242798802093561

131 36804465681616726803009191

165 47319504598099378910445071

132 37075366741403316541274951 166 47941602150408861630295451

133 37172881033460259725948201

134 37351011223126811387256971 167 48460984964043175125051341

135 37582909908839139171356921 168 48977382368352401727753881

136 37775177885317182474574301*

169 49204467559453403756919251

137 38248491989646598057728221 170 49380784584721484163799421

138 38290339015423224921781481 171 49614367573544827286513171

139 38637290403827870627172191



C2’=[-109..-41] C2’=[-109..-41]

172 50347935949163794523932241 206 60304943454164475662515811

173 50417056266422176534833521 207 60345830722463589716392871

174 50488211153394006095463251

175 50538768446856074445690521 208 62211719897992766461309841

176 50686159063842560657028521

177 50998141230342992907120791 209 63272429276964882378544031

210 63903650083918050249763811*

178 51070898064266935599875021

179 51125255743844986826912681 211 64134699112056277346421671

180 51285415832156224102724231 212 64346006281871430315809501*

181 51845170207066461273918761

213 67561119397307272642795781

182 52289236400633467028713811 214 67794768223026847025213081

183 52627557253361499365946881*

184 52733694034272812983872341 215 68043200340623206051953491

185*52739555754897822763982921

216 69104237948198904502931771

186 53407151211001995334827791 217 69332569607885253700760621

187 53699155143112186922273951 218 69392624402544960288451571

188 54396744504388395445315871 219 69600129710869392547182161

220 69932640879222499484105891

189 55188915736870184544985601

190 55239999069804832367614421 221 70336143673221212631084131

191 55294887549508887603823391 222 70459639345868511686577521

192*55497352712075821192395641 223 70499479425744733653419021

224 70989971724968493144557501

193 56010289873072396015354091

194 56554948329052098487101431* 225 72734592371778625139601641

195 56626029403506045980777171

196 56642147704707425175975551 226 74211979717443719191660511

197 56878958227279168894733711 227 74886662719031724143222531

228 74928553149966759228885791

198*58152298245071252378776511

199 58294052542943324304066761 229 75130928599154991515842781

200 58315179945493641391070741 230 75967291917711703674164891

201 58369684176795608197370681

202 58452250931326222211691341 231 77435265650320546710691841

203 58746285490202984469986081

232 78095290682304930734579771

204 59254704899192057469313991

205 59707386038150921446876391 233 79552926097713001543119401

234 79623643523636900388931121

235 79743356926907028732517031



C2’=[-109..-41] C2’=[-109..-41]

236 81790103060147606413849451 266 95247248197635330180534041

237*81928700810343676214635601 267 95536904259961414743232631

268 95588894891587566449009921

238 82535645126695012712880311

269 96620942409228127360499921

239 83163723992167497560211221 270 96632388117810924397238111

240 83200847503806790467069251 271 *96822528705764010248629421

272 96957752342065788532028561

241 84757094727049674913002911

273 *97185033888313518629942351

242 85235564164289258392843061 274 97897240071889550869026341

243 85267341076275051682057961 275 97990071755353143269543531

244 85389220242535462976082251

245 85799800160042023928322341* 276 98285596810503098975348261

246 85984419704737637198144921 277 98911690780929584204026271

278 *98939393003568465298240181

247 86386503913904177739725861 279 98956470454266970033829231

248 86423046942480960718526411

280 99288173733479552086675301

249 87105045069546822910581881 281 99767083494105820431999251

250 87265775628916512266839091

282 100920514955514684696796421

251 88463224850998331042678861

252 88739768237002271090001191 283 101012387005596252151255181

253 88755597497974393054188011 284 101190723975134428857942611*

254 88925664871899160394339141 285 101532044207218432360212551

286 101630255942059554216146531

255 89245134321229378500478361

256 89886550819541134968699281* 287 102996598093096156644194891

257 91450674254305715042573771 288 104325378942756900925326221

289 104350285223660019868484051

258 92037088913118518577317801 290 104863834898014649651804501

259 92099516902136090302205141

260 92101045501758290042305151 291 105256141780180383585853151

261 92196665663419186384604981

262 92480366996751441113616101 292 106323683748837481199653271

293 106378402740750551747986541

263 93056813193542798564164091

264 93606240245355109740618041 294 107006105031999674188287491

265 93819139199993179590677951* 295 107080299048686295009137351

296 107121110829656976022940861



C2’=[-109..-41] C2’=[-109..-41]

297 109213174969271098379583821 321 128258283883321490314656131

298 110200631471916014446877351 322 129147422114266372835458331

323 129991530649412842189729841

299 111004772046624579644110481

300 111781115172101949314370521 324 130141997309277697869235001

325 130617237643414983513932771

301 112011502056952356092854511

302 112130618794503459819398621 326 131417312794605480668475341

303 113700965778596253535017431 327 132217273862041931492499461

328 132295304994724352125654901

304 114653522511334193984286581

329 133168830422865624613666331

305 115372763336437245111072491 330 133221121010717785317291911

306 115862731750447659968270171

331 134814184120002985070663081

307*116970520931984620036816571

332 135465565864967513782596881

308*119350280243928922603134611

333 136154045050562714408062721

309 120329545398544404239146721

310 120529078430374537786952981 334 137854928297624635154857691

311 120737348813410424444589131 335 137958674217592315810642811

312 121066461556410591946064231 336 138201829509410126825705231

313 121383609931718248199865671 337 138585760086748307155542611

338 138601732008002676622689371

314 122435787700186403915321741 339*138608012676032357413775711

315 123204742436259254249128541 340 139305641428837702849340201

316 123337494358235211025381301 341 139636066510349396136649391

317 124013212267672524347831171 342 140207786639766762247801361

343 140385237967708813985355341

318 125459860488089856533024111 344 140440881989219134464080831

319 126917233130013605562352961 345 141135367086076411070442311

346 141430590840510059626978331*

320 127720949153422449334760141 347 141589445556152778750375701


