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1 Introduction

The subject of this term paper is a quantitative analysis of numerical approximations to the one
dimensional wave equation. To that effect, let T ∈ (0,∞) and u : R × [0, T ] → R be a function
which is twice continuously differentiable in both space and time with globally bounded derivatives
and let c ∈ (0,∞). Furthermore, let u0, v0 ∈ C1(R,R). Then u ∈ C2(R × [0, T ],R) is said to be
a solution of the one dimensional wave equation with Dirichilet boundary conditions and initial
conditions u0 and v0, if it holds that for all t ∈ [0, T ]

lim
x→−∞

u(x, t) = lim
y→−∞

u(y, t) = 0 (1)

for all x ∈ R it holds that

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x) (2)

and for all (y, s) ∈ R× [0, T ] it holds that

∂2u

∂t2
(y, s) = c2

∂2u

∂x2
(y, s) (3)

It is a well-known fact from introductory analysis, that for arbitrary functions u0, v0 ∈ C1([0, T ]×
R,R), a classical solution to the one dimensional wave equation with Dirichilet boundary conditions
(cf. (1)) and initial value problem (IVP) (cf. (2)) is given via the so-called D’Alembert formula

u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

∫ x+ct

x−ct
v0(y) dy (4)

In the following we will approximate solutions to the one dimensional wave equation using spatial
approximations by means of Lagrangian Finite Elements of linear, quadratic and cubic degree cou-
pled with symplectic time-stepping algorithms of higher consistency orders.

The symplectic Euler algorithm as well as the Stormer-Verlet or Leapfrog time-stepping algo-
rithm are classical examples of symplectic integrators. Both the semi-implicit Euler and Stormer-
Verlet/Leapfrog time-stepping algorithms exhibit a first- and second-order consistency respectively
and have the additional property that they preserve the (modified) Energy functional of the sys-
tem exactly for sufficiently small step-size. For a long time, these were the only known integrators
which exhibited these properties, until the work of Ronald D Ruth (cf. [2] and [3]), when canon-
ical examples of higher-order symplectic integrators of third- and fourth-order consistency were
introduced.
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2 Dispersion Relation

Let us begin our discussion with a formal introduction to the abstract concept of (numerical)
dispersion relation. To that effect, consider the following

Definition 1. Let Kt, Lx : C2 (R× [0, T ];R)→ C (R× [0, T ];R) be linear differential operators in
time and space respectively. An element u ∈ C2 (R× [0, T ];R) is said to be a solution to the PDE
(Kt + Lx)u = 0, if it holds that for all x ∈ R, t ∈ [0, T ]

(Kt + Lx)u(x, t) = 0 (5)

Definition 2 (Spatial and Temporal shift operators). Let ∆t and ∆x > 0, let T∆t and S∆x be
operators on the C2 (R× [0, T ];R) with the property that for all (x, t) ∈ R× [0, T ] it holds that

T∆tu(x, t) = u(x, t+ ∆t) and S∆xu(x, t) = u(x+ ∆x, t) (6)

Furthermore, assume that the differential operators in both space and time commute with the trans-
lation operators in both space and time respectively, i.e. for all (x, t) ∈ R× [0, T ], it holds that

Kt ◦ T∆t = T∆t ◦Kt and Lx ◦ S∆x = S∆x ◦ Lx (7)

Theorem 3. Assuming the setting in the definition above, it holds that for all ω, κ ∈ R the expo-
nential functions ω 7→ eiωt and κ 7→ eiκx are eigenfunctions of the linear differential operators Kt

and Lx respectively. Specifically, we may define eigenvalues

λt : ω ∈ R 7→ λt(ω) ∈ C and λx : κ ∈ R 7→ λx(κ) ∈ C (8)

as mapping with the property that for all ω, κ ∈ R, it holds that

Kt

(
t 7→ eiωt

)︸ ︷︷ ︸
∈C∞([0,T ];C)

= λt(ω)
(
t 7→ eiωt

)
and Lx

(
x 7→ eiκx

)︸ ︷︷ ︸
∈C∞(R;C)

= λx
(
x 7→ eiκx

)
(9)

Definition 4. Let Kt and Lx be linear differential operators in space and time respectively. Con-
sider the eigenvalues λt(ω), λx(κ) : R→ C of the spatial and temporal linear differential operators.
Given the PDE in (5), we may define the continuous dispersion relation of the PDE as

λt(ω)− λx(κ)
!
= 0 (10)

Furthermore, the equation defining the dispersion relation may also be identified as a graph Γ ⊆
R× R. That is, for all κ ∈ R, it holds that for arbitrary ωκ ∈ R

(κ, ωκ) ∈ Γ ⇐⇒ λt(ωκ)− λx(κ)
!
= 0 (11)

Lemma 5. Let c > 0 and Kt, Lx be the linear differential operators in space and time respectively
defined as

Kt : u 7→ ∂2u

∂t2
and Lx : u 7→ c2

∂2u

∂x2
(12)

Then the PDE (5) reduces to the 1D wave equation or Cauchy Problem with phase velocity c > 0
and the dispersion relation is given via

ω2 = c2κ2 ⇐⇒ ω = ±cκ (13)
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In other words, for all κ, ω ∈ R, the (real part of) function µ = ei(κx−ωt) ∈ C2(R× [0, T ];C) solves
the PDE (3) if and only if for every κ ∈ R, it hold that ω ∈ R is given by the dispersion relation in
equation (13) above.

Proof of Lemma 5. For fixed ∆x,∆t > 0, the chain rule (see e.g. Analysis I) concludes that the
differential operators Kt and Lx satisfy property (6) for T∆t, S∆x translation operators in space
and time respectively.
Hence, theorem 3 concludes that the eigenfunctions of both spatial and temporal differential oper-
ators are given by the exponential functions.
Fix κ ∈ R and consider {µω : ω ∈ R}, the set of of functions indexed by ω ∈ R with the property
that for fixed ω ∈ R, µω is defined as

µω :

{
R× [0, T ] → C

(x, t) 7→ ei(κx−ωt)
(14)

Consider the following calculation

c2
∂2

∂x2
µω = −c2κ2µω

!
= −ω2µω =

∂2

∂t2
µω (15)

Therefore, for fixed κ ∈ R, the function µω satisfied the 1D Cauchy Problem if and only if

c2 =
ω2

κ2
⇐⇒ c =

∣∣∣ω
κ

∣∣∣ ⇐⇒ ω = ±cκ (16)

This concludes the proof of Lemma 5

2.1 Dispersion Relation of Semi-Discrete Evolution schemes

The chief goal of this term paper is to provide a concise analysis of the dispersion relation for a
specific set of fully-discrete schemes introduced in Section 1. Hence, in an attempt to illustrate the
concept of the dispersion relation for a fully-discrete numerical scheme, let us begin by considering
a spatially semi-discrete scheme using the general theory of the Lagrangian Finite Element method
and provide a general framework for determining the dispersion relation in that setting.

Lemma 6. Let Kt, Lx be (continuous) linear differential operators in time and space respectively.
Assume furthermore that for all ∆x,∆t > 0 the differential operators commute with spatial and
temporal shift operators (c.f. (6)). Furthermore, let p ∈ N and let Lx : V Z

x → V Z
x , Vx

∼= Cp be the
corresponding (spatial) discretization of Lx on an equidistant grid M = Z ·∆x ⊆ R with p degrees
of freedom (in space).

Then the eigenfunctions of the discrete differential operator in space are given via the map(s).

κ 7→
(
~ξ · eiκj∆x

)
for suitable vectors ~ξ ∈ Vx (17)

Furthermore, the eigenvalues are given via the map

λx : R→ L(Vx) (18)

such that for all κ ∈ R and suitable ~ξ ∈ Vx it holds that

Lx

(
~ξ · eiκj∆x

)
j∈Z

=
(
λx(κ)

(
~ξ
)
· eiκj∆x

)
j∈Z

(19)
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Remark 7. Note that for fixed ∆x > 0, the translation operator in space S∆x commutes with Lx,
the discretization of the linear differential operator in space, i.e. it holds that

S∆x ◦ Lx = Lx ◦ S∆x (20)

This fact is a consequence of the assumption on the (continuous) linear differential operator in
space, which is assumed commute with the unit translation operator in space.

2.2 Dispersion Relation of Fully-Discrete Evolution schemes

Definition 8. Let ∆t,∆x > 0 (w.l.o.g. assume that ∆t = T
N , N ∈ N) and let Kt, Lx be linear

differential operators in time and space and assume that both operators commute with the spatial and
temporal unit translation operators respectively. Define Kt,Lx as the discrete differential operators
in space and time on the equidistant spatial and temporal grid M = ∆x · Z ⊆ R and N = ∆t ·
{0, . . . , N} ⊆ [0, T ] respectively.
The fully-discrete evolution equation corresponding to the PDE (5) is governed by the update scheme
that for all n ∈ {0, . . . , N} it holds that

(Kt − Lx)(~µ(k))k∈{0,...,n+1}
!
= 0 (21)

Let k ∈ N. Assuming the context of a k multi-step method, resolving the above equation, we arrive
at a fully-discrete evolution scheme µ(n+1) = G∆t,∆x(µ(n), . . . , µ(n−k+1)) for a suitable vector space
Vx,t ∼= Cq for some q > 0 and a corresponding operator (so-called lattice operator) on

G∆t,∆x :
(
V Z
x,t

)k → V Z
x,t (22)

Remark 9. There is some notational difficulty, in the above, as our lattice operator generally op-
erates on some exponent of V Z

x,t, for instance in the context of single-step methods, G∆t,∆x operates

on V Z
x,t and in two-step methods it operates on

(
V Z
x,t

)2
. Abusing notation a bit, we will write that

G∆t,∆x operates on V Z×Z
x,t in order to facilitate discussion on the subject matter in the following.

Proposition 10. Let ∆t,∆x > 0 and G∆t,∆x : V Z×Z
x,t → V Z×Z

x,t the (Z × Z)-lattice operator of the
fully-discrete evolution equation.
The eigenfunctions of this lattice operator are given via

(κ, ω) 7→
(
~ξ · ei(κj∆x−ωn∆t)

)
j,n∈Z

for suitable ~ξ ∈ Vx,t (23)

Note: The vector ~ξ ∈ Vx,t is called a ”lattice vector”.

Furthermore, for all κ, ω ∈ R, there exists an operator g∆t,∆x : [−π, π] × [−π, π] → L(Vx,t) such

that for all lattice vectors ~ξ ∈ Vx,t it holds that

G∆t,∆x

(
~ξ · (ei(κj∆x+ωn∆t))j,n∈Z

)
=
(
g∆t,∆x(κ, ω)

(
~ξ
)
· ei(κj∆x+ωn∆t)

)
j,n∈Z

(24)

Definition 11. The vector spaces V Z
x (spatially semi-discrete), V Z×Z

x,t (fully-discrete) are called the
space of Lattice- (or Grid-) functions. They consist of all maps from Z resp. Z× Z to our suitable
vector space Vx ∼= Cp and Vx,t ∼= Cq for p, q ∈ N respectively.
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Definition 12 (Definition of the discrete Dispersion Relation). Let ∆t,∆x > 0 and consider Kt,Lx
the discrete differential operators in space and time on an equidistant spatial grid of width ∆x > 0
and time-step h = ∆t > 0. Let q ∈ N and let Vx,t = Cq such that the lattice operator

G∆t,∆x : V Z×Z
x,t → V Z×Z

x,t (25)

corresponds to the fully-discrete evolution problem of the fully-discrete linear differential operators
Kt,Lx and for fixed κ, ω ∈ [−π, π], let

g∆t,∆x(κ, ω) : Vx,t → Vx,t (26)

be the local operator corresponding to the lattice operator. Then the (numerical) dispersion
relation for a fully-discrete evolution problem is given via

det (g∆t,∆x(κ, ω))
!
= 0 (27)

Remark 13 (Example). Consider Lt and Kx the linear differential operators in time and space that
commute with the unit translation operator in time and space respectively. Let Lx be the discrete
differential operator in space with corresponding mass and stiffness matrices M and A respectively.
Corresponding to the PDE (3), consider the linear ODE

M
∂2~µ

∂t2
(t) + A~µ(t)

!
= 0 (28)

Let κ ∈ R and consider M̃ = M̃(κ) and Ã = Ã(κ); the local operators corresponding to M,
A. Let Kt be the discrete linear differential operator in time with corresponding stability function
ΨK : Vx,t → Vx,t for a suitable vector space Vx,t. Assume that Kt defines a single-step time-stepping
method.

Note: There is no true single-step method for a second-order ODE, however through a suitable
transformation by means of an auxiliary variable we may transform a second-order ODE into a
first-order ODE, which admits a suitable partitioned single-step time-stepping method.

Let r1, r2, s1, s2 ∈ N and ΨK : Cr1×r2 → Cs1×s2 be the stability function of an arbitrary (single-
step) time-stepping algorithm and let G∆t,∆x be the operator on lattice functions of the discrete
evolution problem

G∆t,∆x : V Z×Z
x,t → V Z×Z

x,t (29)

Furthermore, let g∆x,∆t be the local operator on lattice vectors

g∆x(κ) : ~ξ ∈ Vx →
(

ΨK(M̃
−1

(κ)Ã(κ))
(
~ξ
))
∈ Vx (30)

Then the (numerical) dispersion relation defined via det (g∆t,∆x)
!
= 0 may be determined as

follows.

0. Consider the effect of eigenfunctions

G∆t,∆x :
(
~ξ · ei(κj∆x−ωn∆t)

)
j,n∈Z

∈ V Z×Z
x,t →

(
ΨK(M −1A)

(
~ξ · ei(κj∆x−ωn∆t)

)
j,n∈Z

)
∈ V Z×Z

x,t

(31)
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Furthermore, let n ∈ N and let g∆x,∆t be the local operator on lattice vectors such that for all
κ, ω ∈ R, the map g∆x,∆t(κ, ω) is defined via

g∆x,∆t(κ) : ~ξ · eiωn∆t ∈ Vx,t →
(

ΨK(M̃
−1

(κ)Ã(κ))
(
~ξ
))
· eiωn∆t ∈ Vx,t (32)

1. Diagonalize in time: Since G provides a single-step update scheme via ~µ(n+1) = G~µn, for all
κ ∈ [−π, π] we may define the map

g∆x(κ) : ~ξ ∈ Vx,t →
(

ΨK(M̃
−1

(κ)Ã(κ))
(
~ξ
))
∈ Vx,t (33)

Then, for all lattice vectors ~ξ ∈ Vx,t it holds that for all n ∈ N

~ξ ·
(
ei(κj∆x−ω(n+1)∆t)

)
j∈Z

= G∆t,∆x

(
~ξ · ei(κj∆x−ωn∆t)

)
j∈Z
⇐⇒ ~ξ · eiω∆t = g∆x(κ)

(
~ξ
)

(34)

Hence, for fixed κ ∈ R, the local operator on lattice vectors corresponding to the lattice operator
G∆t,∆x is given via

g∆t,∆x : (κ, ω) ∈ [−π, π]× [−π, π]→
(
IdVx,t ·eiω∆t − g∆x(κ)

)
∈ L(Vx,t) (35)

2. Diagonalize in space: For all κ ∈ R, solving the spatially discrete generalized eigenvalue
problem gives rise to eigenfunctions λ : [−π, π]→ C such that for all κ ∈ [−π, π] it holds that

det
(
g∆x(κ)− λ(κ) · IdVx,t

)
= 0 (36)

3. Compute the numerical diispersion relation: For every eigenfunction λ : [−π, π] → C,
diagonalizing in space allows us to compute the (numerical) dispersion relation via

eiω∆t = λ(κ) ⇐⇒ ω =
log (λ(κ))

i∆t
(37)

Hence, we may conclude that

det (g∆t,∆x)
!
= 0 ⇐⇒ ω =

log
(
λ̃(κ)

)
i∆t

(38)

for all λ : [−π, π]→ C that satisfy property (36)

3 Spatial Discretization for Lagrangian Finite Elements

Consider a spatial discretization according to Lagrangian Finite Element on an equidistant (1D) spa-
tial grid of width ∆x > 0, call it ∆x ·Z ⊆ R. Hence for p ∈ N, and B =

{
bkj : j ∈ Z, k ∈ {1, . . . , p}

}
,

a finite element basis of R of degree p with grid points {j∆x : j ∈ Z} = ∆x · Z, we may compute
both mass and stiffness matrix as

M =

(∫
R
bli(x)bmj (x)dx

)
i,j∈{1,...,N} l,m∈{1,...,p}

(39)
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A =

(∫
R
ḃli(x)ḃmj (x)dx

)
i,j∈{1,...,N} l,m∈{1,...,p}

(40)

PDE (3) corresponds to the following ODE

M P p∆x

(
∂2u

∂t2
(x, t)

)
= −c2A P p∆x (u(x, t)) (41)

For B = {bj(x)}j∈Z an arbitrary (countable) basis of our Finite Element space, we may define

Vx = spanR (B) = {
∑
j∈Z

aj · bj(x) : (aj)j∈Z ⊂ R} ⊆ C∞(R,R) (42)

Notation Based on the definition of Vx, we may identify an element µ(x) =
∑
j∈Z µj · bj(x) ∈ Vx

with the vector ~µ = (µj)j∈Z ∈ RZ.

Finally, in order to adequately approximate u(x, t), a solution to the wave equation (3), we will
need to introduce a time component. To that effect, it would suffice to consider

Vx,t = spanC2([0,T ],R) (B) = {
∑
j∈Z

aj(t) · bj(x) : (aj(t))j∈Z ⊂ C2([0, T ],R)} ⊆ C2([0, T ]× R,R) (43)

Notation Based on the definition of Vt, we may identify an element µ(t) =
∑
j∈Z µj(t)·pj(x) ∈ Vx,t

with the function ~µ : t ∈ [0, T ] 7→ ~µ(t) = (µj(t))j∈Z ∈ C2([0, T ],R)Z.

Finally, let us define the map πB : C2(R × [0, T ],R) → Vx,t with property that for all functions
(u : R× [0, T ]→ R) ∈ C2(R× [0, T ],R) it holds that

πB(u) =
∑
j∈Z

µj(t) · bj(x) ∼= ~µ(t) ∈ Vx,t (44)

The framework above allows us to illustrate our notation through natural examples. Throughout
the following we will (without mention) utilize the fact that spatial discretization of the 1D state
space R transforms the PDE (3) into the following ODE

M
∂2~µ

∂t2
(t) = −c2A~µ(t) ⇐⇒ M

∂2~µ

∂t2
(t) + c2A~µ(t) = 0 (45)

3.1 Linear Lagrangian Finite Elements

In order to begin our discussion, we must first determine the proper spatial discretization. For that
purpose, let us consider an equidistant grid of width ∆x > 0 : ∆x ·Z ⊆ R. Then we may define the
function p0(x) ∈ C(R,R) with the property that

supp(p0) = {x ∈ R : p0(x) 6= 0} ⊆ [−∆x,∆x] ⊂ R

p0(x) = (
x+ ∆x

∆x
)1[−∆x,0](x) + (

∆x− x
∆x

)1[0,∆x](x)
(46)

Then we may define the set B1 of linear basis functions on R as follows

B1 = { pj(x) = p0(x− j∆x) : j ∈ Z } (47)
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Performing the relevant computations for both Mass and Stiffness Matrix for the basis B1, we arrive
at the following stencil for the both mass and stiffness matrix in the case of Linear Lagrangian Finite
Element (LFEM)

M ∼= [
1

6
;

2

3
;

1

6
] and A ∼= [−1; 2;−1] (48)

Equipped with the structure for both mass and stiffness matrix, we are now able to compute the
semi-discrete dispersion relation for LFEM as follows. The matrices M (mass) and A (stiffness)
are sparse; as they are tri-diagonal. Therefore, Proposition 10 leads to the following corresponding
local operators Ã and M̃ given via

M̃(κ) : CZ −→ CZ

ξ ·
(
eiκj∆x

)
j∈Z 7−→

ξ
3 cos(κ∆x) + 2)

(
eiκj∆x

)
j∈Z

(49)

Ã(κ) : CZ −→ CZ

ξ ·
(
eiκj∆x

)
j∈Z 7−→ ξ · 4 sin2(κ∆x

2 )
(
eiκj∆x

)
j∈Z

(50)

Hence, in terms of local operators on grid functions, we arrive at the following numerical dispersion
relation (

Ã(κ)− c2ω2M̃(κ)
)
ξ ·
(
eiκj∆x

)
j∈Z

!
= 0 ⇐⇒

(
Ã(κ)− c2ω2M̃(κ)

)
!
= 0 (51)

Now, substituting the term c2ω2 for a κ-dependent term λ(κ), we arrive at the following Generalized
Eigenvalue Problem (

Ã(κ)− λ(κ) · M̃(κ)
)

!
= 0 (52)

This in turn results in the following semi-discrete dispersion relation for LFEM spatial discretization

λ(κ) = c2ω2 ⇐⇒ ω(κ) = ±c
√
|λ(κ)| (53)
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3.2 Quadratic Lagrangian Finite Elements

In order to perform a spatial discretization of Quadratic Lagrangian Finite Elements, we must
consider quadratic basis polynomials in addition to our linear basis B1. To that effect, let us
consider the polynomial q0(x) ∈ C(R,R) with the property that

supp(q0) ⊆ [0,∆x] ⊆ R

q0(x) = 4
x(∆x− x)

(∆x)2
1[0,∆x]

(54)

Then we may define B2, the set of basis functions up to quadratic degree as follows

B2 = B1 ∪ { qj(x) = q0(x− j∆x) : j ∈ Z } (55)
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Performing the relevant computations for both Mass and Stiffness Matrix for the basis B1, we arrive
at the following stencil for the both mass and stiffness matrix in the case of Linear Lagrangian Finite
Element (QFEM)

A =

(
[−1; 2;−1] [0; 0]

[0; 0] [0; 16
3 ; 0]

)
(56)

M =

( [
1
6 ; 2

3 ; 1
6

]
[ 1
3 ; 1

3 ][
1
3 ; 1

3

]
[0; 8

15 ; 0]

)
(57)

Therefore, Proposition 10 leads to the following corresponding local operators Ã and M̃ given via

M̃(κ) : (C2)Z −→ (C2)Z

~ξ ·
(
eiκj∆x

)
j∈Z 7−→

1
3

(
(cos(κ∆x) + 2)

(
e−iκ∆x + 1

)(
1 + eiκ∆x

)
8
5

)
~ξ ·
(
eiκj∆x

)
j∈Z

(58)

Ã(κ) : (C2)Z −→ (C2)Z

~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z 7−→

(
4 sin2(κ∆x

2 ) 0
0 16

3

)
~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z

(59)

Analogous to the previous approach, we arrive at the following semi-discrete dispersion relation for
QFEM spatial discretization

λ(κ) = c2ω2 ⇐⇒ ω(κ) = ±c
√
|λ(κ)| (60)
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3.3 Cubic Lagrangian Finite Elements

In order to perform a spatial discretization of Cubic Lagrangian Finite Elements, we must consider
cubic basis polynomials in addition to our basis of at most quadratic order B2. To that effect, let
us consider the polynomial r0(x) ∈ C(R,R) with the property that

supp(r0) ⊆ [0,∆x] ⊆ R

r0(x) =
3

64(∆x)3
x(x−∆x)(x− ∆x

2
) =

3

64(∆x)3
(x3 − 3∆x

2
x2 +

(∆x)2

2
x)

(61)

Then we may define B3, the set of basis functions up to cubic degree as follows

B3 = B2 ∪ { rj(x) = r0(x− j∆x) : j ∈ Z } (62)
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Performing the relevant computations for both Mass and Stiffness Matrix for the basis B1, we arrive
at the following stencil for the both mass and stiffness matrix in the case of Linear Lagrangian Finite
Element (QFEM)

A =

 [−1; 2;−1] 0 0
0 [0; 16

3 ; 0] 0
0 0 [0; 1024

45 ; 0]

 (63)

M =

 [ 1
6 ; 2

3 ; 1
6 ] [ 1

3 ; 1
3 ] [− 8

45 ; 8
45 ]

[ 1
3 ; 1

3 ] [0; 8
15 ; 0] 0

[ 8
45 ;− 8

45 ] 0 [0; 512
945 ; 0]

 (64)

Therefore, Proposition 10 leads to the following corresponding local operators Ã and M̃ given via

M̃(κ) : (C3)Z −→ (C3)Z

~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z 7−→

 1
3 (cos(κ∆x) + 2) 1

3 (e−iκ∆x + 1) 8
45 (1− e−iκ∆x)

1
3 (eiκ∆x + 1) 8

15 0
8
45 (1− eiκ∆x) 0 512

945

 ~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z

(65)

Ã(κ) : (C3)Z −→ (C3)Z

~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z 7−→

 4 sin2(κ∆x
2 ) 0 0

0 16
3 0

0 0 1024
45

 ~ξ ·
(
ei(κj∆x−ωt)

)
j∈Z

(66)

Analogous to the previous approach, we arrive at the following semi-discrete dispersion relation for
CFEM spatial discretization

λ(κ) = c2ω2 ⇐⇒ ω(κ) = ±c
√
|λ(κ)| (67)
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4 Time-stepping

The following section is dedicated to a concise introduction of all symplectic integrators relevant
to this term paper. We will encounter two classical examples of symplectic integrators Leapfrog
integration and Semi-implicit Euler integration. By means of the semi-implicit Euler method,
we will then construct higher order integrators that achieve order O(t2),O(t3),O(t4) respectively.
Throughout each discussion, we will begin an initial inspection into the dispersion relation for each
individual scheme applied to one of the semi-discrete schemes in the previous section.

4.1 Leapfrog integration

Leapfrog integration is a classical two-step method. For an arbitrary second-order ODE of the
form ü = f(u), the numerical approximation un of the continuous solution u according to Leapfrog
integration is given via

un+1 − 2un + un−1

(∆t)2
= f(un) ⇐⇒ un+1 = f(un)(∆t)2 + 2un − un−1 (68)

The Leapfrog time-step for a Lagrangian Finite Element discretization with mass and stiffness
matrix A,M respectively is given via

M
µn+1 − 2µn + µn−1

(∆t)2
= −c2A µn (69)

Consider a spatial discretization of order p = 1, 2 or 3 according to the Lagrangian Finite Elements
computed in the previous chapter. Recall the operators M̃, Ã, which have the property that for all
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κ ∈ R, there exist local operators M̃(κ), Ã(κ), s.t. for all ~ξ ∈ Cp

M
(
~ξ · (eiκj∆x)j∈N

)
=
(
M̃(κ)

(
~ξ
))
· (eiκj∆x)j∈N (70)

A
(
~ξ · (eiκj∆x)j∈N

)
=
(
Ã(κ)

(
~ξ
))
· (eiκj∆x)j∈N (71)

Recall that from the property (7), we may defer that the eigenfunctions of the temporal differences

scheme un+1−2un+un−1

(∆t)2 = f(un) is given by the exponentials functions, ω ∈ R → (eiω∆t) ∈ C.

By rearranging the terms in the temporal differences scheme and for n ∈ N by plugging in µn :=(
ei(κj∆x−ωn∆t)

)
j∈Z for un, we arrive at:

µ(n+1) + µ(n−1) = 2µn + (∆t)2f(µn) ⇐⇒ 2 cos(ω∆t) · µn = 2µn + (∆t)2f(µn) (72)

Hence, writing the above equation in terms of our local analogs M̃(κ), Ã(κ), we may conclude that

for all ~ξ ∈ Cp

(cos(ω∆t)− 1) M̃(κ)
(
~ξ
)

= − (∆t)2c2

2
Ã(κ)

(
~ξ
)

⇐⇒(
sin(

ω∆t

2
)2

)
M̃(κ)

(
~ξ
)

=
(∆t)2c2

4
Ã(κ)

(
~ξ
) (73)

Hence, recalling the setting of the previous section, let λ : R 7→ R with the property that for all
κ ∈ R it holds that for all ~ξ ∈ Cp[

c2

2
Ã(κ)− λ(κ)

(
−M̃(κ)

)]
~ξ

!
= 0 (74)

Then the (numerical) dispersion relation for the above (??) is given via

cos(ω∆t) = λ(κ) + 1 (75)

Or, equivalently for λ : R 7→ R with the property that for all κ ∈ R it holds that for all ~ξ ∈ Cp[
c2

4
Ã(κ)− λ(κ) · M̃(κ)

]
~ξ

!
= 0 (76)

Then the (numerical) dispersion relation for the above (76) is given via

sin2

(
ω∆t

2

)
= λ(κ) (77)

4.2 Symplectic Euler

We will introduce the symplectic Euler numerical integration scheme first in a general setting and
then apply it to the ODE (45) in order to illustrate the proper method for determining the dispersion
relation in a Lagrangian Finite Element Method spatial discretization and symplectic time-stepping.
The semi-implicit Euler method is a partitioned method, which is most aptly described according to
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the theory of Hamiltonians corresponding to a dynamic system. We will omit the formal introduc-
tion via Hamiltonians and refer to [1] for a more in-depth approach to the definition of symplecticity
and it’s connection to solving partitioned Hamiltonians.

Let us begin by introducing one variation of the semi-implicit Euler method. To that effect, consider
µ : R× [0, T ]→ R and ν : R× [0, T ]→ R with the property that for all (x, s) ∈ R× [0, T ] it holds
that

∂

∂t
µ(x, s) = µ̇(x, s) = ν(x, s) (78)

Let fµ : R → R and fν : R → R bearbitrary functions that satisfy the property that for all
(x, s) ∈ R× [0, T ]

∂

∂t
µ(x, s) = fµ(ν(x, s)) and

∂

∂t
ν(x, s) = fν(µ(x, s)) (79)

For all (x, s) ∈ R × [0, T ] let us define ζ(x, s) =

(
µ(x, s)
ν(x, s)

)
. Hence, we arrive at the following

ODE
∂

∂t
ζ(x, s) =

(
fµ (ν(x, s))
fν (µ(x, s))

)
(80)

The symplectic Euler method applied to equation (80) provides an update scheme given via

ζn+1 =

(
µn+1

νn+1

)
=

(
µn

νn

)
+ ∆t

(
fµ
(
νn+1

)
fν (µn)

)
(81)

We may rewrite the above equation via(
µn+1

νn+1

)
−∆t

(
fµ
(
νn+1

)
0

)
=

(
µn

νn

)
+ ∆t

(
0

fν (µn)

)
(82)

Proposition 14 (Stability Function of the semi-implicit Euler method). The semi-implicit Euler
method applied to the ODE (80) is given via

Ψ(z) =

((
1 0
0 1

)
− z ·

(
0 1

0 0

))−1

·
((

1 0
0 1

)
+ z ·

(
0 0
1 0

))
(83)

Proof of Proposition 14. Ansatz Apply the above scheme to the following ODE(
µ̇
ν̇

)
=

(
λ1 0
0 λ2

)(
µ
ν

)
(84)

Hence, if we apply the symplectic Euler to the above ODE, we arrive at the following update
scheme: (

µn+1

νn+1

)
=

(
µn

νn

)
+ (∆t)

(
0 λ2

λ1 0

)(
µn

νn+1

)
(85)( 1 0

0 1

)
− (∆t)λ2︸ ︷︷ ︸

=z

(
0 1

0 0

)( µn+1

νn+1

)
=

( 1 0
0 1

)
+ (∆t)λ1︸ ︷︷ ︸

=z

(
0 0
1 0

)( µn

νn

)
(86)
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(
µn+1

νn+1

)
=

( 1 0
0 1

)
− (∆t)λ2︸ ︷︷ ︸

=z

(
0 1

0 0

)−1( 1 0
0 1

)
+ (∆t)λ1︸ ︷︷ ︸

=z

(
0 0
1 0

)( µn

νn

)
(87)

This completes the proof of Proposition 14.

Finally, combining the above with the abstract process of finding the numerical dispersion rela-
tion for a general single-step method with arbitrary stability function according to equation (37),
we may determine the numerical dispersion relation of the symplectic Euler method applied
to arbitrary ODEs of the form (80). It also turns out that this framework allows us to determine
the numerical dispersion relation for the linear ODE (45); the numerical approximation of the wave
equation (3) utilizing Lagrangian Finite Elements in space and semi-implicit Euler time-stepping.

To that effect, recall the spatial discretizations introduced in Section 3 and let M, A be the mass
and stiffness matrix respectively. Then it holds that for all s ∈ [0, T ]

M
∂2~µ

∂t2
(s) + c2A~µ(t) = 0⇒

(
IdRZ 0

0 M

)
︸ ︷︷ ︸

M

∂~ζ

∂t
(s) =

(
0 IdRZ

−A 0

)
︸ ︷︷ ︸

A

~ζ (88)

Hence, we may rewrite the linear ODE (45) in terms of the extended matrices M,A as a first-order
ODE

∂~ζ

∂t
(s) = M

−1
Aζ (89)

Finally, applying the symplectic Euler method to the above ODE (cf. (81)) yields

~ζn+1 =
(

Ψ(M
−1

A)
)
~ζn =

(
M− (∆t)

(
0 IdCZ

0 0

))−1(
M + (∆t)

(
0 0
−A 0

))(
µn

νn

)
(90)

Or, equivalently (
M− (∆t)

(
0 IdCZ

0 0

))
~ζn+1 =

(
M + (∆t)

(
0 0
−A 0

))
~ζn (91)

Writing everything the above in terms of the local operators associated to the Lattice Operator, we
may conclude that for arbitrary κ ∈ R and λ : κ ∈ R→ λ(κ) ∈ C such that for all ξ ∈ Cp it holds
that [(

1Cp 0

−∆tÃ(κ) M̃(κ)

)
− λ(κ) ·

(
1Cp −(∆t)1Cp

0 M̃(κ)

)]
~ξ

!
= 0 (92)

Then the numerical dispersion relation for the semi-implicit Euler method coupled with La-
grangian Finite Element discretization in space is given via

eiω∆t = λ(κ) ⇐⇒ ω = <
(

log (λ(κ))

i∆t

)
(93)
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4.3 Higher order symplectic integrators

In the previous subsection, we introduced the simplest of all single-step symplectic integrators; the
semi-implicit Euler method. This will be our main tool when constructing higher order symplectic
integrators. The process of constructing higher order symplectic integrators rests on calculating
the proper coefficients according to the Baker-Campbell-Hausdorff formula. Once these coefficients
are determined, the entire algorithm of arbitrary higher order runs like an iterated (weighted)
semi-implicit Euler method. Therefore, let us begin by defining the weights for these higher-order
schemes.

We have already seen the first-order coefficients to be a = a1 = 1 and b = b1 = 1

The second-order coefficients are calculated to be a =

(
0.5
0.5

)
and b =

(
0
1

)

The third-order coefficients are calculated to be a =

 2/3
−2/3

1

 and b =

 7/24

3/4
−1/24



The fourth-order coefficients are calculated to be a =


2+2

1/3+2−
1/3

6
1−2

1/3−2−
1/3

6
1−2

1/3−2−
1/3

6
2+2

1/3+2−
1/3

6

 and b =


0
1

2−21/3

1
2−22/3

1
2−21/3


Definition 15 (Definition of symplectic time-stepping algorithms of arbitrary order). Let d ∈
N, d > 1. Then the symplectic time-stepping algorithm applied to the Hamiltonian ODE

∂

∂t

(
p
q

)
=

(
ṗ
q̇

)
=

(
F (q, t)
G(p)

)
(94)

is given via the following algorithm

Symplectic time-stepping algorithm
Input: order = d > 1, ∆t > 0, F : RZ → RZ, G : RZ → RZ, F0, G0 ∈ RZ and T > 0
Output: p(T ), q(T ), the inertia and displacement vectors at time T > 0

p1 = F0, q1 = G0

N = ceil(T/∆t)
for i = 1 to N do
% Begin with integration method update

pin = pi
qin = qi

for j = 1 to d do
pout = pin + bj∆t · F (qin)
qout = qin + aj∆t ·G(pout)
pin = pout
qin = qout

end
pi+1 = pout
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qi+1 = qout
end
return pN , qN

Proposition 16. Let d ∈ {1, 2, 3, 4}. Then the stability function Ψd : C → C2×2 corresponding
to the symplectic time-stepping algorithm of order d is given via the property that for all z ∈ C it
holds that

Ψd(z) =

d∏
j=1

Ψj(z) (95)

Where Ψj(z) is given as a ”weighted” version of the stability function of the semi-implicit Euler
method, with weights aj and bj respectively; specifically, for all z ∈ C

Ψj(z) =

((
1 0
0 1

)
− ajz ·

(
0 1

0 0

))−1

·
((

1 0
0 1

)
+ bjz ·

(
0 0
1 0

))
(96)

Hence, the stability function of the symplectic integrator of order d is given via

d∏
j=1

((
1 0
0 1

)
− ajz ·

(
0 1

0 0

))−1

·
((

1 0
0 1

)
+ bjz ·

(
0 0
1 0

))
(97)

Furthermore, assume that for all n ∈ {1, . . . , N} , ~ζn the discrete evolution of the higher order
symplectic integrator (of order d) applied to the linear ODE (45). Then the update scheme for all
n ∈ {1, . . . , N} for this fully-discrete evolution is given via

~ζn+1 = Ψd(M
−1

A)~ζn (98)

Hence, recalling the setting in section 2, we may may the above equation in terms of local operators
on lattice vectors. Hence for all eigenfunction λ : [−π, π]→ C and all κ ∈ R it holds that d∏

j=1

[(
1Cp −(∆t)aj1Cp

0 M̃(κ)

)−1(
1Cp 0

−∆tbjÃ(κ) M̃(κ)

)]
− λ(κ) ·

(
1Cp 0
0 1Cp

) ~ξ !
= 0 (99)

Remark 17. Notice that for d = 1, the equation above coincides with the equation derived in the
case of the semi-implicit Euler method.

Solving this Generalized Eigenvalue Problem leads to the numerical dispersion relation

ω(κ) =

(
log (λ(κ))

i∆t

)
(100)

4.4 Empirical Convergence Rates for symplectic time-stepping algorithms

It is a well-known fact that Leapfrog integration provides a second-order convergence rate and is
therefore of consistency order O(∆t2). In this section, we will provide empirical convergence rates
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for the symplectic time-stepping algorithms introduced in the previous two sections. To that effect,
we will apply the symplectic time-stepping algorithms to the model problem for the ODE

u′′(x) = −u(x) (101)

The codes utilized for the empirical convergence analysis are readily available in the Appendix (c.f.
section 7.2). Therein, we have applied the symplectic time-stepping algorithms to the above model
problem ODE with the initial value problem u(0) = 1, u′(0) = 0. Applying the codes in section
7.2, we arrive at the following empirical convergence rates for ∆t = 0.1 · 2j for j ∈ {−1, . . . ,−5}
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Numerical Error − Symplectic Euler
Numerical Error − Symplectic 2nd order
Numerical Error − Symplectic 3rd order
Numerical Error − Symplectic 4th order

Empirical Numerical Error of symplectic time-stepping applied to the model problem
u′′(x) = −u(x) with initial value problem u(0) = 1 and u′(0) = 0.

Clearly in the above, we may observe the expected behavior. The curve of least descent (blue)
belongs to that of the symplectic Euler algorithm, which provides the convergence order O(∆t).
The green, red and cyan curves each have slope greater than that belonging to the symplectic Euler
algorithm, which clearly indicates a higher convergence order. Clearly, the green curve belonging to
that of the second-order symplectic time-stepping algorithm has the greatest slope of the aforemen-
tioned three, which clearly indicates the convergence order O(∆t2). Correspondingly, the red curve
belonging to the third-order symplectic time-stepping algorithm exhibits a greater slope than the
cyan curve and therefore leads to convergence order O(∆t3). Finally, the third curve belonging to
the fourth order symplectic time-stepping algorithm has the steepest descent and therefore provides
convergence order O(∆t4).
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5 Dispersion Relation of the fully discrete evolution problem

5.1 Leapfrog integration

Our first analysis will involve Lagrangian Finite Element spatial discretization of Linear, Quadratic
and Cubic order coupled with a simple Leapfrog integration. To that extent, let us determine the
generalized eigenvalue problem for Leapfrog integration.

Definition 18 (Leapfrog and Lagrangian Finite Element discrete evolution problem). Consider
the Lagrangian Finite Element spatial discretization of arbitrary degree p applied to the PDE (3)
on an equidistant spatial grid of width ∆x > 0. Let M and A the corresponding mass and stiffness
matrix, recall the corresponding linear ODE (45). Let ∆t > 0 and G : V Z

x → V Z
x be the Galerkin

Matrix with the property that for all n ∈ N it holds that for all n ∈ N it holds that ~µ(n+1) = G~µ(n).
Then

M
~µ(n+1) − 2~µ(n) + ~µ(n−1)

(∆t)2
= A~µ(n) (102)

Proposition 19. Let ∆x,∆t > 0 and let A,M : RZ → RZ be the mass and stiffness matrix corre-
sponding to the Lagrangian Finite Element spatial discretization of the PDE (3) on an equidistant
spatial grid of width ∆x > 0. Applying Leapfrog integration to the ODE (45), we arrive at the
numerical dispersion relation for Leapfrog time-stepping as the mapping ω : κ ∈ R→ ω(κ) ∈ P(R)
s.t. for all λ : κ ∈ R → λ(κ) ∈ R with property (36) and for all κ ∈ R there exists ω ∈ ω(κ) ⊆ R,
s.t.

2 cos (ω∆t)− 1 = λ(κ) (103)

Finally, we are able to provide the first result for the numerical dispersion relation of LFEM, QFEM
and CFEM coupled with Leapfrog integration.
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(black) − Continuous dispersion relation
(red) − Fully−discrete dispersion relation; LFEM
(blue) − Fully−discrete dispersion relation; QFEM
(magenta) − Fully−discrete dispersion relation; CFEM
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Continuous dispersion relation (black) and fully-discrete dispersion relation LFEM (red) , QFEM
(blue), CFEM (magenta) together with Leapfrog time-stepping. The x-axis is scaled by ∆x > 0

and the y-axis is scaled by ∆t > 0.

Now that we have determined the dispersion relation for fixed ∆x,∆t > 0, we would like to discuss
the asymptotics as ∆x,∆t → 0. To that extent, it is a poignant remark to note that in the figure
above the x-axis is scaled by ∆x > 0 and the y-axis is scaled by ∆t > 0. Furthermore, let us define
α = ∆t

∆x , and consider fixed ∆x > 0.

α constant: In the case where α is held constant, the dispersion relation remains self-similar
on the interval [0, pi∆x ]. This has been proven rigorously in a separate paper however can be de-
duced readily by substituting κ̃ ∼= κ∆x and ω̃ ∼= ω∆t into the relevant equations when computing
the dispersion relation. By means of this substitution, the dispersion relation translates into a
simple equation that relates an arbitrary κ ∈ R with a corresponding set of ω(κ) ⊆ R

α → 0: Let ∆x > 0 and consider α → 0, or equivalently ∆t → 0. Numerical experiments have
validated that as ∆t → 0, the numerical dispersion relation of the fully-discrete scheme converges
to the semi-discrete dispersion relation determined in section 3.

Remark 20. Observe in the figure above that as we increase the order of the Lagrangian Finite
Element Method, we may observe a significant reduction in the numerical dispersion introduced
by the fully-discrete evolution problem. In order to gauge the quantitative reduction in numerical
dispersion, consider the following error estimates

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

kappa * dx

om
eg

a 
* d

x 
− 

ka
pp

a 
* d

x

 

 
(red) − Fully−discrete dispersion relation; dt = 1
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Numerical Dispersion Relation Error [Err(κ) = ω(κ)− κ] for LFEM (left) and QFEM (right).
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(red) − Fully−discrete dispersion relation; LFEM
(blue) − Fully−discrete dispersion relation; QFEM
(magenta) − Fully−discrete dispersion relation; CFEM

Numerical Dispersion Relation Error [Err(κ) = ω(κ)− κ] for CFEM (left) and combined LFEM,
QFEM and CFEM for a single ∆t > 0 (right).

5.2 Comparison - LFEM with symplectic integrators
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(red) − Numerical Dispersion Error; order = 1
(blue) − Numerical Dispersion Error; order = 2
(magenta) − Numerical Dispersion Error; order = 3
(cyan) − Error Dispersion Error; order = 4

Fully-discrete Numerical Dispersion Relation LFEM with symplectic time-stepping of order 1
(red) , 2 (blue), 3 (magenta) and 4 (cyan). The x-axis is scaled by ∆x > 0 and the y-axis is scaled

by ∆t > 0.
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5.3 Comparison - QFEM with symplectic integrators
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(red) − Numerical Dispersion Error; order = 1
(blue) − Numerical Dispersion Error; order = 2
(magenta) − Numerical Dispersion Error; order = 3
(cyan) − Error Dispersion Error; order = 4

Continuous dispersion relation (black) and fully-discrete dispersion relation LFEM (red) , QFEM
(blue), CFEM (magenta) together with Leapfrog time-stepping. The x-axis is scaled by ∆x > 0

and the y-axis is scaled by ∆t > 0.

5.4 Comparison - CFEM with symplectic integrators
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(red) − Numerical Dispersion Error; order = 1
(blue) − Numerical Dispersion Error; order = 2
(magenta) − Numerical Dispersion Error; order = 3
(cyan) − Error Dispersion Error; order = 4

Continuous dispersion relation (black) and fully-discrete dispersion relation LFEM (red) , QFEM
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(blue), CFEM (magenta) together with Leapfrog time-stepping. The x-axis is scaled by ∆x > 0
and the y-axis is scaled by ∆t > 0.

5.5 Semi-implicit Euler time-stepping
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(black) − Continuous Dispersion Relation
(blue) − Error Dispersion Relation; QFEM

Numerical Dispersion Relation for LFEM (left) and QFEM (right). Note that the x-axis is scaled
by ∆x > 0 and the y-axis is scaled by ∆t > 0
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(black) − Continuous Dispersion Relation
(blue) − Error Dispersion Relation; QFEM
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(red) − Error Dispersion Relation; LFEM
(blue) − Error Dispersion Relation; QFEM
(magenta) − Error Dispersion Relation; CFEM

Numerical Dispersion Relation for CFEM (left) and combined Numerical Dispersion Relation
Error [Err(κ) = ω(κ)− κ] for LFEM, QFEM and CFEM for a single ∆t > 0 (right).
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5.6 Symplectic 2nd-order time-stepping

0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

4

kappa * dx

om
eg

a 
* d

x 
− 

ka
pp

a 
* d

x

 

 (black) − Continuous Dispersion Relation
(red) − Numerical Dispersion Relation; LFEM
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(black) − Continuous Dispersion Relation
(blue) − Numerical Dispersion Relation; QFEM

Numerical Dispersion Relation for LFEM (left) and QFEM (right). Note that the x-axis is scaled
by ∆x > 0 and the y-axis is scaled by ∆t > 0
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(black) − Continuous Dispersion Relation
(magenta) − Numerical Dispersion Relation; CFEM
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(red) − Error Dispersion Relation; LFEM
(blue) − Error Dispersion Relation; QFEM
(magenta) − Error Dispersion Relation; CFEM

Numerical Dispersion Relation for CFEM (left) and combined Numerical Dispersion Relation
Error [Err(κ) = ω(κ)− κ] for LFEM, QFEM and CFEM for a single ∆t > 0 (right).
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5.7 Symplectic 3rd-order time-stepping
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 (black) − Continuous Dispersion Relation
(red) − Numerical Dispersion Relation; LFEM
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(black) − Continuous Dispersion Relation
(blue) − Numerical Dispersion Relation; LFEM

Numerical Dispersion Relation for LFEM (left) and QFEM (right). Note that the x-axis is scaled
by ∆x > 0 and the y-axis is scaled by ∆t > 0
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(red) − Error Dispersion Relation; LFEM
(blue) − Error Dispersion Relation; QFEM
(magenta) − Error Dispersion Relation; CFEM

Numerical Dispersion Relation for CFEM (left) and combined Numerical Dispersion Relation
Error [Err(κ) = ω(κ)− κ] for LFEM, QFEM and CFEM for a single ∆t > 0 (right).
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5.8 Symplectic 4th-order time-stepping
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 (black) − continuous dispersion relation
(red) − numerical dispersion relation; LFEM
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 (black) − continuous dispersion relation
(blue) − numerical dispersion relation; QFEM

Numerical Dispersion Relation for LFEM (left) and QFEM (right). Note that the x-axis is scaled
by ∆x > 0 and the y-axis is scaled by ∆t > 0
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(black) − continuous dispersion relation
(magenta) − numerical dispersion relation; CFEM
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(red) − Numerical Dispersion Relation; LFEM
(blue) − Numerical Dispersion Relation; QFEM
(magenta) − Numerical Dispersion Relation; CFEM

Numerical Dispersion Relation for CFEM (left) and combined Numerical Dispersion Relation
Error [Err(κ) = ω(κ)− κ] for LFEM, QFEM and CFEM for a single ∆t > 0 (right).

6 Conclusion

The observed dispersion relations for spatial discretization of linear, quadratic and cubic finite ele-
ments provides the expected results. If we compare the numerical dispersion relation for the same
time-stepping algorithm, we may observe that as the degree of the spatial discretization increases,
the error in the numerical dispersion relation (compared to the continuous dispersion relation). This
phenomenon was already observed in the case of the semi-discrete dispersion relation in section 3.

On the other hand, if we fix the degree of spatial discretization and compare the numerical dispersion
relation for each of the symplectic time-stepping algorithms, we may not observe an improvement
in the error of the numerical dispersion relation in all cases. For one, the numerical dispersion
relation for symplectic Euler and second-order symplectic time-stepping are identical, regardless of
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the degree of spatial discretization. However, if we compare the numerical dispersion error between
symplectic Euler, third-order symplectic time-stepping and finally the fourth-order symplectic time-
stepping, we may in fact observe the desired result. This is most likely a coincidence, since the
empirical convergence rates of all symplectic time-stepping algorithms were observed to be the same.
There seems to be a fundamental difference between the symplectic time-stepping algorithms ap-
plied to ODEs such as that of the model problem u′′ = −u and the spatial discretization via Finite
Elements of arbitrary order. When the empirical convergence rates of the symplectic time-stepping
algorithms were analyzed for the Finite Element problem, the result was somewhat unexpected.
It turns out that when the symplectic time-stepping algorithms are applied to the Finite Element
problem, the order of the algorithm becomes irrelevant. That is, all symplectic time-stepping algo-
rithms converge with the same order as the symplectic Euler algorithm. This is illustrated in the
below figure
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Empirical Numerical Error of symplectic time-stepping applied to the Finite Element problem in
(45) with initial value problem u0 = sin(x)2

1[0,pi](x) and v0 = −2 sin(x) cos(x)1[0,pi](x).

7 Appendix

7.1 Code - Leapfrog time-stepping (model problem)

f unc t i on Reference = SymplecticModelProblemLeapfrog (N)

dt = 8∗ pi /N;

u = ze ro s (1 ,N+1);
v = ze ro s (1 ,N+1);
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u (1) = 1 ;

v (1 ) = 0 ;

%F i r s t time step ( i n i t i a l s t ep )

u ( : , 2 ) = u (1) + v (1)∗ dt − 0 .5∗ dt ˆ2∗u ( 1 ) ;

%Leapfrog t imestepp ing
f o r i =2:N

u ( : , i +1) = ( 2∗u( i ) − u( i −1) − dt ˆ2∗u( i ) ) ;

end ;

p l o t ( ( 1 :N+1) ,u , ’ r ’ ) ;

Re ference = u( end ) ;

7.2 Code - Symplectic time-stepping (model problem)

f unc t i on X = SymplecticModelProblem ( N , order )

i f order == 1

a = [ 1 ] ; b = [ 1 ] ;

e l s e i f order == 2

a = [ 0 . 5 0 . 5 ] ; b = [ 0 1 ] ;

e l s e i f order == 3

a = [ 2 / 3 ; −2/3; 1 ] ;
b = [ 7 / 2 4 ; 3/4 ; −1/24];

e l s e

a = [ (2 + 2ˆ(1/3) + 2ˆ(−1/3))/6; (1 − 2ˆ(1/3) − 2ˆ(−1/3))/6;
(1 − 2ˆ(1/3) − 2ˆ(−1/3))/6; (2 + 2ˆ(1/3) + 2ˆ( −1/3))/6 ] ;

b = [ 0 ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ; 1/(1 − 2 ˆ ( 2 / 3 ) ) ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ] ;

end
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dt = pi /N;

u = ze ro s (1 ,N+1);
v = ze ro s (1 ,N+1);

u (1 ) = 1 ;

v (1 ) = 0 ;

f o r j = 1 : N

v in = v ( j ) ;

u in = u( j ) ;

f o r s = 1 : order

v out = v in + b( s )∗ dt∗ u in ;

u out = u in − a ( s )∗ dt∗ v out ;

v in = v out ;

u in = u out ;

end

v ( j +1) = v out ;

u ( j +1) = u out ;

end

p lo t ( ( 1 :N+1) , u )

X = u( end ) ;

7.3 Code - (Animation) Linear Finite Element for Leapfrog time-stepping

f unc t i on Reference = LFEMSymplecticForErrorLeapfrog (N)

dt = 1/N; %time−s tep
n=10; %number o f e lements on the i n t e r v a l [ 0 , p i ]
dx = pi /n ; %s p a t i a l−s tep width
T = 1 ; %Unit time i n t e r v a l
k = T/dt ; %Number o f time s t ep s on un i t e time i n t e r v a l

31



alpha = dt/dx ;

%Create Mass Matrix and S t i f f n e s s Matrix
v = ones (1 ,2∗n−1);

%S t i f f n e s s Matrix
A = 2∗ diag ( [ v 1 ] ) − ( d iag (v , 1 ) + diag (v , −1)) ;

A(1 , end ) = −1;
A( end , 1 ) = −1;

%Mass Matrix
M = (1/6)∗ ( 4∗ diag ( [ v 1 ] ) + ( diag (v , 1 ) + diag (v ,−1)) ) ;

M(1 , end ) = 1/6 ;
M( end , 1 ) = 1/6 ;

%I n i t i a l s o l u t i o n
x i n t = l i n s p a c e (0 , pi , n ) ; %Intermed iate v a r i a b l e
x 0 = l i n s p a c e (−pi , pi , 2∗n ) ; %X a x i s f o r p l o t t i n g
y 0 = [ z e r o s (1 , n ) s i n ( x i n t ) . ˆ 2 ] ; %I n i t i a l va lue
v 0 = [ z e r o s (1 , n ) −2∗ s i n ( x i n t ) . ∗ cos ( x i n t ) ] ; %I n i t i a l v e l o c i t y

%So lu t i on Matrix
s o l = ze ro s (2∗n , k ) ;

%I n i t i a l va lue problem
s o l ( : , 1 ) = y 0 ’ ;

%F i r s t time step ( i n i t i a l s t ep )
temp = A∗ s o l ( : , 1 ) ;
temp = M\temp ;

s o l ( : , 2 ) = ( s o l ( : , 1 ) + v 0 ’∗ dt + 0.5∗ alpha ˆ2∗temp ) ;

%Leapfrog t imestepp ing
f o r i =2:k−1

temp = A∗ s o l ( : , i ) ;
temp = M\temp ;

s o l ( : , i +1) = ( 2∗ s o l ( : , i ) − s o l ( : , i −1) − alpha ˆ2∗temp ) ;

c l f
p l o t ( x 0 , s o l ( : , i ) , ’ r ’ ) ;
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hold on
pause ( 0 . 1 ) ;
a x i s ([− pi p i 0 1 ] ) ;

g r i d on ;

end ;

Reference = s o l ( : , end ) ;

7.4 Code - (Animation) Linear Finite Element for symplectic time-stepping

f unc t i on Reference = LFEMSymplecticForError (N, order )

dt = 1/N; %time−s tep
n=10; %number o f e lements on the i n t e r v a l [ 0 , p i ]
dx = pi /n ; %s p a t i a l−s tep width
T = 1 ; %Unit time i n t e r v a l
k = T/dt ; %Number o f time s t ep s on un i t e time i n t e r v a l

%Determine C o e f f i c i e n t s f o r time−s t epp ing a lgor i thm based on the input ” order ”
i f order == 1

a = [ 1 ] ; b = [ 1 ] ;

e l s e i f order == 2

a = [ 0 . 5 0 . 5 ] ; b = [ 0 1 ] ;

e l s e i f order == 3

a = [ 2 / 3 ; −2/3; 1 ] ;
b = [ 7 / 2 4 ; 3/4 ; −1/24];

e l s e

a = [ (2 + 2ˆ(1/3) + 2ˆ(−1/3))/6; (1 − 2ˆ(1/3) − 2ˆ(−1/3))/6;
(1 − 2ˆ(1/3) − 2ˆ(−1/3))/6; (2 + 2ˆ(1/3) + 2ˆ( −1/3))/6 ] ;

b = [ 0 ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ; 1/(1 − 2 ˆ ( 2 / 3 ) ) ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ] ;

end

%Create Mass Matrix and S t i f f n e s s Matrix
v = ones (1 ,2∗n−1);

33



%S t i f f n e s s Matrix
A = 2∗ diag ( [ v 1 ] ) − ( d iag (v , 1 ) + diag (v , −1)) ;

A(1 , end ) = −1;
A( end , 1 ) = −1;

A = A/dx ;

%Mass Matrix
M = (1/6)∗ ( 4∗ diag ( [ v 1 ] ) + ( diag (v , 1 ) + diag (v ,−1)) ) ;

M(1 , end ) = 1/6 ;
M( end , 1 ) = 1/6 ;

M = M∗dx ;

%I n i t i a l s o l u t i o n
x i n t = l i n s p a c e (0 , pi , n ) ; %Intermed iate v a r i a b l e
x 0 = l i n s p a c e (−pi , pi , 2∗n ) ; %X a x i s f o r p l o t t i n g
y 0 = [ z e r o s (1 , n ) s i n ( x i n t ) . ˆ 2 ] ; %I n i t i a l va lue
v 0 = [ z e r o s (1 , n ) 2∗ s i n ( x i n t ) . ∗ cos ( x i n t ) ] ; %I n i t i a l v e l o c i t y

%So lu t i on Matrix
p = ze ro s (2∗n , k ) ; %i n i t i a l i z e matrix f o r i n e r t i a
q = ze ro s (2∗n , k ) ; %i n i t i a l i z e matrix f o r d i sp lacement

%I n i t i a l va lue problem
q ( : , 1 ) = y 0 ’ ;
p ( : , 1 ) = v 0 ’ ;

%Symplect ic time−s t epp ing
f o r i =1:k−1

p in = p ( : , i ) ;
q i n = q ( : , i ) ;

f o r j =1: order

temp = b( j )∗ dt∗A∗ q in ;

temp = M\temp ;

p out = p in − temp ;

q out = q in + a ( j )∗ dt∗p out ;
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p in = p out ;
q in = q out ;

end

%Save i n e r t i a and disp lacement at next time−s tep
p ( : , i +1) = p out ;
q ( : , i +1) = q out ;

%Plot s o l u t i o n at i−th time−s tep
c l f
p l o t ( x 0 , q ( : , i ) , ’ r ’ ) ;
hold on
pause ( 0 . 1 ) ;
a x i s ([− pi p i 0 1 ] ) ;

g r i d on ;

end

Reference = q ( : , end ) ;

7.5 Code - Dispersion relation for semi-discrete scheme

f unc t i on Symplect icGenera l i zedSemi (dx , dim)
%%The f o l l o w i n g func t i on determines the d i s p e r s i o n r e l a t i o n f o r Linear ,
%%Quadratic and Cubic Lagrangian F i n i t e Elements

%%1. Input : ”dx” determines the s p a t i a l step−s i z e

%%2. Input : ”dim” determines the dimension o f s p a t i a l d i s c r e t i z a t i o n

m = 300 ; %Number o f p a r t i t i o n s in [ 0 , p i ]

kappa = l i n s p a c e (0 , pi ,m) ; %Kappa on [ 0 , p i ]

omega = ze ro s (dim ,m) ; %So lu t i on v ec t o r s f o r p l o t t i n g in each row

%%Star t for−loop that determines the d i s p e r s i o n r e l a t i o n . The f o r
%%loop f i x e s kappa in [−pi , p i ] .
%%Then omega ( kappa ) i s determined f o r that p a r t i c u l a r time−s tep and value o f
%%kappa accord ing to the Genera l i zed Eigenvalue Problem (GEVP) determined
%%in the paper .

f o r j =1:m
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A = ze ro s ( dim ) ; %Declare l o c a l s t i f f n e s s matrix

B = ze ro s ( dim ) ; %Declare l o c a l mass matrix

AA = eye ( mult∗dim ) ; %Declare AA f o r the GEVP: AA − lambda BB = 0

BB = eye ( mult∗dim ) ; %Declare BB f o r the GEVP: AA − lambda BB = 0

i f dim == 1

B = ( 2 + cos ( kappa ( j ) ) ) / 3 ; %l o c a l mass matrix

A = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ; %l o c a l s t i f f n e s s

e l s e i f dim == 2

m1 = ( 2 + cos ( kappa ( j ) ) ) / 3 ;

a1 = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ;

c1 = (1 + exp(−1 i ∗kappa ( j ) ) ) / 3 ;

c2 = (1 + exp (1 i ∗kappa ( j ) ) ) / 3 ;

B = [ m1 c1 ; c2 8/15 ] ; %l o c a l mass matrix

A = [ a1 0 ; 0 1 6 / 3 ] ; %l o c a l s t i f f n e s s

e l s e i f dim == 3

m1 = ( 2 + cos ( kappa ( j ) ) ) / 3 ;

a1 = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ;

c1 = (1 + exp(−1 i ∗kappa ( j ) ) ) / 3 ;

c2 = (1 + exp (1 i ∗kappa ( j ) ) ) / 3 ;

d1 = 8/45∗( 1 − exp(−1 i ∗kappa ( j ) ) ) ;

d2 = 8/45∗( 1 − exp (1 i ∗kappa ( j ) ) ) ;

B = [ m1 c1 d1 ; c2 8/15 0 ; d2 0 512/945 ] ; %l o c a l mass matrix

A = [ a1 0 0 ; 0 16/3 0 ; 0 0 1024/45 ] ; %l o c a l s t i f f n e s s
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end

E = e i g (A,B) ; %Solve the GEVP

temp = E + 1 ;

temp = acos ( temp )\ dt ( t ) ;

omega ( : , j ) = r e a l ( temp ) ;

end

f o r j = 1 : dim
p lo t ( kappa , omega ( j , : ) , ’ r ’ , kappa , kappa , ’b ’ )
l egend ( ’ f u l l y−d i s c r e t e d i sp e r s i on ’ , ’ cont inuous d i s p e r s i o n r e l a t i o n ’ )
hold on ;
drawnow ;
end
end

7.6 Code - Dispersion relation for Leapfrog time-stepping

f unc t i on Leapf rogGenera l i zed (dim , dx , dt )
%%The f o l l o w i n g func t i on determines the d i s p e r s i o n r e l a t i o n f o r Linear ,
%%Quadratic and Cubic Lagrangian F i n i t e Elements toge the r with Leapfrog time−s t epp ing .
%%The inputs dim and order determine the s p a t i a l d i s c r e t i z a t i o n and time−s t epp ing order
%%r e s p e c t i v e l y

m = 300 ;

kappa = l i n s p a c e (0 , pi ,m) ; %Kappa on [−pi , p i ]

alpha = dt . / dx ; %alpha determined f o r each t imestep

omega = ze ro s (dim ,m) ;

%%Star t for−loop that determines the d i s p e r s i o n r e l a t i o n . The outer loop
%%f i x e s the time−s tep s i z e and the inner loop f i x e s kappa in [−pi , p i ] . Then
%%omega ( kappa ) i s determined f o r that p a r t i c u l a r time−s tep and value o f
%%kappa accord ing to the Genera l i zed Eigenvalue Problem (GEVP) determined
%%in the paper .
f o r k=1:dim

f o r j =1:m

m1 = ( 2 + cos ( kappa ( j ) ) ) / 3 ;
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a1 = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ;

c1 = (1 + exp(−1 i ∗kappa ( j ) ) ) / 3 ;

c2 = (1 + exp (1 i ∗kappa ( j ) ) ) / 3 ;

d1 = 8/45∗( 1 − exp(−1 i ∗kappa ( j ) ) ) ;

d2 = 8/45∗( 1 − exp (1 i ∗kappa ( j ) ) ) ;

i f dim == 1

B = −2∗m1 ; %l o c a l mass matrix

A = alpha ˆ2∗a1 ; %l o c a l s t i f f n e s s

e l s e i f dim ==2

B = −2∗[ m1 c1 ; c2 8/15 ] ; %l o c a l mass matrix

A = alpha ˆ2∗ [ a1 0 ; 0 1 6 / 3 ] ; %l o c a l s t i f f n e s s

e l s e i f dim == 3

B = −2∗[ m1 c1 d1 ; c2 8/15 0 ; d2 0 512/945 ] ; %l o c a l mass matrix

A = alpha ˆ2∗ [ a1 0 0 ; 0 16/3 0 ; 0 0 1024/45 ] ; %l o c a l s t i f f n e s s

end

%%In the f o l l ow ing , we determine the matr i ce s
%%nece s sa ry f o r determining the d i s p e r s i o n r e l a t i o n

E = e i g (A,B) ;

temp = E( k ) + 1 ;

temp = acos ( temp ) ;

omega (k , j ) = r e a l ( temp )/ dt ;

end

p lo t ( kappa , omega (k , : ) , ’ r . ’ , kappa , kappa , ’ b . ’ , ’ Markers ize ’ , 5 )
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x l a b e l ( ’ kappa ∗ dx ’ )
y l a b e l ( ’ omega ∗ dx ’ )
legend ( ’ Fully−d i s c r e t e d i s p e r s i o n r e l a t i o n ’ , ’ Continuous d i s p e r s i o n r e l a t i o n ’ )
hold on ;
drawnow ;
end
end

7.7 Code - Dispersion relation for symplectic time-stepping algorithms

f unc t i on S y m p l e c t i c G e n e r a l i z e d S t a b i l i t y (dim , order , dx , dt )
%%The f o l l o w i n g func t i on determines the d i s p e r s i o n r e l a t i o n f o r Linear ,
%%Quadratic and Cubic Lagrangian F i n i t e Elements toge the r with symplec t i c
%%time−s t epp ing a lgor i thms o f a r b i t r a r y order 1 − 4 . The inputs dim and
%%order determine the s p a t i a l d i s c r e t i z a t i o n and time−s t epp ing order
%%r e s p e c t i v e l y

%Determine C o e f f i c i e n t s f o r time−s t epp ing a lgor i thm based on the input ” order ”
i f order == 1

a = [ 1 ] ; b = [ 1 ] ;

e l s e i f order == 2

a = [ 0 . 5 0 . 5 ] ; b = [ 0 1 ] ;

e l s e i f order == 3

a = [ 2 / 3 ; −2/3; 1 ] ;
b = [ 7 / 2 4 ; 3/4 ; −1/24];

e l s e

a = [ (2 + 2ˆ(1/3) + 2ˆ(−1/3))/6; (1 − 2ˆ(1/3) − 2ˆ(−1/3))/6;
(1 − 2ˆ(1/3) − 2ˆ(−1/3))/6; (2 + 2ˆ(1/3) + 2ˆ( −1/3))/6 ] ;

b = [ 0 ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ; 1/(1 − 2 ˆ ( 2 / 3 ) ) ; 1/(2 − 2 ˆ ( 1 / 3 ) ) ] ;

end

m = 300 ; %Number o f p a r t i t i o n s in [ 0 , p i ]

alpha = dt . / dx ; %alpha determined f o r each t imestep

kappa = l i n s p a c e (0 , pi ,m) ; %Kappa on [ 0 , p i ]
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omega = ze ro s (2∗dim ,m) ; %So lu t i on ve c to r s f o r p l o t t i n g in each row

%%Star t for−loop that determines the d i s p e r s i o n r e l a t i o n . The outer loop
%%f i x e s the time−s tep s i z e and the inner loop f i x e s kappa in [−pi , p i ] . Then
%%omega ( kappa ) i s determined f o r that p a r t i c u l a r time−s tep and value o f
%%kappa accord ing to the Genera l i zed Eigenvalue Problem (GEVP) determined
%%in the paper .

f o r j =1:m

A = ze ro s ( dim ) ; %Declare l o c a l s t i f f n e s s matrix

B = ze ro s ( dim ) ; %Declare l o c a l mass matrix

AA = eye (2∗dim ) ; %Declare AA f o r the GEVP: AA − lambda BB = 0

BB = eye (2∗dim ) ; %Declare BB f o r the GEVP: AA − lambda BB = 0

E = ones (2∗dim , 1 ) ;

i f dim == 1

B = ( 2 + cos ( kappa ( j ) ) ) / 3 ; %l o c a l mass matrix

A = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ; %l o c a l s t i f f n e s s

e l s e i f dim == 2

m1 = ( 2 + cos ( kappa ( j ) ) ) / 3 ;

a1 = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ;

c1 = (1 + exp(−1 i ∗kappa ( j ) ) ) / 3 ;

c2 = (1 + exp (1 i ∗kappa ( j ) ) ) / 3 ;

B = [ m1 c1 ; c2 8/15 ] ; %l o c a l mass matrix

A = [ a1 0 ; 0 1 6 / 3 ] ; %l o c a l s t i f f n e s s

e l s e i f dim == 3

m1 = ( 2 + cos ( kappa ( j ) ) ) / 3 ;

a1 = 4∗ s i n ( kappa ( j ) / 2 ) . ˆ 2 ;
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c1 = (1 + exp(−1 i ∗kappa ( j ) ) ) / 3 ;

c2 = (1 + exp (1 i ∗kappa ( j ) ) ) / 3 ;

d1 = 8/45∗( 1 − exp(−1 i ∗kappa ( j ) ) ) ;

d2 = 8/45∗( 1 − exp (1 i ∗kappa ( j ) ) ) ;

B = [ m1 c1 d1 ; c2 8/15 0 ; d2 0 512/945 ] ; %l o c a l mass matrix

A = [ a1 0 0 ; 0 16/3 0 ; 0 0 1024/45 ] ; %l o c a l s t i f f n e s s

end

%%In the f o l l o w i n g loop , we determine the matr i ce s
%%AA and BB f o r the Genera l i zed Eigenvalue Problem

ti ldeM = [ eye ( s i z e (B) ) z e ro s ( s i z e (B) ) ; z e r o s ( s i z e (B) ) B ] ;

UpperRight = [ z e ro s ( s i z e (A) ) eye ( s i z e (A) ) ; z e r o s ( s i z e (A) ) z e ro s ( s i z e (A) ) ] ;

LowerLeft = [ z e ro s ( s i z e (A) ) z e r o s ( s i z e (A) ) ; −A ze ro s ( s i z e (A ) ) ] ;

f o r k =1: order

Le f t = ( ti ldeM − dt∗a ( k )∗UpperRight ) ;

Right = ( ti ldeM + dt∗b( k )∗ LowerLeft ) ;

BB = inv ( Right )∗ Le f t ∗BB;

end

E = e i g ( AA , BB ) ;

temp = E;

temp = log ( temp )/( dt ∗1 i ) ; %Determine omega ( kappa )

omega ( : , j ) = r e a l ( temp ) ; %Ensure that omega ( kappa ) i s r ea l−valued

end

f o r t = 1 :2∗dim
p lo t ( kappa , omega ( t , : ) , ’ r . ’ , kappa , kappa , ’ b . ’ , ’ Markers ize ’ , 2 )
x l a b e l ( ’ kappa ∗ dx ’ )
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y l a b e l ( ’ Err ( kappa)=omega ∗ dx − kappa ∗ dx ’ )
legend ( ’ ( red ) − Numerical D i spe r s i on Relat ion ’ ,

’ ( b lue ) − Continuous Di spe r s i on Relat ion ’ )
hold on

end

end
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