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Abstract
Organic light emitting diodes (OLEDs) have enjoyed a strong interest in recent years. Such devices
have a wide area of application such as flexible and low-cost screens as well as for indoor lighting.
If the reverse process is desired organic materials can also be used to create organic photovoltaic
devices. In both of these cases molecular excitations, also called excitons, play an extremely
important role as they emerge right at the photon-matter interface and therefore determine the
interaction of the semiconductor with light. In order to achieve highly efficient organic optoelectronic
devices understanding of the exciton dynamics is crucial and is often modeled either in a continuum
approximation or by stochastic methods. In both cases the system can be numerically simulated, by
discretizing the continuum equations in the former and employing kinetic Monte-Carlo methods in
the latter case in order to support the research in this field.

In this work, a different approach will be investigated which can be found somewhere in between
continuum models and kinetic Monte-Carlo, namely the formulation of exciton dynamics as Master
equations. This Master equation model describes the time-evolution of exciton occupation for
each molecule in a 3D grid under the assumption that only strongly localized Frenkel-excitons
need to be considered, where the model contains all commonly dominant mechanisms such as
(non-)radiative decay, (reverse) inter-system crossing, polaron quenching, triplet-triplet annihilation
and generation by charge carrier recombination and optical absorption. Furthermore, transport is
modeled as hopping by Förster resonance energy transfer as well as Dexter electron transfer using
their physically derived rate expressions. Diagonal disorder is considered as either uncorrelated or
correlated Gaussian noise in the local energy levels.

The model is implemented as highly parallelized C++ code and coupled to a charge carrier simulation
using the 1D continuum approach provided by the commercial software setfos. The solver solves for
both steady-state using a full Newton iteration algorithm as well as transient conditions where the
integration over time is numerically achieved using explicit and implicit Runge-Kutta methods with
integrated stepsize control. Some examples are simulated using the new code for both cases where
the numerical results show very good agreement with literature. Furthermore, the model is compared
to the distinct approach of using a diffusion-based continuum model for excitons which shows the
benefits of the Master equation approach, namely very easy modeling of multi-layer devices, spatial
resolution of mixed host-guest systems as well as physically more sound transport taking into account
asymmetry in the transport rates and interactions beyond the nearest neighbor.
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Chapter 1

Introduction

In this introductory chapter the motivation for the topic of this thesis is explained. Various
applications in real-world problems are shown as well as a short overview over different approaches to
modeling exciton dynamics is given. After that, the goals of the project are presented and elaborated
in order to understand the resulting structure of the thesis and different challenges that come with
those goals. Finally, an overview over the structure of the thesis is given with a short outline about
what the different chapters tackle.

1.1 Motivation
Organic semiconducting materials have been attracting a lot of attention over the recent years. As

the name suggests, these semiconductors use organic materials as opposed to the already widely used
inorganic semiconductors like Si, GaAs, InGaN and many more. While they often have electrically
less favorable properties compared to inorganic semiconductors such as charge carrier mobilities,
their manufacturing costs are lower and they can be applied in a range of applications such as
flexible electronics and optoelectronics. A more detailed description of the properties of organic
semiconductors is given in chapter 2 (page 5) along with a more elaborate comparison with inorganic
semiconductor materials.

The most interesting use of the organic semiconductors in the scope of this thesis are optoelectronics
where the light-matter interaction drives the whole application. The two most famous technologies
in this field are most probably organic solar cells where incident photons generate mobile charge
carriers which can be extracted and used as a renewable source of energy and the inverse process
where an injection of current into an organic semiconductor leads to recombination of oppositely
charged carriers releasing a photon and thus producing light. Devices exploiting the latter physical
process are commonly denoted as organic light emitting diodes, or OLEDs, which will be the main
focus of this work.

Excitons emerge right at the photon-matter interface and are therefore of utmost importance in
understanding and developing such efficient optoelectronic technologies. A more detailed description
of the governing physics will be given in chapter 3 on page 25. As the diverse mechanisms and
interactions driving these dynamics can be quite complex and often exact analytical laws are only
available for very basic or simplified systems, computational methods have to be used to support
the development process by numerical simulation. Two major modeling approaches which are used
widely are continuum models such as drift-diffusion (DD) models [1, 2, 3] and discrete probabilistic
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Chapter 1. Introduction

models such as kinetic Monte-Carlo (kMC) [4, 5]. While the DD approach is computationally highly
efficient, the models can often not represent exactly the underlying physics. On the other hand,
kMC methods can simulate basically any physical process to the desired accuracy given the state
transition rates are known, however, they are computationally very expensive.

Exciton simulation using a Master equation (ME) approach can be found somewhere in between
the DD and kMC approaches, as the basic model is still probabilistic in nature as in kMC, however,
the possible realizations of the system are not explicitly followed but for all states a certain occupation
probability is calculated. As a result, the method is computationally still more expensive than a
DD model, yet cheaper than a full kMC simulation. The feasibility of such a ME approach shall
be investigated as an additional tool which can still be used on standard hardware but providing a
sounder physical basis than the DD approach.

1.2 Project goals
As already hinted in the preceding section, the main goal of the project is to investigate the

feasibility of employing such a 3D-ME approach to model and numerically simulate exciton dynamics
in organic semiconductors for OLED applications. An expanded list of objectives is shown below.

– Write a solver prototype which solves the ME model for exciton dynamics in
organic semiconductors.

– Include commonly accepted excitonic and efficiency loss effects like anni-
hilation, polaron quenching etc.

– Solve the resulting model in steady-state as well as in transient conditions.

– Analyze the feasibility of such a solver for usage on a “normal” personal com-
puter workstation.

– Couple the ME exciton simulation to a DD charge carrier simulation to achieve
a hybrid ME-DD solver.

Master equation models have already been used in modeling organic semiconductors mostly in
the scope of charge carrier dynamics, i.e. electron and hole transport by intermolecular hopping (see
for example [6, 7, 8]) using the Miller-Abrahams hopping formalism. For exciton migration however,
this approach is not yet as widely used, therefore it will be interesting to investigate the possible
benefits and drawbacks of such an approach, especially considering the novelty to combine a Master
equation simulation for excitons with the well-known DD method for charge carriers.

This coupling will be also of interest, one needs to be aware of the fundamental differences of the
two approaches and has to take those into account when combining them. One major difference
is of course the mathematical description of the underlying physics, requiring different input data
to characterize the system. On the other hand, the numerical differences are also of importance as
a DD model is numerically solved very differently from a Master equation model with long-range
interactions.

Finally, the results using such an approach should also be compared to the results of a pure
1D-DD approach to identify the similarities and of course the possible advantages and disadvantages
of the ME model compared to the DD model.
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1.3. Thesis structure

1.3 Thesis structure
The thesis is generally organized into four parts:

1. Introduction

2. Implementation

3. Numerical description and analysis

4. Results and discussion

In the first part, an introductory overview over the underlying physics is given. This includes the
general physical basics of organic semiconductors with a comparison to inorganic semiconductors and
relevant physics for some applications (chapter 2). This is followed by a more detailed description of
the governing physics regarding exciton dynamics where the relevant processes represented in the
model are explained (chapter 3). Both of these chapters rely strongly on the textbooks of Köhler and
Bässler [28], Valeur and Berberan-Santos [58] and Schwoerer and Wolf [49]. As already mentioned,
this description will lead to the mathematical model where the various processes explained before
will be combined to a mathematical model of a system of ordinary differential equations (ODEs)
describing the evolution in time of state occupation probabilities. A more detailed look at the
resulting model, its properties and auxiliary formulations, such as boundary conditions and disorder
models, will be given in chapter 4.

The second part will address the actual code implementation. A schematic overview over the
code is given with a description of the most important functions and how the numerical methods are
implemented where the details of these methods is then given afterwards. The general workflow on
how the code solves the model along with used data structures is explained as well.

As mentioned, the third part of the thesis will be tackling the numerical methods used to actually
solve the mathematical models. This part will be mostly split into two sections, a description of
methods for solving under steady-state conditions on the one hand (section 6.2) and a description of
numerical approaches and stability under transient conditions on the other (section 6.3).

The fourth and final part will deal with the actual results of the simulations. Some examples
from literature will be reproduced to check the physical validity of the results and a comparison to a
different model (1D-DD) will be examined. This gallery will be split into three sections representing
the three different solutions of the model, namely 1D steady-state (section 7.1), 3D steady-state
(section 7.2) and 3D transient (section 7.3).

Finally, the performance and usefulness of this ME approach will be examined, and a final
conclusion is drawn. Some additional ideas are given regarding the model which could be explored
in the future.
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Chapter 2

Physical Basis of Organic
Semiconductors

In this chapter an overview over the physical basis of organic semiconductors is given for a
better understanding of the processes that affect the exciton dynamics which will be described
later on. The first section 2.1 will introduce some different types of organic materials used
for optoelectronic devices and some examples will be given. Also, the distinct molecular
structure of these different materials used as organic semiconductors will be examined and
compared to the molecular structure of inorganic semiconductors.

This structure is of high importance to the properties of the material, as it determines
the energetic landscape in which not only charged particles such as electrons and holes, but
also photons, will move, and therefore gives rise to specific electrical and thermodynamic
properties of the material. These resulting electrical properties are discussed in the subsequent
section 2.2.

After that, in section 2.3, some experimental methods used to understand and extract
certain physical parameters are described, as they give some basic idea on the strength of
physical processes which are used as input data for the mathematical systems which describe
the physical mechanisms. These are the systems one wishes to solve numerically by using
simulation tools.

In the last section 2.4 finally some application-specific physical basics are described. As this
thesis is mainly concerned with excitonics, only optoelectronic applications are considered,
namely organic solar cells and OLEDs.

2.1 Materials and structure
In this section the materials which are used in organic optoelectronics shall be presented

and their molecular structure is discussed. Also, some concepts from organic materials are
presented such as positional and energetic disorder and molecular orbitals.

2.1.1 Materials used in organic optoelectronics
As the name suggests, this type of semiconductor consists out of organic materials. Organic

materials are characterized by a backbone consisting of carbon (C) atoms with an often
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large number of hydrogen (H) atoms attached to them. However, also other elements are
often present in such organic molecules such as nitrogen (N), sulfur (S), oxygen (O) and
even metallic elements.

First observations of photoelectric behavior in organic materials already started in the
early 20th century using anthracene [9]. Research on using small organic molecules for
optoelectronic applications started in the 1950s, when Bernanose published a paper about
observed electroluminescence using for example brilliant acridine orange E [10]. Since then,
a lot of progress in material design and manufacturing was made, see for example the
introduction of vacuum deposition which enabled the manufacturing of very thin electron
and hole transport layers in the 1980s [11].

Until the 1980s mostly such small organic molecules were considered. A broad second
type of molecules has also been discovered at this time which provided many beneficial
characteristics, the type of organic polymers. The use of such polymers like polyacetylene
for organic photovoltaics (OPV) started in the 1980s but with still extremely low power
conversion efficiencies (<0.1 %). Polymeric materials have also experienced an increased
application for OLED devices since the successful use of poly(p-phenylene vinylene) as active
layer in a green-yellow OLED [12].

In the following, these two types of molecules are described using some widely used
materials for OLEDs and OPV today as examples.

Small molecules

The name “small molecule” comes from the fact that the carbon backbone of the molecule
only consists of a short sequence and/or polycyclic aromatic compounds. These materials
are normally deposited by vacuum sublimation but may also be processed in solution or
dispersion [13].

One such example used for OPV is Phenyl-C61-butyric acid methyl ester (PCBM) and
is considered an organic n-type semiconductor material, while Alq3 is a material used as
an electron transport layer (ETL) in OLEDs. The chemical structure of both molecules is
depicted in fig. 2.1a and 2.1b, respectively. In both cases the carbon atoms are bonded into
a stable individual molecular unit.

(a) PCBM. (b) Alq3.

Figure 2.1: Molecular structure of two small molecule materials used as semiconductors (Source:
Sigma-Aldrich).
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2.1. Materials and structure

Polymers

The second type of organic materials used for OPV and OLEDs are the polymers, which
in contrast to the small molecules consist generally of many smaller identical molecular
building blocks covalently bonded together forming a very long chain. These long molecular
chains show some interesting electrical properties which are not present in small molecules,
as will be shown later. These are normally very soluble which enables them being processed
in solution and even being printed [13].

Two examples for such materials are given in fig. 2.2. Poly(3-hexylthiophen-2,5-diyl)
(P3HT) is a p-type organic semiconductor used in OPV as hole transport (HTL) and
hole injection layer (HIL), whereas Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)
(PEDOT:PSS), which is actually a mixture of two ionomers, is used as a HIL or even as
transparent electrode for OLEDs.

In both cases the figure shows a single building block of the long polymer chain, as denoted
by [ ]n.

(a) P3HT. (b) PEDOT:PSS.

Figure 2.2: Molecular structure of two polymer materials used as semiconductors (Source: Sigma-
Aldrich).

2.1.2 Supermolecular structure of organic semicon-

ductors
The organization of single molecules in the macroscopic matrix which forms the solid-

state material is one of the main differences between organic semiconducting materials and
inorganic ones. Inorganic semiconductors in general form covalent bonds (electrons are
shared between two atoms) chained together over large scales forming a well-ordered crystal
structure (see fig. 2.3a), or at least patches of such ordered crystals with imperfect atomic
connections at their interfaces (so-called dangling bonds). Sometimes inorganic materials
are even used in amorphous form, where no such regular crystal lattice exists. These strong
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covalent bonds on large scales lead to certain macroscopic characteristics such as increased
hardness, melting temperature and thermal conductivity.

In contrast to that, organic materials almost always do not form covalent bonds on
larger scales, instead, the molecular matrix is held together by Van-der-Waals (VdW) or
dispersive forces (the molecules themselves are of course still made up of covalently bonded
atoms). This much weaker interaction is not based on shared electrons, instead, it is an
attractive interaction by induced dipoles. Even though the atoms in the organic molecules
are electrically neutral and the molecule itself does not carry any permanent electric dipole,
random quantum-mechanical fluctuations in electron density can give rise to a temporary
electric dipole on the molecule. Through electrostatic interactions this induces an opposite
dipole in the neighboring atoms which leads to an attractive force between the two.

At some point this attractive force is overcome by repulsive ones such as quadrupolar
interactions and repulsion of electrons due to the Pauli-exclusion principle. This combination
leads to an equilibrium distance between the molecules where the energy is minimized. This
is often modeled as a Lennard-Jones potential [14]:

VLJ(rij) = −4εLJ

[(
σLJ
rij

)6

−
(
σLJ
rij

)12
]

(2.1)

where σLJ and εLJ in (2.1) denote the intermolecular distance where VLJ = 0 and the depth
of the potential well, respectively. The first term in the bracket represents “long-range”
attractive VdW forces, whereas the second term represents the short-range repulsive forces.
In conjugated molecules (see section 2.2.1) the intermolecular interactions are often so-called
π–π interactions, where the π-bonds of two different molecules interact with one another
[15]. These π–π interactions, which are very important in organic semiconductors, result in
certain specific molecular arrangements. One example of such an arrangement is shown in
fig. 2.3b.

2.1.3 Energy levels
One of the most important quantities in physics governing dynamic systems is energy, this

of course also applies to charges in organic materials. As a system tends to evolve towards
a state with minimum energy, knowledge about the shape of the energetic landscape in a
semiconductor is of tremendous interest. First a very quick recap about single-atom energy
levels are given followed by an energetic description of a multi-atom system which leads to
the LUMO and HOMO, a crucial concept in organic semiconducting materials.

Electronic energy states of a single atom

An electron which moves around an atomic nucleus in equilibrium is described by the
time-independent Schrödinger equation

Ĥψ = Eψ (2.2)
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5.1. BAND STRUCTURE 79

Band structure of silicon
Silicon crystallizes in the diamond structure. The atoms are arranged on the sites
of two interpenetrating superposedf.c.c. lattices (face-centered cubic). Combin-
ing the central atom of the emphasized tetrahedral structure in Fig. 5.5 (consisting
of 5 atoms) with one of its neighbors, one obtains the so-calledbasisof the crys-
tal. The basis is periodic on a simplef.c.c. lattice. In III-V semiconductors, which
crystallize in the same structure (“zincblende”), the basis consists of two differ-
ent atoms, e.g. Ga and As in GaAs. In general, a crystal consists of a basis and a

diamond.ID.epsi
107× 79 mm

a=5.43 Å

Figure 5.5: Crystal structure of silicon.

so-called Bravais lattice, which in case of silicon is af.c.c. lattice with the lattice
constanta = 5.43Å . The Bravais lattice is a set of points{Rl} (lattice vectors)
that is generated by three noncoplanar translationsa1, a2, a3, which are vectors
of three-dimensional space

{Rl}= l1a1+ l2a2+ l3a3 .

l j are integers. Theprimitive lattice vectorsaj of the f.c.c. lattice may be chosen
in the form

a1 =
a
2
(0,1,1) , a2 =

a
2
(1,0,1) , a3 =

a
2
(1,1,0) .

(a) Unit cell of a Si diamond struc-
ture. Adapted from [16].

(b) Unit cell of a Pentacene herringbone struc-
ture. Adapted from [17].

Figure 2.3: Comparison of the molecular structures of an inorganic material (Si) and an organic
one (Pentacene).

where Ĥ in (2.2) describes the Hamiltonian operator, which in 3D is given by

Ĥ = − ~2

2m
∇2 + V (x , y, z)

An easy example showing some important result is the particle in a box, where the electron is
confined inside a 3D box with equal side lengths a, resulting in a potential which is given by

V (x, y, z) =

0 for − a < x, y, z < a

∞ otherwise

The solution to the time-independent Schrödinger equation is then given by

ψnml =

√
8

a3
sin(

nπ

a
x) sin(

mπ

a
y) sin(

lπ

a
z) (2.3)

where the boundary condition ψ = 0 at the box faces at −a, a leads to the result that
n, m, l ∈ N. Therefore from (2.3) only certain discrete modes are allowed. The solution for
an actual atomic nucleus behaves similarly, where the potential is then given by the Coulomb
potential in spherical coordinates

V (r) = − Zq2

4πε0r

with Z the atomic number. After solving again the Schrödinger equation in this case,
the solutions will describe the so-called atomic orbitals which describe the probability of
finding an electron in a certain volume of space by taking |ψ|2. These eigenstates are fully
characterized by the three (plus one) quantum numbers n, l and m which represent electron
energy, angular momentum and the projection of the angular momentum along a specified
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Chapter 2. Physical Basis of Organic Semiconductors

axis of the electron. Each orbital characterized in this way can be filled by two electrons
due to spin-degeneracy, characterized by the spin quantum number s = ±1/2. According to
the Aufbau principle, all these orbitals are filled from lower to higher energies with electrons.
Some resulting shapes are depicted in fig. 2.4.

Figure 2.4: Atomic orbitals for an H-like atom. Source: chem.libretexts.org.

Energy states with bonded atoms

Because a material is not comprised out of single independent atoms but rather molecules
which consist of many atoms covalently bonded to one another, it is important to go one step
further and look at the resulting energy levels when two atoms bond. As already mentioned,
covalent bonds result from sharing electrons between two atoms. This can happen when two
atoms come together each with an orbital which is incompletely filled (i.e. only one electron).
Let’s take the simple case of two hydrogen atoms bonding to form an H2 molecule.

Before a bond forms, a hybridization of the atomic orbitals occurs where a new set of
orbitals form consisting of linear combinations of the original atomic orbitals. This allows
for the adjustment of the geometry to the respective number and types of bonds the atom
is engaged in. The bond then forms at an equilibrium distance between the two atoms
according to the principle of energy minimization, where the resulting molecular wavefunction
is approximated as a linear combination of the atomic orbitals (LCAO approach). As the
number of orbitals needs to be conserved, there are two resulting molecular orbitals by
taking the linear combination of the two atomic orbitals either in phase (both wavefunctions
having the same sign) or out of phase (different sign). This results in an energy splitting,
where in the case of the H2 molecule two 1s orbitals with equal energy form a σ-bond (single
bond) with a bonding (σ) and an antibonding (σ∗) state with different energies. This is
schematically shown in fig. 2.5.

Another type of bond which is of particular interest in organic semiconductors are π-bonds
which are present in double or triple bonds, such as in ethene. These bonds form between
p-orbitals which are perpendicular to the bonding axis and therefore, in contrast to σ-bonds,
there is no rotational symmetry. Again bonding (π) and antibonding (π∗) states form
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2.1. Materials and structure• schematic molecular orbital energy diagram for a symmetric diatomic molecule (such as H2) 

Molecular Orbital Energy Diagrams

61

• energy splitting increases with atomic orbital overlap  

• number of orbitals preserved but sum of all orbital energies increases (electron density increases) 

• bond energy is stabilization of filled bonding orbital σ (due to electron delocalization) 

E

H HH H

H H

H H

H HH H

1s 1s

σ (bonding)

1 H 1 H 

σ* (antibonding)

real shape LCAO simplified
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1s(H) + 1s(H)

1s(H) – 1s(H)

½ΔEσ

σ*

σ

Æ°Ø
1°S

Æ+Ø
1+S

Æ

Figure 2.5: Resulting energies for a single σ-bond in H2. α is the energy of a single s-orbital, β
the resonance integral and S the overlap integral. Source: [30].

depending on if the p-orbitals interacting are in or out of phase, where these states lie
energetically in between the σ and σ∗ states because of the weaker overlap (interaction).
The energies of the resulting states for such an ethene double bond (consisting of one σ-bond
and one π-bond) are shown in fig. 2.6.

Note again the energy splitting, which is the main point of this explanation. The state with
highest energy which is occupied by electrons is called HOMO (highest occupied molecular
orbital) and the state with the lowest energy which is still unoccupied by electrons is the
so-called LUMO (lowest unoccupied molecular orbital). The energetic difference between
them can be seen as the organic pendant to the bandgap of inorganic materials which
determines e.g. the onset of light absorption and is therefore of utmost importance for
optoelectronic applications.

Table 2.1: HOMO – LUMO gaps for some organic semiconductors [18].

Material Eoptical gap [eV] EHOMO-LUMO [eV]

Alq3 2.79 3.07
TPD 3.11 3.81
Anthracene 3.20 3.58

2.1.4 Disorder in organic semiconductors
As explained in section 2.1.2, organic materials often do not feature a highly ordered

crystal structure like inorganic materials. While inorganic materials form energetic bands
with a very sharp band edge due to the pronounced periodicity and symmetry of the crystal
structure, organic materials exhibit disorder with energetic states fluctuating around a
certain mean energy. There are two types of disorder:

Off-diagonal disorder

This type of disorder results directly from the fact that the organic molecules in the matrix
are not perfectly homogeneously arranged in the crystal. This leads to a fluctuation of the
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• simplified and schematic molecular orbital energy diagram of the ethene molecule

Molecular Orbital View of the Carbon-Carbon Double Bond

67

• only orbitals of matching symmetry & orientation interact, hence sp2 with sp2, and pz with pz 

• σ-bond (from two sp2) and π-bond (from two pz) with different bond energies, symmetries 

• chemistry controlled by highest occupied, lowest unoccupied molecular orbitals (HOMO, LUMO) 

• typically π HOMO and π* LUMO between σ and σ* because pz overlap integral much smaller

2sp2 2sp2

2pz 2pz

E H2C  CH2

σ

σ*

π*
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σ
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2pz – 2pz

2sp2 – 2sp2

2sp2 + 2sp2
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LUMO

C C
H
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H

Figure 2.6: Resulting energies for a double bond in C2H4 consisting of one σ- and one π-bond.
Source: [30].

intermolecular distances and therefore of the wavefunction overlap between adjacent sites
[19]. This has a strong impact on charge transport throughout the material.

Diagonal disorder

Diagonal disorder directly affects the local molecular electronic states by altering their
energy. This can be induced by the inhomogeneous electrostatic environment due to the
already mentioned non-uniformity of the spatial distribution of molecules [20], but also
other factors such as variations of molecular conformations and size of conjugated segments,
chemical defects, impurities etc. [21].

These fluctuations lead to strongly localized states. Compared to the band-like transport
in inorganic semiconductors where the electronic states are strongly delocalized in the
conduction band, transport in organic materials is better described by a hopping from one
localized state to another. For further details see section 2.2.3.

In general, these fluctuations are modeled by a Gaussian probability distribution [7]

g(E) =
1√
2πσ

exp

(
−(E − Emean)2

2σ2

)
(2.4)

While the density of states (DOS) for inorganic materials is commonly approximated using
parabolic bands, organic materials commonly use (2.4) as their DOS because of the above-
mentioned reasons. Depending on the material this Gaussian distribution can be spatially
correlated or not, where the correlation may be induced by the interaction of electric dipoles
[22, 23] or thermally induced torsions of the polymer chains [24]. In literature this is
commonly called the Gaussian disorder model (GDM).

2.2 Electrical properties
Following the last section where molecular concepts of organic semiconductors were

introduced, this section will use these findings to discuss some emerging properties of the
material when considering interactions between adjacent molecules.
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2.2. Electrical properties

(a) Inorganic semiconductor. (b) Organic semiconductor with Gaussian dis-
order.

Figure 2.7: Comparing energy levels and DOS for organic and inorganic semiconductors.

2.2.1 Molecular electron delocalization
As we’ve seen, the atomic orbitals merge to molecular orbitals when covalent bonds are

formed which can be described by taking a linear combination of the atomic orbitals (LCAO).
In reality most molecules consist of more than just two atoms and therefore also have many
covalent bonds. Conjugated π-bonds are a special case, i.e. the case where a molecule
features alternating single- and double-/triple-bonds. In such an arrangement, the p-orbitals
engaged in the π-bonds line-up along the bond axis and start interacting strongly with one
another.

This is not the case for different arrangements! If two double-bonds are located in direct
vicinity to one another, the p-orbitals lie perpendicular to one another, and if there are more
than one single-bonds in between the double- or triple-bonds, the p-orbitals lie in arbitrary
planes to one another. Both of these arrangements lead to none or very limited electronic
interaction between the p-orbitals.

There are two different ways how such π-conjugated systems mostly appear in nature,
namely linear and cyclic systems (cyclic conjugated systems are also-called aromatic) or
even polycyclic where cyclic conjugated systems are connected linearly to one another (e.g.
tetracene). In all these systems, the resulting bandgap depends on the number of interacting
bonds. If one applies the Hückel-approximation [25] the eigenvalues (energies) are given by

En = α+ 2β cos

(
nπ

N + 1

)
(2.5)

En = α+ 2β cos

(
2nπ

N

)
(2.6)

where equation (2.5) is valid for the linear and (2.6) for the cyclic case. For both we can
see that limN→∞∆E = 0, i.e. for very long interacting systems orbitals start to interact
strongly and band-like states emerge, where the bandgap also decreases. In the limit of
large N , the bandgap vanishes, and the polymer would act like a metal, however, in reality
this is prevented as geometric distortion of the molecule will occur prohibiting complete
delocalization [26].
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(a) HOMO. (b) LUMO.

Figure 2.8: Molecular HOMO and LUMO for DIP. Adapted from [27].

2.2.2 Charge carriers on organic molecules
In order to have electrical conductivity, one needs besides good transport properties also

charge carriers which are free to move. To increase the number of mobile carriers, similarly
to inorganic semiconductors, organic semiconductors are chemically doped. This is necessary
as the energetic gap between HOMO and LUMO is too high in general for thermal activation
(see tab. 2.1). During this process, an oxidant (like I2, AsF5) for p-type doping or a reductant
(like Na, K) for n-type doping are applied to reduce or increase the number of electrons
in the molecular orbitals. This is different from the inorganic impurity doping where no
chemical reaction takes place and instead an atom at a regular lattice site is replaced.

These added mobile charges influence the molecule and induce geometric changes of the
bonds which leads to sharp energy levels in the HOMO – LUMO gap. Therefore, even though
the unperturbed π-bonds form very delocalized orbitals, the mobile charge is actually more
localized. The combination of charge carrier and its influence on its surroundings through
electrostatic interactions is called polaron and is an important quasi particle as we will see
in the so-called polaron quenching mechanism for excitons in section 3.3.4.

The correlation length (polaron delocalization) of these polarons on the organic molecule
is further reduced by the introduced types of disorder (see section 2.1.4). This includes
dynamic disorder such as torsion of single σ-bonds at higher temperatures and higher
molecular flexibility, as well as static disorder like structural defects.

2.2.3 Electric transport in organic semiconductors
The mobility of charge carriers in a solid-state material is mainly governed by five different

terms of the single-electron Hamiltonian, namely

– The electron transfer term H1 (electronic interaction between two sites)

– The diagonal dynamic disorder term H2 (vibration induced changes in site energy)

– The off-diagonal dynamic disorder term H3 (vibration induced changes of the intersite
coupling)

– The diagonal static disorder term H4 (distribution of site energies)

– The off-diagonal static disorder term H5 (distribution of intersite couplings)
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The type of transport regime is then governed by the relative magnitudes of these terms
which can be roughly categorized in three types.

Band transport

Band transport is characterized by very strong coupling between transport sites [28], i.e.

H1 > H2, H3, H4, H5

This transport regime is most frequently observed in inorganic molecular crystals at low
temperatures due to the long-range homogeneous and periodic structure held together by
strong covalent bonds, as this results in widely delocalized coherent Bloch waves throughout
the crystal. It can also be observed in highly ordered organic molecular crystals at low
temperatures.

The confinement to low temperatures of this type of transport results from the fact that in
such an environment the density of phonons is low (low H2, H3). A characteristic therefore
is a temperature dependency of the mobility of the form

µ ∝ T−n

as electron-phonon scattering increases with increasing temperature.

Band-like transport

In case where the dynamic off-diagonal disorder increases to the same order of magnitude
as the interaction term

H1 ≈ H3

the carriers get localized due to thermal motion of the molecules. Transport is therefore
achieved by a series of incoherent jumps from site to site, but as dynamic off-diagonal disorder
decreases with decreasing temperature and therefore mobility increases it follows again a
power law dependence (band-like)

µ ∝ T−n

Incoherent transport

This type of transport occurs when the dynamic and/or static disorder dominates, i.e.

H1 < H2, H3, H4, H5

Transport is then completely governed by sequential incoherent hopping events between sites.
This is a very important transport mechanism in organic materials at elevated temperatures
and is also significant then later for exciton transport mechanisms considered in the model. In
the case of strong dynamic disorder, polaronic transport describes rates as thermally assisted
tunneling where the reorganization energy λ, which consists of an inner (intramolecular
distortion upon charging) and outer (intermolecular displacement and polarization) part,
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Chapter 2. Physical Basis of Organic Semiconductors

plays an important role, see fig. 2.9. In rigid solid-state we have λinner � λouter. Using
Fermi’s golden rule this leads to transfer rates of the form of the semiclassical Marcus rate
[29]

k =
J2

~

√
π

λkBT
exp

(
− λ

4kBT

)
(2.7)

where J is the electronic coupling element. The hopping rate from (2.7) leads to a mobility
of the form

µ ∝ (kBT )−
3
2 exp

(
− λ

4kBT

)
which is an Arrhenius type temperature dependence up to λ/4kBT � 1 from where on it
follows the T−3/2 dependency.
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Figure 2.9: Thermally assisted tunneling if no static disorder is present. Adapted from [30].
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Figure 2.10: Transport regimes for different strengths of the electron-phonon coupling. Adapted
from [28].

A second type of incoherent transport is the case where static disorder is dominant. Then
the energies in the system are described by statistical distributions (often Gaussian, see
section 2.1.4) and carrier transport becomes a “random-walk”. Because now hops are not
energetically symmetric anymore, one needs to introduce a Boltzmann factor if the hop is
from lower to higher energy. The electronic coupling can be either a dipole coupling (as will
be used for Förster transport rates, see section 3.2.1) or an exchange coupling which is the
appropriate choice for charge carriers.
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This leads to so-called Miller-Abrahams hopping rates [31]

wij = ν0 exp (−2γrij) ·

exp
(
−Ej−Ei

kBT

)
if Ej > Ei

1 if Ej ≤ Ei
(2.8)

where ν0 is the hopping prefactor and γ the inverse localization radius of the electron
wavefunction.

If such a type of transport model is used with a Gaussian DOS, it can be shown from
Monte-Carlo simulations [32] that the mobility follows a non-Arrhenius type dependence

µ ∝ exp

(
−c
(

σ

kBT

)2
)

where σ is the width of the Gaussian distribution, and a Poole-Frenkel electric field dependence

µ ∝ exp
(
γ(T )

√
F
)

which may be used to model the mobility in the electronic part of the solver used in this
thesis. This mobility regime is different from band-transport as mobility increases with
increasing temperature instead of decreasing.

2.3 Experimental techniques
In this section a short description of a few experimental techniques is given which are

used to determine electron and hole mobilities. Further experimental techniques for different
parameters such as HOMO/LUMO levels and recombination will be discussed in section 3.4.

2.3.1 Time-of-flight (TOF)
The simplest experiment is based on the idea of applying a constant DC voltage to a film

of the material under investigation. The film is then excited by a laser pulse which generates
free charge carriers close to one of the electrodes, where one species of carriers (electrons
or holes) is directly captured, while the other one starts moving through the material to
the opposite electrode. The initial spike (see fig. 2.11) appears due to relaxation of excess
carriers which are not yet in equilibrium with the DOS of the material.

By measuring the mean time of flight for the traveling species the mobility of the material
for the respective species can be estimated by

µ =
d

ttrF

with d the thickness of the film. However, this method has some drawbacks, especially the
fact that thin films cannot be examined by this method because the assumption that the
charge carriers are generated completely at one interface is not valid anymore (due to the
exponential absorption the resulting charge carrier density will be spatially spread over a
significant fraction of the film thickness). Other requirements include time-independent
mobility and small RC time constants compared to ttr.
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Figure 2.11: Typical TOF experiment. Source: [28].

2.3.2 Charge extraction by linearly increasing volt-

age (CELIV)
CELIV is an improved method over TOF which can also be applied to thin films as the

measurement can also be taken without the need of photoexcitation of carriers. Again, the
resulting current transients through a film of the material of interest are measured upon
imposed voltage pulses where the voltage now linearly increases.

After discarding measurements from the first voltage pulse (charging of electrodes), the
mobility can be calculated using the time until the maximum current flow is reached and
the relative change of this maximum current, see fig. 2.12.

µ =
2d2

3At2max (1 + 0.36∆j/j(0))

where A = dV/dt the slope of the voltage transient. Because here charge carriers in equilibrium
are probed, relaxation is not an issue and the resulting mobility is more accurate, however, one
still needs to be cautious if e.g. the mobility is field dependent or bimolecular recombination
is present.

U

21

Delay time

Transit time

tmax tmax

Transit time

Time

Time

j

Δ j

j(0)

Figure 2.12: Course of a CELIV experiment. Source: [28].
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2.4. Applications of organic semiconductors

2.4 Applications of organic semiconductors
After discussing some of the basic mechanisms of electronic transport in organic semi-

conductors some applications of these processes will be presented. The discussion shall be
limited to the organic pendant of inorganic LEDs and solar cells, namely OLEDs and OPV,
especially as we will see that excitons play a crucial role in both of them.

2.4.1 Organic photovoltaics (OPV)
Photovoltaic generators are widespread today, they are present on roofs, facades and even

backpacks. Almost always these are wafers made from crystalline Si which is obvious when
considering that Si wafer-based technology still has a market share of ∼ 95% [33]. This is
mostly thanks to the abundant availability of Si in nature and the very high efficiencies that
can be reached using this material for PV (record cell efficiency 26.7% for mono-crystalline
Si [33]).

Organic solar cells cannot (yet) compete with Si cells efficiency wise due to the much
lower carrier mobilities, however, they feature other benefits such as the possibility to use
thin films of organic material as absorber layers due to high absorption coefficients and
therefore allow for cost-efficient roll-to-roll processing. Also, the resulting bandgap (LUMO -
HOMO) can be easily tuned by engineering the molecules of the material to have certain
features, e.g. length of the conjugated π-systems. Finally, disposal is very easy because of
the much lower toxicity of the employed materials. One of the biggest drawbacks of organic
cells, however, is the quick cell degradation which is still a difficult challenge and makes
extraordinary insulation necessary.

Structure

The general structure of an organic solar cell is similar to the structure of inorganic ones.
There is an absorber layer where the main photon absorption takes place combined with an
interface for dissociation of electron hole pairs, sandwiched between electrodes made out of
metal or metal oxides for transparency.

A typical structure of such an organic solar cell featuring a so-called bulk heterojunction
is depicted in fig. 2.13a. Light absorption takes place in the absorber layer, where an
electron-hole pair is generated which diffuses through the layer until it reaches a donor-
acceptor interface where it dissociates. The separated charges then drift to their respective
electrodes where they are collected and used to transfer energy. Charge selective layers
prevent diffusion of carriers to the wrong electrodes. These processes are explained a bit
further in the following.

Light absorption

As mentioned in earlier sections, due to the weaker delocalization of the electron wave-
functions in organic semiconductors, the formation of bands is reduced and only thin bands
form. This leads to mostly narrow absorption spectra with a very pronounced and strong
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(a) General structure of an OPV cell.
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Figure 2.13: Structure and absorption of OPV cells. Adapted from [34].

peak (see fig. 2.13b) compared with inorganic materials where the absorption spectra are
much broader due to their large bandwidth.

On the other hand, the extinction coefficient featured by organic absorbers is very high,
in the order of α ∼ 105-106 cm−1 compared to inorganic extinction coefficients of α ∼ 103-
105 cm−1. This allows for thin films as most of the light is already absorbed after some
100 nm.

After a photon is absorbed, it creates an electron hole pair which is still coulombically
bounded. Due to the lower dielectric constant in organic materials, this Coulomb interaction
is strong and the binding energy of the pair high. Therefore, the intrinsic electric field is not
strong enough to separate the pair into free charge carriers by itself and a charge separating
interface is needed.

Charge separation

For this discussion the spatial energy diagram depicted in fig. 2.14a is helpful. The
electron-hole pair is generated in the p-type polymer layer and is still strongly bounded.
To make sure that the pair dissociates quickly and does not recombine radiatively or non-
radiatively, the interface with the electron-accepting material PCBM is spread throughout the
absorber layer (bulk heterojunction, compared to planar heterojunction). At the interface, it
is energetically favorable for the electron to move into the electron-accepting material due to
the lower energy of the LUMO level there, while the hole energetically favors the polymer
with the higher HOMO.

One drawback of the bulk heterojunction is the subsequent drift and diffusion of the free
carriers to their respective electrodes. Because the paths are intertwined and not well ordered,
it can happen that a carrier is trapped in an isolated region or that it recombines again
while moving towards its electrode close to the interface, see fig. 2.14b. This architecture is
still much better performing than planar heterojunctions, though.

To make sure that carriers do not diffuse to the wrong electrodes where they’d recombine
with the opposite charge, charge selective layers are deposited which act as an energetic
barrier for the unwanted charge type, preventing its further transport.
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The diffusion length of excitons is typically ∼ 10 nm. In order for most excitons to diffuse to 
the interface of layers and split into carriers, the layer thickness should also be in the same 
range. However, a polymer layer needs a thickness of at least 100 nm to absorb enough light. 
At such a large thickness, only a small fraction of the excitons can reach the heterojunction 
interface. To overcome this bottleneck, a bulk heterojunction architecture is envisaged. 

(b) Resulting interfaces for a bulk
heterojunction.

Figure 2.14: Energy diagram and interfaces for an OPV cell. Adapted from [34].

Organic - inorganic hybrid cells

As we’ve seen, both organic and inorganic materials have their distinct benefits and
drawbacks. Organic-inorganic hybrid cells try to combine the best of both worlds, namely
the good electrical properties like high mobility of inorganic and good optical properties like
tunable bandgap and thin film absorption of organic semiconductors. The two most widely
known types are dye-sensitized solar cells (DSSC) and perovskite cells.

DSSC

In DSSCs, a porous inorganic semiconductor is coated with an organic small molecule dye
as shown in fig. 2.15a. Photon absorption happens in the strongly absorbing organic dye
from where the electron is transferred directly over to the inorganic mesoporous material
where it begins to move towards the transparent electrode. The hole is transported to the
opposite electrode by oxidation of a (usually) liquid organic electrolyte.

Possible recombination can happen by either direct deactivation of the organic dye (“fall
back” of the electron), recombination of a conduction electron with an oxidized dye molecule
or recombination by reaction with the oxidized electrolyte. Record efficiencies at the moment
of up to 15% were achieved where the dye itself is actually composed of a perovskite material
(see below) [35].

Perovskite cells

Recently an extraordinary research interest emerged concerning this type of cell as they
promise very high possible efficiencies with the record cell efficiency achieved in the lab of
20.9% [36]. The name comes from the particular crystal structure that they share with
the basic generic formula ABX3, depicted in fig. 2.15b. One example of such a material is
CH3NH3PbI3 (Methylammonium - Lead - Iodide).

Some reasons why perovskite cells perform so well are assumed to be

– High crystallinity and large grains (reduced grain boundary scattering)

– High absorption coefficient

– Long carrier diffusion length >1 µm
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– “Intermediate” bandgap between direct and indirect

– High open-circuit voltage

A big challenge with perovskite cells is their long-term stability as they lose power-
conversion efficiency quite quickly. A second challenge are the hysteresis effects in their IV
characteristics due to interfacial defects, unbalanced charge transport and migration of slow
interstitial ions.
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(a) Internal structure of a DSSC. Source: [37].
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(b) The generic structure of a per-
ovskite unit cell. Adapted from
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Figure 2.15: Structures of organic-inorganic hybrid cells.

2.4.2 Organic light emitting diodes (OLEDs)
While OPV absorbs light and produces a current for electric power generation, an OLED

provides the inverse process. A current is injected into an organic semiconductor stack where
the carriers recombine and emit photons. These can be used for flexible and high-contrast
screens as well as general lighting applications.

Structure

An efficient OLED consists out of a sequence of layers, each specialized for a specific task
which increases the performance of the device. Such a stack is depicted in fig. 2.16 alongside
its electronic band diagram under bias. There is not one design of such an OLED stack
and often less or even more layers (electron/hole blocking layers) are used. In the following
the function of these layers is described in the order the carriers move through them from
injection at the electrodes to final recombination in the emitter layer.

Charge injection

In order to achieve efficient charge injection, the energetic barrier for the carriers should be
low, ideally the LUMO (HOMO) should line up with the metal Fermi-level EF (equal to the
metal work-function Φm) at the electron- (hole-) injecting electrode. This is not as easy as it
might seem, as upon contact of the semiconductor and metal band bending of the former
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Figure 2.16: Structure of a multilayer OLED. Adapted from [30].

occurs as its EF aligns with Φm. This bending results in a small space charge region also
called diffusion layer forming a Schottky-contact which creates a significant injection barrier.
To mitigate this, a thin layer of doped organic semiconductor material is deposited which
can decrease the width of the diffusion layer and the energy barrier from LUMO (HOMO)
to the aligned EF which leads to formation of a quasi-Ohmic contact by tunneling through
the potential barrier (see fig. 2.17 for the case of a hole injection layer).

(a) Blocking Schottky contact for un-
doped organic material.

eD =. 0.33 eV 

IP= S.5eV 
(.±0.1) 
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(b) Quasi-ohmic contact with p-doped
organic material.

Figure 2.17: Hole injection for an OLED contact. Adapted from [39]

Transport layers

The following layers after injection are the transport layers. Their main purpose is not
simply to transport the carriers as quickly as possible, but instead they try to equilibrate
the mobilities. This has the benefit that the zone of recombination is reliably held in the
emission layer and is blocked from moving too close to the contacts. Sometimes they also
directly take over the role of the blocking layer.

If recombination happens too close to the contacts, strong quenching of the excited states
(electron-hole pairs) occurs and starts to compete with the radiative recombination. The
efficiency of the OLED is therefore reduced.

Blocking layer

The blocking layers simply assure that the carriers are confined in the emission layer by
having a LUMO (HOMO) level which is aligned with the LUMO (HOMO) of the electron

23



Chapter 2. Physical Basis of Organic Semiconductors

(hole) transport layer and the emission layer, while at the same time providing a high
energetic barrier for the opposite charge carrier. Additionally, exciton energies are fairly
high such that exciton diffusion is also impaired and decay in the emission layer is ensured
(see fig. 2.18).
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Figure 2.18: Functionality of the blocking layers. Adapted from [30].

Emitter layer

The emitter layer is the final and core layer of the OLED. Here the injected and transported
charge carriers recombine and form electron-hole pairs (or excited states, excitons) which
should decay radiatively by emission of a photon and thus light. To increase the fraction of
radiative decay events, i.e.

ηrad =
krad

krad + knonrad

special types of molecules are used. These can be categorized into phosphorescent emitters
and thermally activated delayed fluorescence (TADF) emitters. These two techniques will be
explained in more detail in section 3.3.
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Chapter 3

Exciton Physics

The name exciton has been used already in the context of the optoelectronic applications of
organic semiconductors like OPV and OLEDs, however, they have not yet been introduced
properly. This chapter will discuss these quasi-particles in more detail, as they are the main
focus of the underlying project of this thesis.

The first section 3.1 will introduce the concept of an exciton, what it actually represents
physically, which different types of excitons exist and how they are generated in an actual
application. The following section 3.2 will start from the point described by section 3.1
and describe the subsequent transport through the material matrix by different physical
processes of energy transfer from molecule to molecule. Section 3.3 will then dive deeper into
the mechanisms of how such an excited state can change and finally decay over its lifetime
in the material. Finally, again some experimental techniques will be described allowing for
the measurement of the relative strengths and time constants of these different processes.

3.1 The exciton quasi-particle
The concept of the exciton was first introduced by Frenkel in 1931 when discussing the

movement of “excitation packets” upon absorption of a photon by a crystal [40]. To begin the
discussion about excitons, the term needs to be properly defined. This starts at the different
means of exciton generation and characterization of the different types of excitons as they
have quite unique properties. For simplification the abbreviation e−- h+pair will be used.

3.1.1 Exciton categorization
An exciton in the general case can be described as an e−- h+pair which is coulombically

bound. It is therefore from the view of a quasi-particle a neutral particle with integer spin of
either 0 or 1 (i.e. it’s described by Bose-Einstein statistics). For simplicity, from now on the
“quasi” will be dropped and the exciton will be described as just a “particle”. The different
kinds of excitons can be categorized by different characteristics of the particle from which
we will look at two of interest in the definition of the model later, namely spin-multiplicity
and magnitude of attraction.

Let’s start with the ground state of an organic molecule, commonly denoted as S0. This
ground state consists in the vast majority of molecules of filled molecular orbitals (states) up
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to the HOMO with electrons of opposite spin1. The excited state of the molecule results if
an electron is promoted into states of higher energy, for example the transition of an electron
from HOMO to LUMO. As there is no addition or loss of any charge, the molecule is still
electrically neutral but bears potential energy due to the electron residing in a state with
increased energy. Because of the Coulomb attraction between the electron and the hole, they
have less energy than free carriers quantified by the exciton binding energy Eb. As there are
now partially filled orbitals, spins of the electrons do not have to be anti-parallel anymore
and two possible configurations arise. If the spins are anti-parallel (net spin 0), the exciton
is called a singlet, otherwise (net spin 1) it is called a triplet. Because there is not only one
state per spin-multiplicity, we denote the nth singlet state by Sn and the nth triplet state by
Tn as shown in fig. 3.1.

S0

LUMO

HOMO

S1 T1

Figure 3.1: Ground, first singlet and first triplet states. Arrows represent electrons with the
direction according to the spin. Note the different energies upon excitation.

The second characteristic of an exciton is the strength of the Coulomb attraction between
the electron and hole. This mostly depends on the material under consideration, namely
its dielectric constant ε = ε0εr as this reflects the screening of electrostatic interactions
due to charges present in the crystal. For large dielectric constants such as in inorganic
semiconductors (e.g. εr = 11.7 for Si and εr = 12.9 for GaAs [41]) the Coulomb interaction
between the e−- h+pair is strongly screened leading to a largely delocalized exciton with
very low Eb. In such a case, where the exciton radius spans multiple unit cells of the
crystal, one uses the name Wannier-Mott exciton which can be approximately described as
a hydrogen-like system where the hole is considered stationary with [42, 43]

Eb(n) =
µRH
m0ε2

r

1

n2
, with

1

µ
=

1

m∗e
+

1

m∗h
(3.1)

Equation (3.1) gives the binding energy as a function of the quantum number n (with n = 1

the ground state) using the reduced masses m∗e and m∗h of the electron and hole, respectively.
RH is the Rydberg energy of the hydrogen atom RH = 13.6 eV. Due to the high εr and small
µ compared to the actual hydrogen atom, these energies are much smaller and the exciton
radii are much larger than a single unit cell, see table 3.1.

For materials with low εr, such as most organic semiconductors (e.g. εr = 2.4 - 4 for
anthracene [44]), the Coulomb attraction of the e−- h+pair is much stronger resulting in
strongly localized excitons, often even confined to the same molecule (molecular excitons)

1A prominent exception of this is molecular oxygen, where the HOMO consists of two degenerate π∗-states
with one electron each and both having parallel spins, i.e. the ground state is a triplet state [15].
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Table 3.1: Some binding energies and radii for Wannier-Mott excitons in inorganic semiconductors.
The gap energies are also given for comparison. Taken from [43].

Semiconductor Eg [eV] Eb(1) [meV] rb(1) [nm]

GaN 3.5 23 3.1

CdS 2.6 28 2.7

CdSe 1.8 15 5.4

GaAs 1.5 4.2 13

InP 1.4 4.8 12

[45]. Due to the spatial localization, the energy of such an exciton is not accurately described
by simply considering the electrostatic interaction of an electron in a Coulomb potential,
instead, the overlap of the electron and hole needs to be taken into account as well. Therefore,
the energy of such an exciton can be approximated by [46]

Eb =
q2

4πε

∫∫ |ψh(rh)|2 |ψe(re)|2
|rh − re|

drhdre (3.2)

Note that in (3.2) the actual wavefunctions ψe,h are present to compute the spatial overlap,
which is not the case in (3.1). In this case, the resulting Eb are much larger than for
Wannier-Mott excitons (see tab. 3.1), like ≈ 0.4 eV for PPV [47, 48].

There is also a third case in between the two extremes of Wannier-Mott and Frenkel
excitons, the so called charge-transfer (CT) excitons, which extend approximately to nearest
neighbor molecules. This kind of exciton is of interest in the case of exciton interface
dissociation before splitting completely into free carriers, however, these will not be discussed
further. A schematic comparison of these three types of excitons is shown in fig. 3.2.

(a) Wannier-Mott exci-
ton.

(b) Frenkel exciton. (c) CT exciton.

Figure 3.2: Comparison of different exciton types according to their spatial extent. Adapted from
[49].

3.1.2 Electrical and optical exciton generation
As the title hints, there are two mechanisms by which an exciton can be generated,

electrically by recombining electrons and holes and optically by interaction of a photon with
the electrons in an organic molecule (i.e. its absorption).
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The first mechanism occurs due to the electrostatic attraction between a free electron
and a free hole moving into each other’s vicinity. It can be assumed that one of the carriers
resides at a molecule, e.g. at a dopant molecule in the doped emitter layer of an OLED. This
molecule will undergo oxidation or reduction when it’s charged by a mobile hole or electron,
respectively. An approaching electron (or hole) will feel the attraction and approach the
charged molecule, up to this moment both carriers are mostly independent from each other,
see left side of fig. 3.3. Actual binding will not occur until the charges enter each other’s
Coulomb capture radius which is defined as the distance where the energy of coulombic
attraction is equal to the mean thermal energy kBT , this is also approximately true for
disordered inorganic materials [50]. The carrier will from then on approach the charged site
further followed by formation of a charge transfer state which may be of singlet or triplet
nature and the electron and hole wavefunctions will start to overlap, leading to a splitting in
energy of the respective singlet or triplet states due to the resulting short-range exchange
interaction [51] (see right side of fig. 3.3). This charge transfer state will then quickly decay
as the mobile carrier jumps onto the charged site creating a localized neutral Frenkel exciton.
This process is generally described as a two-species reaction by the Langevin recombination
[52]

kRec = −γnp, with
γ = 4πRccr (De +Dh)

qD = µkBT

Rccr = q2

4πε0εrkBT

 =⇒ γ =
q

ε0εr
(µe + µh) (3.3)

where the middle equation is the Einstein relation between mobility and diffusion constant
alongside the expression for the Coulomb capture radius below.

There are some rules which determine the probability of creating a singlet or a triplet
exciton. As the electron and hole recombine to form an exciton, their spins can be coupled
into four combined states:

|↑↑〉
|↓↓〉

1√
2
|↑↓ + ↓↑〉

 Triplet (symmetric)

1√
2
|↑↓ − ↓↑〉

}
Singlet (anti-symmetric)

As in the statistical limit all of these four states have the same probability of getting
formed, 75% of the excitons generated by e−- h+recombination will be triplets and only 25%
will be singlets [30].

The second way an exciton can be created is optically by absorption of a photon. The
electromagnetic wave represented by the photon drives oscillations of the electrons in the
molecular orbitals. The strength of these oscillations is related to the polarizability α by
defining the induced dipoles

p = αF = qδr (3.4)
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3.1. The exciton quasi-particle
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Figure 3.3: Process of recombinative exciton generation. Adapted from [51].

where α is usually high in π-conjugated systems and therefore absorption is strong [30]. The
quantum mechanical transition rate is related to the square of the transition dipole moment
k = 2π

~ |µfi|
2 ρ [28] where this moment for the total two-electron system is given by

µfi = 〈ψf |µ̂|ψi〉 =

∫
ψ∗f µ̂ψid

3r =

∫
ψ∗f (r1, r2) (−qr1 − qr2)ψi(r1, r2)d3r (3.5)

It is evident that the dipole moment operator µ̂ is symmetric under particle exchange whereas
the (spatial) wavefunctions for the two-electron system might be symmetric or antisymmetric,
i.e.

ψ± =
1√
2

(ψ1ψ2 ± ψ2ψ1)

and therefore there are only two allowed transitions from (3.5) with µfi 6= 0, namely when
both spatial wavefunctions ψi and ψf are either symmetric or antisymmetric. Furthermore,
the Pauli exclusion principle demands that the total wavefunction Ψ = ψσspin consisting of
the spatial and spin part is antisymmetric under particle exchange and therefore the spin
part needs to have opposite parity of the spatial part [43]. The conclusion is that optical
transitions need to conserve total spin as the photon carries no angular momentum (as
the spatial parts of the total wavefunction have same symmetry, the spin parts also must
have the same (reversed) symmetry), therefore optical excitation is only allowed for singlet
to singlet or triplet to triplet states (compare to the 25% – 75% for electric excitation)!
However, this is not the final truth as will be shown when discussing phosphorescence in
section 3.3.1.

A more comprehensive view of the single electron transition is given by including the
vibrational energy of the ground and excited states [30]

µfi =
〈
ψefψ

v
fΣf |µ̂|ψeiψvi Σi

〉
'
BO

〈
ψef |µ̂|ψei

〉 〈
ψvf
∣∣ψvi 〉 〈Σf |Σi〉 (3.6)

where BO stands for the Born-Oppenheimer approximation that the electron motion can be
separated from the nuclear (vibrational) motion. The first term in (3.6) stands for the spatial
overlap, the last for the unchanging spin, as already discussed above and the middle term
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Chapter 3. Exciton Physics

for the vibrational overlap. Note that here µ̂(r) = −qr, which is spatially antisymmetric
which leads to the condition that single electron wavefunctions ψef and ψei must have opposite
parity (dipole-allowed), otherwise this first term becomes 0 (dipole-forbidden) [28].

These terms can be nicely illustrated in a diagram of the vibrational levels in two Morse
potentials corresponding to the ground and excited states. The Franck-Condon principle says
that the electronic transition is much faster than the adjustment of molecular arrangement,
therefore transitions are vertical from the ground state to the vibrational state of the excited
molecule which resembles the ground arrangement the most, see fig. 3.4 [53, 54, 55].
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Figure 3.4: Optical transitions according to the Franck-Condon principle (vertical transitions).
After excitation, the excited molecule relaxes to the lowest vibrational state. Upon
relaxation and photon emission, transition energy is lower leading to a Stokes-shift.
Source: [56].

3.2 Exciton transport
Even though excitations in organic materials are commonly strongly localized Frenkel

excitons, they are not doomed to stay at their molecule and wait for their inevitable eventual
decay. For such strongly localized excitons there are two main mechanisms of transport
(apart of course from the possibility to radiatively decay with subsequent absorption again
somewhere else), namely Förster resonance energy transfer (FRET) or just Förster transport
in short and Dexter electron transfer or just Dexter transport in short.

In general, to analyze transport one can again use Fermi’s golden rule where we need the
interaction energy between initial and final states of the complete donor-acceptor system

β =
〈

Ψf

∣∣∣Ĥ∣∣∣Ψi

〉
(3.7)

30



3.2. Exciton transport

where (electrons indistinguishable)

Ψi =
1√
2

(Ψ∗D(1)ΨA(2) + Ψ∗D(2)ΨA(1))

Ψf =
1√
2

(ΨD(1)Ψ∗A(2) + ΨD(2)Ψ∗A(1))

(3.8)

where the superscript ∗ denotes an excited state, which finally results in two interaction
energy terms by using (3.8) in (3.7) and simplifying

β =
〈

ΨD(1)Ψ∗A(2)
∣∣∣Ĥ∣∣∣Ψ∗D(1)ΨA(2)

〉
︸ ︷︷ ︸

βC

−
〈

ΨD(1)Ψ∗A(2)
∣∣∣Ĥ∣∣∣Ψ∗D(2)ΨA(1)

〉
︸ ︷︷ ︸

βE

(3.9)

where the first term in (3.9) describes a Coulomb term where the electrons stay at their
respective molecules, while the second term describes an exchange term where electrons are
actually transferred [28].

3.2.1 Förster resonance energy transfer
The first type of exciton transfer described is the Förster transport mechanism and

corresponds to the coulombic term in (3.9). Förster approximated the coulombic interaction
energy by a dipole-dipole interaction between the two molecules [57] which is defined by
the transition dipole moments proportional to r−3. These interaction dipole moments were
expressed by various other physical quantities such that the final rate of Förster energy
transfer reads

kF =
9 ln(10)

NA

ΦDκ
2

128π5n4τ0
DR

6

∫
ID(λ)εA(λ)λ4dλ =

1

τ0
D

(
RF0
R

)6

(3.10)

with NA Avogadro’s number, ΦD the donor FL quantum yield far away from the acceptor,
κ an orientation factor, n the refractive index, τ0

D the decay rate of the donor excitation
in absence of the acceptor (i.e. no Förster interaction), ID the normalized donor emission
spectrum and εA the acceptor absorption coefficient. The simpler expression aggregates
many terms into one parameter RF0 , the Förster radius.

Förster transfer is considered long-range with RF0 ≤ 10 nm [58] where this corresponds
to the distance for which Förster transport is equally likely as relaxation in absence of the
acceptor molecule. From (3.10) it is evident that for strong Förster transport the emission
spectrum of the donor has to largely overlap with the absorption spectrum of the acceptor.
Therefore, in OLED design dopants in the emitter layer are chosen such that their absorption
matches the emission of the host.

Note that if one splits the wavefunction in βC into an electronic and spin part Ψ = ΨeΨΣ

in (3.9) one gets two terms of the spin integral for each electron on its respective molecule in
its excited and ground state [28]. Therefore, ground and excited state need to have same
spin multiplicity which excludes triplets from Förster transfer (as normally the ground state
is a singlet state), except for some organometallic complexes (see section 3.3.3) [59] or of
course for already excited triplets to higher triplet states.
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Chapter 3. Exciton Physics

3.2.2 Dexter electron transfer
The second type of excitation energy transport is by Dexter electron transfer first in-

troduced by Dexter [60] which is described by the exchange term βE from (3.9) including
the transfer of an actual electron between two molecules. Therefore, if one uses the same
approach as above by splitting Ψ = ΨeΨΣ in βE the spin integral now does not couple the
relaxed and exited states on the same molecule, instead, the coupling is between the molecules
for the respective excitation states. Therefore, to have

〈
ΨΣ
D

∣∣ΨΣ
A

〉
6= 0 (and reversed for

the excited states) there needs to exist some spatial overlap of the wavefunctions and this
unavoidably restricts Dexter transport to very short ranges [61] (typically <10Å [17]).

As was already used in the Miller-Abrahams electron hopping rates (2.8) in section 2.2.3,
an exchange interaction is described by an exponential decay term. Therefore, the rate for
Dexter transport is commonly given by [58]

kD =
2π

h
KJ ′ exp

(
− 2R

LD

)
, with J ′ =

∫
ID(λ)εA(λ)dλ (3.11)

where K is a constant, LD is the sum of the VdW radii of the donor and the acceptor and
both ID(λ) and εA(λ) are normalized (i.e. the rate is independent of oscillator strength of
both molecules, in contrast to Förster transport [62]). Here K does not correspond to any
clear experimentally measurable quantities, therefore kD is much harder to quantify than
kF .
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Figure 3.5: Excitation energy transport mechanisms. Source: [28].

3.3 Exciton-altering processes
After creation of an exciton by photon absorption or charge carrier recombination with

potential subsequent transport through the material, the excitation will eventually undergo
a change of state. This can be either a relaxation back to the ground state radiatively or
non-radiatively, dissociation of the e−- h+pair into free charge carriers or even change from
one type of exciton to another. These processes shall be discussed in this chapter where an
overview over some is given in fig. 3.6.

3.3.1 Radiative decay
The first process described in this section is the radiative decay (relaxation) of the excited

state back to its ground state, which is the desired process in an OLED device. The result

32



3.3. Exciton-altering processes

Figure 3.6: Jabłoński diagram for excitonic processes. Energy is plotted on the vertical, spin-
multiplicity on the horizontal axis. Horizontal lines represent excitonic states with
their respective vibrational energy levels. Source: [49].

is an emission of photons (light) where the phenomenon can be classified according to the
origin of the exciton, namely photoluminescence (PL) and electroluminescence (EL) where
in the former case the excitation originates from the absorption of incident photons (e.g. in
luminous paint) and from e−- h+recombination in the latter (e.g. in an OLED). A second
way to classify radiative decay is by its governing time constants, fluorescence for very rapid
and phosphorescence for much slower decay. As already discussed, in most cases the ground
state of a molecule is the singlet state S0 and therefore fluorescence and phosphorescence
will correspond to the decay of an excited singlet and triplet state, respectively:

S1 → S0 + hν Fluorescence

T 1 → S0 + hν Phosphorescence

The observant reader might wonder how this phosphorescent decay is possible as it was
shown in section 3.1.2 that optical transitions need to conserve spin which would make
phosphorescence a spin-forbidden process! The answer lies in the fact that total angular
momentum has to be conserved which can be achieved even under change in spin by spin-orbit
coupling which introduces a perturbation leading to mixing of triplet and singlet states [28]

∣∣3Ψ′1
〉

=
∣∣3Ψ0

1

〉
+
∑
k

〈
1Ψ0

k

∣∣∣ĤSO

∣∣∣ 3Ψ0
1

〉
E(T1)− E(Sk)

∣∣1Ψ0
k

〉
∣∣1Ψ′0

〉
=
∣∣1Ψ0

0

〉
+
∑
k

〈
3Ψ0

k

∣∣∣ĤSO

∣∣∣ 1Ψ0
0

〉
E(S0)− E(Tk)

∣∣3Ψ0
k

〉 (3.12)

where the left superscript denotes spin-multiplicity (1 = singlet, 3 = triplet), the right
superscript purity (0 = pure state, ‘ = mixed state) and the subscript the quantum number
(0 = ground state etc.). These can then be used in Fermi’s golden rule

k =
2π

~
∣∣〈3Ψ′1 |qr| 1Ψ′0

〉∣∣2
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Chapter 3. Exciton Physics

which gives a nonzero probability of radiative triplet decay. This is used in phosphorescent
emitter materials by using organometallic complexes with a heavy-metal atom leading to
strong spin-orbit coupling (see for example fig. 3.7a) in order to circumvent the 25% limit
from electrical exciton generation if only singlets would decay radiatively, leading to ≈ 100%

internal quantum efficiency (ηint) [63].

(a) Ir(ppy)3 used as phosphorescent emitter
due to the spin-orbit coupling induced by
the heavy Ir atom. Source: TCI Chemi-
cals.

(b) ACRFLCN as TADF material with spa-
tially separated HOMO and LUMO.
Source: [64].

Figure 3.7: Example materials used for increased OLED efficiency using phosphorescence and
TADF.

3.3.2 Nonradiative decay
Nonradiative decay is often also called internal conversion and results in a relaxation

of the excited molecule under an emission of phonons. This process basically results from
an isoenergetic transition from an excited state (mostly in its lowest vibrational state) to
a lower excited state at a higher vibrational energy (see fig. 3.8). This process is very
fast for transitions from higher excited states to the first excited state, for a higher singlet
state Sn undergoing internal conversion with subsequent vibrational relaxation to the lowest
vibrational state of S1 this happens at timescales of 10−13 - 10−11 s [58].

This process can also lead to complete deexcitation to the molecular ground state S0 but
is less efficient due to the smaller energetic overlap of the vibrational states of S0 with higher
excited states (the energetic difference between S0 and S1 is much larger than between S1

and higher excited states).

3.3.3 Inter-system crossing
Inter-system crossing (ISC) is a process akin to internal conversion as it consists of an

isoenergetic change of state with potential subsequent nonradiative relaxation. However,
while during internal conversion there is no change in spin, ISC involves a change in total
spin i.e. a change from singlet to triplet state or vice-versa. This “forbidden” change is
again enabled by spin-orbit coupling such that total angular momentum is conserved (see
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3.3. Exciton-altering processes

Figure 3.8: Internal conversion of a singlet exciton between absorption and emission of a photon.
The isoenergetic transition from S2 to S1 is marked with a red circle, vibrational
relaxation with light-blue curvy arrows. Source: [65].

discussion about phosphorescence in section 3.3.1), therefore again incorporation of heavy
atoms renders this process quite efficient [15].

The transition from S1 to Tn occurs readily into a vibrational higher triplet state with
subsequent internal conversion and relaxation to the vibrational ground state of T1. The
opposite is not true, as T1 always has lower energy than S1 (Hund’s rule [66]) and therefore
there is an energy barrier to cross, i.e. this is a process requiring thermal activation. This is
exactly where the second (after using phosphorescent materials) strategy to overcome the
25% limit of electroluminescence takes up by decreasing the energy difference between S1

and T1 states to promote ISC from triplets to singlets leading to thermally activated delayed
fluorescence (TADF). This can be achieved by engineering molecules where HOMO and
LUMO are spatially separated on the molecule [64], see for an example fig. 3.7b.

3.3.4 Polaron quenching
Exciton-polaron quenching is a process where the excitation energy is quenched (lost)

through interaction with a polaron formed by a mobile charge carrier. This is an important
efficiency roll-off effect in OLEDs at high current densities (increased luminance) [67]. Even
though the exact mechanisms are not exactly understood [68] there are mainly two types
of exciton-polaron quenching considered, namely Förster- and Dexter-type interactions. In
case of the Förster-type polaron quenching, the exciton energy is first transferred to the
polaron which creates an excited polaron state followed by fast relaxation and therefore loss
of the exciton [67] (as the processes are the same as in section 3.2.1, this could be reduced
by minimizing the spectral overlap [17]).

The second mechanism involves an electron transfer through tunneling (Dexter transport)
when a free charge carrier charges a molecule in direct vicinity of the exciton and is therefore
only of very short range [67]. Again, in a first step an excited charged molecule results
followed by relaxation under emission of phonons leaving just a charged molecule behind,
see fig. 3.9.
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Figure 3.9: Dexter-type triplet-polaron quenching. M− denotes the negatively charged molecule
and M−∗ the charged molecule in an excited state. Source: [28].

3.3.5 Exciton-exciton annihilation
Excitons can interact with one another upon collision leading to a non-radiative decay

of at least one [21]. There are different combinations possible, e.g. singlet-singlet, singlet-
triplet and triplet-triplet annihilation (SSA, STA, TTA) [28]. However, due to the longer
triplet lifetimes and high triplet concentrations (especially in phosphorescent emitters) TTA
constitutes the main factor contributing to efficiency loss [17]. TTA can result in two sets of
products depending on their spin [49]:

T1 + T1 −→ S0 + Tn
relax.−→ T1

T1 + T1 −→ S0 + Sn
relax.−→ S1

The second reaction actually also contributes to TADF (as it’s a conversion of triplets to a
singlet state), so called P-type fluorescence [58].

3.3.6 Dissociation
As already mentioned earlier, in organic semiconductors the exciton binding energy is

very high due to the low permittivity of the medium. This is a challenge in OPV where
the final goal is to have free charge carriers contributing to the cell current, in contrast to
the inorganic PV materials where this step can be omitted as absorption basically creates
directly free carriers in the conduction and valence band [28]. In order to split the exciton
an interface between the host and a donor-/acceptor-material is needed (see fig. 2.13a), as in
such a transition the energy needed to overcome the Coulomb attraction of the e−- h+pair
is compensated by placing the electron or hole in an energetically more favorable LUMO or
HOMO level (see fig. 3.10).

As this separation involves a transition of an electron or hole to a neighboring molecule
it can be modeled using again the Miller-Abrahams hopping approach (2.8) from section
2.2.3 considering the difference in energy of exciton binding energy and final LUMO/HOMO
energies of the free carriers (Zhou et al. 2019, unpublished).

3.4 Experimental techniques
Some further experiments related to the investigation of excitonic properties are discussed

here. Of course, this is by far not a complete list as there are a large number of experimental
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Figure 3.10: Exciton dissociation in a donor-acceptor system using an electron acceptor material
providing a beneficial energy transition for the electron but not for the hole. Adapted
from [49].

techniques available for investigating these properties and only a few popular examples are
shown.

3.4.1 Ultraviolet photoelectric spectroscopy and cyclic

voltammetry
Measurement of the emission and absorption spectrum of a material is a simple way to get

an idea of the optical gap (i.e. exciton energies), however, if one seeks the energy levels of
LUMO and HOMO levels relative to the vacuum level, different techniques are needed. Two
such techniques are UV photoelectric spectroscopy (UPS) and cyclic voltammetry (CV).

In UPS, the electrons in the HOMO are ejected into the vacuum upon collision with
the high energy photons. Their resulting kinetic energy is the photon energy minus the
ionization energy

E = hν − I

Therefore, by measuring the spectrum of the electrons’ kinetic energy, one can deduce the
different ionization potentials for the different states in the material and therefore their
energy levels relative to the vacuum level. It should be noted that these energies are the
real energies taking electron-electron interactions into account in contrast to the often
theoretically considered single-electron orbitals and energies [28].

CV works electrically instead of optically, by applying a linearly increasing voltage to the
material in question in a solvent. At first, there is no current flow as the Fermi-level of the
electrode lies in between the HOMO-LUMO gap, however, as soon as a certain potential is
reached (Fermi-level and LUMO line up) a current starts to flow. This reduces the species
close to the electrode and the current keeps flowing as long as there are reducible species in
the electrode’s vicinity. Therefore, with time the current decreases again as all molecules in
the vicinity are reduced, and the potential is swept in the other direction, i.e. decreased,
which leads to oxidation of the previously reduced species and therefore a negative current
flow (see fig. 3.11a). The shifts in potential and current are caused by diffusion properties of
the solvent, and by taking the average potential of the two current peaks, one can derive the
LUMO (or HOMO if potential is reversed) energies relative to the electrode’s Fermi-level
[69].
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(a) A CV measurement showing the reaction Fc+ + e− ↔ Fc. Panels A-G show
the concentrations (Fc+ blue, Fc green) close to the electrode over time,
panel H the current response and panel I the applied potential. Source: [69].

(b) Film-thickness dependent luminescence. Source: [70].

(c) Emission spectrum for different positions of the sensing layer. The left peak
corresponds to the host, the right peak to the dopant spectrum. Source:
[71].

Figure 3.11: Experiments investigating excitonic parameters such as energy levels, Förster radii
and generation zones.
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3.4.2 Förster radius probing
The strength of exciton transport is an important parameter for OPV and OLED devices.

One way to investigate this parameter is by examining quenching by using in-situ PL measure-
ments [70]. A film of the material under investigation is deposited onto a strongly quenching
material (i.e. excitation energy is lost to the quenching material) while measuring the PL
response of the deposited material. This results in a luminescence intensity measurement for
varying film thickness as depicted in fig. 3.11b.

As excitons are generated optically in the film, these may be transported into the quenching
material where they are lost if they get too close to the interface before radiatively decaying.
By increasing the film thickness, a larger and larger share of the generated excitons will be
too far away from the interface leading to increased luminescence emitted by the film. Below
a certain thickness, luminescence of the film is almost zero as all the excitons are quenched
from which a Förster radius may be derived.

3.4.3 Recombination zones
The recombination zones in an OLED are of interest to optimize performance by avoiding

exciton quenching close to interfaces. To investigate the spatial distribution of electric
exciton generation in an OLED emitter layer one can introduce thin sensing layers [71].
These layers are doped with a material having a very distinct emission spectrum such that by
measuring the emission spectrum of the whole OLED as a function of sensing layer position
the exciton generation at these positions can be deduced. At positions with high exciton
generation (recombination), the excitons will be transferred onto the dopant resulting in a
emission spectrum close to the one characteristic for the dopant, otherwise close to the one
characteristic for the host material, see fig. 3.11c.
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Chapter 4

Mathematical Model

After understanding the basic physical processes occurring in organic semiconductors regard-
ing charge carriers and excitons, the next step is to form a mathematical model. This will
be the main purpose of this chapter. First, a short description of the general concept of a
“Master equation” is given in section 4.2. This will then be used in section 4.2 to form the
mathematical model which governs the exciton dynamics and whose solution is the main
result of the computations. Some more detail will be given in this section about the various
aspects of the model as it comprises the core centerpiece of the later analysis. Finally, a
short introduction into the model used for the charge carrier dynamics will be given.

4.1 The Master equation concept
A Master equation can be commonly defined in the following way [72]:

“They [Master equations] are differential equations that describe the evolution of
the probabilities for Markov processes for systems that jump from one to another
state in continuous time.”

A Markov process can be described as a stochastic process where the probabilities for the
entire future of the system depend only on the last (current) state, i.e. [73]

p(x1, t1;x2, t2; . . . |y1, τ1;y2, τ2; . . . ) = p(x1, t1;x2, t2; . . . |y1, τ1) (4.1)

where (xi, ti) are the future states of the system and (yi, τi) the past states. From (4.1)
by using some basic rules of probability theory one arrives at the Chapman-Kolmogorov
equation

p(x1, t1|x3, t3) =

∫
p(x1, t1|x2, t2)p(x2, t2|x3, t3)dx2 (4.2)

i.e. “the probability for the system to be in state x1 at time t1 – given it was in state x3 at
time t3 – is equal to the probability of it being in state x1 at time t1 – given it was in (some
intermediate) state x2 at (some intermediate) time t2 – times the probability it was in state
x2 at time t2 – given it was in state x3 at time t3 – integrated over all possible intermediate
states x2”.
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This can also be written in discrete state space (as will be necessary in the present case)

P (n1, t1|n3, t3) =
∑
n2

P (n1, t1|n2, t2)P (n2, t2|n3, t3) (4.3)

These conditional probabilities are not known in general and are in most cases difficult to
derive from the rules of the process [72]. However, as mentioned above, even though the
sample paths are discontinuous (jumps), time is treated continuously in the Master equation
approach. Because of this, instead of using a time increment t3 → t1 we can consider a small
increment in the limit t1 − t3 = dt which allows for using rates, i.e.

P (ni, t+ dt|nj , t) = ω(nj → ni)dt+O
(
dt2
)

(4.4)

By using (4.4) we can write (4.3) in the form

P (ni, t+ dt) = P (ni, t)

1−
∑

nj 6=ni

ω(ni → nj)dt


+
∑

nj 6=ni

P (nj , t)ω(nj → ni)dt+O
(
dt2
) (4.5)

which yields after rearranging [72]

dP (ni, t)

dt
=
∑

nj 6=ni

(P (nj , t)ω(nj → ni)− P (ni, t)ω(ni → nj)) (4.6)

which is the general form of the Master equation. It is therefore a differential Chapman-
Kolmogorov equation. In the way it is described here probability is conserved in the whole
system as probability is only exchanged between states, however, it is also possible to include
so-called birth and death which results in injected or removed probability. Furthermore,
in this form the Master equation exhibits detailed balance (time reversibility in physical
interpretation), i.e. at equilibrium

Peq(nj , t)ω(nj → ni) = Peq(ni, t)ω(ni → nj)

4.2 Master equation model for excitons
Now that additionally to the physical basis also the mathematical framework of the Master

equation has been introduced, these concepts can be combined and the Master equation
model for exciton dynamics can be set up. The different aspects of this will be the main
focus of this section where first the model with its underlying assumptions is introduced
in section 4.2.1. In the following, the modeling of the transport terms (section 4.2.2) and
auxiliary models and boundary conditions (section 4.2.3) are discussed and finally a short
introduction and comparison of the model used for the charge carrier dynamics is given.
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4.2.1 Governing equations for excitons
Before introducing the equations, a small disclaimer is needed. Even though a Master

equation model is used which is a probabilistic model acting on probabilities, the quantities
used in this work do not fulfill the mathematical definition of a probability, most notably
it is possible to get p > 1. Instead, it can be thought of as a probability density per
elementary volume a3

0. Therefore, the term occupation number or exciton density (dropping
the probability) will be used throughout this work and it can be interpreted as the expectation
value of number of excitons present on a specific molecule (compare e.g. Bose-Einstein
statistics).

Much of the basic model was adapted from [74]. As we’re dealing with organic semicon-
ductors it is assumed that strongly localized Frenkel excitons (see section 3.1.1) need to
be considered only, such that for each molecule one can define the occupation numbers ps

and pt denoting singlets and triplets, respectively. Furthermore, due to the comparatively
fast relaxation from higher to the lowest excited states S1 and T1, only these states are
considered. The dependency on time will not be shown generally but it should be kept in
mind that the exciton densities are certainly a function of time. Additionally, the carrier
densities pe and ph vary with time as well. From this one can write down the rate equation
in ME form as

dps
i

dt
=
∑
f 6=i

[
ps
fω

F,s
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iω
F,s
if

]
+
∑
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+
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)
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(4.7)

dpt
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dt
=
∑
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[
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+
∑
d 6=i

[
pt
dω

D,t
di − pt

iω
D,t
id

]

+

(
1

τ t
r,i

+
1

τ t
nr,i

)(
exp

(
Et

b,i − Eg,i

kBT

)
− pt

i

)

+
ps
i

τISC,i
− pt

i

τISC,i
· exp

(
Es

b,i − Et
b,i

kBT

)

−p
t
i

(
pe
i + ph

i

)
τTPQ,i

−
(
pt
i

)2
τTTA,i

+(1− gRec,i)

(
pe
ip

h
i

τi
− pt

i

τi
exp

(
−
Et

b,i

kBT

))
+ (1− gOpt,i)Gi

(4.8)
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where (4.7) is the rate equation for the singlets and (4.8) the one for the triplets. The first
row represents exciton transport with ωF

ij the Förster rate i→ j and ωD
ij the corresponding

Dexter rate, the second row represents radiative τr and nonradiative τnr decay (with the
exponential for detailed balance), in the third row are the inter-system crossing terms in
both directions, in the fourth row we have polaron quenching and triplet-triplet annihilation
and finally in the last row the main source terms, namely charge carrier recombination (with
detailed balance) and optical generation.

The coefficients gRec,i and gOpt,i represent the relative share of generation which results in
singlets. From section 3.1.2 these are mostly equal to 0.25 and 1, respectively. Even though in
section 3.2.1 it was shown that Förster transport conserves spin and as only the lowest excited
states S1 and T1 are considered in the model, Förster transport is still included in (4.8). This
is due to the fact that in phosphorescent materials this spin selection rule is weakened and
Förster transport is possible to some degree. Another assumption is that quenching rates
are much larger than hopping, such that polaron quenching and triplet-triplet annihilation
occur locally instead of Förster-/Dexter-mediated [68]. Furthermore, it is assumed that
triplet-triplet annihilation is much stronger than other exciton-exciton annihilation paths
and therefore only TTA is taken into account with the result of losing two triplets and
gaining one singlet in return. All τ ’s are material parameters and Eb, Eg are exciton binding
and HOMO-LUMO gap energies, respectively. The coupling to the charge carrier simulation
comes from the recombination and polaron quenching terms by including pe and ph, the
electron and hole densities, respectively.

Some further aspects should be noted. First, due to the fact that the Master equation was
formulated for molecular occupation numbers, the final grid used for solving the equations
is not a discretization of some underlying physical continuum equation, instead, it is given
directly by the distribution of single molecules in the material matrix itself, which may
be described as molecular discretization. Let’s also analyze these equations a bit further.
They represent a large system of coupled nonlinear and inhomogeneous ordinary differential
equations of first order with non-constant coefficients. The nonlinearity is introduced by
the triplet-triplet annihilation terms and the coefficients are non-constant due to the time-
dependency of the charge carrier densities and energy levels. Furthermore, as exciton
transport is governed by diffusion, these equations are most probably stiff which makes
them difficult to integrate over time.

4.2.2 Exciton transport models
As mentioned above, exciton diffusion is modeled as hopping transport by Förster and

Dexter transport mechanisms which describe the hopping rates ωij . For Förster transport
equation (3.10) can be used giving

ωF
ij =

(
1

τr,i
+

1

τnr,i

)(
RF

0

Rij

)6

exp

(
−
|∆Eet

ij |+ ∆Eet
ij

2kBT

)
(4.9)

where Rij = ||rj − ri||2 and ∆Eet
ij = Eet

j −Eet
i = (Eg,j − Eb,j)− (Eg,i − Eb,i) the difference

in exciton energy at site j and i. If this energy difference is positive the Boltzmann factor
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induces an energy penalty for such a jump. As this rate is dependent on material parameters
the question arises which parameter set to choose in case different materials are involved. In
this case the geometric mean √

ωF
Aω

F
B

is taken where the subscript denotes the material parameter set used to calculate the rate.
Similarly, we can use equation (3.11) to model the Dexter transport rates

ωD
ij = kD

0 exp

(
−2Rij
LD

)
exp

(
−
|∆Eet,e

ij |+ ∆Eet,e
ij

2kBT

)
exp

(
−
|∆Eet,h

ij |+ ∆Eet,h
ij

2kBT

)
(4.10)

where Eet,e
i and Eet,h

i are the bound electron and bound hole energies with

Eet,e
i = ELUMO,i −

Eb,i

2

Eet,h
i = EHOMO,i +

Eb,i

2

Note that in the current form these Dexter rates would depend on the absolute energy
levels of the donor and acceptor sites and therefore would depend on time. However, in the
current work this time-dependency was neglected as this would lead to a difficult situation in
transient simulations, as basically the complete Jacobian would then need to be updated at
every timestep. The formulation is kept in this way though, as for steady-state simulations
it is preferred. Here some further simplifications were made in the model. Even though
the physical variables RF

0 and LD are in reality quantities depending on many factors such
as spectral overlap, orientation and quantum-physical properties of the molecules, they
are assumed constants in the present model simply representing the different strengths of
the mechanisms. This is especially for Förster transport quite a strong simplification as
this neglects the superiority of host-to-guest transport over the other transport paths (e.g.
host-to-host or guest-to-host) and should be changed in a future work.

The summation terms in (4.7) and (4.8) are over all sites (molecules) in the material
except the local one. Therefore, theoretically, every site is coupled to all other sites leading
to full submatrices which would make the solution of a bigger system unfeasible. From the
physical model we see however that the strength of these interactions decays quickly, see fig.
4.1, and a cutoff distance Rc can be introduced from where on the couplings are neglected,
i.e. ωF(R > Rc) = ωD(R > Rc) = 0 which results in a very sparse banded matrix structure.
Note however that in 3D this number scales as O

(
R3
c

)
so even for (relatively) small Rc the

number of coupled equations (sites) is still large. Often a cutoff distance of Rc ≈ 4a0 is
chosen [74] where a0 is the intermolecular or grid spacing.

The equations considered up to now will work fine if one is interested in simulating exciton
dynamics in OLED devices where there are no dissociation interfaces present in the stack
and dissociation can be neglected. However, in the case of e.g. OPV applications where the
splitting of excitons into free e−- h+pairs is desired and such interfaces are used, one needs
to take this process into account. As mentioned in section 3.3.6 this transfer can be modeled
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Figure 4.1: Decay of the singlet hopping rates over R for ωF, ωD and ωF + ωD in Ir(ppy)3 (see
[74]).

as an exchange mechanism mediated with an Abrahams-Miller hopping rate (Zhou et al.
2019, unpublished)

ωet,e
DA = νe

0 exp

−2αRDA −

∣∣∣Ee
D − Ee

A − Eet
b,D

∣∣∣− (Ee
D − Ee

A − Eet
b,D

)
2kBT

 (4.11)

for electrons and similarly for holes, where Ee
D, E

e
A are the LUMO energies at the donor

and acceptor, respectively (see fig. 4.2). The second term in the exponential introduces an
energy barrier if the difference of LUMO at the donor to the acceptor is smaller than the
binding energy of the exciton at the donor.

Figure 4.2: Interface dissociation of an exciton by Abrahams-Miller hopping where the electron
(blue) hops to a neighboring site with lower LUMO, splitting the exciton. After (Zhou
et al. 2019, unpublished).

4.2.3 Auxiliary modeling

Disorder models

Now that the equations are set-up, the transport rates are modeled and most of the
parameters are defined by the material there is still one part which needs additional modeling,
the different energy levels. For solving the Master equations we need the singlet and triplet
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4.2. Master equation model for excitons

binding energies Es
b,i and Et

b,i, respectively, as well as the LUMO and HOMO levels Eei
and Ehi from which we can calculate the gap energy Eg,i. These energies for the different
sites are defined by the DOS of the material and as discussed in section 2.1.4 we can use a
Gaussian distribution. In total Eei and Ehi consist of four, the exciton binding energies of
two contributions, i.e.

Ee,h
i = Ee,h

mean + qΦi + qΦim,i + ξe,h
i (4.12)

Es,t
b,i = Es,t

b,mean + ξet
i (4.13)

where in equation (4.12) Ee,h
mean is a mean LUMO/HOMO energy specific for the material,

Φi is the potential obtained from a 1D Poisson-equation (see section 4.3), Φim,i is the
contribution from the image potential near the electrodes [7]

qΦim,i = − q2

16πε0εra0

(
1

mx − ix
+

1

ix + 1

)
(4.14)

(mx is the number of sites in x-direction along the stack) and finally the random contribution
taken from the Gaussian DOS ξe,hi ∼ N (0, σ2) with σ being a material parameter defining
the magnitude of disorder. The Gaussian DOS can be uncorrelated (GDM), then equation
(2.4) with Emean = 0 applies, but depending on the material also correlated disorder can be
appropriate, e.g. due to stronger intermolecular dipole interactions, then one uses [23]

ξe,h
i =

∑
j 6=i

qdj · (rj − ri)
ε0εr ||rj − ri||32

(4.15)

which gives for random directions of d and d = ||d||2 a distribution approximately Gaussian
with width σ = 2.35 qd

ε0εra2
0
yielding the correlated disorder model (CDM).

In equation (4.13) the exciton binding energy as well incorporates a mean singlet and
triplet binding energy specific to the material, however, the random contribution ξet

i is the
same for singlets as for triplets (in order to avoid the unphysical situation that Es

b > Et
b)

and is always uncorrelated.
The disorder considered up to now is diagonal disorder, i.e. the disorder of the local state

energies for each molecule. The second type, off-diagonal disorder, could also be considered
by using a grid with random grid point positions and/or by letting RF

0 vary randomly (due
to the dependency on relative orientation) [75]. This type of disorder is not considered for
the present work though.

Boundary conditions

As the Master equation approach models all layers in one grid, we always have six
boundaries, namely at the x, y and z faces of the rectangular cuboid formed by the grid,
where x is the direction along the stack, i.e. from one electrode to the other. As such
devices are usually much wider than thick (i.e. dz, dy � dx) the lateral dimensions cannot be
modeled entirely, instead, only a certain lateral width is considered (e.g. ∆y = ∆z = 30a0)
and periodic boundary conditions are applied. For the Master equation approach this means
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that transport terms belonging to sites close to these y and z faces which would extend to
the exterior of the grid are wrapped around and couple sites on opposite sides.

At the x faces it is assumed that either an electrode or a completely insulating medium
exist such that no excitation energy transfer is possible, i.e. on these boundaries no-flow
boundary conditions are applied.

4.2.4 Species decoupling
Instead of using the scalar representation of the exciton Master equation (4.7) and (4.8)

one can also write two vector-valued equations representing the occupation numbers of all
sites for singlets and triplets. See A.1 for the definition of the matrices and vectors used in
expressions (4.16) and (4.17).

dps

dt
= (W s

F +W s
D −Ds

Dec −Ds
ISC −DSPQ −Ds

RecB)ps

+Dt
ISCp

t +Ds
Decb

s +
1

2
DTTAd

2(pt) + bs
Rec + bs

Opt

(4.16)

dpt

dt
=
(
W t

F +W t
D −Dt

Dec −Dt
ISC −DTPQ −Dt

RecB

)
pt

+Ds
ISCp

s +Dt
Decb

t −DTTAd
2(pt) + bt

Rec + bt
Opt

(4.17)

From this representation it is clearly visible that the two species are only coupled by a
diagonal matrix DISC (as ISC only occurs locally on a site) which is easily invertible. In
steady-state (dps

dt = dpt

dt = 0) we can therefore solve (4.17) for ps

ps = (Ds
ISC)−1 (DTTAd

2(pt)− bt
Rec − bt

Opt −Dt
Decb

t −M tpt
)

(4.18)

and insert the resulting expression into (4.16) yielding

0 =M s (Ds
ISC)−1 (DTTAd

2(pt)− bt
Rec − bt

Opt −Dt
Decb

t −M tpt
)

+Dt
ISCp

t +Ds
Decb

s +
1

2
DTTAd

2(pt) + bs
Rec + bs

Opt

(4.19)

which is only a function of pt. To solve this nonlinear equation, we need the Jacobian
df(pt)/dpt which is given by

J t
decoup = Dt

ISC −M s (Ds
ISC)−1M t︸ ︷︷ ︸

1

+2

(
1

2
I +M s (Ds

ISC)−1

)
DTTAD

t
p︸ ︷︷ ︸

2

(4.20)

where I is the unitary matrix. The benefit of this approach is the fact that the number of
DOF is halved and two smaller systems can be solved sequentially instead of solving one big
system once. However, this also introduces some heavy drawbacks which manifest in the
terms 1 and 2 in (4.20). Let’s have a look at term 1 first, the two matrices M s and M t are
(n× n) matrices with n the number of sites, consisting of the sum of some diagonal matrices
and the banded transport matrices WF and WD resulting in the same structure as the
transport matrices. In term 1 a sparse matrix multiplication is needed, resulting in a banded
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matrix where the bandwidth is still bound to bandw(M sM t) = bandw(M s) + bandw(M t)

but with many more nonzero entries making the evaluation of it very expensive.
The second drawback in term 2 comes from the fact that the matrix Dt

p containing
the unknowns is multiplied with the band matrix M s. This results in a widely spread
dependency of the Jacobian J t

decoup on the unknowns which makes the update difficult.
Note that techniques such as quasi-Newton algorithms will also not mitigate this issue as
this multiplication also appears in (4.19), therefore the evaluation of f(pt) is as difficult as
updating the Jacobian.

A similar derivation can be done if the transient case is considered which results in the
equations (neglecting time dependency of Dexter rates)

dpt

dt
= ṗt (4.21)
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(4.22)

Apart from introducing a very complicated expression including time-derivatives of input
parameters (carrier densities) in (4.22) this approach leads to differential equations of second
order and therefore no reduction in DOF is achieved. For these reasons, this approach will
not be further considered.

4.2.5 Comparison to the continuum model
In the commercial simulation software setfos, excitons can also be simulated using a 1D

continuum model approach. The equation which is solved for each species is given as

dSi(x)

dt
=giR(x) +∇(Ds∇Si)− (krad,i(z) + knonrad,i)Si(z)− kannihilation,iSi(z)

2

+

nexc∑
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(kji
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)
Sj(z)− kij
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1− Sj

Smax,j

)
Si(z))

+

nexc∑
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(kij exp

(−∆Eji
kBT

)
Sj(z)− kji exp

(−∆Eji
kBT

)
Si(z))

+

nexc∑
j=1

(ttsji · kannihilation,jSj(z)
2)

−ktp,iSi(z)p(z)− ktn,iSi(z)n(z)− ktn,tiSi(z)nt(z)− ktp,tiSi(z)pt(z)

+goptexc,iG(z)− kd,iSi(z)

(4.23)

where the first line describes generation by recombination, exciton diffusion, (non-)radiative
decay and exciton-exciton annihilation. The second and third line describe inter-system
crossing either thermally activated or not, the fourth represents the gain through exciton-
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exciton annihilation of other species, the fifth stands for polaron quenching and the final line
for optical generation and exciton dissociation.

The most important difference is the term describing exciton transport. In the continuum
model transport is simply governed by the diffusion term ∇(Ds∇Si) where only nearest
neighbor interactions are considered and the spatial variation of material type cannot
be resolved (e.g. quenching at a specific location of a dopant molecule). Furthermore,
in the current state of the model, any material interface results in a no-flow boundary
condition, therefore excitons cannot be exchanged through the layer interfaces. Due to the
low dimensionality of the model also no material variation per layer can be well resolved.
On the other hand, of course, the solution of such a model is much less expensive than a full
3D model.

A connection between the two models can be established by applying the Kramers-Moyal
expansion to the probabilistic Master equations (4.7) and (4.8) (after [76]). To show this
the expansion is applied to the triplet equations but the procedure is valid for both species
and the identifier will be dropped later. The given equation can be reformulated to describe
a continuous state space instead of a discrete one such that the state transition rates need to
be redefined as

ωij −→ ω̃(r′ → r)dr = ω̃(r′, δr)dr, δr = r − r′ (4.24)

with r′, r and δr the initial and final state and the “distance” in state space between the two
states. The quantity ω̃ is now in the continuous space a state transition density such that
ω̃(r′ → r)dr is the transition probability from state r′ to the interval (r, r + dr) per unit
time. Therefore, the triplet Master equation from (4.8) becomes
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+
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+
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(4.25)

where most parameters are now continuous functions in state space. Note the use of −δr as
the second argument in the terms describing transport away from r which denotes reverse
direction of δr. The special way to write the initial state in the first transport terms as
r − δr will be clarified soon. While the first two lines of (4.25) describe interactions over
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distances δr, all the other terms are completely local in nature and are not affected by the
following treatment. The assumption is made that there exists a ε > 0 such that

ω̃(r′, δr) ≈ 0 for |δr| > ε (4.26)

ω̃(r′ + ∆r, δr) ≈ ω̃(r′, δr) for |∆r| < ε (4.27)

where (4.26) means that only short jumps are possible and transfer rates decay quickly,
whereas (4.27) stands for the assumption that rates do not vary strongly from state to state
in their vicinity. These ultimately result in the fact that the final solution pt(r) should also
vary slowly over r. Note that while δr denotes a distance between two states over which
transport occurs, r + ∆r denotes simply a state in the vicinity of r.

If these assumptions are met, the first transport terms in (4.25) can be approximated by
a Taylor-series in δr for small δr around r∫

ω̃(r − δr, δr)pt(r − δr)d(δr) ≈
∫
ω̃(r, δr)pt(r)d(δr)

−
∫

∂
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[
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]
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+
1

2

∫
∂2

∂r2

[
ω̃(r, δr)pt(r)

]
· δr2 · d(δr) +O

(
δr3
) (4.28)

which is truncated after the first two terms. This expression inserted back into the Master
equation yields (only showing one transport integral)∫ [

ω̃(r − δr, δr)pt(r − δr)− ω̃(r,−δr)pt(r)
]

d(δr)

=

∫
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−
∫

∂
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[
ω̃(r, δr)pt(r)

]
· δr · d(δr)

+
1

2

∫
∂2

∂r2

[
ω̃(r, δr)pt(r)

]
· δr2 · d(δr)

−
∫
ω̃(r,−δr)pt(r)d(δr)

(4.29)

If it is assumed that transport is symmetric then ω̃(r,−δr) = ω̃(r, δr) and the first and last
integral on the right hand side of (4.29) cancel each other. The physical interpretation of the
assumptions made up to now basically say that transport happens in a single homogeneous
material as interfaces would violate (4.27) and disorder would introduce strong asymmetries
in transfer rates.

The two transport terms remaining if all these assumptions are fulfilled form on their own
a Fokker-Planck equation commonly denoted as (not including local terms)

∂p(r)

∂t
= − ∂

∂r

[
D(1)(r)p(r)

]
+

∂2

∂r2

[
D(2)(r)p(r)

]
(1D) (4.30)

∂p(r)

∂t
= −

∑
i

∂

∂ri

[
D

(1)
i (r)p(r)

]
+
∑
ij

∂2

∂ri∂rj

[
D

(2)
ij (r)p(r)

]
(3D) (4.31)
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where D(1) is the drift-coefficient (-vector) and D(2) the diffusion-coefficient (-matrix) given
by

D(n)(r) =
1

n!

∫
ω̃(r, δr) · δrn · d(δr) (4.32)

The first term in the 3D Fokker-Planck equation result from the gradient ∇(F (r)) and the
second from the Hessian

H =


∂F (r)
∂r2

1
· · · ∂F (r)

∂r1rn
...

. . .
...

∂F (r)
∂rnr1

· · · ∂F (r)
∂r2

n


with F (r) = ω̃(r, δr)p(r) followed by integration.

If the above assumptions hold and transport is symmetric then ω̃ are symmetric functions
in δr. By taking the convolution of the symmetric transfer rates and the antisymmetric
function δr the result is zero and the drift term vanishes. Due to the symmetry of δr2 the
diffusion term remains and governs exciton transport in homogeneous materials. From (4.32)
it can be seen that the diffusion constant is directly related to the hopping rates defined by
ω̃. By only considering nearest neighbor hopping the integration can be taken yielding the
common expression connecting hopping and diffusion [28]

D =
1

2n
a2

0ω(a0) (4.33)

with n the dimensionality as the total rate is divided by the different directions and ω(a0)

is the total hopping frequency per unit time to the nearest neighbor molecule. This shows
the advantage of the Master equation approach as also highly inhomogeneous materials can
be modeled accurately and the assumptions needed to define a scalar constant diffusion
coefficient do not need to be made.

4.3 Drift-diffusion charge carrier model
As already mentioned in the introduction, the Master equation approach is only applied

to the exciton dynamics and relies on the charge carrier densities as external input. This
input is itself simulated using the 1D drift-diffusion approach as included in setfos. The
basic (scaled) equations to be solved are given as (taken from and using notation of [77])

λ2∇ψ = n− p+ nt − pt (4.34)

∇ · Jp = −R(n, p)− ∂p

∂t
(4.35)

∇ · Je = R(n, p) +
∂n

∂t
(4.36)

Jp = −µp(T, p,∇ψ) (∇p+ g3(p)p∇ψ) (4.37)

Jn = −µn(T, n,∇ψ) (∇n+ g3(n)n∇ψ) (4.38)

with
λ2 =

Utε

L2qN0
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4.3. Drift-diffusion charge carrier model

In order of appearance these are the Poisson, hole continuity, electron continuity, hole current
and electron current equations. These can be calculated for single energy levels or using
disorder models as well (for single energy levels the g3 factor in (4.37) and (4.38) would
disappear). In this notation n, p, nt, and pt are the electron, hole, trap electron and trap
hole densities, respectively, ψ is the potential, J is the current and R is the recombination
rate.

In addition to these equations models are needed which define recombination rates
and mobilities. The standard approach for modeling recombination is through Langevin
recombination as given in (3.3) and described in section 3.1.2. Mobilities can be modeled
with different levels of detail, such as simple constant mobility or also more elaborate models
as described in section 2.2.3 in the beginning of this thesis.

Again, certain difficulties arise due to the different approaches of the microscopic 3D
ME and this macroscopic 1D continuum model. The disorder in the DD model only enters
through the mathematical definition of the DOS and some adjustments of the resulting
mobility, injection etc. (macroscopic parameters) while in the ME case an independent
realization of the random variables is drawn giving an actual spatial variation of energy
levels leading to variations in the microscopic parameters such as hopping rates, and it
is not guaranteed that both approaches are actually consistent. This could be alleviated
by calculating the ME model multiple times with different realizations thus approaching
a certain “mean” solution. Another point is the treatment of guest-host systems where
dopants (guests) are randomly distributed inside the host-matrix. Something similar can
be achieved in the DD model by modeling the guest material as trap states in the host
layer, however, due to the 1D approach these will be continuously spread throughout the
layer which introduces some ambiguity in the way e.g. how carrier densities are translated
into the 3D ME grid. Furthermore, the treatment of the coupling between excitons and
charge carriers, recombination, is of utmost importance as otherwise the two solutions are
not consistent. As in the ME approach no formal distinction between materials is made and
recombination is simply calculated as peph

τ no special treatment of e.g. dopant recombination
is necessary. However, if the same dopants are defined as traps in the DD approach special
models apply which govern the recombination in these trap states, therefore special attention
is necessary to avoid inconsistencies.
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Chapter 5

Implementation

In this chapter the actual implementation of the solver as C++ code will be described. First
an overview over the main workflow is given, followed by a more detailed description for
each of the main classes determining the simulation process.

An overview of the complete program is given in fig. 5.1 where the main flow follows four
main steps

1. Parse the input data from setfos (setfosInputParser)

2. Generate the grid with the respective materials (Grid)

3. Prepare the model related matrices and vectors (Model)

4. Solve the system either in steady-state or transient (Solvers)

where the namespace CONSTANTS:: is used to identify some physical constants which are
globally available for all classes, such as π, the Boltzmann constant kB, the vacuum permit-
tivity ε0 and others. Currently, also some numerical constants are stored there such as grid
spacing a0 and Förster radius RF

0 as these are constants throughout the whole simulation,
however, this should be changed in the future and these values should be defined in the
respective classes as parameters.

In the current state of the code the model using the decoupled equations from section
4.2.4 is implemented in an independent instance of the code to avoid conflicts between it and
the main model using the coupled equations, however, most of the code works exactly the
same and there won’t be much effort necessary to unify them in the future. An additional
independent instance with its own code is the small program TestAdaptiveRK which is
a small test-suite to test the implementations of the various numerical methods used for
transient simulations, i.e.

– Explicit Runge-Kutta

– SDIRK

– ESDIRK

– ROW
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Chapter 5. Implementation

Figure 5.1: Implementation overview with the most important classes defining the simulation
process.

with a more detailed description of the mathematical characteristics of each given in section
6.3.2.

This code heavily uses features provided by the C++ library Eigen which is a template
header library for linear algebra algorithms such as matrix-/vector-operations, numerical
linear solvers, matrix decompositions etc. The library code is licensed under MPL2 and is
therefore freely available even for commercial applications. Specifically, the classes VectorXd
and SparseMatrix representing dynamically-sized vectors of type double and large sparse
matrices, respectively, are used for the vectors and matrices in the code. In general, all
floating-point numbers used are double-precision floats (doubles) occupying 8 B of memory
each. In addition to the matrix-classes also the linear solvers used to solve e.g. the linearized
Newton-equations are provided by Eigen. Additionally, many parts of the program are
parallelized using OpenMP to make use of multiple cores on the CPU.

5.1 setfosInputParser
The first step before starting a simulation is to import the input data generated by setfos,

i.e. profiles of the electron and hole densities and potential in the device which can be
either static or transient. To achieve this, the class setfosInputParser can be used which
provides the method import_parameter() taking the filename of the .txt-file from setfos as
parameter. The files should be formatted in the way shown in the example files in tab. 5.1.
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5.1. setfosInputParser

Figure 5.2: setfosInputParser overview.

(a) Example for the “transient” input format.

# . . .
#
# t(us) x(nm) n(cm^-3) p(cm^-3) Potential(V) nt(cm^-3) pt(cm^-3) G(cm^-3s^-1)
0.00E+00 5.00E-01 7.03E-37 1.16E+19 -2.39E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 1.50E+00 3.63E-36 2.26E+18 -2.35E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 2.50E+00 1.09E-35 7.54E+17 -2.32E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 3.50E+00 2.71E-35 3.02E+17 -2.30E+00 0.00E+00 0.00E+00 0.00E+00
...

...
...

...
...

...
...

...

(b) Example for the “steady-state” input format.

# Carrier . . . [cm^-3] # Potential
# Column . . . : # Column format:
# x [nm] n p nt pt G Potential [V]
5.00E-01 5.13E-18 1.16E+19 0.00E+00 0.00E+00 0.00E+00 -2.39E+00
1.50E+00 6.73E-17 2.26E+18 0.00E+00 0.00E+00 0.00E+00 -2.35E+00
2.50E+00 3.04E-16 7.54E+17 0.00E+00 0.00E+00 0.00E+00 -2.32E+00
3.50E+00 9.51E-16 3.02E+17 0.00E+00 0.00E+00 0.00E+00 -2.30E+00
...

...
...

...
...

...

Table 5.1: Examples for parameter import files.

The imported parameters are then stored in the member variables, allowing for dynamically
sized input data. The imported data is then directly spatially interpolated using the (private)
member function interp_param() such that for each x-layer in the grid a well-defined value
can be assigned. In between the input data points values are interpolated linearly, while for
points outside the available data range constant extrapolation is used, i.e. for input data
din in the range [nin,min]

d(n) = din(nin) forn < nin

d(m) = din(min) form > min

Not only parameters from setfos can be imported, but also exciton distributions (“solution”)
using import_solution() where the import works very similarly to the parameter case,
however, there are two different formats of how the imported values will be interpreted.
Either the data is given similarly to the examples in tab. 5.1, one for each x-coordinate, or
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it can also be given as a simple (long) list of numbers (see tab. 5.2b). In the latter case the
imported data will be interpreted as a “node-wise” solution where each imported value is
directly assigned to the respective entry in the solution vector. This may be useful to import
an older solution, e.g. as an initial value for a transient simulation, note however that if
random variables such as Eb but also positions of guest sites is not taken into account this
imported solution might be inconsistent with the new grid. The “layer-wise” interpolation
works equally to the parameter interpolation.

(a) Example for the “layer-wise” input format.

# Exciton density [cm^-3]
# Column format:
# x [nm] ps pt t_ps t_pt
5.00E-01 5.13E-18 1.16E+19 0.00E+00 0.00E+00
1.50E+00 6.73E-17 2.26E+18 0.00E+00 0.00E+00
2.50E+00 3.04E-16 7.54E+17 0.00E+00 0.00E+00
3.50E+00 9.51E-16 3.02E+17 0.00E+00 0.00E+00
...

...
...

...
...

(b) Example for the “node-wise” input format.

ps(cm^-3) pt(cm^-3)
5.13E-18 1.16E+19
6.73E-17 2.26E+18
3.04E-16 7.54E+17
9.51E-16 3.02E+17
...

...

Table 5.2: Examples for solution import files

5.2 Grid
The next basic step is to generate the grid on which the simulation will be carried out

later. The interface to define it is provided by the class Grid which manages various other
classes for different parts of the grid, namely Material, Layer and Site as shown in fig. 5.3.
The first step is to add the materials used in the domain through the interface of the Grid

class generating Material objects where each stores the relevant excitonic parameters of the
material such as lifetimes and energy levels. Furthermore, it defines a set of bools which are
used to determine if certain mechanisms are active inside this material and if the disorder in
the material is spatially correlated or not.

After all materials are defined, layers can be added one by one along the x-axis where
for each a Layer object is generated storing information about the layer such as thickness
and material types but also providing an interface to quickly act on all the sites inside that
specific layer. The most important method is update_profiles() which can update the
carrier density and potential profiles inside the layer for a given time t by using the data
stored in the setfosInputParser object. In addition to the Layer object the respective
number of Site objects are created and stored in the Grid object (note that they are not
stored in the Layer). These represent the most fundamental part of the grid, i.e. single grid
points representing a single molecule, and store the relevant data such as local energy levels,

58



5.2. Grid

Figure 5.3: Grid overview.

local carrier density, indices, material type etc. (not exciton densities). The global index of
a site is determined using the following scheme

i = (ixmy + iy)mz + iz (5.1)

with my, mz the grid size in the lateral dimensions. Each object also stores a list of indices
corresponding to its “neighbors”, i.e. all sites within the coupling distance defined by Rc. In
order to determine all these values, the class provides necessary methods

– calculate_dipole(): If the local material features uncorrelated disorder, this is a
no-op. Otherwise it calculates a vector with length defined by the material and random
orientation in space by sampling a Gaussian PDF for each component [78].

– calculate_neighbors(): Determines which other sites are in coupling range defined
by Rc taking into account periodic boundary-conditions at y- and z-faces creating a
neighbor-list.

– vecdiff(): Determines the distance between ∗this and a given different site, taking
into account periodic boundary conditions.

– init_E(): Calculates the local energy levels according to (4.12) and (4.13) where
depending on the material type the random component for the carriers is given by
(2.4) or (4.15), where in the latter the case the previously calculated dipole-vectors are
used.
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The layers can be either generated with a single material or a combination of two materials
(guest-host system) where the density of the guest material can be specified. The guest
molecules will then be randomly distributed in the grid either with a constant density or a
linear gradient as shown in fig. 5.4.

(a) Constant ρ = 0.2. (b) Linear distribution with ρl = 0.6 and ρr = 0.

Figure 5.4: Random distribution of guests in a guest-host system. The guest distribution can have
either constant density or a linear density gradient.

The Grid object also stores a number of Randgen objects in order to ensure thread-
safety in multithreaded environments where random numbers are used, generated during
init_randgen(). Each contains a default_random_engine object (normally mt19937)
seeded either by a user specified seed or a generated one from a random_device, which feeds
a uniform_real_distribution and normal_distribution from which random numbers
ξ ∼ U(0, 1) and ξ ∼ N (0, 1), respectively, can be obtained.

5.3 Model
The Model class manages all the aspects which are connected to the mathematical model

from (4.7) and (4.8) such as storing the vector of unknown exciton densities p (denoted by x

in the code), the system’s Jacobian in the Eigen::SparseMatrix J and also the constant
terms (independent of p) consisting of recombination and optical generation in the vector
consts as these are not yet stored in J. The class itself provides interfaces to initialize and
update the matrices and vectors as well as to evaluate f(t,p) and its partial derivative with
respect to time ∂f/∂t. One point worth mentioning is the way the functions are evaluated.
Due to the polynomial form of the Master equations the functions can be directly evaluated
using the stored matrices and vectors if a small correction is added as given in (6.8).

The class Consts is a very simple class storing two Eigen::VectorXd containing only the
parts which are independent of time (detailed balance terms) as well as the final vector. The
init() function simply calls constrb_const() which calculates all the time-independent
terms followed by a call to update() to also add the time-dependent terms at the current
timestep.

The Jacobian class represents, as the name says, the Jacobian of the Master equations.
Internally, it has a member variable called mat which is of type
Eigen::SparseMatrix<double, Eigen::RowMajor>, where the row-major format is cho-
sen such that matrix-vector multiplications are multithreaded by Eigen and with it also
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5.3. Model

Figure 5.5: Model overview.

the iterative Krylov-subspace solvers. Parts of the matrix which stay constant over the
whole simulation are constructed by constrA_mt(). The vectors with the cryptic names
dfsdptdiaglin and dftdptdiaglin store the time independent and linear parts of df s/dpt

and df s,t/dps,t (i.e. the main diagonal) which will undergo updates later, whereas their
counterparts without the -lin store the pointers to the respective entries. These two together
allow for very fast O (1) access and updates of the Jacobian for changed (t,p) where it was
utilized that the positions of the entries undergoing changes is well known in advance. This
together with the easy way to express f(t,p) using the Jacobian leads to the fact that every
evaluation of the Master equations in the code is realized by an update of the Jacobian
and constant terms followed by (6.8). The final important member function of this class is
dfdt() which calculates the partial time derivatives as defined in (6.49).

Instead of the normal Jacobian where the matrix is stored explicitly in memory one can
also use a similar class QuasiJacobian where no such matrix exists. Instead, in the case
of matrix×vector products as needed in the iterative linear solvers, the entries which are
needed in the operation are calculated on-the-fly in order to reduce memory usage (so-called
matrix-free methods). This is not completely true as the main diagonal is still precomputed
by using calculate_diagonal() as otherwise all the transport terms corresponding to a
certain site would need to be computed every time the diagonal element is called (see the∑
ω terms in (4.7), (4.8)).
One aspect about the update() methods in all of these classes is worth mentioning.

These are called with a parameter defining the current timestep. When called, these
methods will actually first call update_profiles() for each layer stored in the grid. These
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will then read the data stored in the setfosInputParser and again linearly/constantly
interpolate/extrapolate the profiles and update the values stored in the Sites such as qΦi,
pe etc. as well as their respective time derivatives.

5.4 Solvers

Figure 5.6: Solvers overview.

Depending on the needs, one is only interested in the final equilibrium solution at steady-
state, or the actual temporal evolution of the exciton densities are of interest. For these two
possibilities the classes SsSolver and TransSolver provide the necessary interface. The class
solving for steady-state is quite simple as it basically only consists of a Newton iteration. By
using the member functions set_tol() and set_NewtonThreshold() the member variables
reltol, abstol and NewtonThreshold can be set in the solver. Those together define the
convergence criteria where they correspond to β, α and τ in (6.13). During the iteration
the displacement is recorded and stored in the std::vector<double> residLog. After the
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solution is obtained the results are written to a file by calling print(). There are three files
written:

– <setname>_residual.txt: A text file with the contents stored in the residLog vector

– <setname>_data.bin: A binary file storing all the computed data column-wise in
single-precision

– <setname>_varunits.txt: A text file where the information about the different columns
of setname_data.bin is stored with variable names and units

The exported data includes the exciton densities but also some post-processed data (single
terms of the Master equations representing different mechanisms) and local parameters (such
as random energy contributions and carrier densities).

For transient simulation the second solver class TransSolver was implemented which
employs a very similar interface additionally giving the option to set a safety factor βs
for stepsize control (see (6.41)). In terms of member variables they differ though as the
TransSolver class does not yet store many specific control variables except the initial
timestep dt, instead, it only stores a matrix x_log where the computed results for each
timestep are stored alongside the vector t_log for the used timesteps themselves. The
computational details are stored in another class ButcherTableau which is referenced in
the TransSolver object. The ButcherTableau class represents as the name says a Butcher
tableau which defines the used Runge-Kutta method and stores the specified tolerances as
well as the specific coefficients of the method in its variables A, c, b and bhat. Furthermore,
it has a temporary storage for the computed slopes kn during the integration steps. It
features an internal method step_control() which implements the controller from (6.41)
with additional safeguards such as hnew <= 2h and h > 0 where h is the stepsize. The
method calc_step() is only a virtual function defined specifically in the inheriting classes
ExplicitBT, SDIRKBT, ESDIRKBT, ROWBT and LinDIRKBT.

All of them implement the basic Runge-Kutta scheme given in (6.35) and (6.36), except
the ROW-methods which use a slightly different formulation where the details about all the
numerical schemes are described in 6.3.2. As all of them are implicit methods except the
ones in the ExplicitBT class a linear solver is needed to solve the linear system of equations
where in the SDIRKBT and ESDIRKBT classes even a nonlinear Newton solver is implemented.
For the solution of the linear equations an iterative BiCGSTAB algorithm is used. Note that
ROWBT overrides the inherited step_control() method due to the aforementioned slightly
different formulation. By calling the solve() function of the TransSolver these underlying
functions defined in the inheriting classes are activated.

5.5 Independent programs
As already mentioned in the beginning, in the current state of the code there are two

programs which are independent from the main one. The first is the one implementing the
decoupled singlet and triplet equations and the second is a small test-suite for the transient
solvers using scalar test ODEs. Whereas the former can and should be easily implemented
into the main program, the latter is not meant to become part of the exciton solver.
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The decoupled solver shall be described first, however only briefly, as the code is essentially
the same except for the implementation of the model, i.e. the construction of the Jacobian
and the vector storing the constant terms. As this model is anyway not used for transient
simulations the whole time-dependency of the input data and transient solvers are not part
of the code. The governing equation is given in (4.19) and the expression for the Jacobian in
(4.20). The difficulty is mainly the computation of the Jacobian which needs to be done in
some steps. First, all the underlying matrices appearing in (4.20) need to be created which
is quite similar to the constrA_mt() as the matrices M s and M t have the same form as
the upper left and lower right block diagonals of the original Jacobian. Computing the final
matrix then is done calculating these steps (in code syntax):

J = M s(Ds
ISC)−1

J = J + 0.5I

J = 2JDTTAp
t

J = J −
(
M s(Ds

ISC)−1M t
)

J = J +Ds
ISC

It is very costly to compute these steps and due to the various temporaries created in the
process the memory consumption is very high. Furthermore, this process is executed every
time the Jacobian needs to be updated during a Newton iteration as it is not straightforward
to distinguish the entries which are functions of pt and which are not. As soon as the
Jacobian is constructed, the constant terms are evaluated as

c = M s(Ds
ISC)−1

(
bt

Rec + bt
Opt +Dt

Decb
t
)
−
(
bs

Rec − bs
Opt −Ds

Decb
s
)

from where on the steady-state solution is obtained the same ways as in the coupled case.
The second program is a test suite where three scalar ordinary differential equations are

solved and compared to the exact solution. The three ODEs with their respective solutions
are given in (5.2), (5.3) and (5.4). Apart from solving different equations the implementation
is of course designed to be as equal to the original one as possible in order to make sure
that the results are comparable and conclusions about the original implementation might be
drawn.

dy

dt
= λy =⇒ y = A exp (λt) (5.2)

dy

dt
=

2

t
y + t2 − 1 =⇒ y = t3 +At2 + t (5.3)

dy

dt
=

4

t2
− 6

t
y + y2 =⇒ y =

t−2 + 4At−5

t−1 +At−4
(5.4)

The first equation (5.2) is the famous Dahlquist test equation solved with initial condition
f(t = 0) = 1 i.e. A = 1 and λ = −3 where λ can be decreased to make integration more
difficult for solvers which do not provide A-stability (see section 6.3.1). The second equation
is an example in [79] and features non-constant coefficients. This equation is solved with
initial condition f(t = −5) = −5, i.e. A = 5. The final equation is a Riccati equation chosen
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due to its similarity to the Master equations (nonlinear with non-constant coefficients in the
linear terms) with initial condition f(t = 0.1) = 39.89, i.e. A = 0.27989. Derivations of the
ODE solutions can be found in the appendix A.3. Two examples of the results obtained with
this code are shown in fig. 5.7. In case of the GRK4A the relative tolerance β was defined as
given in the plot and α = 10−2β and for the linearized implicit Euler stepsize was constant.
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(a) Solution to (5.3) using GRK4A. (b) Error to the exact solution of (5.3) using GRK4A.

(c) Solution to (5.4) using the linearized implicit Euler. (d) Error to the exact solution of (5.4) using the linearized implicit Euler.

Figure 5.7: Example solutions of the transient simulation test suite. For the Riccati equation also the slope field is plotted to show the narrow stability region. The
method fails due to small integration errors moving it into the unstable region (all other methods succeeded).
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Numerical Methods

After setting up the mathematical model in chapter 4 and explaining the general imple-
mentation of the C++ code, in this chapter a more detailed discussion of the mathematical
methods used for solving the equations is given. In the first section the resulting matrices
from the model and their properties and uses is explained. In the following the procedures
used for solving the steady-state equations is shown along some ideas that were explored
during the project. Finally, the approach for solving the equations under transient conditions
is discussed alongside some stability considerations.

6.1 Matrix properties
As the coupled equations represent the main system to be solved, these will be discussed

first, followed by some remarks about the more exotic approaches.

6.1.1 Coupled equations matrix
In order to solve (and evaluate, see later) the nonlinear equations (4.7) and (4.8) one

needs to construct the Jacobian matrix J = df/dp of the system where

p =

[
ps

pt

]

Due to the polynomial structure of equations (4.7), (4.8) the Jacobian will have a very
similar form as the equations themselves which makes it as cheap to compute as f(p). The
Jacobian for the system is given in the following as

J =

[
Jss Jts

Jst Jtt

]
(6.1)
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with the sub-matrices Jss, Jts, Jst, Jtt describing singlet↔singlet, triplet→singlet, singlet→triplet
and triplet↔triplet interactions, respectively. These are given in detail by

Jss =



Ds
1 ωF,s

21 + ωD,s
21 ωF,s

31 + ωD,s
31 · · · ωF,s

N1 + ωD,s
N1

ωF,s
12 + ωD,s

12 Ds
2 ωF,s

32 + ωD,s
32 · · · ωF,s

N2 + ωD,s
N2

...

...

· · · ωF,s
ji + ωD,s

ji · · · Ds
i · · ·ωF,s

ji + ωD,s
ji · · ·

...

...

ωF,s
1N + ωD,s

1N ωF,s
2N + ωD,s

2N · · · ωF,s
N−1,N + ωD,s

N−1,N Ds
N



(6.2)

Jts =



exp
(

∆Eb,1
kBT

)
τISC,1

+
pt

1
τTTA,1

0 · · · 0

0
exp

(
∆Eb,2
kBT

)
τISC,2

+
pt

2
τTTA,2

...
...

. . . 0

0 · · · 0
exp

(
∆Eb,N
kBT

)
τISC,N

+
pt
N

τTTA,N


(6.3)

Jst =



1
τISC,1

0 · · · 0

0 1
τISC,2

...
...

. . . 0

0 · · · 0 1
τISC,N

 (6.4)

Jtt =



Dt
1 ωF,t

21 + ωD,t
21 ωF,t

31 + ωD,t
31 · · · ωF,t

N1 + ωD,t
N1

ωF,t
12 + ωD,t

12 Dt
2 ωF,t

32 + ωD,t
32 · · · ωF,t

N2 + ωD,t
N2

...

...

· · · ωF,t
ji + ωD,t

ji · · · Dt
i · · ·ωF,t

ji + ωD,t
ji · · ·

...

...

ωF,t
1N + ωD,t

1N ωF,t
2N + ωD,t

2N · · · ωF,t
N−1,N + ωD,t

N−1,N Dt
N



(6.5)

with the main diagonal entries

Ds
i = −

 N∑
f 6=i

ωF,s
if +

N∑
d 6=i

ωD,s
id +

1

τ s
r,i

+
1

τ s
nr,i

+
1

τISC,i

 (6.6)

Dt
i = −

 N∑
f 6=i

ωF,t
if +

N∑
d6=i

ωD,t
id +

1

τ t
r,i

+
1

τ t
nr,i

+
1

τISC,i
exp

(
Es

b,i − Et
b,i

kBT

)
+

2pt
i

τTTA,i

 (6.7)

It is worth to discuss some aspects of this matrix. First of all, it is important to note that
J ss and J tt are not symmetric due to the asymmetric Boltzmann exponentials in (4.9) and
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(4.10), therefore any special solving techniques for self-adjoint (Hermitian) matrices are
not applicable. Furthermore, it may or may not be diagonally dominant depending on the
magnitude of the chosen parameters.

Definition. Let A ∈ Rn×n. A is called self-adjoint or Hermitian iff

A = AH , i.e. aij = aji ∀ i, j

Definition. Let A ∈ Rn×n. A is called (strict) diagonally dominant iff

|aii| ≥
∑
j 6=i
|aij | ∀ i

However, due to the fact that all quantities in (4.7) and (4.8) are (physically) nonnegative
the resulting Jacobian is a Metzler matrix which is typical for matrices describing continuous-
time finite-state Markov processes like the Master equation.

Definition. Let A ∈ Rn×n. A is called Metzler matrix iff

aij ≥ 0 ∀ i 6= j

Because of the Metzler-property and because all the constant terms in the Master equations
of the model are always nonnegative as well it follows that (in continuous time) the positivity
of the exciton occupation numbers ps

i and p
t
i is conserved over time, i.e.

ps
i(t = 0) ≥ 0

pt
i(t = 0) ≥ 0

=⇒ ps
i(t) ≥ 0

pt
i(t) ≥ 0

∀ t > 0

as all sink terms depend on the local exciton occupation number and vanish if p = 0.
Note that in (6.2) and (6.5) the matrices are presented in a form which is fully populated,

i.e. all transport terms ωij are included. As mentioned in section 4.2.2, in order to reduce
the coupling between sites a cutoff distance Rc is defined and transport terms are set to
0 for R > Rc. This makes the matrices J ss and J tt very sparse and gives them a banded
structure with various sub-bands as shown in fig. 6.1. Note that even for a relatively small
Rc = 4 nm and grid size of 120× 30× 30 the number of nonzeroes in the complete Jacobian
is above 55’000’000.

This band structure emerges from the way sites are numbered, see (5.1). It is important
that the last dimension over which the global index increases is x as there are no periodic
boundary conditions applied at the x-faces, otherwise sites with the highest global index
would be coupled with the lowest one and vice-versa.

Despite the large number of nonzeroes the Jacobian is easy to update as can be seen from
(6.3) and (6.5) where only the two main diagonals of these sub-matrices are functions of pt.
By storing the addresses of these entries they can be updated individually in O (1). For
transient simulations where one also needs to take into account temporal dependencies of
pe(t), ph(t), Φ(t) and Gopt(t) this is not so easy anymore. The time dependencies on the
charge carriers and optical generation are also easily taken into account as they are only
present on the main diagonal of the full Jacobian and in the “constant” terms, however,
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Figure 6.1: Pattern of the coupled Jacobian for a 120× 30× 30 grid and Rc = 4 nm.

if one chooses to implement Dexter transport (and dissociation) as presented in 4.2.2 the
energies would introduce a field-dependency and therefore a time-dependency of the transport
terms. For an exact simulation one would then need to recalculate all transport terms in the
Jacobian for each timestep which would increase the computational cost drastically.

Because of the polynomial structure of the Master equations the evaluation of the right-
hand sides of (4.7), (4.8) can be done directly using the Jacobian in order to not recompute
any of the transport terms if they are already stored in the matrix by calculating

f(p) = J(p)p− c− fnlin(p), with fnlin(p) =



(pt
1)2

2τTTA,1

...
(pt

N )2

2τTTA,N

− (pt
1)2

τTTA,1

...

− (pt
N )2

τTTA,N


(6.8)

where c is the vector storing the (negative) “constant” terms and fnlin is a correction for the
nonlinear terms.

6.1.2 Further matrices
There are also situations where other matrices emerge than the one described in the last

section. Those will be shortly discussed here.

Decoupled equations matrix

As described in section 4.2.4 the Master equations for the two exciton species can be
decoupled because of the simple diagonal structure of the coupling matrix Ds

ISC = J st where
the expression for the resulting Jacobian in that case is given by (4.20). In this expression
the term denoted by 1 includes the sparse matrix multiplication of M s and M t where both

70



6.1. Matrix properties

of these matrices have the same structure as J ss and J tt as depicted in fig. 6.1. Because of
the multiplication a large fill-in occurs where the bandwidth is broadened and the sub-bands
get denser. This is shown in fig. 6.2 where only the upper-left corner of the main diagonal of
M s and J t

decoup is shown color-coded by the magnitude of the entries.

(a) M s matrix structure and magnitude.

(b) J t
decoup matrix structure and magnitude.

Figure 6.2: Fill-in of the decoupled Jacobian. Compare the number of filled sub-diagonals as well
as the more spread large magnitudes in 6.2b.

For a 120 × 20 × 20 grid the resulting Jacobian J t
decoup has about 84’000’000 nonzero

entries, i.e. much more already than the coupled Jacobian for a larger 120× 30× 30 grid.
Furthermore, during the construction of the matrix in the code (see section 5.5), various
temporaries are created during the (not multithreaded) matrix calculation which lead to
large memory consumption (∼ 8 GB peak for a 120 × 30 × 30 grid). In addition to the
fill-in the dependency on the solution is spread over the whole range of matrix entries given
by the structure of M s and therefore the cheap O (1) updates by storing the addresses is
not straightforward anymore. If one would try to mitigate this problem of updating the
Jacobian by employing certain numerical techniques such as Broyden rank(1)-updates [80],
the problem emerges that the evaluation of the right-hand side of (4.19) is as expensive as
the evaluation of the Jacobian and therefore these methods are of no use (as they are based
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on the assumption that the evaluation of the Jacobian df/dx is much more expensive relative
to the evaluation of f(x) itself, as those evaluations are still needed for every iteration).

Matrix-free methods

As will be discussed later in section 6.2.2, for iterative Krylov-subspace solvers only
matrix×vector products are necessary. Therefore, there is the option to use so-called matrix-
free methods where the matrix is not stored explicitly in memory. Instead, the products of
the elements needed are calculated on-the-fly during the matrix×vector operation, saving
basically all the memory which would be occupied by the matrix itself. However, this is of
course equivalent to a complete construction of the matrix for each operation and is therefore
computationally expensive. In fig. 6.3 the solution time per iteration of the iterative linear
solver is compared between the “normal” (matrix stored explicitly in memory) and the
matrix-free version on a small 120× 15× 15 grid. The results show that the computation
time per iteration using matrix-free solvers is around 10× the computation time if the matrix
is stored explicitly. This is due to the fact that the transport terms have to be calculated
every time which include nontrivial operations such as exp(), pow() and sqrt(). Note that
the amount of operations for each entry is constant, so the complexity is still O (np) given
by the matrix×vector multiplication (p being the number of sub-diagonals).

Figure 6.3: Iteration time for matrix free-solvers compared to their explicit counterparts.

Another difficulty is to obtain a preconditioner if the matrix is not available explicitly.
One application where such a matrix-free version of the Jacobian could be useful is where
a single matrix×vector product is necessary, such as to evaluate (6.8) during transient
simulations, especially if one chooses to include the field-dependency of the Dexter hopping
terms (or dissociation terms) where the Jacobian would frequently need to be updated almost
completely anyways.
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6.2 Steady-state solution
If only the equilibrium state of the device is of interest such as evaluation at different

voltage points to calculate luminance vs. current curves, then the steady-state assumption
can be applied and time derivatives are set to zero

dps

dt
=

dpt

dt
≡ 0

The resulting equations can then be directly solved for the steady-state exciton distribution.

6.2.1 Newton algorithm
If one applies the steady-state condition to the equations (4.7) and (4.8) one needs to

solve the nonlinear equations given by

f(p) = 0 (6.9)

where f(p) denotes the right-hand sides of (4.7) and (4.8). In order to solve this equation nu-
merically one generally applies Newton’s method where the nonlinear equation is sequentially
linearized. The method is popular due to its simplicity and generally quadratic convergence
in a neighborhood of the final solution. A short description of the method is given in the
following. In order to solve a system of nonlinear equations as given by (6.9) the equations
are linearized around a point p(0)

f(p) ≈ f(p(0)) +
df

dp

∣∣∣∣
p(0)

(
p− p(0)

)
+O

(
p2
)

= 0 (6.10)

where the Taylor series of f(p) is truncated after the linear terms. (6.10) can be written by
using the Jacobian matrix and rearranging

J(p(0))∆p(0) = −f(p(0)) (6.11)

This is a linear equation which can be solved for ∆p(0) =
(
p− p(0)

)
which leads to the

following iterative scheme
p(k+1) = p(k) + ∆p(k) (6.12)

Using this scheme the vector p(k) approaches the solution of (6.9) for a good initial guess
p(0) in the neighborhood of the solution to the nonlinear problem. There are various ways
to determine if the solution has converged, one of the most popular is the displacement
condition [81]

∣∣∣∣∣∣δ(k+1)
∣∣∣∣∣∣ ≤ τ, with δ(k+1)

i =
p

(k+1)
i − p(k)

i

β
∣∣∣p(k+1)
i

∣∣∣+ α
=

∆p
(k)
i

β
∣∣∣p(k+1)
i

∣∣∣+ α
(6.13)
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where ||·|| in (6.13) denotes a suitable norm such as a L∞ or L2 norm

||δ||∞ = maxi |δi| , ||δ||2 =

√
1

N

∑
i

δ2
i (6.14)

The scalars α, β and τ are absolute and relative tolerances and a tolerance ratio which is
often τ = 1. The absolute tolerance should be chosen small simply as a mean to prevent
division by zero. However, the displacement condition simply checks that no change of
the solution is occurring anymore, in order to check for the correctness of the obtained
(converged) solution p∗ it is a good idea to check ||f(p∗)|| which should be close to zero.

6.2.2 Linear solution method
By linearizing the nonlinear equations in (6.9) we merely replaced one problem with

another one, namely how the resulting linearized system should be solved. Due to the large
size of the system in general for such a 3D problem with long-range interactions direct
solution methods such as LU- or QR-decompositions are unfeasible due to the large fill-in of
the decomposition matrices.

To mitigate the problems of the direct solvers one can employ an iterative linear Krylov-
subspace solver where the linearized equation is itself solved iteratively. Due to the general
shape of the Jacobian matrix, solvers able to deal with such matrices have to be chosen
where two common possibilities are the Generalized Minimum Residual (GMRES) and
Bi-Conjugate Gradient Stabilized (BiCGSTAB) methods (see [82] for more information). For
both methods the convergence rate depends on the condition number κ where for a matrix
A ∈ Rn×n

κ(A) =
σmax(A)

σmin(A)
(6.15)

where σmax(A) and σmin(A) are the maximum and minimum singular values of the matrix
A. In order to minimize this ratio, one generally preconditions the system of equations by
using a suitable preconditioner. Assume one wants to solve the system Ax = b iteratively,
then a good preconditioner K should have the following properties [83]:

– Either κ(K−1A) ≈ 1 (i.e. K (K−1) is a good approximation of A (A−1))

– Or the spectrum of K−1A consists of few eigenvalues (clusters)

– Kz = r can be easily solved

– K can be easily constructed

Then one solves instead of the original system of equations an adjusted one depending on
which type of preconditioning is chosen, i.e.

K−1Ax = K−1b (Left preconditioning) (6.16)

AK−1y = b, x = K−1y (Right preconditioning) (6.17)

L−1AU−1z = L−1b, x = U−1z (Split preconditioning K = LU) (6.18)
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6.2. Steady-state solution

The actual implementation of such preconditioned systems actually adjusts the algorithm of
the iterative Krylov-subspace solver and results in the preconditioned GMRES / BiCGSTAB
algorithms where per iteration the system Kz = r needs to be solved.

For the present problem various preconditioners were considered, namely

– ILUT

– (Block) Jacobi

– Block full

– Block simplified

– (Block) Gauss-Seidel

– Block full

– Block simplified

– Block diagonal

The first preconditioner is constructed by a threshold incomplete LU (ILUT) factorization
after [84] which is governed by two parameters pILUT and τILUT controlling the maximum
amount of fill-in and dropping of elements whose magnitudes are below the defined threshold,
respectively. In this way an approximate LU factorization is carried out which can be used
to approximate A−1 and to directly solve L̃Ũz = r in each iteration. The two other types
come from general fixed-point iteration techniques following the scheme

xk+1 = Gxk + b̂ (6.19)

where G and b̂ are defined from the matrix-splitting A = K −N

b̂ = K−1b, G = K−1N = I −K−1A (6.20)

By inserting (6.20) in (6.19) it follows that the generating system of (6.19) is the left
preconditioned system as given in (6.16). Therefore, preconditioning the iterative Krylov-
subspace method by K is equivalent to evaluate one step of Az = r using Jacobi or
Gauss-Seidel iteration. For the two considered methods, Jacobi and Gauss-Seidel iteration,
K is given by

KJ = D, KGS = D −E (6.21)

where D and −E are the main diagonal and the strict lower triangular part of A. These
can then be used as preconditioners for the iterative Krylov-subspace solver where they are
especially strong for diagonally dominant matrices and very easy to construct as well as to
invert. The block versions are simply defined by applying the concept to block matrices,
e.g. taking the block diagonal of A for D. This tries to exploit the block structure of the
Jacobian as given in (6.1) where for the “full” block preconditioners the full J ss and J tt are
taken whereas for the “simplified” ones only the sub-diagonals corresponding to the transport
to nearest neighbors are kept additionally to the main diagonal, as these are expected to are
large in magnitude. Block diagonal Gauss-Seidel finally is equivalent to the normal Jacobi
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preconditioner where the diagonal of Jst is also taken into account. The structures of the
Jacobi- and Gauss-Seidel preconditioners is given in fig. 6.4.

(a) Normal Jacobi. (b) Full block Jacobi. (c) Simplified block
Jacobi.

(d) Normal Gauss-
Seidel.

(e) Full block Gauss-
Seidel.

(f) Simplified block
Gauss-Seidel.

(g) Diagonal block
Gauss-Seidel.

Figure 6.4: Structures of different preconditioners used for solving the linearized equations itera-
tively. Matrix entries which are kept are marked in blue.

6.2.3 Method performance
In order to check how these methods perform, an example stack was simulated with

different parameters and preconditioners. The details about the physical parameters are
given in section 7.2. In fig. 6.5 the convergence of the Newton method is shown graphically
by plotting the displacement criteria from (6.13) alongside the evaluation of f(p). The
first thing to note is the much faster convergence in case of low charge carrier densities
compared to the case with high densities. This can be easily explained by looking at the
norm of the right-hand side, depicted in orange. Due to the lower recombination in the case
of lower carrier densities obviously the final exciton distribution will feature lower occupation
numbers, therefore the initial guess p = 0 is much closer to the final solution (compare∣∣∣∣f(p(0))high

∣∣∣∣
2
≈ 1019 vs.

∣∣∣∣f(p(0))low

∣∣∣∣
2
≈ 1). In both cases tolerances were chosen as

β = 10−11, α = 0 and τ = 1.
Regarding the solution of the linearized equations the number of iterations as well as the

time needed for convergence of the Krylov-subspace solver are depicted in fig. 6.6 for both
high and low carrier densities. Only the values for the first iteration of the Newton solver
are shown. Note that the necessary residual for convergence is different in both cases as∣∣∣∣f(p(0))

∣∣∣∣
2
is different and the implemented convergence criterion in the notation of (6.11)

is ∣∣∣∣r̂(k)
∣∣∣∣

2∣∣∣∣f(p(k))
∣∣∣∣

2

=

∣∣∣∣f(p(k)) + J (k)∆p(k)
∣∣∣∣

2∣∣∣∣f(p(k))
∣∣∣∣

2

< η (6.22)

where η is some user-specified tolerance value (here equal to machine epsilon). It is interesting
to note that the relative performance of the ILUT-preconditioner is quite different in both
cases. While in the cases of low carrier density it preconditions the iterative solver extremely
well (more expensive to solve Kz = r compared to e.g. Jacobi, therefore its temporal
advantage is not as pronounced) in the second case this is not as clear anymore, where the
simpler Jacobi and diagonal Block Gauss-Seidel achieve even slightly better performance. In
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both cases it is very clear though that the simplified Block Jacobi and -Gauss-Seidel do not
yield any benefits. The full Block preconditioners have not been tested, they could be worth
an attempt even though it probably will be very expensive to solve the system involving the
preconditioner in the algorithm.

(a) High charge carrier densities.

(b) Low charge carrier densities.

Figure 6.5: Convergence of the Newton method for high and for low charge carrier densities.
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(a) Convergence versus iterations for low carrier density. (b) Convergence versus time for low carrier density.

(c) Convergence versus iterations for high carrier density. (d) Convergence versus time for high carrier density.

Figure 6.6: Convergence behavior of the BiCGSTAB solver with different preconditioners.
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6.2.4 Inexact Newton-Raphson
If the linearized Newton-equations (6.11) are solved using iterative Krylov-subspace

methods one possibility to speed-up the solution of the nonlinear equations is to use so-called
Inexact Newton or Newton-Krylov methods. The idea is to avoid oversolving the linearized
equations, i.e. solve them iteratively to a very high accuracy if the Newton step is still far
from the solution of the nonlinear equations. In practice this means that the threshold for
the Krylov-subspace method is adapted over the Newton iteration where even though the
number of iterations increases the total computation time decreases as for every Newton
iteration less Krylov iterations are necessary. One allows for a certain error rk

J (k)∆p(k) = −f(p(k)) + r(k), such that
||r(k)||
||f(p(k))|| ≤ η

(k) (6.23)

One key point to consider with such a method is convergence of the Newton iteration.
Mathematically it can be shown that the convergence of the superordinate Newton iteration
depends on the evolution of the series {η(k)} (assuming it converges at all) [85]

1. Linear convergence for 0 < η < 1, η 6= f(k)

2. Superlinear convergence for η(k) → 0 for k →∞
3. Quadratic convergence for η(k) = c||f(p(k))||, 0 < c

Also, some other conditions apply, the Jacobian needs to be Hölder continuous with the
corresponding exponent of convergence at the final solution p∗. In order to achieve quadratic
convergence with increasing accuracy towards the end, the threshold was set to be

ηk = min{
∣∣∣∣∣∣f(p(k))

∣∣∣∣∣∣
2
, ηref} (6.24)

To check the benefit of this approach different grid sizes were simulated again once with high
and once with lower charge carrier densities. The results are very different depending on the
carrier densities and the grid sizes, as can be seen in fig. 6.7 and 6.8 (lines with same line
style correspond to one initial value of ηref and belong together, the solid line corresponds
to the exact case). For low carrier densities where the initial guess p = 0 was closer to
the final solution the inexact method behaved well and converged almost identically to the
exact method after four iterations for constant ηref = 10−3. However, in these cases the
computational benefit of the inexact method in absolute terms was not that large of course
as well.

In the case of high carrier densities, the result was quite different. For the smaller grid
size at first ηref = 0.5 was chosen as suggested in [85], however, no convergence could be
achieved and

∣∣∣∣f(p(k))
∣∣∣∣

2
started to oscillate around 1010. Convergence was again achieved

by lowering the reference threshold to 10−2. For the larger grid this was also not sufficient
anymore and the residual started to oscillate again. As an additional measure the reference
threshold was reduced dynamically (ηref → ηref/10) as soon as an increase in the residual
was detected. In fig. 6.8b it is clearly visible that this dynamic adjustment does not yield
any benefit, as soon as the iteration stops converging it seems to be trapped in a region of
the solution space from where it cannot escape anymore, even if the linearized equations
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are solved to high accuracy. As a conclusion, using these inexact Newton methods without
any additional precautions can lead to serious convergence problems, especially when the
initial guess is far from the solution (as given with high carrier densities). It seems as if the
Newton solver navigates itself into a region in solution space from which it cannot escape
anymore due to the inexact steps in the beginning. Convergence could be enhanced by
globalizing these inexact Newton methods, as described e.g. in [86], such as by Backtracking
and Dogleg methods. The additional computation cost for such methods seems not really
justified though, as the exact methods also provide good results already.
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solution

(a) Solution time and iterations for BiCGSTAB. (b) Relative function norm and ηref set in BiCGSTAB.

(c) Solution time and iterations for BiCGSTAB. (d) Relative function norm and ηref set in BiCGSTAB.

Figure 6.7: Inexact Newton convergence using a 120x15x15 grid ((a) and (b) high, (c) and (d) low carrier density).
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(a) Solution time and iterations for BiCGSTAB. (b) Relative function norm and ηref set in BiCGSTAB.

(c) Solution time and iterations for BiCGSTAB. (d) Relative function norm and ηref set in BiCGSTAB.

Figure 6.8: Inexact Newton convergence using a 120x20x20 grid ((a) and (b) high, (c) and (d) low carrier density).
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6.2.5 Balance equations
Under steady-state conditions the total generation of excitons must match the total decay

which can be used to check the accuracy of the computed occupation numbers in the whole
grid. Mathematically such balance equations can be achieved by summing over all equations
in the system. In the general case this yields the following expressions, depending on the
exciton type considered (only singlets, triplets or both). For singlets only we have

N∑
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(6.25)

and for triplets only
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The expression combining both species for the total number of excitons reads
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A more detailed derivation can be found in the appendix A.2.

6.3 Transient solution
In many cases not only the final steady-state distribution is of interest, instead, the goal

of the simulation is to obtain time dependent evolutions of the occupation numbers, such
as for turn-on and turn-off behavior. To achieve this, the differential equations need to be
integrated numerically in time which will be the main focus of this section.

6.3.1 Stability
The mathematical problem resulting from the Master equations (4.7) and (4.8) is a

non-autonomous initial-value problem (IVP) of the form

dp

dt
= f(t,p)

p(t = 0) = p0

(6.28)

One important factor when numerically solving such IVPs is the behavior of the solution
obtained by numerical schemes. One important criterion for the existence of such a solution
is given by Picard-Lindelöf (taken from [77])

Theorem. Let D ⊆ R× Rn be an open set, and let f : D → Rn be continuous in the first
variable and uniform Lipschitz in its second, i.e. for (t,p) ∈ D, f(t,p) is continuous as a
function of t, and there exists a constant γ such that for any (t,p1) and (t,p2) in D we have

|f(t,p1)− f(t,p2)| ≤ γ |p1 − p2|
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Then, for any (t0,p0) ∈ D, there exists an interval I := (t−, t+) containing t0 and a unique
solution p ∈ C1(I) of the initial-value problem

∂p

∂t
(t) = f(t,p)

p(t0) = p0

Additionally, even if a solution exists, two crucial properties of the numerical scheme
are stability and convergence. The latter simply states that the numerical solution should
approach the exact analytical solution representing the system of ordinary differential
equations for stepsizes approaching zero h→ 0. The former property (stability) states that
the error of the numerical solution relative to the exact one needs to stay bounded, even
though time tends towards infinity t→∞. This property is also closely related to stiffness
where so-called stiff equations are very difficult to integrate numerically.

This property of stiffness can be shown well on the simple linear ODE given by

dy(t)

dt
= λy, =⇒ y(t) = y0 exp (−λt) , λ ∈ C (6.29)

which is commonly called the Dahlquist test equation. The reason why such a simple linear
system is studied is that the system (6.28) can be linearized (therefore this is used to
determine linear stability) resulting in the form

ṗ = Jp+ g(t) (6.30)

with the general solution

p(t) =

m∑
n=1

κn exp (λnt) cn +ψ(t) (6.31)

where λn and cn are the eigenvalues and eigenvectors of J . Assuming

<(λn) < 0 ∀n

therefore the terms in the sum are decaying modes of the solution and p(t) approaches the
steady-state solution ψ(t). If it is now desired to numerically solve the ODE all the way to
steady-state all the decaying transient modes need to vanish, where the slowest mode with
<(λ) determines this time interval. On the other hand, if there are much faster modes with
<(λ) corresponding to the fastest, these will determine the resulting temporal discretization
which is needed. Therefore, if the stiffness ratio [87]

<(λ)

<(λ)
(6.32)

is very large in magnitude, then a very small stepsize is needed for a long integration time
leading to an excessive number of integration steps. This is the reason why the ability of a
numerical scheme to integrate (6.29) is of interest. One example scheme applied to (6.29) for
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demonstration purposes is the forward Euler scheme (see also section 6.3.2) which results in
(assuming λ ∈ R for simplicity)

y(t+ h) = (1 + λh)y(t) =⇒ y(t+ nh) = (1 + λh)ny(t) (6.33)

It is clear that for λ < 0 the exact solution tends to zero for t→∞. On the other hand, the
iterative scheme in (6.33) only tends to zero if

|1 + λh| < 1 =⇒ h <
2

|λ|

this motivates the definition of the stability function R(z) = R(hλ) (z ∈ C), which for the
forward Euler scheme is R(z) = 1 + z, and the stability region S which defines the region on
the complex plane where |R(z)| < 1. Using this some important properties for numerical
integration schemes can be defined [79]

Definition. A single-step numerical integration scheme with stability function R(z) and
stability region S is called A-stable if {z ∈ C|<(z) < 0} ⊆ S. Furthermore, the scheme is
called L-stable if it is A-stable and fulfills lim

<(z)→−∞
|R(z)| = 0.

Therefore, an A-stable method integrating (6.29) will tend to zero for t → ∞ for any
h > 0. An L-stable method will furthermore also strongly dampen very rapidly decaying
modes where |<(λ)| is very large. It can be shown that for a general Runge-Kutta method
with coefficients A and b as described later the stability function is given by [81]

R(z) =
det(I − zA+ ze⊗ bT )

det(I − zA (6.34)

Even though the concepts discussed here only concerned linear stability, a numerical method
featuring e.g. L-stability will mostly also perform well applied to nonlinear equations. For
details on nonlinear stability considerations see [88, 87, 89] as such a treatment would be
out of scope for this work.

6.3.2 Integration methods
In this work only single-step Runge-Kutta (RK) methods were considered as there is a

wide range of possible schemes readily available. In the following first part a short general
introduction in these RK methods is given followed by some specific methods which were
implemented in the solver.

This type of methods was first introduced by Kutta [90] where the general approach is
given by

ks = f(tn + csh,pn + h

m∑
j=1

asjkj) (6.35)

pn+1 = pn + h
∑
s

bsks (6.36)
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6.3. Transient solution

The coefficients asj , bs and cs are defined by the specific RK method and generally presented
as a Butcher tableau [89]

c A

bT

b̂T

(6.37)

The idea of these methods is to calculate a series of slopes {ks} from which then the next
function value pn+1 is calculated as a weighted linear combination of the slopes where the
weights are chosen such that the leading errors cancel out each other. Sometimes also a
second set of weights b̂ is given with different order than the original weights for stepsize
control purposes. The order of a method is defined as follows [91]

Definition. Let pi be the estimated solution at timestep ti. Then a RK method is said to
have order p if the difference between estimated and true solution at this timestep satisfies

||pi − p(t0 + ih)|| = O
(
hp+1

)
This is referred to as the local error if one assumes that the step pi−1 was exact, i.e.

the error for a single step. On the other hand, the global error usually scales as O (hp) as
with smaller stepsizes the local error decreases, but at the same time the steps necessary to
reach a certain integration time increases as O (h). Such methods then of course possess the
convergence property, as ||pi − p(t0 + ih)|| → 0 for h→ 0.

If a set b̂ is given additionally with different order, then this set can be used to achieve
stepsize control cheaply as the same set of slopes can be used for both and virtually no
additional work needs to be done. The error of both methods follows from

pi = p(ti−1 + h) +Chp+1 +O
(
hp+2

)
p̂i = p(ti−1 + h) + Ĉhp̂+1 +O

(
hp̂+2

) (6.38)

and therefore (assuming p > p̂)

pi − p̂i = Ĉhp̂+1 +O
(
hp̂+2

)
(6.39)

From this we can estimate the error and choose a stepsize h∗ which fulfills the specified
tolerance tol

||p̂i − p(ti−1 + h)|| '
∣∣∣∣∣∣Ĉ∣∣∣∣∣∣ (h∗)p̂+1 ' ||pi − p̂i||︸ ︷︷ ︸

e

(
h∗

h

)p̂+1

=⇒ h∗ = hβs

(
tol

e

) 1
p̂+1

(6.40)
where βs ≈ 0.9 is a safety factor. In the code this is implemented slightly different, namely
as

δ =
p− p̂
β |p|+ α

=⇒ h∗ = hβs (||δ||∞)
− 1

p̂+1 (6.41)
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where again β and α are relative and absolute tolerances. This is a very basic stepsize
controller and much more sophisticated ones can be employed with the general form [81]

h∗ = βsh (||δ||)−a
(
||δ||†

)b (
||δ||††

)−c( h

h†

)a( h†

h††

)b

(6.42)

Such controllers also take errors and timesteps of previous steps (indicated by †) into account.
These will not be considered further though. Especially for the (E)SDIRK methods described
later some further strategies exist such as iteration control (control of the stepsize also taking
into account the convergence of the iterative solution at each step) as well as sophisticated
stage-value predictors providing initial guesses for the iteration.

Explicit methods

Explicit RK methods are characterized by having asj = 0 for j ≥ s. Therefore, in (6.35),
the slopes {ks} can be calculated sequentially which is computationally quite cheap. The
price to pay for that is the worse stability properties of these methods where an example was
illustrated in section 6.3.1, in fact from (6.34) it can even be shown that explicit RK methods
can never be A-stable [92]. In the code a variety of explicit methods are implemented, listed
in tab. 6.1. The stability problems of these methods become evident in the following example.

Table 6.1: Implemented explicit Runge Kutta schemes with the corresponding orders. For the
respective tableaus see A.4.1.

p p̂ Source

Euler 1 – [91]
Heun (trapezoidal rule) 2 – [91]
RK32 3 – [91]
Classic Runge-Kutta 4 – [91]
Heun-Euler 2 1 [91]
Cash-Karp 5 4 [91]

The same steady-state charge carrier and potential distribution as in section 7.2 was used as
a static input for the ODE, with initial condition p(0) = 0. The exciton occupation numbers
should therefore increase and slowly approach the steady-state distribution as given in the
example. The triplet occupation numbers averaged over the lateral dimensions are shown
in fig. 6.9 where the first eight timesteps are shown with an absolute tolerance α = 10−6

and initial timestep h0 = 0.1 ps. In fig. 6.10 the resulting stepsizes chosen by the stepsize
controller are shown for different tolerances (the two lines corresponding to tol = α = 10−6

differ in initial stepsize h0). After an initial overshoot all tolerances settle their stepsizes
to certain constant value which is independent of the tolerance chosen. This is a typical
behavior when the stepsize is not limited by accuracy, instead it is limited by stability (stiff
ODE). This can also be seen when comparing the timesteps with the obtained solution where
the onset of instability (negative densities in an oscillatory spatial manner) at step four
coincides with the overshoot of h. After leaving the stable region errors increase depending
on how far the step into said region was (larger for higher tolerances), therefore the increase
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Figure 6.9: Unstable solution with explicit RK solver Cash-Karp.
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Figure 6.10: Evolution of stepsize for explicit RK solver Cash-Karp.
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in error cancels the larger tolerance, leading to a stepsize equal for all tolerances. To avoid
instabilities excessively small stepsizes would need to be chosen.

(Explicit) Singly-diagonal implicit Runge-Kutta methods

In order to overcome the stability constraints induced by the explicit methods the implicit
Runge-Kutta methods can be used. The main difference to the explicit methods is that the
constraint asj = 0 for j ≥ s is not fulfilled anymore. Therefore (6.35) cannot be computed
sequentially, instead, a (generally nonlinear) system of equations needs to be solved at each
step, strongly increasing the computational cost. One way to levitate this cost is to use
diagonal implicit RK (DIRK) methods where asj = 0 for j > s, i.e. A is a lower-triangular
matrix. The equations (6.35) can then be solved one after the other where instead of
solving one big ((mN) × (mN), where N the DOF of f) system for all {ks} at once the
task reduces to solve m nonlinear equations of size N ×N . If also ass = ã∀s the method
is called singly-diagonal implicit RK or SDIRK. One additional type of methods are the
explicit singly-diagonal implicit RK (ESDIRK) methods which are SDIRK methods with
the additional property that a11 = 0, i.e. the first stage is explicit reducing the number of
nonlinear systems that need to be solved.

Due to the large number of DOF in the case considered here only (E)SDIRK methods
were implemented. A list of methods used here are given in tab. 6.2 and 6.3. For a general

Table 6.2: Implemented SDIRK schemes with the corresponding orders and stability properties.
For the respective tableaus see A.4.2.

p p̂ Stability Source

SDIRK-2a 2 1 L-stable [81, 79, 93]
SDIRK4 4 3 L-stable [88]
Implicit midpoint rule 2 1 A-stable [81, 79]
Implicit Euler 1 – L-stable [81, 79]

Table 6.3: Implemented ESDIRK schemes with the corresponding orders and stability properties.
For the respective tableaus see A.4.3.

p p̂ Stability Source

Implicit trapezoidal rule 2 1 A-stable [81]
ESDIRK43 4 2 L-stable [81]

DIRK scheme (6.35) becomes

ks = f(tn + csh,pn + h

s−1∑
j

asjkj︸ ︷︷ ︸
xs

+hassks) (6.43)
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where xs can be calculated from the previously computed slopes. However, now the point
where the slope needs to be computed is not known directly as it itself depends on the slope
ks. This leads to the nonlinear system of equations with t̃ = t0 + csh

p̃s = pn + xs + hassf(t̃, p̃s) =⇒ pn + xs + hassf(t̃, p̃s)− p̃s = 0 (6.44)

which needs to be solved by Newton iteration. This results in the following iterative Newton
equation (

J(t̃, p̃
(k)
s )− 1

hass
I

)
∆p̃

(k)
s =

1

hass

(
p̃

(k)
s − pn − xs

)
− f(t̃, p̃

(k)
s ) (6.45)

where J is again the Jacobian of f , df/dp, and pn + xs can be used as initial guess. This
iteration needs to be solved at every step multiple times yielding much more stable results
in return. It is important to note however that additionally to the possibility of failure of
the integration these methods can also fail by non-converging Newton iterations. Therefore,
even though from stability considerations large timesteps could be chosen smaller ones may
be needed for the Newton iteration to converge.

Rosenbrock-Wanner methods

This last point regarding possible convergence problems of DIRK methods can finally
also be overcome by using Rosenbrock-Wanner (ROW) methods, sometimes also called semi-
implicit RK methods. These methods are found in between explicit and implicit methods
featuring cheaper computation times but still high stability. These methods start from
SDIRK methods

ks = hf(tn + csh,pn +

s−1∑
j

asjkj + assks) (6.46)

pn+1 = pn +
∑
s

bsks (6.47)

Note the slight change in the equations where the position of h changed, i.e. ks now represent
intermediate solutions directly, following the notation in [88], the method itself is equivalent
though. The idea of ROW methods is now to linearize (6.46) to avoid the Newton iteration
yielding

ks = hf(tn + csh,pn +

s−1∑
j

asjkj) + γsh
2∂f

∂t
(tn,pn) + hJ(tn,pn)

s∑
j=1

γsjkj (6.48)

There are some points worth discussing. First, an additional parameter set γ is introduced
where γs =

∑s
j γsj which are used to introduce additional linear combinations of already

computed k. Furthermore, note that the partial derivative w.r.t time only includes the
time-dependent coefficients given by (assuming no time dependence in the Dexter rates)

∂f

∂t
=

d

dt
(bRec) +

d

dt
(bOpt)−

d

dt
(DPQ)p (6.49)
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where

bRec =

[
bs

Rec

bt
Rec

]
with


d
dt(b

s
Rec)i =

gRec,i

τi

(
pe
i

dph
i

dt + ph
i

dpe
i

dt

)
d
dt(b

t
Rec)i =

1−gRec,i

τi

(
pe
i

dph
i

dt + ph
i

dpe
i

dt

)

bOpt =

[
bs

Opt

bt
Opt

]
with

{
d
dt(b

s
Opt)i = gOpt,i

dGOpt,i

dt
d
dt(b

t
Opt)i = (1− gOpt,i)

dGOpt,i

dt

DPQ =

[
DSPQ 0

0 DTPQ

]
with


d
dt(DSPQ)i = 1

τSPQ,i

(
dpe

i
dt +

dph
i

dt

)
d
dt(DTPQ)i = 1

τTPQ,i

(
dpe

i
dt +

dph
i

dt

)
Also note that the Jacobian is evaluated always at the last timestep (tn,pn) and is not
changed over the stages. By using such methods, only a linear system of equations needs
to solved, therefore avoiding the possibility of non-converging Newton iterations as well as
speeding up the computation compared to DIRK methods. There are two methods currently
implemented, see tab. 6.4. Something similar can be done with any DIRK method by simply

Table 6.4: Implemented ROW schemes with the corresponding orders and stability properties. For
the respective tableaus see A.4.4.

p p̂ Stability Source

GRK4A 4 3 A-stable [94]
GRK4T 4 3 A(89.3°)-stable [94]

linearizing in pn [77] which transforms (6.35) into (now again using the old form where {ks}
represent slopes)(

J(tn + csh,ps−1)− 1

hass
I

)
ks =

1

hass
f(tn + csh,ps−1) (6.50)

where

ps−1 = pn + h
s−1∑
j=1

asjkj

Here the Jacobian is updated for every stage. Note, however, that the coefficients derived for
the original nonlinear methods are not guaranteed to yield the same stability and accuracy
when using these linearized versions (see e.g. fig. 5.7c and 5.7d)!
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Results and discussion

Finally, after discussing the basics and mathematical model, the implementation in the
code and the various numerical methods used to solve the Master equations for the exciton
occupation numbers some application examples are presented in this chapter. In the first
section a validation of the 1D Master equation model in steady-state is shown where the
computed figure of merit, the luminescence, is compared to literature data. Following a
simulation result for the 3D steady-state of an OLED device is presented and analyzed.
Finally, some application for the transient methods shown previously is also discussed.

7.1 1D steady-state
The first results were created using the 1D version of the code implementation, which

works basically the same as the 3D version except that on the lateral dimensions a no-flow
BC instead of periodic conditions is applied and setting both my = mz = 1, i.e. the grid is
simply a 1D chain of molecules. In order to check for the validity of such a model, a similar
approach in literature was analyzed and used as reference.

In the paper by Wu et al. [70] the photoluminescence (PL) of the top Alq3 layer in the
structure depicted in fig. 7.1 was measured and subsequently modeled. Of interest was
especially the influence of long-range Förster coupling of the excited Alq3 molecules to the
quenching DCM molecules with the final goal to have an estimate for the Förster radius RF

0 .
To achieve this, the Alq3 layer was pumped using a laser which led to exciton formation
inside undergoing possible energy-quenching by the DCM layer through Förster transfer
where they would be lost and not contributing anymore to the PL of Alq3. The idea was
that with variable thickness of the Alq3 layer the PL starts very low due to the proximity of
the excited molecules to the quenching DCM until a critical distance (thickness) is reached
(higher than the Förster radius) from where on the PL of Alq3 would start to become visible.
In order to extract the parameters from the experimental data they employed a continuity
model for exciton migration as follows:

1

D

∂N

∂t
=
∂2N(x)

∂x2
−
(

1 +
R4

0

x4

)
N(x)

L2
D

+
G0τ0

L2
D

= 0 (7.1)

The first term after the first “=” sign in (7.1) describes exciton diffusion, the second term
describes the sink of excitons comprised of radiative decay N(x)

L2
D

and Förster transfer to the
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Figure 7.1: Stack used for photoluminescence quenching experiment in [70].

DCM layer R
4
0

x4

N(x)

L2
D

where x denotes the distance to the DCM-Alq3 interface, LD the exciton
diffusion length and D the diffusion coefficient. Note that the Förster rate is proportional to
x−4 instead of x−6 as the rate was integrated over the 2D interface (point-to-plane instead
of point-to-point transfer). The last term describes a spatially constant generation term as
a result of the pumping laser. Generation in the DCM layer is G = 0. Using the resulting
exciton distribution, the PL was calculated as

PL(d) ∝
d∫

0

N(x)
1

1 +
R4

0

x4

dx (7.2)

where the fraction inside the integral is the “light extraction efficiency” (fraction of radiative
decay over all decay mechanisms). The resulting PL intensity as a function of the Alq3 layer
thickness is shown in fig. 7.2. In order to apply the Master equation model to this problem

Figure 7.2: Resulting normalized PL in the Alq3 layer due to quenching. It is well visible that for
thicknesses < 3.5 nm all excitons are quenched [70].

the material parameters listed in tab. 7.1 taken from literature have been used. As this is a
PL experiment, only singlets were considered in the simulation. As a first test the magnitude
of disorder was varied to investigate its effects on the resulting exciton distribution. The
singlet occupation numbers for varying disorder are depicted in fig. 7.3b where it is evident
that for the “standard” σ-value assumed in many organic semiconductors the energetic noise
completely screens any other effect. This effect is even stronger when simulated on a large
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Table 7.1: Energies and lifetimes for DCM and Alq3.

Material ELUMO [eV] EHOMO [eV] Es [eV] τ s
r [ns] τnr [ns]

DCM -2.59[95] -5.61[95] 2.21[96] 3.7[97] 5[97]

Alq3 -2.4[74] -5.9[74] 2.7[98] 25[99] 16.7[100]

grid (not related to the stack in fig. 7.1) where an arbitrary linear generation profile was
imposed (see fig. 7.3b). This very strong influence of the energetic disorder might emerge
due to the confined transport in one dimension only. Due to the fewer possible paths for an
exciton in 1D the probability is higher to encounter a highly contrasted energetic surrounding
such that locally all excitons will flow to the site with lowest energy from which there’s no
way to escape. In 3D on the other hand there are many more possible directions to hop to
with a higher probability of finding a neighboring site with energy levels close to the current
ones, allowing for equilibrating transport.

(a) Singlet occupation numbers for the stack in fig. 7.1 with different
levels of disorder.
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(b) 1D exciton simulation on a different, larger grid with linear gener-
ation profile and σEb

= 0.1 eV.

Figure 7.3: Influence of energetic disorder on 1D grids.

As disorder was not part of the original model in (7.1) noise was set to zero for further
simulation. In order to investigate if transport in the ordered case behaves similarly as the
experimental results as well as the model applied by Wu et al., singlet occupation numbers
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were simulated for different Förster radii as listed in tab. 7.2 with 3.3 nm the value obtained
in [70]. The resulting exciton numbers were then used to calculate a normalized luminescence
intensity using

PL(d) ∝
d∫

0

N(x)
1/τr

1

τr
+

1

τnr
+
(

1

τr
+

1

τnr

)
R4

0

x4

dx (7.3)

The results are shown in fig. 7.4 from which it can be concluded that for the case where
RF

0 was chosen according to the experimentally obtained value the normalized luminescence
intensities match extraordinarily well.

Table 7.2: Employed Förster variations.

Case-# RF
0 Exponent

1 2 nm 4
2 3.3 nm 4
3 6 nm 4

(a) Singlet occupation numbers for the stack in fig. 7.1 with different
RF

0 . Note that here x includes the DCM layer unlike in (7.3).

(b) Resulting normalized luminescence, data from [70] are shown by
×.

Figure 7.4: 1D ME results for the PL experiment.
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7.2 3D steady-state
The main focus of the work was ultimately on full 3D simulations of the Master equations,

and some steady-state results shall be presented in this section. In their original paper
presenting the Master equations for excitons Zhou et al. [74] also used a Master equation
formulation for the charge carrier transport and used the combined model to simulate a
complete 3D OLED stack depicted in fig. 7.5a. This stack has previously been investigated
by Bösing et al. [98] and formed the basis for a reference case to simulate and check certain
aspects of the mathematical model. In order to evaluate the implementation described in
chapter 5 this stack was used as a reference to carry out own simulations, where compared
to Zhou et al. [74] the charge carrier densities and potential distribution were simulated by
the commercial 1D continuum simulation software setfos and then used as static input data
for the ME model (fig. 7.5).

ITO

NPB
50 nm

-2.0

-5.4

PH1 (40 nm)

-2.4

-6.2

Ir(ppy)3

-2.55

-5.65

Alq3
30 nm

-2.4

-5.9

Al/LiF

-2.9

(a) OLED stack as used in [74] and [98]. (b) Charge carrier densities as simulated by setfos.

Figure 7.5: Input data for the 3D ME model to simulate a green OLED stack.

In the setfos model the respective energy levels of the different materials were used, where
the Ir(ppy)3 guest molecules were modeled as traps in the PH1 layer. The mobilities were
then adjusted in order to match the IV-characteristics as presented in [74]. The resulting
charge carrier density profile from fig. 7.5b was obtained at a forward-bias of 4 V. The
relevant parameters for the exciton model were taken directly from [74].

The simulation was carried out on a 120 × 30 × 30 grid depicted in fig. 7.6a where
the numerical characteristics of the solver have already been described in section 6.2.3.
Each Newton iteration for high and low carrier densities using the ILUT preconditioner
took around 28 s and 15 s, respectively, where in the case of high charge carrier densities
the iteration times varied quite strongly over the Newton iterations (see fig. A.1). The
simulations were run on an Intel® Core™ i5-6600 CPU with four cores each at 3.30 GHz.
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(a) Top: The complete grid. Bottom: Guest molecules
(ρ = 0.1) in emitter layer made visible.

(b) Top: Random energy component in Alq3 (correlated). Bottom: Random energy
component in NPB (uncorrelated).

Figure 7.6: Simulation grid for a green OLED stack.
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The resulting triplet densities averaged over the lateral dimensions can be found in fig.
7.7a for high and low carrier densities. The original setfos output corresponds to the high
carrier density case which resulted in extremely high exciton densities compared to the values
obtained by [74]. The reason for that was found to be an inconsistency between the setfos
model for carriers and the applied ME model for excitons, where trap-trap recombination
was inactive in setfos leading to a very strong accumulation of carriers on these trap levels.
As these corresponded to the guest molecules in the 3D ME model those very high local
densities were distributed on the guest sites where they could recombine, leading to a very
high generation rate. As an improvised workaround, the carrier densities were scaled by
10−5 in order to get consistent recombination with literature.

(a) Laterally averaged triplet density for before
and after adjustment of carriers.

(b) 2D surface of total radiative decay events.

Figure 7.7: Example results of the 3D steady-state simulation.

Due to strong recombination close to the HTL/EML interface exciton generation in this
region is also strong and some excitons are quenched by the HTL which is visible by the
increased radiative decay in it. Strongest radiative decay occurs right at the interface where
some dark spots inside the EML are visible. Those correspond to z-coordinates where no
guest molecule was present due to the relatively low guest density of ρ = 0.1. Another
interesting result shows when plotting triplet densities vs. triplet energies for different
materials as shown in fig. 7.8. While in the Alq3 layer for example transport is not limited,
the equilibrium distribution follows a typical Bose-Einstein distribution given by

n(E) ∝ 1

exp
(
E−µ
kBT

)
− 1

(7.4)

as is to be expected for excitons as they are Bosonic particles. Meanwhile, if the same plot
is drawn for the energetic distribution of triplets in Ir(ppy)3, this looks very different as
in general an excitonis strongly confined on an Ir(ppy)3 molecule due to the surrounding
PH1 states with higher energy. Therefore, these triplets cannot move freely and relax easily
towards the states with lower energy.

Finally, to check the correctness of the obtained exciton occupation numbers the balance
equations (6.25) - (6.27) can be used to validate equality of total generation to total decay.
The simulation was run 10 times and for each instantiation the relative error between total
generation (G) and total decay (D) was calculated. The resulting relative errors are depicted
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(a) pt vs. Et plot for Alq3. Bose-Einstein distribution in orange.

(b) pt vs. Et plot for Ir(ppy)3.

Figure 7.8: Energetic distribution of triplets.

Figure 7.9: Relative mismatch between generation and decay calculated with (6.25) - (6.27) for
ten different runs.
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in fig. 7.9. In all cases the relative error is very low in the order of ∼ 10−7 which means the
ME model equations were solved correctly by the implemented code.

This is an example which could not easily be reproduced by the continuum approach
as used in setfos, due to the fact that layer interfaces there act as no-flow boundaries and
the EML would need a very special treatment. To model such a guest-host system the
layer would need to feature some intermediate energy levels and the different behavior of
the excitons in it would make it necessary to use multiple “virtual” species where these
would coexist next to each other in the continuum representing host- and guest-excitations.
Transport from host to guest sites would therefore be modeled as some special kind of ISC.
Furthermore, any influence of energetic disorder could only be resolved as determined by the
PDF and therefore represent some mean case in the stochastic limit, as no actual realization
of the random variable occurs.

7.3 3D transient
In order to generate also non-stationary results some examples using transient solvers were

simulated. It can be said that transient simulations of the presented model are extremely
computationally expensive, as it combines quite large 3-dimensional systems interacting on
larger spatial scales with quite stiff equations, making it necessary to use implicit or at least
semi-implicit solvers. Even then, often time steps cannot be taken too large which still leads
to relatively high number of computed steps for each of which a large system of equation
needs to be solved (possibly even more than once).

7.3.1 Influence of Rc

In the first transient simulation discussed here the influence of the cutoff-radius Rc was
investigated. In order to achieve this, a grid with dimensions 20 × 20 × 20 was set-up
representing a host-guest system with materials equal to the EML in the previously discussed
steady-state example. However, now all processes are turned off except Förster/Dexter
transport between the sites and radiative decay on the Ir(ppy)3 molecules (no decay on
PH1!) and a fixed initial condition of

ps,t
i (0) =

{
1010 cm−3 if i ∈ PH1

0 else
(7.5)

Therefore, the only change in exciton occupation numbers should be possible by hopping from
host to guest molecules where they decay radiatively. This process should become stronger
as transport increases which can be used to determine the influence of the cutoff-radius Rc
since the temporal evolution of occupation number should converge and stay equal as soon
as Rc is large enough such that all the dominant transport paths are taken into account
(shown schematically in fig. 7.10). The guest molecules were dispersed in the grid with a
density of ρ = 0.2 and Rc was varied from 0 to 6a0, total simulation time was 10 µs using
SDIRK-2a due to its L-stability and possibility to achieve stepsize control with the embedded
p̂ = 1 method. The stepsize controller used β = 10−3 and α = 10−40 such that control was
governed by the relative error. These simulations took around ≈ 10 min each to compute.
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(a) Small Rc neglecting relatively strong
transport paths.

(b) Large Rc where all dominant transport
paths are taken into account.

Figure 7.10: Transport paths as a function of Rc. PH1 in orange, Ir(ppy)3 in blue and arrow width
denotes coupling strength.

The results of the simulation are shown in fig. 7.11. It is interesting to note that the total
exciton count quickly converges and increasing Rc over 2a0 has no effect anymore, however,
as shown in fig. 7.11b, if only the total excitons on PH1 molecules are plotted there is a
visible difference between the curves. It is also clear that transport happens very fast and
quickly a quasi-equilibrium is reached where exciton loss on PH1 is limited by the radiative
decay rate on Ir(ppy)3, however, this quasi-equilibrium depends on the coupling strength.
The speed of transport is also visible in fig. 7.11c where the accumulation of excitons on
Ir(ppy)3 occurs mainly in the first < 1 µs until the quasi-equilibrium is reached (note the
finite exciton density in Ir(ppy)3 is due to the detailed balance term). From this data it
can be concluded that Rc = 4a0 is a reasonable cutoff-radius, at least for these material
parameters.
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(a) Total exciton count over time. (b) PH1 exciton count over time.

(c) Ir(ppy)3 exciton count over time. (d) Stepsize h over time. Inset: Stepsize h over integration steps.

Figure 7.11: Results of transient simulation investigating Rc.
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7.3.2 OLED turn-on
In order to test the solver in case of transient input parameters, a single-layer OLED

device was simulated in setfos subject to a short voltage pulse as depicted in fig. 7.12b. The
OLED consisted of a single 120 nm MEH-PPV layer sandwiched between two electrodes
made of gold and calcium. The stack with the respective energy layers is shown in fig.
7.12a and the parameters used for the semiconducting layer can be found in tab. 7.3. In
this simplified simulation only exciton generation through recombination, exciton transport
through the layer and radiative decay have been active and the simulation time was in
accordance with the voltage pulse equal to 300 µs. Again, the SDIRK-2a method was used
as no nonlinear system of equations needed to be solved (exciton-exciton annihilation was
turned off) therefore the good stability properties of the method were a benefit considering
quite rapidly changing input data. Note however that for such a simulation with high
accuracy it took more than 1.5 hours to compute ≈ 1000 steps.

(a) HOMO/LUMO energy levels of the elec-
trodes and semiconductor.

(b) Voltage pulse applied on the OLED.

Figure 7.12: OLED stack and imposed voltage pulse for transient turn-on simulation.

In fig. 7.13a the resulting recombination averaged over the lateral dimensions is plotted
over time (carrier densities are anyway taken as constant over the lateral dimensions as there
is no guest-host system present). It is clearly visible how recombination starts very strongly
close to the cathode at x = 120 nm and starts to penetrate more into the material itself with
a second smaller peak close to the anode. This pattern persists up to t = 150 µs when the
voltage is turned off and the carriers start to drift back to their respective electrodes such
that recombination at the electrodes stops very quickly, however, in the center of the device
where the receding carriers meet recombination persists for longer. This pattern ultimately
gives rise to the exciton distribution in fig. 7.13b which ultimately looks very similar to
the recombination distribution. However, there are some subtleties which should be noted.
First, all patterns are “smeared” out, e.g. the recombination peak at x = 120 nm appears
much wider into the device, as well as after the voltage is turned off excitons are still present
throughout almost the whole layer. Secondly, certain structures emerge due to the energetic
disorder present in the material (again σ = 0.1 eV was assumed), showing as periodic patterns
of varying exciton density. It should be kept in mind that this representation has been
averaged over the lateral dimension, i.e. these lines of higher exciton densities represent
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layers with a higher share of states with lower exciton energy. An additional plot for a
similar system where this migration to energetically more preferable states is shown can also
be found in fig. A.3.

This is an example where the results of the Master equation approach can be well compared
to the results obtained by setfos due to the simplicity of the model (no host-guest systems,
no interfaces etc.). In 7.13c the temporal singlet distribution as simulated by setfos is shown.
The order of magnitude of the two results matches very well throughout time and space,
however, there are definitely some differences to mention. The first obvious distinction is
the much smoother density in case of the setfos as no actual energetic noise of the exciton
energies is included. Furthermore, the exciton density seems to decrease very abruptly as
soon as the device is turned off which can be seen by the clear cut at t = 150 µs. This
distinction may also result from differences in the numerical integration scheme.

The first approach to this simulation was to use an explicit Cash-Karp method with
constant stepsize of h = 50 ns to check if the results could be obtained with less accuracy
but quicker than with implicit solvers. However, this approach completely failed and the
obtained results were dominated by instabilities of the solver where the plot can be found in
the appendix in fig. A.2. All areas which are not shown correspond to zero density and are
therefore not visible in the logarithmic plot. Keep in mind that most probably the computed
densities were even negative and then projected onto 0 as a protective measure.

Table 7.3: Excitonic parameters used for MEH-PPV.

τ gRec τ s
r τ t

r Es
b Et

b

1 ns [101] 0.25 20 ns 2 µs 0.6 eV [102] 0.8 eV [102]
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(a) Recombination along x-axis over time. (b) Singlet distribution laterally averaged over time.

(c) Singlet distribution for the same simulation as computed directly by
setfos.

(d) Stepsize h over time.

Figure 7.13: Results of transient simulation concerning OLED turn-on.
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Conclusions and Outlook

As a short recap, the original goals of the work are mentioned again briefly. A model
should be set up using the stochastic ME approach including commonly accepted exciton
mechanisms and should be implemented as a computational solver to simulate steady-state
and transient situations. The solver should then be coupled to the charge carrier simulation
by setfos which uses a 1D continuum approach to combine strengths of both methods where
useful to support research in organic optoelectronics.

The implemented model as shown in (4.7) and (4.8) includes all mechanisms which are
usually dominant in OLED devices such as (non-)radiative decay, (reverse) ISC, SPQ,
TPQ and TTA of course alongside generation by charge carrier recombination and optical
excitation. In this form also advanced OLED concepts such as TADF and phosphorescent
emitters can be simulated quite accurately and material parameters such as lifetimes can
be extracted by fitting the simulation result to experimental data. The most important
characteristic however which distinguishes this model from e.g. continuum models are the
transport terms which allow for physically more accurate transport by hopping from discrete
sites to one another extending beyond the nearest neighbor molecule. As was described in
section 4.2.5 the continuum approach using a simple diffusion constant D is equivalent for
symmetric transport and strongly homogeneous materials. These assumptions do not need
to be made if transport is modeled as in the ME approach which allows for more physically
correct and easier modeling of multilayer devices and mixed host-guest systems.

As was shown in section 7.2 these conditions are often met in real-world devices where the
EML is doped with an emitter material to increase luminescence and where many processes
might be strong at interfaces, such as recombination. In these cases, it can be a strong
advantage to use a 3D molecular discretization such that interfaces pose no problem and
dispersed single guest molecules can be spatially resolved rendering separate exciton species
to represent singlets and triplets for each material unnecessary. Different excitonic behavior
on different materials is then simply achieved by determining the molecular type of the
local grid point. A further result which cannot be obtained in the continuum approach is a
specific energetic distribution by examining the respective excitation energies over the grid
combined with the local exciton densities, as shown in 7.8 and A.4 where characteristics such
as reduced exchange over the sparsely dispersed guest sites arise naturally. The example
results provided in chapter 7 for steady-state as well as transient definitely show that the
approach yields very good and physically reasonable results.
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The model as currently implemented also has some weaknesses conceptually, though.
A problem of simple sampling of the DOS and guest distribution can lead to unphysical
situations if the grid size is chosen too small, as in these cases the law of large numbers is not
fulfilled and the resulting distributions may not accurately represent the underlying PDF. In
real devices this will never occur due to the extremely large number of molecules present. An
example of such a situation can be seen in fig. 7.7b where dark spots in the radiative decay
correspond to molecular chains in z-direction where due to the low guest density and grid size
only host molecules were present. Other points are of course the missing exciton dissociation
into free carriers which would be of utmost importance if applied to OPV. This together with
the currently used rate expression for Dexter transfer would introduce field dependencies
of the coupling which would need to be resolved during transient simulations, strongly
increasing computational cost (the correct physical modeling of non-local quenching and
annihilation would have a similar effect). The current model also assumes strongly localized
excitons in ordered small-molecule materials which might also not hold in all situations. If
the ME model is applied in 1D some adjustments would definitely need to be made. Taking
e.g. the Förster rate dependence as R−4 is one of them, as well as investigations into the
effect of disorder would be needed due to the very strong confinement caused by disorder if
transport is limited to one dimension only.

Most of these mentioned problems might be fixed rather easily. The main disadvantage
of the 3D ME approach compared to model used in setfos for the exciton simulation is the
computational cost. 3D simulations are definitely feasible on standard computers yet with
computation times far beyond what is needed using the 1D continuum approach. This is
mostly caused by the combination of 3D grids with long-range interactions leading to large
numbers of couplings to be considered. Numerical tricks as considered in this work could not
levitate this problem and the functions f(t,p) themselves are quite costly to evaluate, even
though the assumed time-independence of the transport terms decreased the impact of that
fact. Furthermore, the stiffness of the diffusion-dominated ME makes transient simulations
generally costly as a large system of equations needs to be solved at each step in order to
ensure stability. This fact could make it difficult to finally couple the two models if the
coupling goes both ways, as a single iteration for the large ME model takes much more
computation time than for the 1D continuum model. If these systems both depend on each
other, such a coupling will eliminate the advantage in speed of the continuum solver as
computation time will be completely dominated by the 3D ME solver.

For future work some of the mentioned points about the model should be improved. This
includes the introduction of physically correct transport parameters which take the exact
combination of materials into account as well as an adjustment to the correlation lengths
which are currently all equal to the cutoff radius Rc. This may not be justified as disorder
correlation scales as O

(
R−3

)
and possibly farther molecules need to be taken into account

than for transport. The introduction of off-diagonal disorder might also be interesting to
investigate. Possible additions to the model might be dissociation for OPV and use of
location-dependent radiative decay rates due to cavity-effects (Purcell-effect [103]) which can
be provided by setfos. In general, the code developed during this work might be implemented
directly into setfos to make sure that all modeling parameters are consistent. Some further
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smaller things might still be considered as well, such as uniting coupled and decoupled solvers
and checking the impact of using field-dependent Dexter rates.
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Appendix A

Appendix

A.1 Definition of matrices for decoupled equations

(W s
F)ij =

−
∑
f 6=i w

F,s
jf if j = i

wF,s
ji otherwise

(W t
F)ij =

−
∑
f 6=i w

F,t
jf if j = i

wF,t
ji otherwise

(W s
D)ij =

−
∑
d6=i w

D,s
jd if j = i

wD,s
ji otherwise

(W t
D)ij =

−
∑
d6=i w

D,t
jd if j = i

wD,t
ji otherwise

(Ds
Dec)ij =


1
τs
r,i

+ 1
τs
nr,i

if j = i

0 otherwise

(Dt
Dec)ij =


1
τt
r,i

+ 1
τt
nr,i

if j = i

0 otherwise

(Ds
ISC)ij =

 1
τISC,i

if j = i

0 otherwise

(Dt
ISC)ij =


1

τISC,i
exp

(
Es

b,i−E
t
b,i

kBT

)
if j = i

0 otherwise

(DSPQ)ij =


pei+p

h
i

τSPQ,i
if j = i

0 otherwise

(DTPQ)ij =


pei+p

h
i

τTPQ,i
if j = i

0 otherwise

(Ds
RecB)ij =

gRec,i
1
τi

exp
(
−Es

b,i

kBT

)
if j = i

0 otherwise
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(
−Et
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kBT

)
if j = i

0 otherwise

(DTTA)ij =

 1
τTTA,i

if j = i

0 otherwise

(Dt
p)ij =

pti if j = i

0 otherwise

M s =W s
F +W s

D −Ds
Dec −Ds

ISC

−DSPQ −Ds
RecB

M t =W t
F +W t

D −Dt
Dec −Dt

ISC

−DTPQ −Dt
RecB

(bs)i = exp

(
Es
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kBT
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(bt)i = exp
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Et

b,i − Eg,i

kBT
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(bsRec)i = gRec,i
peip
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i
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peip
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i
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(bsOpt)i = gOpt,iGi

(btOpt)i = (1− gOpt,i)Gi

(d2(pt))i = (pti)
2
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A.2 Derivation of balance equations
Only the derivation for the total exciton generation and decay balance equation is shown, it goes

analogous for the single species. We sum up both equations (4.7) and (4.8)

dpsi
dt

+
dpti
dt

=
dpsi + pti

dt
=
∑
f 6=i

[
psfω

F,s
fi − psiω

F,s
if

]
+
∑
d6=i

[
psdω

D,s
di − psiω

D,s
id

]

+

(
1

τ sr,i
+

1

τ snr,i

)(
exp

(
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b,i − Eg,i

kBT

)
− psi

)

+
pti

τISC,i
· exp

(
Es

b,i − Et
b,i

kBT

)
− psi
τISC,i

−p
s
i

(
pei + phi

)
τSPQ,i

+
(pti)

2

2τTTA,i

+gRec,i

(
peip

h
i

τi
− psi
τi

exp

(
−
Es

b,i

kBT

))
+ gOpt,iGi

+
∑
f 6=i

[
ptfω

F,t
fi − ptiω

F,t
if

]
+
∑
d6=i

[
ptdω

D,t
di − ptiω

D,t
id

]

+

(
1
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+

1
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)(
exp

(
Et
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kBT

)
− pti
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psi
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− pti
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SS
= 0

(A.1)

Next, this expression is summed over all sites in the grid for the total occupation number
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i

dpsi + pti
dt
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∑
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+

N∑
i

∑
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+
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∑
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(A.2)
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A.3. Scalar ODE solution derivation

where the inter-system crossing terms cancelled and the optical generation efficiencies added up to
gOpt,1 + (1− gOpt,1) = 1. The TTA term now stands as a pure decay term as one triplet is lost per
annihilation event. In the first two lines we can use the following equivalency due to the double
summation

N∑
i,j
j 6=i

[aibij ] ≡
N∑
i,j
j 6=i

[ajbji] (A.3)

and therefore, all transport terms cancel (i.e. transport does not create or annihilate any excitons).
This leads after some further algebraic permutations to the final balance equation as given in (6.27)
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τ s
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+
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)
pti

+

N∑
i

gRec,i
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τ

exp
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−
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)
+
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τ

exp
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−
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b,i
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)

+
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[(
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)( psi
τSPQ,i

+
pti

τTPQ,i

)]
+

N∑
i

(pti)
2

2τTTA,i

(A.4)

A.3 Scalar ODE solution derivation
Dahlquist

The Dahquist test equation is easily solved by separation of variables

dy

dt
= λy (A.5)

⇔
∫

1

y
dy =

∫
λdt (A.6)

⇔ ln(y) = λt+ C (A.7)

⇒ y = A exp(λt) (A.8)

Example from [79]

The given ODE
dy

dt
=

2

t
y + y2 − 1 (A.9)

is a linear inhomogeneous ODE of first order with non-constant coefficients. The general solution is
given by

y = C exp

(
−
∫
f(t)dt

)
+ exp

(
−
∫
f(t)dt

)∫
g(t) exp

(∫
f(t)dt

)
dt (A.10)
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with

f(t) = −2

t
(A.11)

g(t) = t2 − 1 (A.12)

Inserting (A.11) and (A.12) into (A.10) the integrals evaluate to∫
f(t)dt = −2

∫
2

t
dt = −2 ln(t) + C1 (A.13)∫

g(t) exp

(∫
f(t)dt

)
dt =

∫
exp (C1)− 1

t2
exp (C1) dt = exp (C1)

(
t+

1

t

)
+ C2 (A.14)

which leads to the final solution

y = t3 + t2
(

C

exp(C1)
+

C2

exp(C1)

)
+ t = t3 +At2 + t (A.15)

Riccati

The Riccati equation
dy

dt
=

4

t2
− 6

t
y + y2 (A.16)

can be solved by transforming the equation into different ODE of second order

d2u

dt2
+

6

t

du

dt
+

4

t2
u = 0 (A.17)

By taking the ansatz u = tr this becomes

r(r − 1)tr−2 + 6rtr−2 + 4tr−2 = 0
t 6=0
=⇒ r(r − 1) + 6r + 4 = 0 (A.18)

with the solutions r1 = −1 and r2 = −4. Because (A.17) is linear in u the solution can be constructed
as a linear combination by

u(t) = C1t
−1 + C2t

−4 (A.19)

The solution to the original Riccati equation can now be obtained by back-transformation

y = −
du/dt

u
=
C1t
−2 + 4C2t

−5

C1t−1 + C2t−4
A=C2/C1

=⇒ y =
t−2 + 4At−5

t−1 +At−4
(A.20)

A.4 Butcher tableaus
The Butcher tableaus for the different methods are given here as implemented.

A.4.1 Explicit

Euler

0

1
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A.4. Butcher tableaus

Heun (trapezoidal rule)

0
1
2 1

1
2

1
2

RK32

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

Classic Runge-Kutta

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Heun-Euler

0

1 1
1
2

1
2

1 0

Cash-Karp

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 − 11
54

5
2 − 70

27
35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771
2825
27648 0 18575

48384
13525
55296

277
14336

1
4

A.4.2 SDIRK

SDIRK2a

1−
√
2
2 1−

√
2
2

1
√
2
2 1−

√
2
2√

2
2 1−

√
2
2

1− (2− 5
4

√
2) 2− 5

4

√
2
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SDIRK4

1
4

1
4

3
4

1
2

1
4

11
20

17
50 − 1

25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
24 − 49

48
125
16 − 85

12
1
4

25
24 − 49

48
125
16 − 85

12
1
4

59
48 − 17

96
225
32

85
12 0

Implicit midpoint rule

1
2

1
2

1

Implicit Euler

1 1

1

A.4.3 ESDIRK

Implicit trapezoidal rule

0

1 1
2

1
2

1
2

1
2

ESDIRK43

1
1
2

1
4

1
4

2−
√
2

4
1−
√
2

8
1−
√
2

8
1
4

5
8

5−7
√
2

64
5−7
√
2

64

7(1+
√
2)

32
1
4

26
5

−13796−54539
√
2

125000
−13796−54539

√
2

125000
506605+132109

√
2

437500

166(−97+376
√
2)

109375
1
4

1 1181−987
√
2

13782
1181−987

√
2

13782

47(−267+1783
√
2)

273343

−16(−22922+3525
√
2)

571953

−15625(97+376
√
2)

90749876
1
4

1181−987
√
2

13782
1181−987

√
2

13782

47(−267+1783
√
2)

273343

−16(−22922+3525
√
2)

571953

−15625(97+376
√
2)

90749876
1
4

b̂1 − 480923228411
4982971448372

6709447293961
12833189095359

3513175791894
6748737351361 − 498863281070

6042575550617
2077005547802
8945017530137

with b̂1 = 1−∑n
i=2 b̂i.
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A.5. ILUT solution times 3D steady-state

A.4.4 ROW

GRK4A

0

0.438 0.438

0.796920457938 + 0.0730795420615 0.796920457938 0.0730795420615

0.796920457938 + 0.0730795420615 0.796920457938 0.0730795420615 0

0.199293275701 0.482645235674 0.0680614886256 0.25

0.346325833758 0.285693175712 0.367980990530 0

γ =

0.395

−0.767672395484 0.395

−0.851675323742 0.522967289188 0.395

0.288463109545 0.0880214273381 −0.337389840627 0.395

GRK4T

0

0.462 0.462

−0.0815668168327 + 0.961775150166 −0.0815668168327 0.961775150166

−0.0815668168327 + 0.961775150166 −0.0815668168327 0.961775150166 0

0.217487371653 0.486229037990 0 0.296283590357

−0.717088504499 1.77617912176 −0.0590906172617 0

γ =

0.231

−0.270629667752 0.231

0.311254483294 0.00852445628482 0.231

0.282816832044 −0.457959483281 −0.111208333333 0.231

A.5 ILUT solution times 3D steady-state

(a) Krylov solution times per Newton itera-
tion using ILUT for high carrier densities.

(b) Krylov solution times per Newton itera-
tion using ILUT for low carrier densities.

Figure A.1: Krylov solution times for a 3D steady-state example.
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A.6 Additional transient simulation results

Figure A.2: Same simulation as in sec. 7.3.2 with explicit Cash-Karp method. h = 50 ns = const..

Figure A.3: Transient simulation on a homogeneous grid with all decay and source mechanisms
deactivated. Initial value was pi = 1010 cm−3 everywhere with subsequent exciton
motion resulting in a distribution similar to the expected Bose-Einstein distribution.
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A.6. Additional transient simulation results

(a) t = 0 µs. (b) t = 1× 10−4 µs. (c) t = 4× 10−4 µs.

(d) t = 6× 10−3 µs. (e) t = 0.9 µs.

Figure A.4: Transient evolution of the triplet density over triplet energy. The Gaussian form is
approximately maintained.
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