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Abstract

Two discontinuous Galerkin schemes for linear elastic waves in two and three dimen-
sions with Dirichlet and optional Neumann boundary conditions are formulated: a pure
displacement formulation and a mixed formulation with the displacement and a pres-
sure parameter as variables. The schemes are implemented for two dimensions using
Concepts with piecewise linear orthogonal basis functions for the displacements and
piecewise constant functions for the pressure parameter, both on unstructured triangu-
lar meshes. Symmetric and nonsymmetric variants are tested in static and dynamic test
cases, using implicit and explicit timestepping schemes and different linear solvers.

All symmetric schemes are found to be locking free, while the nonsymmetric ones be-
have badly for reasons made plausible. The non-mixed scheme has optimal convergence,
but computation costs depend on compressibility. The mixed scheme can overcome this
problem, but only in the stationary case.
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1 Introduction

The phenomenon of elastic waves in nearly incompressible materials is of interest in
technical applications for rubbers and, more recently, in biomechanical applications for
biomaterials, e. g. in car crashes. For homogeneous isotropic materials, the waves can be
described by the following linearized partial differential equation:

ρ ∂2
t u− µ∆u− (µ+ λ)∇ (∇ · u) = f

ρ stands for the mass density, u is the displacement, ∂2
t u is the acceleration; f is a volume

force and µ and λ are the so called Lamé parameters. Nearly incompressible materials
are characterized by µ� λ.

Using standard continuous finite element methods (FEM) usually leads to a phe-
nomenon called volume locking: The numerical displacement is much smaller than the
exact displacement. In mathematical terms, volume locking means that the upper bound
on the numerical error increases with λ/µ. Once a certain ratio is reached, the numerical
results are more or less useless.

There are several possibilities to overcome this problem. The most known one is
probably a mixed FEM with elements of higher order in space. Recent research [6], [11],
shows that for stationary problems, the problem of volume locking does not occur with
discontinuous Galerkin FEM (DGFEM) discretisations even of low order. Also, a mixed
formulation is not necessary.

In this present work, we try to extend the DGFEM to the time dependent case and
test experimentally how well this works and how expensive the calculations are. Chapter
2 formulates a non-mixed scheme and presents time discretizations. In chapter 4, the
results for the non-mixed scheme are shown. In chapter 5 we formulate and test an
alternative mixed formulation, and in chapter 6, we draw some conclusions.
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2 Formulation

The entire formulation follows [6], [10] and [11] closely, generalizing to the time depen-
dent, three dimensional problem.

2.1 Continuous Equations

2.1.1 Initial Boundary Value Problem of Elastic Wave Propagation

Let Ω ⊂ IRd be a bounded polygon (polyhedron) for d = 2 (d = 3). We denote the
boundary of the domain by Γ, and partition it into a Dirichlet boundary ΓD and a
Neumann boundary ΓN . The length (area) of the Dirichlet boundary |ΓD| has to be
strictly positive.

The linearized elastodynamic problem reads as follows:

ρ ∂2
t u (x, t)−∇ · σ (u (x, t)) = f (x, t) (x, t) ∈ Ω× (0, T ) , T > 0 (2.1)

∂tu (x, 0) = u1 (x) x ∈ Ω

u (x, 0) = u0 (x) x ∈ Ω

u (x, t) = g
D

(x, t) (x, t) ∈ ΓD × (0, T )

σ (u (x, t)) · n = g
N

(x, t) (x, t) ∈ ΓN × (0, T )

ρ is the mass density, ∂t denotes a partial derivative with respect to time ∂/∂t, u :
Ω× (0, T )→ IRd is the displacement and σ is the (Cauchy) stress tensor. Its divergence

∇·σ is defined as the column vector
{∑

j ∂xjσij

}
i
. f is a given volume force density, u0

the initial displacement and u1 is the initial velocity. g
D

denotes the prescribed boundary
displacement, g

N
is the prescribed boundary force, and n is the outer unit normal to Ω.

In linearized theory, σ is given by

σ (u) = A ε (u) (2.2)

where ε denotes the strain tensor. It is defined as the symmetric gradient of u:

ε (u) = 1/2

(
∇ u> +

(
∇ u>

)>)

For homogeneous isotropic materials, the elasticity tensor A is given by

Aijrs = µδirδjs + µδisδjr + λδijδrs
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where µ > 0 and λ > −2/3µ are the Lamé coefficients. They can be expressed in terms
of Young’s modulus E > 0 and Poisson’s ratio ν ∈ (−1, 1/2]:

λ = E
ν

(1 + ν) (1− 2ν)
, µ = E

1

2 (1 + ν)

The expression for the strain tensor can then be written as

σ (u) = 2 µ ε (u) + λ∇ · u 1
d×d

and the differential equation can be simplified to

ρ ∂2
t u− µ∆u− (µ+ λ)∇ (∇ · u) = f (2.3)

In order to stay more general, we only assume linear (2.2), but not necessarily homoge-
neous isotropic material, i. e. we will discretize equation (2.1).

In this setting, nearly incompressible materials are characterized by ν → 1/2, which
implies λ→∞.

2.1.2 Boundary Value Problem of Elastic Equilibrium

The numerical methods in consideration were developed for and can be tested with the
static problem associated with (2.1). It follows from (2.1) by setting ∂tu = 0:

−∇ · σ (u) = f in Ω (2.4)

u = g
D

on ΓD

σ (u) · n = g
N

on ΓN

2.1.3 Eigenvalues and Eigenfunctions

Eigenvalues and eigenfunctions are of interest when considering the time dependent prob-
lem: Eigenvalues reveal information about caracteristic time scales, and knowing exact
eigenfunctions for a given domain with given boundary conditions allows to construct
exact time dependent solutions for this situation easily.

Substituting the ansatz u (x, t) = c (t)w (x) into (2.3) with f = 0 immediately yields
the eigenvalue problem:

−ρ ∂2
t c = ηc (2.5)

−µ∆w − (µ+ λ)∇ (∇ · w) = ηw (2.6)

We denote the eigenvalues by η, as the standard symbol λ is already used for the second
Lamé coefficient. Equation (2.5) has the solution

c (t) = c0 cos (ωt) +
c1

ω
sin (ωt) with ω =

√
η/ρ
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For the eigenfunctions in space, we set Ω = (−π, π)d and assume periodic boundary
conditions. We write the eigenfunctions w in a Fourier basis:

w (x) =
∑

k∈Zd
dk e

ik·x (2.7)

This basis spans the space of square integrable functions (L2 (Ω))
d

and is orthogonal in
the L2 scalar product on Ω. Substituting (2.7) into (2.6), we obtain

∑

k∈Zd
−µ∆

(
dk e

ik·x)− (µ+ λ)∇
(
∇ ·
(
dk e

ik·x)) =

∑

k∈Zd

(
µ |k|2 1 + (µ+ λ) k k>

)
dk e

ik·x =

∑

k∈Zd
K (k) dk e

ik·x = η
∑

k∈Zd
dk e

ik·x

As this has to hold for all x ∈ Ω and the basis functions are orthogonal, we have

K (k) dk = η dk ∀k ∈ Zd

Thus, any dk satisfying the above equation defines an eigenfunction dk e
ik·x with eigen-

value η.
For d = 2, we have for each k ∈ Z2\ {0}
• a longitudinal mode: dk = k, η = (2µ+ λ) |k|2

• a transversal mode: dk = R k, η = µ |k|2, R =

(
0 −1
1 0

)

For k = 0, we have the translation modes dk = (1, 0)> and dk = (0, 1)> with η = 0.
So the complete set of real valued eigenfunctions is
{

(1, 0)> , (0, 1)>
}
∪
{
R k cos (k · x + ϕ)

}
k∈Z2\{0} ∪ {k cos (k · x+ ϕ)}k∈Z2\{0}

Let us consider the domain Ω = (0, π)2 with homogeneous Dirichlet boundary conditions,
i. e. w = 0 on ∂Ω. For symmetry reasons, we can use the same Fourier ansatz (2.7).
Under the assumption that µ/ (2µ+ λ) 6∈ Q, we know that the eigenfunctions with
nonzero eigenvalues are of the form

w (x) =
∑

|k|=k
ak k e

ik·x with η = (2µ+ λ) |k|2 , k ∈ Z2

and

w (x) =
∑

|k|=k
ak R k eik·x with η = µ |k|2 , k ∈ Z2

It is however a nontrivial task to find coefficients ak such that the boundary conditions
are met.
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2.1.4 Continuous Variational Formulation

In order to obtain a variational formulation, we multiply equation (2.1) with a test
function v and integrate over the domain Ω by parts.

To this end, we introduce the following product operators:

α : β :=

d−1∑

i=0

d−1∑

j=0

αijβij

(
α, β

)
Ω

:=

∫

Ω

α : β dx

(
α, β

)
Ω

:=

∫

Ω

α · β dx

We will also use the following Green’s formula:

−
(
v,∇ · σ (u)

)
Ω

=
(
ε (v) , σ (u)

)
Ω
−
(
v, σ (u)n

)
∂Ω

(2.8)

With this Green’s formula and assuming g
D

= 0, the variational formulation reads:

Find u ∈ C0 ([0, T ] , V ) ∩ C1 ([0, T ] , H) such that

ρ ∂2
t (u, v) +B (u, v) = L (v) (t) ∀v ∈ V , t ∈ [0, T ]

∂t(u, v) = (u1, v) ∀v ∈ H, t = 0

(u, v) = (u0, v) ∀v ∈ H, t = 0

with

B (u, v) :=
(
σ (u) , ε (v)

)
Ω

L (v) (t) :=
(
f (t) , v

)
Ω

+
(
g
N

(t) , v
)

ΓN

Here, V and H denote the spaces

V =
{
u ∈

(
H1 (Ω)

)d
: u|ΓD = 0

}

H =
(
L2 (Ω)

)d

where L2 (Ω) is the space of functions square integrable over Ω and H1 (Ω) is the space

of functions in L2 (Ω) with gradient in (L2 (Ω))
d
.

2.2 Space Discretization

2.2.1 Triangulation

Henceforth, we shall use the notation In := {0, . . . , n− 1} for index sets. The triangu-
lation T is a partition of the domain Ω into L triangular (tetrahedral) elements Kl:

T = {Kl}l∈IL ,
⋃

l∈IL
K l = Ω
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Every element Kl is an affine image of the reference simplex K̂:

K̂ =
{
x̂ ∈ IRd : x̂i > 0,

∑
i x̂i < 1, i ∈ Id

}

K = FK

(
K̂
)

FK (x̂) = A
K
x̂+ bK, A

K
∈ IRd×d, bK ∈ IRd ∀K ∈ T

We denote by Γll′ the common boundary of elements Kl and Kl′ for l, l′ ∈ IL. {Sl′}l′∈L
is the set of boundary edges (faces) with L = {L, L+ 1, . . . , L+ L′ − 1}. We extend the
definition of Γll′ for l′ ∈ L to be Sl′ if Sl′ is part of ∂Kl and set:

nll′ : normal on Γll′, points from Kl

{
to Kl′ if (l, l′) ∈ F
out of Ω if (l, l′) ∈ G

���:
nll′

Γll′

Kl

Kl′
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Figure 2.1: Neighbouring elements Kl, Kl′ in two (left) and three (right) dimensions

We introduce some sets of index pairs (l, l′) associated with sets of interfaces Γll′.
F corresponds to the interior interfaces, G to the boundary faces, GD to the Dirichlet
boundary and GN to the Neumann boundary:

F = {(l, l′) : l, l′ ∈ IL, Kl′ is a neighbour of Kl, l < l′}
GD = {(l, l′) : l ∈ IL, l′ ∈ L, Sl′ ⊂ (∂Kl ∩ ΓD)}
GN = {(l, l′) : l ∈ IL, l′ ∈ L, Sl′ ⊂ (∂Kl ∩ ΓN)}
G = GD ∪GN

FD = F ∪GD
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Then, we need some trace operators:

v|Γll′ (x) = lim
ε↓0

v (x− εnll′)

v|Γl′l (x) = lim
ε↓0

v (x + εnll′)

Now, we define the average operator 〈·〉 and the jump operator [·]. For interior interfaces,
i. e. (l, l′) ∈ F , we set:

〈v〉Γll′ = 1/2

(
v|Γll′ + v|Γl′l

)

[v]Γll′ = v|Γll′ − v|Γl′l
For boundary faces, i. e. (l, l′) ∈ G, we set:

〈v〉Γll′ = v|Γll′
[v]Γll′ = v|Γll′

2.2.2 Finite Element Space

On the triangulation T , we define the space of piecewise linear discontinuous functions
S1:

S1 = S1,0 (Ω, T ) :=
{
u ∈ L2 (Ω) : u|K ∈ P1 (K) , K ∈ T

}

P1 (K) :=
{
u (x) = a · x+ b, a ∈ IRd, b ∈ IR

}

S1 := (S1)d

Note: As dim(P1 (K)) = d + 1, we have dim(S1) = (d+ 1)L, where L denotes the
number of elements in T .

2.2.3 Discontinuous Variational Formulation

In order to obtain the discontinuous variational formulation, we multiply equation (2.1)
with a test function v, integrate it over each element K ∈ T by parts and sum these
integrals. We apply a Galerkin discretization by restricting u and v to be elements of
S1. With the Green’s formula (2.8), the variational formulation reads:

Find u ∈ C2 ([0, T ] ,S1) such that

ρ ∂2
t (u, v) +B (u, v) = L (v) (t) ∀v ∈ S1, t ∈ [0, T ]

∂t(u, v) = (u1, v) ∀v ∈ S1, t = 0

(u, v) = (u0, v) ∀v ∈ S1, t = 0
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with:

B (u, v) :=
∑

l∈IL

(
σ (u) , ε (v)

)
Kl

−
∑

(l,l′)∈FD

(〈
σ (u) · nll′

〉
, [v]
)

Γll′
− τ

(
[u] ,

〈
σ (v) · nll′

〉)
Γll′

+µ
∑

(l,l′)∈FD

γµ
hll′

(
[u] , [v]

)
Γll′

+ λ
∑

(l,l′)∈FD

γλ
hll′

(
[u · nll′] , [v · nll′]

)
Γll′

L (v) (t) :=
∑

l∈IL

(
f (t) , v

)
Kl

+
∑

(l,l′)∈GN

(
g
N

(t) , v
)

Γll′
+ τ

∑

(l,l′)∈GD

(
g
D

(t) , σ (v) · nll′
)

Γll′

+µ
∑

(l,l′)∈GD

γµ
hll′

(
g
D

(t) , v
)

Γll′
+ λ

∑

(l,l′)∈FD

γλ
hll′

(
g
D
· nll′ , v · nll′

)
Γll′

where

τ ∈ {−1, 1} : symmetry parameter

γµ,λ : stabilization coefficients

hll′ : suitable measure of mesh size on Γll′

Note that we have added some terms consistently. The terms with coefficent τ make
the bilinearform symmetric for τ = −1. The terms with γµ and γλ are stabilization or
penalty terms.

For τ = 1 and d = 2, Wihler proves in [10] coercivity of B (u, v) and absence of volume
locking in the static problem, using the following parameters:

γµ = 1

γλ = 0

hll′ = diam (Γll′)

For τ = −1 and d = 2, Hansbo and Larson prove in [6] coercivity of B (u, v) and
absence of volume locking in the static problem, using the following parameters:

γµ ≥ 2

γλ ≥ 2

hll′ =

{
2 (1/ |Kl|+ 1/ |Kl′|)−1 /diam (Γll′) (l, l′) ∈ F
|Kl| /diam (Γll′) (l, l′) ∈ G

We will use the later definition of hll′ in both cases, as the choice in the nonsymmetric
case does not matter a lot.
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2.3 DGFEM Implementation

This section gives a broad overview of the DGFEM implementation. A more detailed
presentation is provided in appendix A.

2.3.1 Vectorial FE Basis

We choose a suitable basis for S1:

S1 = span
{
ϕ
n

}
n∈IN

, N = d (d+ 1)L

where L is the number of elements in T and N is the number of basis functions, i. e. the
number of degrees of freedom or the dimension of S1.

We write the trial and test functions u and v as linear combinations of basis functions:

u =
∑

n∈IN
Unϕn, v =

∑

n∈IN
Vnϕn

U = {Un}n∈IN , V = {Vn}n∈IN

2.3.2 Element Computations

With this setup, we now carry out the element computations.

Mass Matrix

(u, v) = V >M U
(
M
)
nn′

=
(
ϕ′
n
, ϕ

n

)

Note: As no continuity has to be enforced, the basis functions can be chosen to have
support on only one element. Those having support on the same element can be chosen
L2-orthogonal, which causes the consistent mass matrix to be diagonal without applying
special mass lumping techniques.

Stiffness Matrix

B (u, v) = V >B U
(
B
)
nn′

= B
(
ϕ
n′
, ϕ

n

)

Load Vector

L (v) (t) = V >L (t)

(L (t))n = L
(
ϕ
n

)
(t)
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Initial Conditions

(ui, v) = V >U i, i ∈ {0, 1}
(U i)n =

(
ui, ϕn

)

2.3.3 System of Ordinary Differential Equations

By inserting the expressions found in the element computation section into the varia-
tional formulation, we get a system of ordinary differential equations:
Find U ∈ C2

(
[0, T ] , IRN

)
such that ∀ V ∈ IRN

ρ V >M Ü (t) + V >B U (t) = V >L (t)

V >M U̇
>

(0) = V >U 1

V >M U> (0) = V >U 0

As this has to hold ∀ V ∈ IRN , we can drop V > and obtain:
Find U ∈ C2

(
[0, T ] , IRN

)
such that

ρ M Ü (t) +B U (t) = L (t) (2.9)

M U̇ (0) = U1 (2.10)

M U (0) = U0 (2.11)

2.4 Time Discretization

2.4.1 Requirements

The system of ordinary differential equations (2.9)-(2.11), which is linear and of second
order, can be discretized in time using a suitable timestepper for equations of the type

M ÿ (t) + B y (t) = l (t) (2.12)

ẏ (0) = z0 (2.13)

y (0) = y
0

(2.14)

In our case, B is real valued, but not necessarily symmetric. Thus it may have com-
plex (conjugate) eigenvalues. As for µ � λ the spectrum of B gets large, the chosen
timestepper is preferably absolutely stable.
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2.4.2 Stability of the Semidiscrete Problem

The related eigenproblem to (2.12), which can also be seen as a discretization of (2.6),
reads:

B W k = ηkM W k, k ∈ IN
Assuming that B has a full eigenvector basis, we write the state vector y as a linear
combination of eigenvectors and substitute into (2.12), with l (t) = 0:

y (t) =
∑

k∈IN
ck (t)W k

∑

k∈IN
c̈kM W k = −

∑

k∈IN
ckB W k

The following scalar equation holds for the eigencoefficents:

c̈k (t) = −ηkck (t) , ηk ∈ C
ċk (0) = ck,1

ck (0) = ck,0

The equation has the solution

ck (t) = ck,0 cos (ωkt) +
ck,1
ωk

sin (ωkt) , ωk =
√
ηk

Note: ck (t) is bounded if and only if ωk ∈ IR, i. e. ηk > 0. This implies that the
semidiscrete problem has a bounded solution if all eigenvalues of B are real and positive.

2.4.3 Timestepping Schemes

In the following paragraphs, we will evaluate some possible timesteppers. We will denote
by y

n
, zn and ln approximations to y (n∆t), ẏ (n∆t) and l (n∆t), respectively.

Newmark The Newmark scheme is the standard choice in conforming FEM. The New-
mark scheme for problem (2.12) – (2.14) reads:

(
M + ∆t2βB

)
y
n+1

=
(
M −∆t2

(
1/2 − β

)
B
)
y
n

+∆tM zn + β ln+1 +
(

1/2 − β
)
ln

M zn+1 = M zn −∆t
[
γ
(
B y

n+1
+ ln+1

)
+ (1− γ)

(
B y

n
+ ln

)]

As shown in [8], it is of second order accuracy and unconditionally stable for the real
valued model problem if e. g. β = 1/4 and γ = 1/2. The scheme resulting from these
parameter values is also called trapezoidal scheme.

Numerical dissipation may be introduced by setting γ > 1/2. In this case, the order of
accuracy drops to 1 and substantial undesired damping of low frequency modes occurs.
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α-Method The α-method, as described in [7], was introduced by Hilber, Hughes and
Taylor as a modification to the Newmark scheme. It allows numerical damping without
losing second order accuracy. Also, the damping mainly affects high frequency modes.

The α-method for problem (2.12) – (2.14) can be formulated as follows:

(
M + ∆t2 (1− α)βB

)
kn+1 = B

(
y
n

+ (1 + α)
(
∆tzn + ∆t2

(
1/2 − β

)
kn
))

+l ((n+ 1 + α) ∆t)

y
n+1

= y
n

+ ∆tzn + ∆t2
(

1/2 − β
)
kn + ∆t2βkn+1

zn+1 = zn + ∆t (1− γ) kn + ∆tγkn+1

with β = (1− α)2 /4 and γ = 1/2 − α. For α = 0, the scheme reduces to the respective
Newmark method, i. e. the trapezoidal scheme. For α ∈ [−1/3, 0), numerical dissipation
is introduced. As shown in [7], it is of second order accuracy and unconditionally stable
for the real valued model problem for all α ∈ [−1/3, 0].

Nyström Methods Nyström methods are direct applications of Runge’s method to
second order differential equations. Examples of fourth and fifth order accuracy can
be found in [5], although there is no statement about stability. As these methods are
explicit and of high order, disadvantages in stability have to be expected. Symplectic
explicit Nyström methods of second and fourth order accuracy can be found in [5] as
well.

The symplectic Nyström method of second order reads:

M kn = −B
(
y
n

+ 1/2∆tzn

)
+ l
((
n+ 1/2

)
∆t
)

y
n+1

= y
n

+ ∆tzn + 1/2∆t2kn
zn+1 = zn + ∆tkn

For linear operators and without right hand side, this method is equivalent to the well
known leap frog scheme! Therefore, a stability analysis for the real valued model problem

ÿ = −ω2y, ω > 0

would show that this method is conditionally stable for

∆t < 2/ω

like the leap frog scheme.
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3 Implementation

In this chapter, some of the implementation details are presented. The code written
for this thesis is part of the Concepts library, which is presented in [3]. The main idea
behind the library is ‘design by concept’. This means that every mathematical concept
like a finite element, a FE space or a bilinear form is represented by a class.

3.1 Class Design

3.1.1 DGFEM

In order to perform DGFEM, the concepts of interfaces and index pairs introduced in
chapter 2 need to be cast into classes.

The class EdgeInfo represents an interface Γll′. The class is able to return the neigh-
bour cells Kl and K ′l , the normal nll′, the edge length |Γll′ | and more properties associated
with the respective edge.

The class MeshInfo represents the set of all edges of a triangulation T . The class
MeshInfo builds all EdgeInfo objects efficiently and allows to scan over all of them, as
well as direct access to the EdgeInfo object associated to a specific edge.

The index sets F , G and the like are represented by the class ElementPairList. It
consists of objects of type ElementPair, each of which having a reference to both ele-
ments involved and the EdgeInfo object of the underlying edge. The ElementPairList

can easily be built up by scanning over all EdgeInfo objects in the MeshInfo object.

3.1.2 Vector Valued DGFEM

In order to simplify solving problems where the unknown is a vector valued function,
like in our case, a set of classes exists in Concepts. If for example the scalar space S1 is
represented by the new class SpaceP1, then the vectorial space (S1)d can be represented
by the existing class vectorial::Space, representing the action of (·)d on any space.

This idea has been extended during this work to be applicable to the concepts of
DGFEM, introducing namely a vectorial element pair vectorial::ElementPair and
the class ElementPairListIdentic. This later class allows for a simple construction of
the list of vectorial::ElementPairs, when the list of scalar ElementPairs is already
constructed and the spaces in each vectorial dimension are identical. This would not be
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the case, if we would use e. g. the space S1 × S2 for the displacements, where S2 would
have to be defined.

3.2 Mesh Generation

3.2.1 General Nonperiodic Domains

For the generation of meshes of general domains, we use Netgen [9]. The data from
Netgen is written to three files using a minimal plugin to Netgen. The first file contains a
numbered list of nodes with their coordinates. The second file contains a list of triangles,
defined by three node numbers. The order of the nodes is strictly counterclockwise
throughout the whole file. The third file contains a list of boundary edges, defined by
two node numbers and its attribute, i. e. the boundary condition. The data in these
three files can be imported to Concepts using existing mesh import classes.

3.2.2 Periodic Unit Square

For the periodic unit square, we use our own class representing geometrically the unit
square (0, 1)2, while having the topology of a torus. Like this, the rest of the code does
not require any modifications.

3.3 Shape Functions

3.3.1 Orthogonal Basis

The basis functions are chosen to be orthogonal in the L2 scalar product used for the
mass matrix, causing this matrix to become diagonal. This sounds more difficult than
it actually is.

First of all, as we have discontinuous functions, we can choose a basis where each
function has support exactly on one element. Like this, all pairs of basis functions who
do not have the same element as support, have a trivially vanishing L2 scalar product
and are therefore orthogonal.

Then, we use the same scalar basis in each vectorial dimension using a tensor prod-
uct. So basis functions not associated with the same vectorial dimension are orthogonal
because the respective unit vectors are orthogonal.

Finally, we have an affine mapping from each element to the reference element. If
the L2 scalar product as an integral is mapped, the determinant of the Jacobian to
be introduced is constant. So functions orthogonal on the reference element affinely
mapped to any other element remain orthogonal. Thus any scalar basis orthogonal on
the reference triangle can be used to construct a globally orthogonal vectorial basis!
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We use the three functions

N1 = 1− 2x

N2 = −1 + 2 (x− y)

N3 = −1 + 2y

which are L2-orthogonal on the reference triangle

K̂ = {(x, y) : 0 < y < x < 1}

i. e.

(Ni, Nj)K̂ = 1/6 δij

as such a basis.

3.3.2 Quadrature

All integrals in the bilinear forms and the linear forms, except the one for the mass
matrix, are calculated using quadrature. The integral on triangles are transformed to
a square where a tensor product Gauss quadrature is applied. This procedure seems
unfavorable in terms of order of polynomials exactly integrated. A closer look shows
that this is not a problem: The original coordinates ξ can be expressed as a linear
function of the transformed coordinates η. If the function to integrate is a polynom
of order p in ξ, then the transformed function is a polynomial of order p + 1 in η.
The determinant of the Jacobian introduced is also linear in η. So the function finally
integrated on the square is a polynomial of order p + 2 in η, which can be integrated
exactly using a suitable Gauss quadrature rule. All basis functions are polynomials, so
all matrices can be calculated exactly using this quadrature.
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4 Numerical Results

All numerical tests are carried out for d = 2, as the case d = 3 does not change the
problem qualitatively. Also, we set µ = 1 and ρ = 1 in all tests, as we want to study the
behaviour with λ.

4.1 Static Tests

4.1.1 Setup

In order to test the spacial discretization separately, we consider the static problem (2.4):

−∇ · σ (u) = f in Ω

u = g
D

on ΓD

σ (u) · n = g
N

on ΓN

Using the same discretization techniques as for the dynamic problem yields

B U = L

where B, U and L are defined as in section 2.3.2, except that neither U nor L depend
on time. This linear system can be solved with a suitable solver.

4.1.2 Regular Problem

We first consider the following regular problem:

Ω = (0, 1)2

ΓD = ∂Ω

u∗ (x) =

(
− sin (πx)2 sin (2πy)

sin (2πx) sin(πy)2

)

g
D

= u∗|ΓD
f = −∇ · σ (u∗) = µ

(
2π2 sin (2πy)

(
1− 4 sin (πx)2)

−2π2 sin (2πx)
(
1− 4 sin (πy)2)

)

with the exact solution u∗. We assess the performance of the method by calculating the
L2 norm of the error:

e (h) = ‖uh − u∗‖L2(Ω)
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where uh is the finite element solution. In the optimal case, we can expect e(h) = O (h2).
The coarsest triangulation of the computational domain is shown in figure 4.1. This

triangulation is refined uniformly for the convergence study, i. e. each triangle is split
into 4 similar triangles recursively.
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Figure 4.1: Computational domain and coarsest mesh for the regular problem

We test two cases, the symmetric (τ = −1) and the nonsymmetric (τ = 1) case.
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symmetric
In the symmetric case, we set γµ = γλ = 3. So we are on the safe side, as Hansbo and
Larson prove in [6] that values ≥ 2 are sufficient for robust convergence, i. e. convergence
independent of λ. As can be seen in figure 4.2, the error e(h) is O (h2), i. e. the conver-
gence is robust and optimal.
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Figure 4.2: Mesh convergence for regular static problem, symmetric case.
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nonsymmetric
In the nonsymmetric case, we set γµ = 1, and γλ = 0. This is proven to be sufficient for
robust convergence in [10], i. e. we can expect convergence independent of λ. As can be
seen in figure 4.3, the error e(h) is O (h2), i. e. the convergence is robust and optimal.
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Figure 4.3: Mesh convergence for regular static problem, nonsymmetric case.
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4.1.3 Singular Problem

We now consider a problem from [10], which has a singular solution. The computational
domain and its coarsest triangulation is shown in figure 4.4. This triangulation is refined
uniformly for the convergence study, i. e. each triangle is split into four similar triangles
recursively.
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Figure 4.4: Computational domain and coarsest mesh for the singular problem

The exact solution is given in polar coordinates:

u (r, ϕ) =

(
cosϕ ur (r, ϕ)− sinϕ uϕ (r, ϕ)
sinϕ ur (r, ϕ) + cosϕ uϕ (r, ϕ)

)

ur (r, ϕ) =
1

2µ
rα (− (α + 1) cos ((α+ 1)ϕ) + (C2 − α− 1)C1 cos ((α− 1)ϕ))

uϕ (r, ϕ) =
1

2µ
rα ((α + 1) sin ((α+ 1)ϕ) + (C2 + α− 1)C1 sin ((α− 1)ϕ))

where α ≈ 0.544484 is the solution of the equation

α sin (2ω) + sin (2ωα) = 0

with ω = 3π/4 and

C1 = −cos ((α + 1)ω)

cos ((α− 1)ω)
, C2 =

2 (λ+ 2µ)

λ+ µ

The other data are given as

ΓD = ∂Ω

g
D

= u∗|ΓD
f = 0

We assess the performance of the method by calculating the L2 norm of the error:

e (h) = ‖uh − u∗‖L2(Ω)
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where uh is the finite element solution. In the optimal case, we could expect e(h) =
O (h2). As the solution is singular and we use a uniformly refined mesh, a suboptimal
convergence will be observed. However it should still be robust.

We again test the symmetric (τ = −1) and the nonsymmetric(τ = 1) case. In the
symmetric case, we set γµ = γλ = 2. In the nonsymmetric case, we set γµ = 1, and
γλ = 0. In both cases, the error e(h) is ≈ O (h1.4), i. e. the convergence is robust but
suboptimal. This can be seen in figure 4.5 for the symmetric case, and in figure 4.6 for
the nonsymmetric case.
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Figure 4.5: Mesh convergence for singular static problem, symmetric case.
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Figure 4.6: Mesh convergence for singular static problem, nonsymmetric case.
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4.2 Eigenvalues and Eigenfunctions

The eigenproblem (2.6) can be discretized using the same discretization techniques as
for the dynamic problem. We end up with the matrix eigenvalue problem

B W = η M W

where B and M are defined as in section 2.3.2, W denotes the FE coefficient vector of
the eigenfunction w (x) and η is the according eigenvalue.

4.2.1 Properties in Symmetric Case

With τ = −1, the matrix B is symmetric and with γµ,λ ≥ 2, the underlying bilinear
form is coercive and the matrix is therefore positive definite. Together, it follows that
the matrix B has real positive eigenvalues. As shown in section 2.4.2, this is a sufficient
condition for stability of the semidiscrete problem.

The behaviour of the generalized eigenvalues when λ increases and h decreases can
also be seen from theory developed in 2.1.3. The zero eigenvalues will not occur if
we have nonperiodic boundary conditions. The smallest nonzero eigenvalue ηmin will
therefore satisfy 1/ηmin = O (1/µ), while the largest will be O

(
(2µ+ λ) |k|2

)
. The k

to be considered is the largest spacial frequency that can be resolved and is therefore
O (h−1), so the largest eigenvalue will be O (h−2λ), and the condition number κ

(
M−1B

)

will be O (h−2λ/µ).

This behavior was observed in a numerical experiment on Ω = (0, 1)2 with ΓD = ∂Ω
and g

D
= 0.

4.2.2 Properties in Nonsymmetric Case

With τ = 1, the matrix B is not symmetric. Although we know that the underlying
bilinear form is coercive for γµ = 1 and γλ = 0, this result cannot be used for a statement
about the eigenvalues. They still can be complex conjugate.

Numerical experiments show that complex conjugate eigenvalues really occur. As
shown in section 2.4.2, the semidiscrete problem can then be unstable.

4.3 Dynamic Tests

4.3.1 Efficiency Considerations

Let’s do a rough a-priory check of the computational costs of explicit and implicit
timestepping. In order to stay general in this considerations, we denote the spacial
dimensionality by d, the order of accuracy of the timestepper by q and assume that the
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final time T is fixed. We will use that

ηmax
(
M−1B

)
= O

(
h−2λ

)
and

N hd = O(1)

Explicit Timestepping
With an explicit timestepper, there is a stability criterion of the form

∆t < C/
√
ηmax

(
M−1B

)
= O

(
h/
√
λ
)

The computational cost per timestep Z1 is O (N) = O
(
h−d
)
. We need to solve a linear

system with the mass matrix, but since it is diagonal, the cost can easily be kept O (N).
So the total cost Z is

Z = O (Z1/∆t) = O
(
h−(d+1)

√
λ
)

Implicit Timestepping
With an implicit timestepper, the timestep can be arbitrarily large from the point of
view of stability. From the point of view of the overall error, which is O(∆tq + h), we
must require

∆t = O
(
h1/q

)

in order the temporal discretisation error not to dominate the spacial one. Note: We
observe a spacial L2 error which is O (h2), but as the results of [10] and [6] only guarantee
the error in the energy norm to be O (h), we stick to this result for these efficiency
considerations.

In every timestep, we have to solve a linear system with a matrix of the form M +
α∆t2B, where α is a constant depending only on the chosen timestepping scheme. So for
big systems and specially for d = 3, we will require an iterative solver, as a direct solver
would need too much memory. The computational cost per timestep Z1 is therefore

Z1 = Ziter Niter

where Ziter is the cost per solver iteration, and Niter is the number of iterations. Typical
iterative solvers have

Ziter = O (N) = O
(
h−d
)

Niter = O
(√

κ
(
M + α∆t2B

))

The spectral properties of M−1B are known, those of M are:

1/ηmin
(
M
)

= O
(
h−2
)

ηmax
(
M
)

= O
(
h2
)
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Thus, we have

1/ηmin
(
M + α∆t2B

)
= O

(
h−2
)

ηmax
(
M + α∆t2B

)
= O

(
h2/qλ

)

Niter = O
(√

κ
(
M + α∆t2B

))
= O

(
h1/q−1

√
λ
)

Z1 = Ziter Niter = O
(
h−(d+1−1/q)

√
λ
)

So the total cost Z is

Z = O (Z1/∆t) = O
(
h−(d+1)

√
λ
)

Remarks:

• This estimate is the same as for the explicit case. In reality, the estimate of cpu
time in the explicit case turns out to be sharp, while the behaviour of the implicit
case is better than the worst case estimate established namely for the number of
iterations.

• As soon as a robust optimal solver for M + α∆t2B is found, Z1 drops to O (N)

and we have Z = O
(
h−(d+1/q)

)
. Optimal means that computational costs grow

only linear with N , whereas robust means that they are independent of λ and ∆t.
Optimal solvers are typically preconditioned iterative solvers. A good candidate
for a respective preconditioner is the one proposed in [4]. However, the question
of its robustness is open.

4.3.2 Benchmark Problem

In order to carry out a benchmark, it is favorable to have an exact solution the numerical
one can be compared to. The first candidate for such a solution is usually a linear
combination of eigenmodes. In section 2.1.3, we have only found eigenfunctions for
periodic boundary conditions. As the translation is an eigenfunction with eigenvalue
zero in this case, we would not have a bounded solution.

So we prescribe the exact solution u∗ and calculate the right hand side such that the
differential equation holds:

Ω = (0, 1)2

ΓD = ∂Ω

u∗ (x, t) = cos (ω∗t)

(
− sin (πx)2 sin (2πy)

sin (2πx) sin(πy)2

)

ω∗ = 2
√

2 π µ = 1 ρ = 1

g
D

= 0
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f = −∇ · σ (u∗)

= µ cos (ω∗t)

(
2π2 sin (2πy)

(
1− 4 sin (πx)2)

−2π2 sin (2πx)
(
1− 4 sin (πy)2)

)

The coarsest triangulation of the computational domain is shown in figure 4.7. This
triangulation is refined uniformly for the convergence study, i. e. each triangle is split
into 4 similar triangles recursively.
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Figure 4.7: Computational domain and coarsest mesh for the dynamic problem

The suggested benchmark problem allows for a simple estimation of amplitude and
frequency error. We have

‖u∗ (t)‖2
L2(Ω) = A∗ cos (ω∗t)2 with A∗ = 3/8

so if we fit a function of the form A cos (ωt+ ϕ)2 against ‖uh (t)‖2
L2(Ω) over one or two

periods, we can use the value
√
A/A∗− 1 as an estimate for the relative amplitude error

and ω/ω∗ − 1 as an estimate for the relative frequency error. The least squares fit is
done with a heuristic first guess followed by a few Newton iteration steps.

We assess the performance of the method by calculating the average L2 norm of the
error:

e (h) = ‖uh − u∗‖L1(0,T ;L2(Ω))

where uh is the finite element solution. In the optimal case, we could expect e(h) =
O (h2).
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In the following subsections, we will test different timestepping schemes with this
benchmark problem. We only show test results for the symmetric case. As we can
conclude from the results in section 4.2, the unsymmetric case is not guaranteed to be
stable. No stable case has been found in numerical experiments.

4.3.3 Trapezoidal Scheme

We simulate until final time T = 10, which is about 14 periods of the exact solution.
Simulations with small meshes for T = 360 (>500 periods) indicate that the system
does not get unstable, so shorter simulations are sufficent for assessing the method’s
performance.

The occuring linear systems A x = b are solved with a conjugate gradient solver with-
out preconditioner. The stopping criterion is chosen in terms of the relative residuum:

∥∥A xk − b
∥∥

2

‖b‖2

< tol

where ‖·‖2 denotes the Euclidean vector norm. We use tol = 10−8 in our tests.
The timestep is chosen as follows:

∆t =

√
2

40

h

h0

where h0 denotes the mesh size of the coarsest mesh. This choice satisfies two constraints:

• Global convergence rate: The time discretization error isO (∆t2). With this choice,
it is O (h2) and will therefore not dominate the overall error.

• Sampling rate: In order to estimate the frequency error and the amplitude error,
we need enough samples within one period of ‖u∗ (t)‖2

L2(Ω), which is
√

2/4. With
the above choice, we have 10 samples per period for the coarsest mesh and even
more for the finer meshes.
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Figure 4.8: Mesh convergence of L2 error for dynamic problem, trapezoidal scheme.

The average L2 error is O (h2), as can be seen in figure 4.8. That means, we have
robust and optimal convergence also in the time dependent case.
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Figure 4.9: Mesh convergence of relative frequency error for dynamic problem, trapezoidal scheme.

The average relative frequency error even converges with about order 4 in h as can be
seen in figure 4.9.
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Figure 4.10: Mesh convergence of relative amplitude error for dynamic problem, trapezoidal scheme.

The average relative amplitude error converges with order 2 in h as can be seen in
figure 4.10.
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Figure 4.11: Mesh behaviour of cpu time for dynamic problem, trapezoidal scheme.

From section 4.3.1, we have to expect the computational costs to be O
(
h−(1+d)

√
λ
)

.

With d = 2, we can expect the costs to be

O
(
h−3
√
λ
)

= O
(
N1.5
√
λ
)

In the numerical experiment, the mesh behaviour seems to fit this prediction quite well,
as can be seen in figure 4.11. The behaviour with λ seems to be not as bad as it would
have to be expected.
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Figure 4.12: number of solver iterations for dynamic problem dependent on λ and number of degrees of
freedom N , trapezoidal scheme.

In section 4.3.1, the number of iterations for the iterative solver Niter was estimated

to be O
(√

λN
)

. Figure 4.12, shows a slightly slower growth of the number of iterations

with λ. Astonishingly, for small λ, the number of degrees of freedom N does not influence
the number of iterations much. For large values of λ, the condition number gets so bad
that the number of iterations gets close to N . As the conjugate gradient solver would
provide the exact solution after N steps in exact arithmetics, N determines the number
of iterations in this case.
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Influence of solver tolerance
In a very similar setting, we test the influence of the solver tolerance. We simulate
until T = 140 but let λ = 100 fixed and vary the solver tolerance tol. We measure the
maximal instead of the average L2 error. Everything else is left identic.

One could expect that solving iteratively and therefore not exact, introduces errors in
each timestep, which then are propagated without damping. So the smaller the tolerance,
the smaller would be the global error.
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Figure 4.13: mesh convergence of maximal L2 error for λ = 100, dependent on solver tolerance, trape-
zoidal scheme.

As can be seen in figure 4.13, the choice of the solver tolerance does matter, but is
not sensitive. A solver tolerance of 10−2 is clearly too big in all cases. But whether one
chooses 10−4 or 10−5 does not change the overall error visibly.
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4.3.4 Hilber-Hughes-Taylor Scheme

The Hilber-Hughes-Taylor scheme allows for a dissipation of high frequency modes at
the expense of not being conservative any more. We simulate until final time T = 2,
with a dissipation parameter α = −0.05. The results are similar in terms of errors, but
the computation time is up to twice as high than without dissipation. So dissipation
does not show any advantages in the symmetric case.

In the nonsymmetric case, the introduction of numerical dissipation for the high fre-
quency modes seems attractive, as one might hope that this dissipation might outweigh
the nonstable character of the eigenmodes with complex conjugate eigenvalues. However,
this is only a hope: Numerical experiments show that even the maximally dissipative
parameter α = −1/3 is not sufficient to stabilize the system in the benchmark problem.

4.3.5 Nyström Scheme

We simulate until final time T = 2. In the occuring linear systems, only the mass matrix
is involved, which is diagonal due to the orthogonal choice of the basis functions. The
solving is therefore trivial. The timestep is chosen as follows:

∆t =
1.9√

ηmax
(
M−1B

)

where ηmax
(
M−1B

)
is estimated by the power method. Like this, we are on the safe

side of the stability border of the Nyström scheme.

37



102 103 104 105
10−3

10−2

10−1

100

# of degrees of freedom N

e(
h)

=|
|u

h−u
ex

ac
t|| L2

(Ω
 x

(0
,T

))

τ=−1, γµ=3, γλ=3

λ = 1
λ = 10
λ = 100
λ = 1000
λ = 10000
O(h2)=O(N−1)

Figure 4.14: Mesh convergence of L2 error for dynamic problem, Nyström scheme.

The average L2 error is O (h2), as can be seen in figure 4.14. That means, we have
robust and optimal convergence also for the Nyström scheme.
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Figure 4.15: Mesh behaviour of cpu time for dynamic problem, Nyström scheme.

From section 4.3.1, we have to expect the computational costs to be O
(
h−(1+d)

√
λ
)

.

With d = 2 we can expect the costs to be

O
(
h−3
√
λ
)

= O
(
N1.5
√
λ
)

In the numerical experiment, the behaviour seems to fit this prediction quite well, as
can be seen in figure 4.15. The estimate of computational cost seems to be sharp.
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5 A Mixed FEM Approach

In order to overcome the growth in computation costs for growing λ, an equivalent
alternative formulation is considered thereafter. The main idea is to introduce a new
variable p and to couple it to u by the equation p = −λ∇·u. Discretization of the mixed
system yields a saddle point problem. For the static case, the resulting system reads

(
A D

D> −C

)(
U
P

)
=

(
Lv
Lp

)

where A and D are independent of λ and C scales with 1/λ. Efficient solvers are known
for problems of this type even if C = 0. So robustness with respect to λ can be expected.

5.1 Formulation

In [6], Hansbo and Larson formulate and analyze mixed discontinuous Galerkin method
for linear elasticity which is equivalent to the non-mixed system presented in chapter 2.
We again generalize the scheme to the time dependent problem in the following sections.

5.1.1 Continuous Equations

ρ ∂2
t u (x, t)− 2µ ∇ · ε (u (x, t))−∇p (x, t) = f (x, t) (x, t) ∈ Ω× (0, T )

p (x, t) /λ = −∇ · u (x, t) (x, t) ∈ Ω× (0, T )

∂tu (x, 0) = u1 (x) x ∈ Ω

u (x, 0) = u0 (x) x ∈ Ω

∂tp (x, 0)/λ = −∇ · u1 (x) x ∈ Ω

p (x, 0) /λ = −∇ · u0 (x) x ∈ Ω

u (x, t) = g
D

(x, t) (x, t) ∈ ΓD × (0, T )

2µ ε (u (x, t)) · n+ p (x, t) n = g
N

(x, t) (x, t) ∈ ΓN × (0, T )

In order the pressure parameter p to be unique, we have to require either λ < ∞,
|ΓN | > 0 or

∫
Ω
p dx = 0. Note that the pressure parameter p is not the hydrostatic

pressure unless λ→∞.
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5.1.2 Finite Element Space

In addition to S1, we define the space of piecewise constant functions S0 analogously:

S0 = S0,0 (Ω, T ) :=
{
u ∈ L2 (Ω) : u|K ∈ P0 (K) , K ∈ T

}

P0 (K) := {u (x) = a, a ∈ IR}
S0 = span {ψn}n∈IL

The trial and test functions in this space are written as

p =
∑

n∈IL
(P )n ψn q =

∑

n∈IL

(
Q
)
n
ψn

5.1.3 Discontinuous Variational Formulation

Find u ∈ C2 ([0, T ] ,S1) and p ∈ C2 ([0, T ] ,S0) such that

ρ ∂2
t (u, v) + a (u, v) + d (p, v) = Lv (v) (t) ∀v ∈ S1, t ∈ [0, T ]

d (q, u)− c (p, q) = Lq (q) (t) ∀q ∈ S0, t ∈ [0, T ]

∂t(u, v) = (u1, v) ∀v ∈ S1, t = 0

(u, v) = (u0, v) ∀v ∈ S1, t = 0

∂t(p/λ, q) = (−∇ · u1, q) ∀q ∈ S0, t = 0

(p/λ, q) = (−∇ · u0, q) ∀q ∈ S0, t = 0

with:

a (u, v) :=
∑

l∈IL

(
2µ ε (u) , ε (v)

)
Kl

−
∑

(l,l′)∈FD

(〈
2µ ε (u) · nll′

〉
, [v]
)

Γll′
+
(
[u] ,

〈
2µ ε (v) · nll′

〉)
Γll′

+µ
∑

(l,l′)∈FD

γµ
hll′

(
[u] , [v]

)
Γll′

+ λ
∑

(l,l′)∈FD

γλ
hll′

(
[u · nll′] , [v · nll′]

)
Γll′

d (p, v) := −
∑

l∈IL
(p,∇ · v)Kl +

∑

(l,l′)∈FD

(〈p〉 , [v] · nll′)Γll′

c (p, q) :=
∑

l∈IL

(
1

λ
p, q

)

Kl
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Lv (v) (t) :=
∑

l∈IL

(
f (t) , v

)
Kl

+
∑

(l,l′)∈GN

(
g
N

(t) , v
)

Γll′
−

∑

(l,l′)∈GD

(
g
D

(t) , 2µ ε (v) · nll′
)

Γll′

+µ
∑

(l,l′)∈GD

γµ
hll′

(
g
D

(t) , v
)

Γll′
+ λ

∑

(l,l′)∈FD

γλ
hll′

(
g
D
· nll′, v · nll′

)
Γll′

Lq (q) (t) :=
∑

(l,l′)∈GD

(
q, g

D
(t) · nll′

)
Γll′

where

γµ,λ : stabilization coefficients

hll′ : suitable measure of mesh size on Γll′

Remarks:

• The parameter γλ may be set to 0 in the mixed formulation. This has the essential
advantage that a(·, ·) does not depend on λ any more and the condition number
of the respective matrix must therefore be independent of λ.

• Only the symmetric variant is shown here, as the nonsymmetric one is neither
analyzed in [6], nor promising to be stable in the time dependent case.

• The projections for the initial conditions (u, v) = (u0, v) and (p/λ, q) = (−∇ · u0, q)
do not guarantee p/λ = −∇ · u. Numerical displacement and pressure parameter
approximate exact displacement and pressure parameters best in L2 sense. The
latter are consistent, while the former do not have to be. This might be overcome
by choosing a different projection for the initial conditions.

5.1.4 Element Computations

This section gives a broad overview of the element computations. A more detailed
presentation is provided in appendix B.

Stiffness Matrix

a (u, v) = V >A U
(
A
)
nn′

= c
(
ϕ
n′
, ϕ

n

)

Divergence Matrix

d (p, v) = V >D P
(
D
)
nn′

= d(ψn′ , ϕn)
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Compression Matrix

c (p, q) = Q>C P
(
C
)
nn′

= c (ψn′, ψn)

Note that the compression matrix will be diagonal as the mass matrix.

Load Vector

Lv (v) (t) = V >Lv (t)
(
Lv (t)

)
n

= Lv

(
ϕ
n

)
(t)

Lq (q) (t) = Q>Lq (t)
(
Lq (t)

)
n

= Lq (ψn) (t)

Initial Conditions
The initial conditions for u are the same as in the non-mixed formulation. Those for the
pressure parameter read:

(p/λ, q) = c (p, q) = Q>C P

(−∇ · ui, q) = Q>P i

(P i)n = (−∇ · ui, ψn)

5.1.5 Differential Algebraic System of Equations

By inserting the expressions found in the element computation section into the varia-
tional formulation, we get a differential algebraic system of equations:
Find U ∈ C2

(
[0, T ] , IRN

)
and P ∈ C2

(
[0, T ] , IRL

)
such that

(
ρM 0

0 0

)

︸ ︷︷ ︸
M̃

(
Ü

P̈

)
+

(
A D

D> −C

)

︸ ︷︷ ︸
B̃

(
U
P

)
=

(
Lv (t)
Lq (t)

)

M U̇ (0) = U 1

M U (0) = U 0

C Ṗ (0) = P 1

C P (0) = P 0

Note that M̃ and B̃ are indefinite, as C is positive definite for λ <∞.
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If we would eliminate P from the system, we would obtain an equation similar to the
non-mixed one:

ρM Ü +
(
A +D C−1D>

)
︸ ︷︷ ︸

≈ B

U = D C−1Lq + Lv︸ ︷︷ ︸
≈ L

This system has similar properties as the non-mixed one, so we should avoid this.

The equations for the pressure parameter represent constraints rather than evolution
equations. As constraints, they are intrinsically implicit and a fully explicit timestep-
ping scheme seems to be out of reach. Thus we will solve the system with the second
order implicit timestepping schemes applied also for the non-mixed system. So, in each
timestep, a system with the matrix

(
ρM 0
0 0

)
+ α∆t2

(
A D

D> −C

)

has to be solved, where α is a constant that only depends on the chosen timestepping
scheme. This system has the same type as the system arising from the stationary problem

(
A D

D> −C

)(
U
P

)
=

(
Lv
Lp

)

For this type of system, we consider two algorithms:

Uzawa Algorithm in Conjugate Directions
For this algorithm, presented in [1] for C = 0, as for all Uzawa algorithms, U is eliminated
from the equation resulting in a system for P :

(
D>A−1D + C

)
P = D>A−1Lv − Lp

This system is symmetric and positive definite, but only implicitly given. Beyond that,
it is well conditioned. This can be seen heuristically by the fact that the two discrete
first order operators D and D> compensate the inverse of the discrete second order
operator A. Thus solving the system using conjugate gradients (CG) requires a number
of iterations bounded by a constant independent of N and λ. This behaviour was
observed in the experiments. In each iteration, the action of A−1 is required. This may
be accomplished through an inner CG iteration or any other convenient solver. Note
that there are efficient solvers for A, see e. g. [4]. Once P is known, U is calculated from

A U = Lv −D P
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Bramble-Pasciak Algorithm
In [2], Bramble and Pasciak suggest a transformation using a preconditioner W approx-

imating A−1:

(
W A W D

D>
(
W A− 1

)
C +D>W D

)(
U
P

)
=

(
W Lv

D>W Lv − Lp

)

The transformed system is symmetric positive definite in an inner product introduced
also in [2]. This allows the resulting system to be solved with classical iterative algorithms
like conjugate gradients in this inner product. The advantage is that no inner (exact)
solve is required. Only a preconditioner for A satisfying weak requirements has to be
provided.

5.2 Numerical Results

All numerical tests are carried out with γλ = 0, as this is allowed and has substantial
advantages. γµ is set to 3 for better comparability.

5.2.1 Static Tests

Setting ∂tu = 0, we obtain the static problem

−2µ ∇ · ε (u (x))−∇p (x) = f (x) x ∈ Ω

p (x) /λ = −∇ · u (x) x ∈ Ω

u (x) = g
D

(x) x ∈ ΓD

2µ ε (u (x)) · n+ p (x) n = g
N

(x) x ∈ ΓN

Applying the same discretization as for the time dependent case, we obtain the following
system of linear equations:

(
A D

D> −C

)(
U
P

)
=

(
Lv
Lp

)

We consider the same regular static problem as in section 4.1.2 with the same coars-
est triangulation shown in figure 4.1. This triangulation is refined uniformly for the
convergence study, i. e. each triangle is split into 4 similar triangles recursively.

For better comparability, we assess the performance of the method again by calculating
the L2 norm of the error of the displacement:

e (h) = ‖uh − u∗‖L2(Ω)

where uh is the finite element solution. In the optimal case, we can expect e(h) = O (h2).
The observed convergence is in fact robust and optimal for both the Bramble-Pasciak
and the Uzawa algorithm.
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For both algorithms, cpu time grows slightly stronger than N 1.5 and independent of
λ. This is shown in figure 5.1 for the Uzawa algorithm with CG inner solver. Clearly
this is an advantage over the non-mixed standard approach, where cpu time grows with
λ and almost like N 2, as can be seen in figure 5.2.
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Figure 5.1: Mesh behaviour of cpu time for static problem, Uzawa algorithm with CG inner solver.
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Figure 5.2: Mesh behaviour of cpu time for static problem, standard DGFEM with CG solver.
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5.2.2 Dynamic Tests

For the dynamic tests, we consider the benchmark problem from section 4.3.2 with the
same coarsest triangulation shown in figure 4.7, and use the same error measure.

The observed convergence is robust but suboptimal. It can be seen in figure 5.3 that
the convergence order with respect to h is only about 1.5.

102 103 104
10−2

10−1

100

# of degrees of freedom N

e(
h)

=|
|u

h−u
ex

ac
t|| L1

(0
,T

;L
2(

Ω
))

τ=−1, γµ=3, γλ=0

λ = 1
λ = 10
λ = 100
λ = 1000
λ = 10000
λ = 100000
O(h1.5)=O(N−0.75)

Figure 5.3: Mesh convergence of average L2 error for dynamic problem, Uzawa algorithm with direct
inner solver.
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Beside that, cpu time does not depend on λ asymptotically, but it grows like N 3. This
disappointing conclusion has to be drawn from figure 5.4. The reason is clear from a
heuristic point of view: While the matrix of the reduced system for the static problem

D>A−1D + C

is well conditioned because the order of operators compensate, this is not any more the
case for the reduced system for the dynamic problem:

α∆t2
(
α∆t2D>

(
M + α∆t2A

)−1
D + C

)

So the condition number of this reduced system is not independent of N any more.
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Figure 5.4: Mesh behaviour of cpu time for dynamic problem, Uzawa algorithm with direct inner solver.
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6 Conclusions

The symmetric variant of the non-mixed discontinuous scheme formulated in this thesis
has turned out to be locking free and converge optimally in all numerical tests carried
out. Computational costs are however growing with increasing value of λ.

The nonsymmetric variant showed a divergent behaviour which can be well explained
by the occurence of complex conjugate eigenvalues in the discrete spacial operator.

The mixed scheme formulated is locking free and has optimal convergence for the sta-
tionary problem. Furthermore, the computational costs do not depend on λ. In the time
dependent case however, convergence is still robust but suboptimal, and computational
costs are not robust in ∆t.

In order to achieve optimal efficiency, a ∆t-robust preconditioner for the matrix of the
reduced system for the dynamic problem is pending.
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A Details of Standard Approach

A.1 Componentwise Representation

General Ideas
As σ and ε are symmetric, they have q = d (d+ 1) /2 independent components which
we group into vectors in IRq:

σ, ε ∈ IRq

σ = E ε, E ∈ IRq×q

Note: Due to the uniqueness of the deformation energy 1/2ε
>E ε, E is again symmetric

and has q (q + 1) /2 independent components.

ε can now be obtained from u with the differential operator matrix D:

ε (u) = D u =
∑

j∈Id
C
j
∂ju

Two Dimensions

σ =
(
σ00 σ11 σ01

)>

ε =
(
ε00 ε11 2ε01

)>

E =




A0000 A0011 A0001

A0011 A1111 A1101

A0001 A1101 A0101


 =




λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ




D :=




∂0 0
0 ∂1

∂1 ∂0


 , C

0
=




1 0
0 0
0 1


 , C

1
=




0 0
0 1
1 0




Three Dimensions

σ =
(
σ00 σ11 σ22 σ12 σ20 σ01

)>

ε =
(
ε00 ε11 ε22 2ε12 2ε20 2ε01

)>
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E =




A0000 A0011 A0022 A0012 A0020 A0001

A0011 A1111 A1122 A1112 A1120 A1101

A0022 A1122 A2222 A2212 A2220 A2201

A0012 A1112 A2212 A1212 A1220 A1201

A0020 A1120 A2220 A1220 A2020 A2001

A0001 A1101 A2201 A1201 A2001 A0101




E =




λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




D :=




∂0 0 0
0 ∂1 0
0 0 ∂2

0 ∂2 ∂1

∂2 0 ∂0

∂1 ∂0 0




C
0

=




1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0



, C

1
=




0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0



, C

2
=




0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0




Consequences
For these choices of σ, ε and C

j
, we have:

σ
(
uej
)

: ε
(
vej′
)

= σ
(
uej
)>
ε
(
vej′
)

=
(
D vej′

)>
E D uej

= (∇v)>C>
j′
E C

j
∇u

where u and v are any scalar functions and ej is the canonic unit vector with
(
ej
)
j′

= δjj′.

We introduce the notation

Ejj′ := C>
j
E C

j′
j, j ′ ∈ Id

C (n) :=
∑

j∈Id
(n)j Cj
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Note that with the above definitions, we have

Ejj′ =
(
Ej′j

)>
(
Ejj′

)
ss′

= Ajsj′s′

C (n) ej = C
j
n ∀j ∈ Id

Modified Variational Formulation

B (u, v) :=
∑

l∈IL

(
D v,E D u

)
Kl

−
∑

(l,l′)∈FD

(
C (nll′)

>E D 〈u〉 , [v]
)

Γll′
+ τ

∑

(l,l′)∈FD

(
[u] , C (nll′)

>E D 〈v〉
)

Γll′

+ µ
∑

(l,l′)∈FD

γµ
hll′

(
[u] , [v]

)
Γll′

+ λ
∑

(l,l′)∈FD

γλ
hll′

(
[u · nll′ ] , [v · nll′]

)
Γll′

L (v) (t) :=
∑

l∈IL

(
f (t) , v

)
Kl

+
∑

(l,l′)∈GN

(
g
N

(t) , v
)

Γll′
+ τ

∑

(l,l′)∈GD

(
g
D

(t) , C (nll′)
>E D v

)
Γll′

+µ
∑

(l,l′)∈GD

γµ
hll′

(
g
D

(t) , v
)

Γll′
+ λ

∑

(l,l′)∈GD

γλ
hll′

(
g
D
· nll′, v · nll′

)
Γll′

Find u ∈ C2
(
[0, T ] ,Sd1

)
such that

ρ ∂2
t (u, v) +B (u, v) = L (v) (t) ∀v ∈ Sd1 , t ∈ [0, T ]

∂t(u, v) = (u1, v) ∀v ∈ Sd1 , t = 0

(u, v) = (u0, v) ∀v ∈ Sd1 , t = 0

A.2 Vectorial FE Basis

The (scalar) shape functions N are defined in terms of reference element shape functions
N̂ :

N l
i (x) := N̂i

(
F−1
Kl

(x)
)

For the enumeration of the vectorial shape functions, we introduce the following index
conversion formulae:

K (i, j) = di + j ∀ (i, j) ∈ Id+1 × Id
I (k) = (k − (k mod d)) /d ∀k ∈ Ir, r = d (d+ 1)

J (k) = k mod d ∀k ∈ Ir
K−1 (k) = (I (k) ,J (k))
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Like this, we can define the vectorial shape functions N and the global basis functions
ϕ:

N l
k := N l

I(k)eJ (k)

ϕ
n

∣∣∣
Kl

=
∑

k∈Ir

(
T
l

)
kn
N l
k

Sd1 = span
{
ϕ
n

}
n∈IN

, N = d (d+ 1)L

As we do not have to enforce continuity, the matrices T
l

are just permutation matrices
representing the bijection between the local index k and the global index n.

A.3 Element Computations

We break all expressions down to scalar shape functions but not to reference element
shape functions. To calculate the remaining integrals by quadrature is the safer and the
more efficient approach, as many costly and error-prone transformations can be avoided.
This specially holds for d = 3.

Mass Matrix

(u, v) = V >M U

M =
∑

l∈IL
T>
l
M

l
T
l

(
M

l

)
kk′

=

∫

Kl

N l
I(k) N

l
I(k′)dx δJ (k)J (k′)

Stiffness Matrix
The stiffness matrix is split into a volume contribution and an interfacial contribution:

B (u, v) = V >B U

B = Bvol +Bint

(
Bvol

)
nn′

= Bvol
(
ϕ
n′
, ϕ

n

)
(
Bint

)
nn′

= Bint
(
ϕ
n′
, ϕ

n

)

Bvol (u, v) :=
∑

l∈IL

(
D v,E D u

)
Kl
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Bint (u, v) := −
∑

(l,l′)∈FD

(
C (nll′)

>E D 〈u〉 , [v]
)

Γll′

+τ
∑

(l,l′)∈FD

(
[u] , C (nll′)

>E D 〈v〉
)

Γll′

+µ
∑

(l,l′)∈FD

γµ
hll′

(
[u] , [v]

)
Γll′

+λ
∑

(l,l′)∈FD

γλ
hll′

(
[u · nll′] , [v · nll′ ]

)
Γll′

Stiffness Matrix: Volume Contribution

Bvol =
∑

l∈IL
T>
l
Bvol

l
T
l

(
Bvol

l

)
kk′

=

∫

Kl

(
D N l

k

)>
E D N l

k′dx

=

∫

Kl

(
∇N l

I(k)

)>
C>J (k)

E CJ (k′)
∇N l

I(k′)dx

=

∫

Kl

(
∇N l

I(k)

)>
EJ (k)J (k′)∇N l

I(k′)dx

Stiffness Matrix: Interfacial Contribution
For the assembly of the interfacial contribution, we do not sum over the set of elements,
but over an extended set of element pairs (l, l′) ∈ F̃ ∪ F ∗:

F̃ := {(l, l′) : (l, l′) ∈ F or (l′, l) ∈ F}
F ∗ := {(l, l) : Kl ∈ T }
F̃ l :=

{
(m,m′) ∈ F̃ : m = l

}

Gl
D := {(m,m′) ∈ GD : m = l}

Gl
N := {(m,m′) ∈ GN : m = l}

Bint =
∑

(l,l′)∈F̃∪F ∗
T>
l
Bint

ll′
T
l′

For (l, l′) ∈ F̃ :

(
Bint

ll′

)
kk′

= b
(
l, l′, k, k′; l, l′, 1/2,

1/2,−1,−1
)
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We introduce b (. . .) in order not to rewrite the similar integrals three times:

b (l, l′, k, k′;m,m′, c1, c2, c3, c4) :=

c1

∫

Γll′
Nm
I(k) (nll′)

>EJ (k)J (k′)∇Nm′
I(k′)ds

+ c2 τ

∫

Γll′
Nm′
I(k′) (nll′)

>EJ (k′)J (k)∇Nm
I(k)ds

+ c3 δJ (k)J (k′)µ
γµ
hll′

∫

Γll′
Nm
I(k) N

m′
I(k′)ds

+ c4 (nll′)J (k) (nll′)J (k′) λ
γλ
hll′

∫

Γll′
Nm
I(k) N

m′
I(k′)ds

For (l, l) ∈ F ∗:

Bint

ll
=

∑

(m,m′)∈F̃ l
Binn

mm′
+

∑

(m,m′)∈GlD

Bbnd

mm′

where(
Binn

ll′

)
kk′

= b
(
l, l′k, k′; l, l,−1/2,

1/2, 1, 1
)

and (
Bbnd

ll′

)
kk′

= b (l, l′, k, k′; l, l,−1, 1, 1, 1)

Load Vector

L (v) (t) = V >L (t)

L (t) =
∑

l∈IL
T>
l
Ll (t)

(Ll (t))k =

∫

Kl

f> (t) eJ (k)N
l
I(k) dx

+
∑

(m,m′)∈GlN

∫

Γmm′
g>
N

(t) eJ (k)N
m
I(k) ds

+ τ
∑

(m,m′)∈GlD

∑

j∈Id

∫

Γmm′
g
D

(t)> ej (nmm′)
>EjJ (k)∇Nm

I(k)ds

+ µ
∑

(m,m′)∈GlD

γµ
hmm′

∫

Γmm′
g
D

(t)> eJ (k)N
m
I(k)ds

+λ
∑

(m,m′)∈GlD

γλ
hmm′

∫

Γmm′

(
g
D

(t)> nmm′
)
Nm
I(k)

(
n>mm′eJ (k)

)
ds
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Initial Conditions

(ui, v) = V >U i, i ∈ {0, 1}
U i =

∑

l∈IL
T>
l
U i,l

(
U i,l

)
k

=

∫

Kl

u>i eJ (k)N
l
I(k)dx
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B Details of Mixed Approach

The FE basis for the space S0 is

ψn|Kl =
(
Tl
)
n

:= δln

B.1 Element Computations

Stiffness Matrix

a (u, v) = V >A U

The bilinear form a (u, v) is equivalent to B (u, v) when setting λ = 0 and γλ = 0. So
the respective matrix A can be assembled the same way as B.

Divergence Matrix
The divergence matrix is split into a volume contribution and an interfacial contribution,
like the stiffness matrix:

d (p, v) = V >D P

D = Dvol +Dint

(
Dvol

)
nn′

= dvol(ψn′ , ϕn)
(
Dint

)
nn′

= dint(ψn′ , ϕn)

dvol (p, v) := −
∑

l∈IL
(p,∇ · v)Kl

dint (p, v) :=
∑

(l,l′)∈FD

(〈p〉 , [v] · nll′)Γll′

Divergence Matrix: Volume Contribution

Dvol =
∑

l∈IL
T>
l
Dvol
l T>l

(
Dvol
l

)
k

= −
∫

Kl

eJ (k) · ∇N l
I(k)dx
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Divergence Matrix: Interfacial Contribution
For the assembly of the interfacial contribution, we sum over extended sets of element
pairs defined in section 2.3.2.

Dint =
∑

(l,l′)∈F̃∪F ∗
T>
l
Dint
ll′ T

>
l′

For (l, l′) ∈ F̃ :

(
Dint
ll′
)
k

=
1

2

∫

Γll′
(nll′)J (k) N

l
I(k)ds

For (l, l) ∈ F ∗:

Dint
ll =

∑

(m,m′)∈F̃ l
Dinn

mm′
+

∑

(m,m′)∈GlD

Dbnd

mm′

where

(
Dinn
ll′
)
k

=
1

2

∫

Γll′
(nll′)J (k)N

l
I(k)ds

and

(
Dbnd
ll′
)
k

=

∫

Γll′
(nll′)J (k) N

l
I(k)ds

Compression Matrix

c (p, q) = Q>C P

C =
∑

l∈IL
T l Cl T

>
l

Cl =

∫

Kl

1

λ
dx =

|Kl|
λ

Note that the compression matrix is diagonal as the mass matrix.

Load Vector: Velocity Part

Lv (v) (t) = V >Lv (t)

The linear form Lv (v) is equivalent to L (v) when setting λ = 0 and γλ = 0. So the
velocity part of the load vector Lv can be assembled the same way as L.
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Load Vector: Pressure Parameter Part

Lq (q) (t) = Q>Lq (t)

Lq (t) =
∑

l∈IL
T lL

l
q (t)

Llq (t) =
∑

(m,m′)∈GlD

∫

Γmm′
g
D

(t) · nmm′ds

Initial Conditions
The initial conditions for u are the same as in the non-mixed formulation. Those for the
pressure parameter read:

(p/λ, q) = c (p, q) = Q>C P

(−∇ · ui, q) = Q>P i

P i =
∑

l∈IL
T lP

l
i

P l
i = −

∫

Kl

∇ · ui dx
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