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Abstract

The properties of the solution to the convectively filtered Burgers’ equa-
tion, a regularization of Burgers’ equation with the convective velocity
replaced by a nonlocal averaged velocity, are examined. It is found
that the limit of solutions, as the regularizing parameter α goes to zero,
does not satisfy an entropy inequality owing to the reversibility of the
equation and the absence of an L1-contraction estimate for the limit
of solutions. In an attempt to overcome the reversibility of the equa-
tion, a model with a filter depending on time is considered. The limit
of solutions turns out to be a weak solution of Burgers’ equation but
not the entropy solution either. Then, numerical experiments for the
1d shallow water equations are performed with methods using filtered
variables. The results indicate that filtering is not an appropriate tech-
nique to regularize this system of conservation laws.
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Chapter 1

Introduction

The Euler and the Navier-Stokes equations are known to describe funda-
mental laws governing fluid dynamics. Even though they have been derived
almost 200 years ago, they continue to pose theoretical and numerical chal-
lenges. One reason is the nonlinearity of these differential equations, which
causes small scale effects, such as shocks and turbulence. They render the
numerical solution of the equations extremely difficult, as one wishes on
one hand to have a stable solution and on the other hand to have a good
resolution of the small scale effects. It is hoped that shocks and turbulence
can be modeled properly by a single technique.

Different methods have been applied in computational fluid dynamics at-
tempting to capture the small scale structures, such as the Large Eddy simu-
lation (LES) [8] or the Reynolds Averaged Navier-Stokes equations (RANS)
[9]. Other approaches are the Lagrangian Averaged Navier-Stokes equations
(LANS-α) [17] and Leray turbulence modeling [5]. In these methods an aver-
aged convective velocity is used in the nonlinear term of the Navier-Stokes
equations.

A similar quadratic nonlinear term as in the Navier-Stokes equations can be
encountered in Burgers’ equation

ut +

(
u2

2

)
x
= 0, (x, t) ∈ R× (0, T), (1.1a)

u(x, 0) = u0(x), x ∈ R, (1.1b)

which is the simplest example of a nonlinear conservation law and often
serves as a model for more complicated equations. This equation has been
well studied and its solution is known to form shocks. Even for smooth
initial data, smooth solutions cease to exist after a finite period of time. For
this reason, the concept of weak solutions has been developed: Instead of re-
quiring Equation (1.1) to be satisfied pointwise, like a classical solution does,
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1. Introduction

one seeks for solutions u satisfying the differential equation in a weak/distri-
butional sense. That is, we require

−
∫ T

0

∫
R

uϕt +
u2

2
ϕx dx dt +

∫
R

u0(x)ϕ(x, 0) dx = 0, ∀ϕ ∈ C1
0(R× [0, T)).

Since weak solutions are not necessarily unique, additional admissibility
criteria have to be imposed to obtain uniqueness. This can be achieved by
restricting to weak solutions satisfying an entropy condition:

η(u)t + q(u)x ≤ 0, (1.2)

where η, the entropy, is a convex function and q is the entropy flux, which
satisfies q′(u) = uη′(u). The unique weak solution for which (1.2) holds is
called the entropy solution. The entropy solution to Burgers’ equation satisfies
inequality (1.2) for any convex function η. Moreover, it can be obtained as
the limit of solutions (uε)ε>0 of the viscous regularization

uε
t +

(
uε 2

2

)
x
= ε uε

xx,

as ε→ 0. Due to the dissipative term on the right-hand side of the equation,
the solution uε does not have discontinuities. In fact, it can be shown that it
is infinitely differentiable for all times t > 0 if the initial data u0 is in L∞(R),
[10].

Adding a viscous term is not the only way of regularizing Burgers’ equation.
Another well-known example of a regularized equation is the Korteweg de
Vries equation,

uε
t +

(
uε 2

2

)
x
= −ε uε

xxx.

It has been shown that solutions to this dispersive partial differential equa-
tion have the same regularity as the initial data [21], however, oscillations
arise as ε → 0 and the weak limit uε ⇀ u is not even a weak solution of
Burgers’ equation (1.1), [13, 14]. Another regularization, in fact the one we
are going to investigate in this thesis, is the convectively filtered Burgers’ (CFB)
equation

uα
t + uαuα

x = 0, (1.3a)
uα = gα ∗ uα, (1.3b)

where gα(x) = 1
α g( x

α ) and we assume g to be a nonnegative, symmetric and
non-increasing (with respect to the absolute value of the argument) func-
tion with

∫
g = 1. In contrast to the beforehand mentioned equations, this
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equation is not regularized through the addition of a higher order deriva-
tive term, but by replacing the velocity uα by the nonlocal averaged velocity
uα. Thanks to the convolution of uα with gα, uα gains additional regularity.
Thus the non-conservative product uux of a discontinuous function with a
measure, obtained when expanding the term (u2/2)x in Burgers’ equation,
is replaced by the product uαuα

x which is at least well defined. It is hoped
that, by analyzing the convectively filtered Burgers’ equation, more insight
can be gained into the more complicated model of the LANS-α equations,
as they obviously share the nonlocal velocity term. Imminent questions that
arise are:

• Is (1.3) locally and globally well posed?

• Does uα converge to a limit u as α→ 0, and is this limit a weak solution
of Burgers’ equation (1.1)?

• If the limit u exists and is a weak solution of Burgers’ equation, is it
the entropy solution of Burgers’ equation?

Recent results on the CFB equation

Global well-posedness of the convecitvely filtered Burgers’ equation (1.3) has
been shown for a wide class of inital data and filters g in [2]. In addition, the
authors Bhat and Fetecau compute explicit solutions of Riemann problems
and show that for Riemann problems with left state uL greater than the right
state uR, the CFB equation captures the behavior of the inviscid Burgers’
equation, whereas for Riemann problems with uL < uR the solutions of the
regularized equation converge to weak solutions with a nonphysical shock.
Convergence to a weak solution of Burgers’ equation has been proved for
filters g whose Fourier transform satisfies

ĝ(k) =
1

1 + ∑n
j=1 Cjk2j , n < ∞, Cj ≥ 0, Cn 6= 0, (1.4)

[20]. In the same paper, the authors conjecture convergence to the entropy
solution for any continuous initial data and give physical reasons why it
might be true. However, to my knowledge, there is no rigorous mathemati-
cal proof of this conjecture yet. Only for the particular case of the Helmholtz
filter, that is, (1.4) for n = 1 and C1 = 1, convergence to an entropy solution
has been proved under the assumption that the CFB equation is additionally
regularized by a diffusion term,

uα,ε
t + uα,εuα,ε

x = ε uα,ε
xx ,

and α = o(ε) [6].
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1. Introduction

For the particular case of the regularization by the Helmholtz filter, Bhat and
Fetecau [1] have found in addition that the CFB equation has a Hamiltonian
structure.

The idea of using a filtered velocity is not new, it is Leray who proposed it
for the first time in the context of the Navier-Stokes equations as early as
1934 [15]. By replacing the nonlinear term u · ∇u by u · ∇u in the equations,
he intended to prove the existence of a solution to the modified equation
and then to show that it converges to a weak solution of the Navier-Stokes
equations when letting α→ 0.

Outline of the thesis

In Chapter 2 we state some general properties of the solution of the convec-
tively filtered Burgers’ equation and explain the difficulties we encountered
when attempting to prove convergence to the entropy solution. Since the
time reversibility of the equation excludes the existence of an entropy in-
equality for the limit u of solutions uα as α → 0, we investigate the CFB
equation with a filter depending on time in Chapter 3. We have found that
the limit function u is a weak solution of Burgers’ equation but not neces-
sarily the entropy solution either. In Chapter 4 we perform some numerical
experiments for the shallow water equations using filtered variables. Unfor-
tunately, we have discovered that most of the tested methods are not suitable
for the shallow water equations.

The questions whether the sequence of solutions (uα)α>0 converges to the
entropy solution for continuous initial data and whether the limit u is a
weak solution of Burgers’ equation if arbitrary filters g are used, remain
open.

Acknowledgements

I would like to thank Professor Nils Henrik Risebro very much for super-
vising my thesis, for lots of helpful discussions and advice. Thanks also to
the people at the SAM and in particular to Paolo and Alberto for sharing
their office with me and discussing various problems. And to Esther, Jan,
Amanda, Andrea and Evy for psychological support;-).
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Chapter 2

Properties of the convectively filtered
Burgers’ equation

The aim of this chapter is to establish properties of the solutions to the
convectively filtered Burgers’ equation (CFB)

uα
t + uαuα

x = 0, (x, T) ∈ R, (2.1a)
uα(x) = gα ∗ uα(x), x ∈ R, (2.1b)

uα(x, 0) = u0(x), x ∈ R, (2.1c)

where u0 ∈ BV(R) ∩ L∞(R) is the initial data, gα(x) = 1
α g( x

α ), and g is
a nonnegative, symmetric and non-increasing (with respect to the absolute
value of the argument) function with

∫
g = 1. In the following we will call

a function g with the latter four properties a filter.

2.1 Well-Posedness and Convergence

Local existence and uniqueness of a solution to (2.1) has been shown in [2]
using the Picard theorem on a Banach space (e.g. Theorem 4.1 in [16]), under
the assumptions that the initial data u0 ∈ L∞(R) can be written as the sum
of a bounded Lipschitz continuous function and an L1-function, and that
the filter g satisfies g ∈ W2,1(R) and g′′ ∈ L∞(R). If u0 ∈ BV(R), the same
proof can be slightly modified to show local existence and uniqueness for
g ∈W1,1(R), which includes in particular the Helmholtz filter

g(x) =
1
2

e−|x|. (2.2)
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2. Properties of the convectively filtered Burgers’ equation

If u0 ∈ C1
b(R), we can even show local existence and uniqueness for (2.1)

with g the box filter

g(x) =
1
2

χ[−1,1](x). (2.3)

In the same paper [2], global existence of the solution is proved, by showing
that the characteristics of the equation,

d
dt

η(X, t) = uα(η(X, t), t), (2.4)

η(X, 0) = X,

do not cross. This implies that the map η is a diffeomorphism for all times t
and that if the initial condition is smooth, the solution of the equation stays
smooth for all times. Moreover, since

d
dt

uα(η(X, t), t) = uα
t (η(X, t), t) + uα

x(η(X, t), t)
d
dt

η(X, t)

= uα
t (η(X, t), t) + uα

x(η(X, t), t)uα(η(X, t), t)
= 0,

by (2.4) and (2.1a), the solution can be expressed as a reparametrization of
the initial data at any time t:

u(x, t) = u0(η−1(x, t)). (2.5)

In particular, this implies that the L∞-norm of the solution uα is preserved.
The same holds for the total variation: We let ϕ ∈ C1

0(R) with |ϕ| ≤ 1. Using
substitution in the integrals we compute∫

R
uα(x, t)ϕx(x) dx =

∫
R

uα(η(X, t), t)ϕx(η(X, t))ηX(X, t) dX

=
∫

R
u0(X)

d
dX

ϕ(η(X, t))
(
ηX(X, t)

)−1
(ηX(X, t)) dX

=
∫

R
u0(X)

d
dX

ϕ(η(X, t)) dX

=
∫

R
u0(X)

d
dX

ϕ̃(X) dX

where we have denoted ϕ̃ := ϕ ◦ η. Note that |ϕ̃(X)| ≤ 1 and ϕ̃ ∈ C1
0(R)

since ϕ ∈ C1(R) and η is a diffeomorphism. Therefore, we can take the
supremum over all ϕ ∈ C1

0(R) with |ϕ| ≤ 1 in the above equation to obtain
the claim by the definition of the total variation. Obviously, the maximum

6



2.1. Well-Posedness and Convergence

norm and the total variation are bounded independently of α by the max-
imum and the total variation of u0. Easily, we find that the same bounds
hold for the filtered velocity uα, noting that

|uα(x, t)| =
∣∣∣∫

R
gα(y)uα(x− y, t) dy

∣∣∣
≤
∫

R
gα(y)|uα(x− y, t)| dy

≤ ‖uα(·, t)‖L∞(R)

∫
R

gα(y) dy

= ‖uα(·, t)‖L∞(R),

where we used that g is normalized and nonnegative, and, applying Fubini’s
Theorem,

TV(uα(·, t)) = sup
ϕ∈C1

0(R),|ϕ|≤1

∫
uα(x, t)ϕx(x) dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫ ∫
g(y)uα(x− αy, t) dy ϕx(x) dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫
g(y)

∫
uα(x− αy, t)ϕx(x) dx dy

≤
∫

g(y) sup
ϕ∈C1

0(R),|ϕ|≤1

∫
uα(x− αy, t)ϕx(x) dx dy

=
∫

g(y)TV(uα(·, t)) dy

= TV(uα(·, t)).

Making use of the bounds on the L∞-norm and the total variation, we can
show in addition that uα and uα are uniformly bounded in C([0, T); L1(R)).

To prove this, we first recall that for functions in W1,1(R), the total variation
is equal to the L1-norm of the derivative. Specifically, this implies for the
total variation of the filtered velocity

TV(uα(·, t)) =
∫

R
|uα

x(x, t)| dx.

7



2. Properties of the convectively filtered Burgers’ equation

Now we let k > 0, use that uα satisfies (2.1a) and integrate by parts

∫
R
|uα(x, t + k)− uα(x, t)| dx = sup

ϕ∈C1
0(R),|ϕ|≤1

∫
ϕ(x)(uα(x, t + k)− uα(x, t)) dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

∫ t+k

t
ϕ(x)uα

s (x, s) ds dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

∫ t+k

t
−ϕ(x)uα(x, s)uα

x(x, s) ds dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫ t+k

t

∫
R
(ϕ(x)uα(x, s))xuα(x, s) dx ds

≤
∫ t+k

t
sup

ϕ∈C1
0(R),|ϕ|≤1

∫
R
(ϕ(x)uα(x, s))xuα(x, s) dx ds

(2.6)

We apply the product rule to the term (ϕ(x)uα(x, s))x, split the integral into
the two summands which we consequently obtain, and estimate each of
them separately:

∫
R

ϕ(x)uα
x(x, s)uα(x, s) dx ≤ ‖ϕ‖L∞‖uα(·, s)‖L∞

∫
R
|uα

x(x, s)| dx

≤ ‖u0‖L∞ TV(u0), ∀ϕ ∈ C1
0(R), |ϕ| ≤ 1,

where we used the L∞- and the total variation bounds on uα and uα. For the
second term, we note that

sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

ϕx(x)uα(x, s)uα(x, s) dx = TV(uα(·, s)uα(·, s)),

by definition. To see that this term is bounded, we need the equivalent
definition of the total variation of a function

TV(u) := lim
ε→0

1
|ε|

∫
|u(x + ε)− u(x)| dx

8



2.1. Well-Posedness and Convergence

Thus, (omitting the time dependence of uα and uα).∫
|uα(x + ε)uα(x + ε)− uα(x)uα(x)| dx

≤
∫
|uα(x + ε)uα(x + ε)− uα(x)uα(x + ε)| dx

+
∫
|uα(x)uα(x + ε)− uα(x)uα(x)| dx

≤ ‖uα‖L∞

∫
|uα(x + ε)− uα(x)| dx

+ ‖uα‖L∞

∫
|uα(x + ε)− uα(x)| dx

≤ ‖u0‖L∞

∫
|uα(x + ε)− uα(x)| dx

+ ‖u0‖L∞

∫
|uα(x + ε)− uα(x)| dx.

We divide the last term by |ε| and take the limit ε→ 0 to obtain

TV(uα(·, s)uα(·, s)) ≤ ‖u0‖L∞
(
TV(uα(·, s)) + TV(uα(·, s))

)
≤ 2‖u0‖L∞ TV(u0)

Now we can bound (2.6) by∫
R
|uα(x, t + k)− uα(x, t)| dx ≤ 3 ‖u0‖L∞ TV(u0) k,

which is the uniform bound we desired. The same bound follows for the
filtered velocity by observing that

‖uα(·, t)− uα(·, t + k)‖L1 ≤ ‖uα(·, t)− uα(·, t + k)‖L1 .

In summary, we have,

Lemma 2.1 [1] If u0 ∈ BV(R)∩ L∞(R), the solution uα of (2.1) and the averaged
quantity uα satisfy

‖uα‖L∞ , ‖uα‖L∞ ≤ ‖u0‖L∞ , (2.7a)

TV(uα
x(·, t))), TV(uα

x(·, t))) ≤ TV(u0), (2.7b)

‖uα(·, t)− uα(·, t + k)‖L1 ≤ 3‖u0‖L∞ TV(u0) k, k > 0,

‖uα(·, t)− uα(·, t + k)‖L1 ≤ 3‖u0‖L∞ TV(u0) k, k > 0. (2.7c)

Lemma 2.1 together with Theorem A.8 in [12] (an application of Kolmogorov’s
Theorem) imply convergence of a subsequence uαn of solutions of (2.1) and
of filtered velocities uαn to a limit function u in C([0, T); L1

loc(R)) Hence we
have

9



2. Properties of the convectively filtered Burgers’ equation

Proposition 2.2 [1] Suppose we solve (2.1) with initial data u0 ∈ BV(R) ∩
L∞(R). Then, as α → 0, passing to a subsequence if necessary, there exists a
function u(x, t) with bounded total variation, such that

uα, uα → u in C([0, T); L1
loc(R))

That the limits of uα and uα agree can be shown without effort, by noting
that the convergence in L1

loc(R) implies convergence almost everywhere: For
Ω bounded, we compute

lim
α→0

∫
Ω
|uα(x, t)− uα(x, t)| dx = lim

α→0

∫
Ω

∣∣∣uα(x, t)−
∫

g(y)uα(x− αy, t) dy
∣∣∣ dx

≤ lim
α→0

∫
g(y)

∫
Ω
|uα(x, t)− uα(x− αy, t)| dx dy.

We have used that g is nonnegative and normalized for the inequality. Now
since Ω is bounded and |uα(x, t)− uα(x − αy, t)| ≤ 2‖u0‖L∞ , we can apply
Lebesgue’s Dominated Convergence Theorem and pass the limit under the
integral signs.

Convergence to weak solutions of Burgers’ equation

For filters whose Fourier transform can be written as

ĝ(k) =
1

1 + ∑n
j=1 Cjk2j , n < ∞, Cj ≥ 0, Cn 6= 0, (2.8)

it has been shown in addition that the limit function u in Proposition 2.2 is a
weak solution of Burgers’ equation [20]. Proving convergence to the entropy
solution however seems to be quite involved. Reasons for this are given by
the observations made in the following sections.

2.2 L1-stability of the CFB equation with respect to
initial data

Using some algebra on Equation (2.1a), we can prove the following L1-
stability estimate with respect to the initial data:

Proposition 2.3 Let u0 ∈ W1,∞(R) ∩ BV(R) and v0 ∈ L∞(R) ∩ BV(R). De-
note M1 = max{‖u0‖∞, ‖v0‖∞}, M2 = ‖(u0)′‖∞ and M3 = ‖(u0)′‖L1(R). Let
u, v be the solutions to (2.1a), (2.1b) with initial condition u0, v0 respectively and
g ∈W1,1(R) or the box filter (2.3). Then we have for t ∈ (0, T) and a fixed α > 0,

‖u(·, t)− v(·, t)‖L1(R) ≤ et (k1
M1
α +M2 et k2

M3
α )‖u0 − v0‖L1(R) (2.9)

where k1 and k2 are constants depending on the filter g.

10



2.2. L1-stability of the CFB equation with respect to initial data

Proof Subtracting (2.1a) for v from the same equation for u and adding and
subtracting the term vux, we obtain

(u− v)t + (u− v)ux + v(ux − vx) = 0.

We multiply the equation by sgn(u− v), bring the second and third term to
the right-hand side, and integrate over the spatial domain,∫

|u− v|t dx = −
∫

sgn(u− v)(u− v)ux dx−
∫

v|u− v|x dx.

Integrating the second term on the right-hand side by parts, we have

d
dt

∫
|u− v| dx = −

∫
sgn(u− v)(u− v)ux dx +

∫
vx|u− v| dx

≤ ‖ux‖∞

∫
|u− v| dx + ‖vx‖∞

∫
|u− v| dx

= ‖ux‖∞‖u− v‖L1(R) + ‖vx‖∞ ‖u− v‖L1(R)

≤ (‖ux‖∞ + ‖vx‖∞) ‖u− v‖L1(R) (2.10)

We estimate ‖vx‖∞ and ‖ux‖∞: We start with the first one,

vx(x, t) =
∫

g′α(x− y)v(y, t) dy.

If g ∈W1,1(R), this is well defined and we can estimate it by

|vx(x, t)| ≤ 1
α
‖g′‖L1(R)‖v(·, t)‖∞

≤ 1
α
‖g′‖L1(R)‖v0‖∞

≤ M1

α
‖g′‖L1(R)

≤ k1 M1

α
(2.11)

where we used that (2.1) preserves the maximum in the second inequality.
If g is the box filter (2.3), its derivative does not exist. Since v is a function
in BV(R) ∩ L∞(R), we can still estimate ‖vx‖∞ as follows,

|vx(x, t)| =
∣∣∣∣ d
dx

(
1

2α

∫ x+α

x−α
v(y, t) dy

)∣∣∣∣
=

∣∣∣∣ 1
2α

(v((x + α)−, t)− v((x− α)+, t))
∣∣∣∣

≤ 1
α
‖v(·, t)‖∞

≤ ‖v
0‖∞

α

≤ M1

α

11



2. Properties of the convectively filtered Burgers’ equation

which is (2.11) for k1 = 1. Again, we have made use of the fact that (2.1)
preserves the maximum. We continue to estimate ‖ux‖∞. Firstly, we use the
reparametrization of u in terms of the initial data (2.5) to estimate ux:

d
dx

u(x, t) =
d

dx
(u0(η−1(x, t))) = (u0)′(η−1(x, t))

d
dx

η−1(x, t)

= (u0)′(η−1(x, t))
1

ηX(η−1(x, t), t)

and therefore

‖ux‖∞ ≤ ‖(u0)′‖∞ sup
X∈R

∣∣∣∣ 1
ηX(X, t)

∣∣∣∣ (2.12)

An estimate on |ηX(X, t)| is derived in [2] for the purpose of proving global
existence of the solution of (2.1). Specifically, in that paper, the ordinary
differential equation (2.4) describing the evolution of the characteristics is
rewritten as

d
dt

η(X, t) =
∫

R
gα(η(X, t)− η(Y, t))u0(Y)ηY(Y, t)dY. (2.13)

Then they take the derivative with respect to X,

d
dt

ηX(X, t) = ηX(X, t)
∫

R
g′α(η(X, t)− η(Y, t))u0(Y)ηY(Y, t)dY,

divide the equation by ηX(X, t) and integrate in t to obtain,

|ηX(X, t)| = exp
(∫ t

0

∫
R

gα(η(X, s)− η(Y, s))(u0)′(Y) dY ds
)

We can bound this from above as follows:∣∣∣∣∫ t

0

∫
R

gα(η(X, s)− η(Y, s))(u0)′(Y) dY ds
∣∣∣∣

≤ t‖gα‖∞‖(u0)′‖L1(R) ≤ t
k2

α
‖(u0)′‖L1(R),

and therefore,

|ηX(X, t)| ≥ exp
(
−t

k2

α
M3

)
.

Combining this estimate with (2.12), we obtain

‖ux‖∞ ≤ ‖(u0)′‖∞ exp
(

t
k2

α
M3

)
. (2.14)

Having estimated ‖ux‖∞ and ‖vx‖∞ by (2.11) and (2.14), we can apply Gron-
wall’s inequality in (2.10) to obtain the result. �
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2.2. L1-stability of the CFB equation with respect to initial data

Obviously, the estimate of Theorem 2.3 is of no use in the limit α → 0. One
rather wishes to have an estimate of the form

‖u(·, t)− v(·, t)‖L1(R) ≤ C ‖u0 − v0‖L1(R), (2.15)

where C is a constant not depending on α. Unfortunately, this is not possible,
as the following counterexample shows. For K ≥ 3, we let

v0(x) =


0, x < 0,
1, x ∈ [0, K],
0, x > K,

(2.16)

and

u0,δ(x) =


0, x < 0,

0.5, x ∈ [0, δ),
1, x ∈ [δ, K],
0, x > K,

(2.17)

for some δ > 0. We have ‖v0 − u0,δ‖L1(R) = δ/2 and thus u0,δ → v0 as δ→ 0

v0

0 K δ K0

u0,δ

Figure 2.1: Initial data v0, (2.16) and u0,δ, (2.17).

in L1(R). We calculate the solutions to (2.1a), (2.1b) augmented with (2.16),
(2.17) respectively. Since we know that the characteristics of the equation
do not cross, we only need to find the speeds of the discontinuities, then
we know that the solutions are constant inbetween. We will denote the
discontinuities by s1 and s2 (from the left to the right) for the first problem
and by s1, s2 and s3 for the second problem. In the first problem, we have

d
dt

s1(t) =
∫ (s2−s1)(t)

0
gα(y) dy, s1(0) = 0,

d
dt

s2(t) =
∫ 0

(s1−s2)(t)
gα(y) dy, s2(0) = K,

and therefore

d
dt
(s2 − s1)(t) = 0, (s2 − s1)(0) = K.

13



2. Properties of the convectively filtered Burgers’ equation

Thus (s2 − s1)(t) = K for all t and the discontinuities satisfy actually

d
dt

si(t) =
∫ K/α

0
g(y) dy := G(α), i = 1, 2. (2.18)

Hence the solution of (2.1a), (2.1b) and (2.16) is

vα(x, t) =


0, x < G(α)t,
1, G(α)t < x < G(α)t + K,
0, x > G(α)t + K,

(2.19)

(see Figure 2.2 for a plot of the characteristics of vα).

Figure 2.2: Characteristics for vα, α = 0.05, K = 4.

In the limit α→ 0, this becomes

v(x, t) =


0, x < t/2,
1, t/2 < x < t/2 + K,
0, x > t/2 + K,

For the problem with initial data (2.17), the solution cannot be calculated so
easily. We rather provide some estimates which suffice our purposes. We

14



2.2. L1-stability of the CFB equation with respect to initial data

assume from now on δ < 1 and α < 1. For the discontinuities, we have,

d
dt

s1(t) =
1
2

∫ (s2−s1)(t)

0
gα(y) dy +

∫ (s3−s1)(t)

(s2−s1)(t)
gα(y) dy, s1(0) = 0,

d
dt

s2(t) =
1
2

∫ 0

(s1−s2)(t)
gα(y) dy +

∫ (s3−s2)(t)

0
gα(y) dy, s2(0) = δ,

d
dt

s3(t) =
1
2

∫ (s2−s3)(t)

(s1−s3)(t)
gα(y) dy +

∫ 0

(s2−s3)(t)
gα(y) dy, s3(0) = K,

The distances between the discontinuities, we denote them by dl := s2 − s1,
dr := s3 − s2 and dm = s3 − s1, satisfy

d
dt

dl(t) =
∫ (s3−s2)(t)

0
gα(y) dy−

∫ (s3−s1)(t)

(s2−s1)(t)
gα(y) dy ≥ 0, (2.20a)

d
dt

dr(t) =
1
2

∫ (s2−s3)(t)

(s3−s1)(t)
gα(y) dy− 1

2

∫ 0

(s1−s2)(t)
gα(y) dy ≥ −1

4
, (2.20b)

d
dt

dm(t) =
1
2

∫ (s2−s3)(t)

(s1−s3)(t)
gα(y) dy +

∫ 0

(s2−s3)(t)
gα(y) dy

− 1
2

∫ (s2−s1)(t)

0
gα(y) dy +

∫ (s3−s1)(t)

(s2−s1)(t)
gα(y) dy ≥ 0, (2.20c)

(we have used that g is a non-increasing function for the inequalities). So for
t < 4(K − δ) the discontinuities will not meet, independently of α . For dl
we have in addition d

dt dl ≤ 1/2. We make this a bit more precise (omitting
the variable t):

d
dt

dl =
∫ s2−s1

0
gα(y) dy−

∫ s3−s1

s3−s2

gα(y) dy

=
∫ (s2−s1)/α

0
g(y) dy−

∫ (s3−s1)/α

(s3−s2)/α
g(y) dy

=
∫ dl/α

0
g(y) dy−

∫ (dr+dl)/α

dr/α
g(y) dy

≥
∫ dl/α

0
g(y) dy−

∫ (K−δ−t/4+dl)/α

(K−δ−t/4)/α
g(y) dy, (2.21)

where we have used the bound (2.20b) in the last inequality. We assume
now that t ≤ 4/3(K− 2). This implies that dl ≤ K− δ− t/4 and that we can
estimate (2.21) further by

d
dt

dl ≥
∫ dl/α

0
g(y) dy−

∫ (K−t/4−δ+dl)/α

dl/α
g(y) dy,

≥
∫ dl/α

0
g(y) dy−

∫ ∞

dl/α
g(y) dy,

≥
∫ δ/α

0
g(y) dy−

∫ ∞

δ/α
g(y) dy, (2.22)
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2. Properties of the convectively filtered Burgers’ equation

Now we fix δ > 0 and choose α(δ) so small that the last expression in (2.22)
becomes ≥ 1/8 for all α ≤ α(δ). This is possible, since g is non-increasing
and integrable. Then dl satisfies

dl(t) ≥ δ + t/8 ≥ t/8, ∀ α ≤ α(δ). (2.23)

We have chosen t small enough such that the discontinuities do not interact.
Thus, the solution uα of the convectively filtered Burgers’ equation with
initial data (2.17) has for all 0 < α < 1 and t ≤ 4/3(K− 2) the form

uα,δ(x, t) =


0, x < sα

1(t),
0.5, sα

1(t) < x < sα
2(t),

1, sα
2(t) < x < sα

3(t),
0, x > sα

3(t),

where sα
1(t) + 2δ ≤ sα

2(t) + δ ≤ sα
3(t) uniformly in α (see Figure 2.3 for a plot

of the characteristics of uα,δ). So the limit function uδ as α→ 0, has the form

uδ(x, t) =


0, x < s0

1(t),
0.5, s0

1(t) < x < s0
2(t),

1, s0
2(t) < x < s0

3(t),
0, x > s0

3(t),

for some s0
1(t) < s0

2(t) < s0
3(t). In addition, we know from (2.23) that s0

2(t)−
s0

1(t) > t/8. In this region, uδ takes the value 0.5 whereas v is either 0 or 1.

Consequently, their difference in the L1-norm satisfies

‖uδ(·, t)− v(·, t)‖L1(R) ≥
t

16
, (2.24)

while

‖u0,δ − v0‖L1(R) ≤
δ

2
. (2.25)

The estimates (2.24), (2.25) are valid for arbitrary small δ > 0. This shows
that an estimate of the form (2.15) cannot be achieved for the solutions to
the convectively filtered Burgers’ equation, since it would imply the same
bound for the limit functions obtained when letting α→ 0. This cannot hold
owing to (2.24) and (2.25).

An open question remains, whether there exists a bound on the difference
of the solutions in L1 of the form

‖uα(·, t)− vα(·, t)‖L1(R) ≤ C ‖u0 − v0‖L∞(R), (2.26)

where C is a constant not depending on α. This could be helpful in proving
convergence to the entropy solution for initial data in C0(R).
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2.3. Reversibility

Figure 2.3: Characteristics for uα,δ, α = 0.05, δ = 0.4, K = 4.

2.3 Reversibility

We will show now that the limit u of solutions uα to the convectively filtered
Burgers’ equation (2.1) is not necessarily an entropy solution to the inviscid
Burgers’ equation due to the time reversibility of the regularized equation.

Proposition 2.4 The convectively filtered Burgers’ equation (2.1) does not imply
an entropy inequality

η(u)t + q(u)x ≤ 0,

where η is a convex function and q with q′(u) = uη′(u) its corresponding entropy
flux, for the limit u of solutions uα to (2.1).

Proof We will prove the proposition by a contradiction argument.

Let uα denote the solution of the CFB equation (2.1) and vα(x, t) := uα(−x,−t),
(x, t) ∈ R× (0, T) its reflection in time and space. Observing that

vα(x, t) =
∫

R
uα(−x− y,−t)gα(y) dy = uα(−x,−t)

17



2. Properties of the convectively filtered Burgers’ equation

and

d
dt

vα(x, t) = −uα
t (−x,−t),

d
dx

vα(x, t) = −uα
x(−x,−t),

we obtain that vα satisfies the equation

−vα
t (x, t)− vα(x, t)vα

x(x, t) = 0 (x, t) ∈ R× (0, T)

which is the same differential equation as the one uα satisfies (except for
the initial data which is reflected). If we assume that the limit function u
obtained when letting α→ 0, is a weak solution to Burgers’ equation,

ut +

(
u2

2

)
x
= 0, (x, t) ∈ R× (0, T), (2.27a)

u(x, 0) = u0(x), x ∈ R, (2.27b)

then the limit v of the sequence of functions vα(x, t) = uα(−x,−t) obtained
as α → 0 will also be a weak solution of Burgers’ equation with reflected
initial data since it satisfies the same equation. If we furthermore assume
that (2.1a) implies that its solution uα satisfies an entropy inequality, then,
since vα is a solution of the same equation, this should imply that vα satisfies
the same entropy inequality. This is a contradiction, which can easily be seen
by the following argument:

We consider the viscous approximation to Burgers’ equation,

uε
t +

(
uε 2

2

)
x
= ε uε

xx, (x, t) ∈ R× (0, T),

uε(x, 0) = u0(x), x ∈ R.

We know that the solution uε of this equation converges, as ε → 0, to a
weak solution u of Burgers’ equation which satisfies in addition the entropy
inequality

η(u)t + q(u)x ≤ 0,

for any convex function η and corresponding entropy flux q with q′(u) =
uη′(u).

If we again consider the reversion of uε in time and space, vε(x, t) = uε(−x,−t),
we notice that vε is a solution of the equation

vε
t +

(
vε 2

2

)
x
= −ε vε

xx, (x, t) ∈ R× (0, T),

vε(x, 0) = u0(−x), x ∈ R.
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2.4. Filtering for conservation laws with general fluxes

This implies that the limit function v obtained from (vε)ε>0 as ε → 0, if
it exists, satisfies the opposite entropy inequality than the limit u of the
functions uε, namely

η(v)t + q(v)x ≥ 0,

where η denotes the entropy and q the entropy flux. We know that the
entropy inequality satisfied by the entropy solution can be strict, as it is the
case for example if shocks occur in the solution. Then, the limit functions u
and v satisfy different inequalities which contradicts the previous reasoning.
Thus, the convectively filtered Burgers’ equation does not imply an entropy
inequality and the limit uα → u is not necessarily an entropy solution. �

An explicit example of an initial data for (2.1) for which the solution uα does
not converge to the entropy solution of Burgers’ equation has been given
in the paper of Bhat and Fetecau [2]. They calculate the solution to (2.1)
for a Riemann Problem with uL < uR and show that in the limit α → 0, it
converges to a weak solution with a non-entropic shock wave.

Nevertheless it has been conjectured, and numerical experiments show some
evidence it might be true ([1] and my own experiments), that for continuous
initial data, uα converges to the entropy solution of Burgers’ equation, at
least if we use the Helmholtz filter (2.2) for g. However, I find it very difficult
to show this and have been unable to do it so far. The lack of a uniform L1-
stability in α with respect to the initial data seems to make it additionally
hard, since this makes it almost impossible to find an independently of α
convergent numerical scheme.

2.4 Filtering for conservation laws with general fluxes

In spite of the absence of a proof that the solution of (2.1) converges for
continuous initial data to the entropy solution of Burgers’ equation as α→ 0,
it has at least been shown that it converges to a weak solution if filters
which have a Fourier transform given by (2.8) are employed [20], as we
have mentioned in the first section of this chapter. Nevertheless, since the
convectively filtered Burgers’ equation has mainly been analyzed with the
aim of applying averaging of variables to systems of conservation laws such
as the Euler equations, it might be interesting to examine firstly the case of
a general scalar conservation law

ut + f (u)x = 0, (2.28)

with a C2(R)-flux function f . There are at least two possible ways how one
could mimic the regularization in (2.1) for the more general conservation
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2. Properties of the convectively filtered Burgers’ equation

law (2.28). One one hand, we can filter the derivative of the flux function

uα
t + f ′(uα)uα

x = 0, (2.29a)

f ′(uα(x)) =
(

gα ∗ f ′(uα)
)
(x), (2.29b)

uα(x, 0) = u0(x), (2.29c)

on the other hand, we can filter uα in the flux function:

uα
t + f ′(uα)uα

x = 0, (2.30a)

uα(x) =
(

gα ∗ uα
)
(x), (2.30b)

uα(x, 0) = u0(x), (2.30c)

Local and global existence can be shown using the method of characteristics,
in an analogous manner as it is done for the convectively filtered Burgers’
equation. Hence we can write the solution uα at time t as a reparametrization
of the initial data u0 which implies that the maximum and the total varia-
tion of the solution are conserved (see Section 2.1). Likewise, we can show
Lipschitz continuity in time for uα. Applying then Kolmogorov’s Theorem
(e.g. Theorem A.8 in [12] for the particular case we are considering here), we
obtain convergence of a subsequence uαn of solutions to (2.29), (2.30) respec-
tively, to a function u of bounded variation in C([0, T); L1

loc(R)). However,
u is not necessarily a weak solution of inviscid Burgers’ equation, as the
following counterexample illustrates. Specifically, we consider a Riemann
problem with initial data

u0(x) =
{

uL, x < 0,
uR, x > 0,

(2.31)

We compute the solution to this problem at time t using the characteristics,
similarly to how it is done in [2]. For this purpose, we define

h−(x) =
∫ x

−∞
g(y) dy, x < 0; h+(x) = −

∫ ∞

x
g(y) dy, x > 0. (2.32)

We start by calculating the solution of the modification (2.29a), (2.29b) with
the Riemann initial data (2.31). Then the characteristics η satisfy the ordinary
differential equation (compare with (2.13))

d
dt

η(X, t) =
f ′(uL)

α

∫ 0

−∞
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uR)

α

∫ ∞

0
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY (2.33)
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2.4. Filtering for conservation laws with general fluxes

For X < 0, this becomes

d
dt

η(X, t) =
f ′(uL)

α

∫ X

−∞
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uL)

α

∫ 0

X
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uR)

α

∫ ∞

0
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

= − f ′(uL)

[
h+
(

η(X, t)− η(Y, t)
α

)]X

−∞

− f ′(uL)

[
h−
(

η(X, t)− η(Y, t)
α

)]0

X

− f ′(uR)

[
h−
(

η(X, t)− η(Y, t)
α

)]∞

0

Since η(Y, t) → ±∞ as Y → ±∞ and h± decay at infinity, we can simplify
the last expression to obtain

d
dt

η(X, t) = f ′(uL) + ( f ′(uR)− f ′(uL))h−
(

η(X, t)− η(0, t)
α

)
. (2.34)

If X = 0, (2.33) becomes

d
dt

η(0, t) =
f ′(uL)

α

∫ 0

−∞
g
(

η(0, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uR)

α

∫ ∞

0
g
(

η(0, t)− η(Y, t)
α

)
ηY(Y, t) dY

= − f ′(uL)

[
h+
(

η(0, t)− η(Y, t)
α

)]0

−∞

− f ′(uR)

[
h−
(

η(0, t)− η(Y, t)
α

)]∞

0
.

Again, using η(Y, t) → ±∞ as Y → ±∞ and the decay of h± at infinity, we
get

d
dt

η(0, t) =
1
2
( f ′(uL) + f ′(uR)). (2.35)

In the case X > 0, we have
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2. Properties of the convectively filtered Burgers’ equation

d
dt

η(X, t) =
f ′(uL)

α

∫ 0

−∞
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uR)

α

∫ X

0
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

+
f ′(uR)

α

∫ ∞

X
g
(

η(X, t)− η(Y, t)
α

)
ηY(Y, t) dY

= − f ′(uL)

[
h+
(

η(X, t)− η(Y, t)
α

)]0

−∞

− f ′(uR)

[
h+
(

η(X, t)− η(Y, t)
α

)]X

0

− f ′(uR)

[
h−
(

η(X, t)− η(Y, t)
α

)]∞

X

yielding

d
dt

η(X, t) = f ′(uR) + ( f ′(uR)− f ′(uL))h+
(

η(X, t)− η(0, t)
α

)
. (2.36)

Solving the ordinary differential equation (2.35), we obtain

η(0, t) =
1
2
( f ′(uL) + f ′(uR))t. (2.37)

Now we can plug in the value of η(0, t) in (2.34) and (2.36) and solve the
differential equations. But knowing that the characteristics do not cross
and that uα is constant along the characteristics, this is not necessary to
find uα. If x < ( f ′(uL) + f ′(uR))t/2, it lies on a characteristic emerging
from some X < 0 and therefore uα(x, t) = uL, on the other hand, if x >
( f ′(uL) + f ′(uR))t/2, it lies on a characteristic emerging from some X > 0
and therefore uα(x, t) = uR. So the solution to (2.29a), (2.29b) with the
Riemann initial data (2.31) is given by

uα(x, t) =
{

uL, x < ( f ′(uL) + f ′(uR))t/2,
uR, x > ( f ′(uL) + f ′(uR))t/2,

(2.38)

We notice that this solution is independent of the parameter α and the limit
α → 0 is trivial. But (2.38) is not a weak solution of Burgers’ equation be-
cause the speed of the discontinuity does not satisfy the Rankine-Hugoniot
condition, except if

f ′(uL) + f ′(uR)

2
=

f (uL)− f (uR)

uL − uR
,
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2.4. Filtering for conservation laws with general fluxes

which is in general not the case.

In order to solve (2.30a), (2.30b) with the Riemann initial data (2.31), we
proceed similarly (in fact only a small modification in the calculations in [2]
is needed), to obtain the solution

uα(x, t) =
{

uL, x < f ′((uL + uR)/2)t,
uR, x > f ′((uL + uR)/2)t. (2.39)

We notice as before that the speed of the discontinuity does not satisfy the
Rankine-Hugoniot condition in general.

So we see that not even in the case of a scalar conservation law, arbitrarily
applying averaging of variables leads to a satisfactory result. Thus in the
case of a system of conservation laws, it might be even more difficult to find
an appropriate regularization of the equation by means of filtering variables.
Numerical experiments maintainig this conclusion are conducted in Chapter
4.
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Chapter 3

A time dependent filter

We have seen in Chapter 2 that the convectively filtered Burgers’ equation is
reversible in time which excludes the existence of an entropy inequality for
the limit u of solutions uα to (2.1). For this reason, we will investigate the
CFB equation with a filter depending on time in this chapter. Specifically,
we will analyze the following equations which are not reversible in time:

uα
t + uαuα

x = 0, (x, t) ∈ R× (0, T), (3.1a)
uα + α(uα

t − uα
xx) = uα, (x, t) ∈ R× (0, T), (3.1b)

uα(x, 0) = u0,α(x), x ∈ R, (3.1c)

u0,α(x) = (ωα ∗ u0)(x), x ∈ R, (3.1d)

where we choose u0 ∈ L∞(R) ∩ BV(R) and

ωα(x) =
1

αK ω

(
x

αK

)
, x ∈ R, (3.2)

for a symmetric, nonnegative ω ∈ C1
0(R) with

∫
R

ω = 1 and K ∈ N. This
causes the initial data u0,α to be not only in L∞(R)∩ BV(R) but also in C1

b(R),
of which we will make use in the local existence proof for the equations.
Nevertheless, it seems that solutions to (3.1a), (3.1b) also exist for less regular
initial data, for example, one can construct an explicit solution to (3.1a),
(3.1b) for Riemann initial data using the method of characteristics. If we
want u0,α to converge faster to u0 as α→ 0, we can choose a larger exponent
K.

In order to see that (3.1) is indeed not reversible in time, we set vα(x, t) :=
uα(−x,−t) and vα(x, t) := uα(−x,−t). Then vα and vα satisfy the differential
equations

vα
t + vαvα

x = 0,
vα − α(vα

t + vα
xx) = vα,
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3. A time dependent filter

which differ from (3.1a), (3.1b) in the second equation.

The aim of this chapter is to show well-posedness of (3.1), find estimates
on the solution and investigate whether the solution uα converges to the
entropy solution of the inviscid Burgers’ equation as α → 0. We choose the
particular time dependent regularization (3.1b) since it has the advantage
that we have an explicit expression for the Green function associated to the
differential operator A := (I + α(∂t − ∂2

xx)), that is, the solution uα of the
second equation (3.1b) can be written in terms of uα as

uα(x, t) =
∫ t

0

∫
R

e−
t−s

α
1√

4π(t− s)
e
−(x−y)2

4(t−s)
uα(y, s)

α
dy ds. (3.3)

We denote the associated Green function

Φα(x, t) =
1
α

e−
t
α

1√
4πt

e−
x2
4t . (3.4)

We see that Φα is nonnegative, symmetric in the variable x and decreasing
with respect to the absolute values of the arguments x and t. For differential
operators with higher order derivatives in x or t, it is more difficult to find (if
possible) the associated Green function and it does not necessarily have the
latter mentioned nice properties. Furthermore, the same filter was found to
be more suitable to regularize the phase mobility in a model for two-phase
flow in porous media than the Helmholtz filter

gα(x) =
1

2α
e−|x|/α,

[7].

The Green function Φα

As already mentioned, Φα is nonnegative, symmetric with respect to the
spatial variable and non-increasing with respect to t and |x|. We also note
that Φα has a singularity at (x, t) = (0, 0). Nevertheless, we have bounds on
the L1-norm of Φα and Φα,x:

Lemma 3.1 For all 0 < τ ≤ T, the time dependent filter (3.4) satisfies the bounds

‖Φα‖L1(R×(0,τ)) = 1− e−
τ
α , (3.5)

and ∥∥Φα,x
∥∥

L1(R×(0,τ)) ≤
3√
πα

. (3.6)
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3.1. Existence and Uniqueness

Proof The estimates follow by simple calculations. We start with (3.5):

‖Φα‖L1(R×(0,τ)) =
∫ τ

0

∫
R

1
α

e−
t
α

1√
4πt

e−
x2
4t dx dt

=
∫ τ

0

1
α

e−
t
α

1√
4πt

∫
R

e−
x2
4t dx dt

=
∫ τ

0

1
α

e−
t
α

1√
π

∫
R

e−v2
dv dt

=
∫ τ

0

1
α

e−
t
α dt

= −e−
t
α

∣∣∣t=τ

t=0

= 1− e−
τ
α .

For the second bound, we compute∥∥Φα,x
∥∥

L1(R×(0,τ)) =
∫ τ

0

∫
R

1
α

e−
t
α

1√
4πt

∣∣∣∣ ∂

∂x
e
−x2

4t

∣∣∣∣ dx dt

=
∫ τ

0

∫
R

1
α

e−
t
α

1√
4πt

∣∣∣∣ x
2t

∣∣∣∣e−x2
4t dx dt

=
∫ τ

0

∫ ∞

0

2
α

e−
t
α

1√
4πt

x
2t

e
−x2

4t dx dt

=
∫ τ

0

1
α

e−
t
α

1√
πt

∫ ∞

0

x
2t

e
−x2

4t dx dt

=
∫ τ

0

1
α

e−
t
α

1√
πt
−e

−x2
4t

∣∣∣∣∞
0

dt

=
∫ τ

0

1
α

e−
t
α

1√
πt

dt

=
∫ τ/α

0

1√
παs

e−s ds

≤ 1√
πα

{∫ 1

0

1√
s

ds +
∫ ∞

1
e−s ds

}
≤ 3√

πα
. �

3.1 Existence and Uniqueness

3.1.1 Local existence and uniqueness

We proceed to showing local existence and uniqueness of the solution to
(3.1). In order to simplify the notation we will omit explicitely writing the
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3. A time dependent filter

dependence of the solution of (3.1) on α in this paragraph. Similarly, we will
write u0 instead of u0,α to denote the regularized initial data. To show local
existence and uniqueness, we will proceed as in [2] with some modifications.

Characteristic equations

Firstly, we recall the characteristics equations for (3.1). These are, denoting
the characteristics by η, similarly to Chapter 2,

d
dt

η(X, t) = u(η(X, t), t), (X, t) ∈ R× (0, T), (3.7a)

η(X, 0) = X, X ∈ R. (3.7b)

Then formally

d
dt

u(η(X, t), t) = ut(η(X, t), t) + ux(η(X, t), t)
d
dt

η(X, t) = 0 (3.8)

and we can therefore rewrite the solution at time t as a reparametrization of
the initial data,

u(η(X, t), t) = u0(X). (3.9)

We use the definition of u to rewrite the first equation in (3.7) in the form

d
dt

η(X, t) =
∫ t

0

∫
R

Φα(η(X, t)− y, t− s) u(y, s) dy ds. (3.10)

Assuming that η(X, t) is a diffeomorphism, we change variables y = η(Y, s)
to obtain

d
dt

η(X, t) =
∫ t

0

∫
R

Φα(η(X, t)− η(Y, s), t− s) u(η(Y, s), s) ηY(Y, s) dY ds

=
∫ t

0

∫
R

Φα(η(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds, (3.11)

where we have used (3.9). We differentiate (3.11) with respect to X and get

d
dt

ηX(X, t) = ηX(X, t)
∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds

(3.12)

Using integration by parts in the variable Y, this equation can also be ex-
pressed in the form

d
dt

ηX(X, t) = ηX(X, t)
∫ t

0

∫
R

Φα(η(X, t)− η(Y, s), t− s) (u0)′(Y) dY ds

(3.13)
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Well-posedness in B

Now we substitute

f (X, t) = ηX(X, t)− 1. (3.14)

Then we can rewrite the characteristic map as

η(X, t) = X +
∫ X

−∞
f (Z, t) dZ. (3.15)

Moreover, f (X, t) solves

d f
dt

(X, t) =
∫ t

0

∫
R

Φα,x

(
X +

∫ X

−∞
f (Z, t) dZ−Y−

∫ Y

−∞
f (Z, s) dZ, t− s

)
· u0(Y) (1 + f (Y, s)) dY ds · (1 + f (X, t)) (3.16)

with initial condition

f (X, 0) = 0. (3.17)

We want to show that (3.16) is locally well posed in a suitable Banach space.
To be precise, we take [0, δ), δ > 0, to be a small time interval and we define
the Banach space B to be the completion of the normed vector space of
functions f : R× [0, δ)→ R such that ‖ f ‖B < ∞ where ‖ · ‖B is defined by

‖ f ‖B = sup
t∈[0,δ)

‖ f (t)‖L∞(R) + sup
X∈R,t∈[0,δ)

∣∣∣∣∫ X

−∞
f (Z, t)dZ

∣∣∣∣. (3.18)

We fix a parameter γ ∈ (0, 1) and define U ∈ B to be the open set given
by all f ∈ B for which ‖ f ‖B < 1− γ. We define the functional F( f ) by the
right-hand side of the equation in (3.16):

F( f ) =
∫ t

0

∫
R

Φα,x

(
X +

∫ X

−∞
f (Z, t)dZ−Y−

∫ Y

−∞
f (Z, s)dZ, t− s

)
· u0(Y) (1 + f (Y, s)) dY ds · (1 + f (X, t)) (3.19)

Proposition 3.2 There exists ε > 0 and a unique C1-integral curve f : [0, ε) →
U, t 7→ f (t) satisfying the initial-value problem

d f
dt

= F( f (t)), f (·, 0) = 0 (3.20)
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3. A time dependent filter

Proof If we can show that F maps U to B and that F is Lipschitz on U with
respect to the B-norm, i.e. that there exists c > 0 such that for all f , g ∈ U

‖F( f )− F(g)‖B ≤ c ‖ f − g‖B

then we can apply the Picard theorem on a Banach space (see e.g. Theorem
4.1 in [16]) to conclude the existence of a unique solution to (3.20) on a short
time interval.
If we can show the Lipschitz continuity of F, the fact that F : U → B follows
since

‖F( f )‖B = ‖F( f )− F(0)‖B + ‖F(0)‖B ≤ c ‖ f ‖B + ‖F(0)‖B (3.21)

and

‖F(0)(t)‖∞ =

∥∥∥∥∫ t

0

∫
R

Φα,x(X−Y, t− s) u0(Y) dY ds
∥∥∥∥

∞

≤
∥∥∥∥∫ t

0

∫
R
|Φα,x(X−Y, t− s)| dY ds

∥∥∥∥
∞
‖u0‖∞

≤ ‖Φα,x‖L1(R×(0,T))‖u0‖∞,

∣∣∣∣∫ X

−∞
F(0)(t)(Z)dZ

∣∣∣∣ = ∣∣∣∣∫ X

−∞

∫ t

0

∫
R

Φα,x(Z−Y, t− s) u0(Y) dY ds dZ
∣∣∣∣

≤
∫ X

−∞

∫ t

0

∫
R
|Φα,x(Y, t− s)| |u0(Z−Y)| dY ds dZ

=
∫ t

0

∫
R
|Φα,x(Y, t− s)|

∫ X

−∞
|u0(Z−Y)| dZ dY ds

≤ ‖u0‖L1(R)‖Φα,x‖L1(R×(0,T))

where we have made use of the Tonelli Theorem in the second last step. Note
that both of the above estimates are independent of the time t and hence, by
(3.6), ‖F(0)‖B ≤ C. Therefore the right-hand side in (3.21) is finite.

Proof of the Lipschitz continuity:
Let f , g ∈ U. We denote

η(X, t) = X +
∫ X

−∞
f (Z, t) dZ (3.22)

and

ξ(X, t) = X +
∫ X

−∞
g(Z, t) dZ (3.23)
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which is well defined since f , g ∈ B. We start by estimating supt∈[0,δ) ‖F( f )(t)−
F(g)(t)‖∞. We rewrite the difference F( f )− F(g) as

F( f )− F(g) =

( f (X, t)− g(X, t))
∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1+ f (Y, s)) dY ds

+ (1 + g(X, t))
[∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1 + f (Y, s)) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) (1 + g(Y, s)) dY ds
]

. (3.24)

The first term on the right-hand side of (3.24) can be estimated as follows∥∥∥∥( f (X, t)− g(X, t))
∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1+ f (Y, s)) dY ds
∥∥∥∥

∞

≤ ‖ f (t)− g(t)‖∞

∥∥∥∥∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1+ f (Y, s)) dY ds
∥∥∥∥

∞
.

Since f ∈ B, we have ‖ f (t)‖∞ < 1− γ for t ∈ [0, δ) and therefore it holds
1 + f (Z, t) > γ > 0 almost everywhere. This implies by (3.22) that η(·, t)
is a monotone increasing differentiable function with range R, so in fact a
diffeomorphism of R for every fixed t small enough. Hence we have∥∥∥∥∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1 + f (Y, s)) dY ds
∥∥∥∥

∞

=

∥∥∥∥∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds
∥∥∥∥

∞

=

∥∥∥∥∫ t

0

∫
R

Φα,x(η(X, t)− y, t− s) u0(η−1(y, s)) dy ds
∥∥∥∥

∞

≤ ‖Φα,x‖L1(R×(0,T))‖u0‖∞

where we changed variables y = η(Y, s) in the second step. ‖Φα,x‖L1(R×(0,T))
is bounded by (3.6), so the first term in (3.24) is bounded:∥∥∥∥( f (X, t)− g(X, t))

∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1+ f (Y, s)) dY ds
∥∥∥∥

∞

≤ ‖ f (t)− g(t)‖∞‖Φα,x‖L1(R×(0,T))‖u0‖∞

The terms ‖Φα,x‖L1(R×(0,T)) and ‖u0‖∞ are independent of t, so we can take
the supremum over all t ∈ [0, δ) to obtain:

sup
t∈[0,δ)

∥∥∥∥( f (X, t)− g(X, t))
∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1+ f (Y, s)) dY ds
∥∥∥∥

∞

≤ ‖ f − g‖B‖Φα,x‖L1(R×(0,T))‖u0‖∞. (3.25)
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Let us pass to the second term on the right-hand side of (3.24).∥∥∥∥(1 + g(X, t))
[∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1 + f (Y, s)) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) (1 + g(Y, s)) dY ds
]∥∥∥∥

∞

≤ ‖1 + g(t)‖∞

∥∥∥∥∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) (1 + f (Y, s)) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) (1 + g(Y, s)) dY ds
∥∥∥∥

∞
.

The factor ‖1 + g(t)‖∞ can be bounded by 2 independently of t ∈ [0, δ). The
second factor we rewrite, using (3.13)∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) ξY(Y, s) dY ds

=
∫ t

0

∫
R
{Φα(η(X, t)− η(Y, s), t− s)

−Φα(ξ(X, t)− ξ(Y, s), t− s)} (u0)′(Y) dY ds

=
∫ t

0

∫
R
{Φα(η(X, t)− η(Y, s), t− s)

−Φα(ξ(X, t)− η(Y, s), t− s)} (u0)′(Y) dY ds

+
∫ t

0

∫
R

Φα(ξ(X, t)− η(Y, s), t− s) (u0)′(Y) dY ds

−
∫ t

0

∫
R

Φα(ξ(X, t)− ξ(Y, s), t− s) (u0)′(Y) dY ds (3.26)

We estimate the first term on the right-hand side of (3.26):∥∥∥∥∫ t

0

∫
R
{Φα(η(X, t)− η(Y, s), t− s)−Φα(ξ(X, t)− η(Y, s), t− s)} (u0)′(Y) dY ds

∥∥∥∥
∞

=

∥∥∥∥∫ t

0

∫
R
{Φα(η(X, t)− y, t− s)−Φα(ξ(X, t)− y, t− s)}

· (u0)′(η−1(y, s))(ηY(η
−1(y, s), s))−1 dy ds

∥∥∥∥
∞

=

∥∥∥∥∫ t

0

∫
R
{Φα(η(X, t)− y, t− s)−Φα(ξ(X, t)− y, t− s)}

· (u0)′(η−1(y, s))(1 + f (η−1(y, s), s))−1 dy ds
∥∥∥∥

∞

≤ ‖(u
0)′‖∞

γ

∫ t

0

∫
R

∣∣Φα(η(X, t)− y, t− s)−Φα(ξ(X, t)− y, t− s)
∣∣ dy ds
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≤ ‖(u
0)′‖∞

γ

∫ t

0
TV(Φα(·, s)) ds |η(X, t)− ξ(X, t)|

=
‖(u0)′‖∞

γ

∫ t

0

∫
R
|Φα,x(y, s) |dy ds

∣∣∣∣∫ X

−∞
( f (Z, t)− g(Z, t)) dZ

∣∣∣∣
≤ ‖(u

0)′‖∞

γ
‖Φα,x‖L1(R×(0,T))‖ f − g‖B

where we have used that 1+ f (Z, s) > γ for s ∈ [0, δ); that TV(v) =
∫
|vx|dx

for functions v ∈ W1,1(R), and the definitions of η, ξ in (3.22) and (3.23)
respectively. The last expression is bounded since u0 ∈ C1

b(R) and Φα,x ∈
L1(R× (0, T)) by (3.6). Furthermore, ‖(u0)′‖∞ and ‖Φα,x‖L1(R×(0,T)) are con-
stants not depending on t.

In order to estimate the second and third term on the right-hand side of
(3.26), we integrate by parts in Y again and substitute y = η(Y, s) and z =
ξ(Y, s) to obtain

∣∣∣∣∫ t

0

∫
R

Φα(ξ(X, t)− η(Y, s), t− s) (u0)′(Y) dY ds

−
∫ t

0

∫
R

Φα(ξ(X, t)− ξ(Y, s), t− s) (u0)′(Y) dY ds
∣∣∣∣

=

∣∣∣∣∫ t

0

∫
R

Φα,x(ξ(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) ξY(Y, s) dY ds
∣∣∣∣

=

∣∣∣∣∫ t

0

∫
R

Φα,x(ξ(X, t)− y, t− s) u0(η−1(y, s), s) dy ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− z, t− s) u0(ξ−1(z, s), s) dz ds
∣∣∣∣

=

∣∣∣∣∫ t

0

∫
R

Φα,x(ξ(X, t)− y, t− s) (u0(η−1(y, s), s)− u0(ξ−1(y, s), s)) dy ds
∣∣∣∣

≤ ‖Φα,x‖L1(R×(0,T))‖(u0)′‖∞ sup
t∈[0,δ)

‖η−1(t)− ξ−1(t)‖∞

We rewrite η−1(x, t)− ξ−1(x, t) as in [2]:

η−1(x, t)− ξ−1(x, t) = −
∫ η−1(x,t)

−∞
f (z, t) dz +

∫ ξ−1(x,t)

−∞
g(z, t) dz

= −
∫ η−1(x,t)

−∞
f (z, t) dz +

∫ η−1(x,t)

−∞
g(z, t) dz
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−
∫ η−1(x,t)

−∞
g(z, t) dz +

∫ ξ−1(x,t)

−∞
g(z, t) dz

= −
∫ η−1(x,t)

−∞
( f (z, t)− g(z, t)) dz +

∫ ξ−1(x,t)

η−1(x,t)
g(z, t) dz.

We take absolute values and obtain∣∣η−1(x, t)− ξ−1(x, t)
∣∣ ≤ ∣∣∣∣∫ η−1(x,t)

−∞
( f (z, t)− g(z, t)) dz

∣∣∣∣
+
∣∣η−1(x, t)− ξ−1(x, t)

∣∣ ‖g(t)‖∞.

Now we subtract the second term on the right-hand side of the above equa-
tion(

1− ‖g(t)‖∞
)∣∣η−1(x, t)− ξ−1(x, t)

∣∣ ≤ ∣∣∣∣∫ η−1(x,t)

−∞
( f (z, t)− g(z, t)) dz

∣∣∣∣.
We take the supremum over all x ∈ R and t ∈ [0, δ), use that ‖g(t)‖∞ < 1−γ
for t ∈ [0, δ) and that η is a diffeomorphism, so

sup
t∈[0,δ)

‖η−1(t)− ξ−1(t)‖∞ ≤
1
γ
‖ f − g‖B. (3.27)

Thus we can finally estimate (3.26) by∣∣∣∣∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s) u0(Y) ηY(Y, s) dY ds

−
∫ t

0

∫
R

Φα,x(ξ(X, t)− ξ(Y, s), t− s) u0(Y) ξY(Y, s) dY ds
∣∣∣∣ ≤ C1‖ f − g‖B

(3.28)

with

C1 = 2
‖(u0)′‖∞

γ
‖Φα,x‖L1(R×(0,T))

Combining (3.25) and (3.28),

‖F( f )(t)− F(g)(t)‖∞ ≤ C2‖ f − g‖B

with

C2 =

(
4
γ
‖(u0)′‖∞ + ‖u0‖∞

)
‖Φα,x‖L1(R×(0,T)).

C2 is independent of time and therefore we can take the supremum over all
t ∈ [0, δ) to obtain

sup
t∈[0,δ)

‖F( f )(t)− F(g)(t)‖∞ ≤ C2‖ f − g‖B. (3.29)
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3.1. Existence and Uniqueness

Next we estimate

sup
X∈R

∣∣∣∣∫ X

−∞
(F( f )(Z, t)− F(g)(Z, t)) dZ

∣∣∣∣.
Observe that for h ∈ U, where we denote β(X, t) := X +

∫ X
−∞ h(Z, t) dZ, it

holds

F(h)(X, t) =
d

dX

∫ t

0

∫
R

Φα

(
β(X, t)− y, t− s

)
u0(β−1(y, s)) dy ds

=
d

dX

∫ t

0

∫
R

Φα

(
β(X, t)− β(Y, t), t− s

)
u0(β−1(β(Y, t), s))βY(Y, t) dY ds

=
d

dX

∫ t

0

∫
R

Φα

(∫ X

Y
(1 + h(Z, t)) dZ, t− s

)
u0(β−1(β(Y, t), s))(1 + h(Y, t)) dY ds.

Again, h ∈ U implies 1 + h > γ > 0 and therefore
∫ X

Y (1 + h(Z, t)) dZ is
infinite when X → ±∞. Moreover, Φα vanishes at ±∞ and u0 is bounded in
L∞, thus we can apply the fundamental theorem of calculus to get

∫ X

−∞
F(h)(Z, t) dZ

=
∫ t

0

∫
R

Φα

(∫ X

Y
(1+ h(Z, t)) dZ, t− s

)
u0(β−1(β(Y, t), s))(1+ h(Y, t)) dY ds

=
∫ t

0

∫
R

Φα

(
β(X, t)− β(Y, s), t− s

)
u0(Y) βY(Y, s) dY ds.

This implies

∫ X

−∞
(F( f )(Z, t)− F(g)(Z, t)) dZ

=
∫ t

0

∫
R

Φα

(
η(X, t)− η(Y, s), t− s

)
u0(Y) ηY(Y, s) dY ds

−
∫ t

0

∫
R

Φα

(
ξ(X, t)− ξ(Y, s), t− s

)
u0(Y) ξY(Y, s) dY ds. (3.30)

Equation (3.30) looks like the left-hand side of (3.26) with Φα replaced by
Φα,x. So estimating it follows along similar lines as when estimating (3.26)
except that we do not need to integrate by parts. We rewrite (3.30) in the
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3. A time dependent filter

following way∫ X

−∞
(F( f )(Z, t)− F(g)(Z, t)) dZ

=
∫ t

0

∫
R
{Φα

(
η(X, t)− y, t− s

)
−Φα

(
ξ(X, t)− y, t− s

)
} u0(η−1(y, s)) dy ds

+
∫ t

0

∫
R

Φα

(
ξ(X, t)− y, t− s

)
u0(η−1(y, s)) dy ds

−
∫ t

0

∫
R

Φα

(
ξ(X, t)− y, t− s

)
u0(ξ−1(y, s)) dy ds

The first term on the right-hand side can be estimated as follows:∣∣∣∣∫ t

0

∫
R
{Φα

(
η(X, t)− y, t− s

)
−Φα

(
ξ(X, t)− y, t− s

)
} u0(η−1(y, s)) dy ds

∣∣∣∣
≤ ‖u0‖∞

∫ t

0

∫
R

∣∣Φα

(
η(X, t)− y, t− s

)
−Φα

(
ξ(X, t)− y, t− s

)∣∣ dy ds

≤ ‖u0‖∞

∫ t

0
TV(Φα(·, s)) ds |η(X, t)− ξ(X, t)|

≤ ‖u0‖∞‖Φα,x‖L1(R×(0,T))

∣∣∣∣∫ X

−∞
( f (Z, t)− g(Z, t) dZ

∣∣∣∣
≤ ‖u0‖∞‖Φα,x‖L1(R×(0,T))‖ f − g‖B.

For the second and the third term we have:∣∣∣∣∫ t

0

∫
R

Φα

(
ξ(X, t)− y, t− s

)
(u0(η−1(y, s))− u0(ξ−1(y, s))) dy ds

∣∣∣∣
≤ ‖Φα‖L1(R×(0,T)) ‖(u0)′‖∞‖η−1 − ξ−1‖∞.

Employing (3.27), this translates to∣∣∣∣∫ t

0

∫
R

Φα

(
ξ(X, t)− y, t− s

)
(u0(η−1(y, s))− u0(ξ−1(y, s))) dy ds

∣∣∣∣
≤ ‖Φα‖L1(R×(0,T))

‖(u0)′‖∞

γ
‖ f − g‖B.

Again, ‖Φα‖L1(R×(0,T)) and ‖(u0)′‖∞ are independent of time. Hence, we
have

sup
X∈R,t∈[0,δ)

∣∣∣∣∫ X

−∞
(F( f )(Z, t)− F(g)(Z, t)) dZ

∣∣∣∣≤ C3‖ f − g‖B, (3.31)

where

C3 =
‖Φα‖L1(R×(0,T))

γ
‖(u0)′‖∞ + ‖Φα,x‖L1(R×(0,T))‖u0‖∞

Now we choose ε < δ positive so small that the solution of (3.20) stays in U
for t ∈ [0, ε). �
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3.1. Existence and Uniqueness

3.1.2 Global existence

Having shown local well-posedness of (3.1), we continue to show global
existence of the solution. This will imply that we can indeed express the
solution at any time t as a reparametrization of the initial data (3.9) and
furthermore, that if the initial data is smooth, the same will hold for the
solution at any time t.

Proposition 3.3 The solution to (3.1) exists for arbitrary large times 0 ≤ t < ∞.

Proof We will basically repeat the proof in [2] with the standard filter re-
placed by the time dependent filter (3.4).

We show that neither the characteristics (3.7) cross in finite time, nor that
there exists (X, t) where ηX(X, t) = ∞ (which would imply that there is a
region without characteristics). In other words, we prove that the map η has
a global inverse. This can be done by showing that ηX(X, t) is bounded away
from zero and infinity. Since ηX(X, 0) = 1 initially, we have that ηX(X, t) ≥ 0
for some time interval [0, τ). We assume by contradiction that at time τ the
characteristics either cross for the first time, i.e. there is X ∈ R such that
ηX(X, τ) = 0, or that ηX(X, t) = ∞. We consider once more Equation (3.12)
and divide it by ηX(X, t):

1
ηX(X, t)

d
dt

ηX(X, t) =
∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s)u0,α(Y)ηY(Y, s) dY ds,

We integrate from t = 0 to t = T1 < τ to obtain

log |ηX(X, T1)| =
∫ T1

0

∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s)u0,α(Y)ηY(Y, s) dY ds dt

and hence

|ηX(X, T1)| = exp
(∫ T1

0

∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s)u0,α(Y)ηY(Y, s) dY ds dt
)

We estimate the integral in the exponential on the right-hand side:∣∣∣∣∫ t

0

∫
R

Φα,x(η(X, t)− η(Y, s), t− s)u0,α(Y)ηY(Y, s) dY ds
∣∣∣∣

≤ ‖u0,α‖∞

∫ t

0

∫
R

∣∣Φα,x(η(X, t)− η(Y, s), t− s)
∣∣ηY(Y, s) dY ds

≤ ‖u0,α‖∞

∫ t

0

∫
R

∣∣Φα,x(η(X, t)− y), t− s)
∣∣ dy ds

≤ ‖u0,α‖∞
∥∥Φα,x

∥∥
L1(R×(0,T)).
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3. A time dependent filter

The change of variable y = η(Y, s) is justified, since η(Y, t) is invertible in Y
for t < τ by assumption. ‖Φα,x‖L1(R×(0,T)) is finite by (3.6). Since also

‖u0,α‖Lp(R) ≤ ‖u0‖Lp(R), ∀ 1 ≤ p ≤ ∞, (3.32)

which follows from standard properties of the convolution [4], we finally
obtain

exp
(
−‖u0‖∞

C T1√
α

)
≤
∣∣ηX(X, T1)

∣∣ ≤ exp
(
‖u0‖∞

C T1√
α

)

for all T1 < τ and hence by continuity also for t = τ which is a contradiction
to our assumption. �

Remark 3.4 We have not made use of the differentiability of u0,α in the proof of
Proposition 3.3. The only condition on u0,α which we needed is the boundedness
in L∞. Thus if local existence could be shown for initial data u0,α only satisfying
u0,α ∈ BV(R) ∩ L∞(R), global existence would already follow by Proposition 3.3.

3.2 Convergence to a weak solution of inviscid Burgers’
equation

3.2.1 Preliminary estimates

We have shown in the previous section that the solution of (3.1) can be
written as

uα(x, t) = u0,α(η−1(x, t))

This implies together with (3.32) that the maximum of uα is bounded by the
maximum of u0 for all times and all α, i.e.

‖uα‖L∞(R×(0,T)) ≤ ‖u0‖L∞(R). (3.33)

Moreover, the reparametrization of the solution uα in terms of the initial
data implies that the total variation is preserved (the proof is similar to the
one done in Section 2.1 for filters not depending on time). So,

TV(uα(·, t)) = TV(u0,α)
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

The total variation of u0,α is bounded by the total variation of u0 for any α:

TV(u0,α) = sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

u0,α ϕx dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

∫
R

u0(x− y)ωα(y) dy ϕx(x) dx

= sup
ϕ∈C1

0(R),|ϕ|≤1

∫
R

∫
R

u0(x− y) ϕx(x) dx ωα(y) dy

≤
∫

R

(
sup

ϕ∈C1
0(R),|ϕ|≤1

∫
R

u0(x− y) ϕx(x) dx
)

ωα(y) dy

≤ TV(u0) (3.34)

where the last inequality follows since
∫

ωα = 1. Thus, we have

TV(uα(·, t)) = TV(u0,α) ≤ TV(u0). (3.35)

Thanks to the bound on the L1-norm of Φα, (3.5), we can also estimate the
L∞-norm of uα in terms of uα, using (3.33),

‖uα(·, t)‖L∞(R) =

∥∥∥∥∫ t

0

∫
R

Φα(y, s) uα(· − y, t− s) dy ds
∥∥∥∥

L∞

≤
∫ t

0

∫
R

Φα(y, s) ‖uα(·, t− s)‖L∞ dy ds

≤
∫ t

0

∫
R

Φα(y, s) ‖u0,α‖L∞ dy ds

= (1− e−
t
α ) ‖u0,α‖L∞ ≤ ‖u0,α‖L∞ ≤ ‖u0‖L∞ . (3.36)

Furthermore, we have an L∞-bound on the derivative of the filtered velocity,

‖uα
x(·, t)‖L∞(R) =

∥∥∥∥∫ t

0

∫
R

Φα,x(x− y, t− s) uα(y, s) dy ds
∥∥∥∥

L∞(R)

≤ ‖Φα,x‖L1(R×(0,T)) ‖u0,α‖L∞(R)

≤ 3√
πα
‖u0‖L∞(R). (3.37)

where we have employed (3.6) and (3.33).
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3. A time dependent filter

The total variation of uα can be bounded by the total variation of u0:

‖uα
x(·, t)‖L1(R) =

∫
R

∣∣∣∣∫ t

0

∫
R

Φα(y, t− s) uα
x(x− y, s) dy ds

∣∣∣∣ dx

≤
∫ t

0

∫
R

Φα(y, t− s)
∫

R
|uα

x(x− y, s)| dx dy ds

=
∫ t

0

∫
R

Φα(y, t− s)‖uα
x(·, s)‖L1(R) dy ds

≤ TV(u0), (3.38)

where we have used (3.5) and (3.35).

We continue to bound the L1-norm of the second derivative of uα. Using
substitution, we have

uα
xx(x, t) =

d
dx

∫ t

0

∫
R

Φα(y, t− s) uα
x(x− y, s) dy ds

=
d

dx

∫ t

0

∫
R

Φα(x− y, t− s) uα
x(y, s) dy ds

=
∫ t

0

∫
R

Φα,x(x− y, t− s) uα
x(y, s) dy ds

Thus ‖uα
xx(·, t)‖L1(R) can be bounded as follows, using (3.6), (3.35) and Tonelli’s

Theorem

‖uα
xx(·, t)‖L1(R) =

∫
R

∣∣∣∣∫ t

0

∫
R

Φα,x(y, t− s) uα
x(x− y, s) dy ds

∣∣∣∣ dx

≤
∫ t

0

∫
R
|Φα,x(y, t− s)|

∫
R
|uα

x(x− y, s)| dx dy ds

≤
∫ t

0

∫
R
|Φα,x(y, t− s)| ‖uα

x(·, s)‖L1(R) dy ds

≤ ‖Φα,x‖L1(R) ‖u0,α
x ‖L1(R)

≤ 3√
πα

TV(u0). (3.39)

In order to estimate the L1-norm of uα
t , we consider the first equation in (3.1),

subtract the second term on the left-hand side and take the absolute value
of both terms,

|uα
t | = |uα| |uα

x|,

integrate over the spatial domain and use (3.35) and (3.36)∫
R
|uα

t | dx =
∫

R
|uα| |uα

x| dx

≤ ‖uα‖L∞(R)

∫
R
|uα

x| dx

≤ ‖u0‖L∞(R)TV(u0). (3.40)
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

The L1-norm of uα
t can be estimated by the L1-norm of uα

t∫
R
|uα

t (x, t)| dx =
∫

R

∣∣∣∣∫ t

0

∫
R

Φα(y, s) uα
t (x− y, t− s) dy ds

∣∣∣∣ dx

≤ sup
t∈(0,T)

‖uα
t (·, t)‖L1(R) ‖Φα‖L1(R×(0,T))

≤ ‖u0‖L∞(R)TV(u0). (3.41)

In summary, we have the following bounds for uα and uα:

Lemma 3.5 The solution uα to Equations (3.1) and the filtered velocity uα satisfy
for all t ∈ [0, T):

‖uα(·, t)‖L∞ , ‖uα(·, t)‖L∞ ≤ ‖u0‖L∞(R), (3.42a)

TV(uα(·, t)), TV(uα(·, t)) ≤ TV(u0), (3.42b)

‖uα
x(·, t)‖L∞ ≤ 3√

πα
‖u0‖L∞(R), (3.42c)

‖uα
xx(·, t)‖L1 ≤

3√
πα

TV(u0), (3.42d)

‖uα
t (·, t)‖L1(R), ‖uα

t (·, t)‖L1(R) ≤ ‖u0‖L∞(R)TV(u0). (3.42e)

3.2.2 Convergence to a weak solution of inviscid Burgers’ equation

In order to prove convergence in C([0, ∞); L1
loc(R)) of uα to a limit function

u as α→ 0, we need another estimate, namely

Lemma 3.6 The solution uα to Equations (3.1) and the filtered velocity uα are
uniformly bounded in C([0, ∞); L1

loc(R)):

‖uα(·, t + k)− uα(·, t)‖L1(R) ≤ ‖u0‖L∞(R) TV(u0) k, ∀k > 0, (3.43)

and

‖uα(·, t + k)− uα(·, t)‖L1(R) ≤ ‖u0‖L∞(R)TV(u0) k, ∀k > 0. (3.44)

Proof We use the fundamental theorem of calculus and the bound on the
L1-norm of uα

t , (3.42e):∫
R
|uα(x, t + k)− uα(x, t)| dx ≤

∫
R

∫ t+k

t
|uα

t (x, s)| ds dx

≤
∫ t+k

t
‖u0‖L∞(R) TV(u0) ds

= ‖u0‖L∞(R) TV(u0) k.
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3. A time dependent filter

In order to estimate ‖uα(·, t + k)− uα(·, t)‖L1(R), we proceed similarly,∫
R
|uα(x, t + k)− uα(x, t)| dx ≤

∫
R

∫ t+k

t
|uα

t (x, s)| ds dx

≤ k sup
s∈(t,t+k)

∫
R
|uα

t (x, s)| dx

≤ ‖u0‖L∞(R)TV(u0) k. �

Using Lemma 3.5 and 3.6, we may prove

Proposition 3.7 Let uα, uα solve (3.1). Then, as α → 0, passing to a subsequence
if necessary, there exists a function u(x, t) such that

uα, uα → u in C
(
(0, T); L1

loc(R)
)
.

Moreover, the function u is an element of BV(R).

Proof The fact that uα → u, uα → ũ in C((0, T); L1
loc(R)) as α → 0 fol-

lows from estimates (3.42a), (3.42b), (3.43) and (3.44) by an application of
Kolmogorov’s Compactness Theorem (see e.g. Theorem A.8 in [12]). That
actually u, ũ ∈ BV(R) follows from Helly’s theorem (see Theorem A.7 in
[12]). It remains to prove that u = ũ almost everywhere. This will be done
by showing that for every t ∈ (0, T), Ω ⊂ R bounded

‖uα(·, t)− u(·, t)‖L1(Ω) → 0, α→ 0,

which will imply that the limits u and ũ agree almost everywhere. (For
t = 0 this is obvious since uα(x, 0) = uα,0(x) We start by rewriting uα(x, t) in
a different way (using substitution in the integral)

uα(x, t) =
∫ t

0

∫
R

e−
t−s

α
1√

4π(t− s)
e−

(x−y)2

4(t−s)
uα(y, s)

α
dy ds

=
∫ t

0

∫
R

e−
s
α

1√
4πs

e−
y2
4s

uα(x− y, t− s)
α

dy ds

=
∫ t/α

0

∫
R

e−r 1√
4παr

e−
y2
4αr uα(x− y, t− αr) dy dr

=
∫ t/α

0

∫
R

e−r 1√
4π

e−
z2
4 uα(x−

√
αrz, t− αr) dz dr

=
∫ ∞

0

∫
R

e−r 1√
4π

e−
z2
4 χ(0,t/α)(r)u

α(x−
√

αrz, t− αr) dz dr. (3.45)

Note that the integrand is uniformly bounded for all α by

e−r 1√
4π

e−
z2
4 ‖u0‖L∞(R),
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

which is integrable in L1(R× (0, ∞)×Ω) for all Ω ⊂ R bounded. We denote

ψ(r, z) := e−r 1√
4π

e−
z2
4 .

Adding and subtracting terms, we can write the difference uα(x, t)− u(x, t)
as

uα(x, t)− u(x, t) =
∫ t

α

0

∫
R

ψ(r, z)uα(x−
√

αrz, t− αr) dz dr− u(x, t)

=
∫ t

α

0

∫
R

ψ(r, z)(uα(x−
√

αrz, t− αr)− uα(x−
√

αrz, t)) dz dr

+
∫ t

α

0

∫
R

ψ(r, z)(uα(x−
√

αrz, t)− u(x−
√

αrz, t)) dz dr

+
∫ t

α

0

∫
R

ψ(r, z)(u(x−
√

αrz, t)− u(x, t)) dz dr

− e−
t
α u(x, t)

Hence for Ω ⊂ R bounded, we have∫
Ω
|uα(x, t)− u(x, t)| dx

≤
∫

Ω

∫ t
α

0

∫
R

ψ(r, z)|uα(x−
√

αrz, t− αr)− uα(x−
√

αrz, t)| dz dr dx

+
∫

Ω

∫ t
α

0

∫
R

ψ(r, z)|uα(x−
√

αrz, t)− u(x−
√

αrz, t)| dz dr dx

+
∫

Ω

∫ t
α

0

∫
R

ψ(r, z)|u(x−
√

αrz, t)− u(x, t)| dz dr dx

+ e−
t
α

∫
Ω
|u(x, t)| dx

:= A + B + C + D.

We estimate the terms A, B, C, D separately. For A we have, by (3.43) and
Fubini’s Theorem,

A =
∫ t

α

0

∫
R

ψ(r, z)
∫

Ω
|uα(x−

√
αrz, t− αr)− uα(x−

√
αrz, t)| dx dz dr

≤
∫ t

α

0

∫
R

ψ(r, z)Mαr dz dr

= M
∫ t

α

0
αre−r dr

= M α−M (α + t) e−
t
α

α→0−−→ 0.
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3. A time dependent filter

For B we have, again using Fubini’s Theorem

B =
∫

Ω

∫ ∞

0

∫
R

ψ(r, z)χ(0,t/α)(r)|uα(x−
√

αrz, t)− u(x−
√

αrz, t)| dz dr dx

=
∫ ∞

0

∫
R

ψ(r, z)χ(0,t/α)(r)
∫

Ω
|uα(x−

√
αrz, t)− u(x−

√
αrz, t)| dx dz dr.

The integrand is uniformly bounded by an integrable function for all α, there-
fore we can apply Lebesgue’s Dominated Convergence Theorem and pass
the limit under the integral signs. Since uα → u in C((0, T); L1

loc(R)) for
α→ 0, we have

χ(0,t/α)(r)
∫

Ω
|uα(x−

√
αrz, t)− u(x−

√
αrz, t)| dx

≤
∫

Ω
|uα(x−

√
αrz, t)− u(x−

√
αrz, t)| dx α→0−−→ 0

which implies B→ 0 as α→ 0. We write C as

C =
∫

Ω

∫ ∞

0

∫
R

ψ(r, z)χ(0,t/α)(r)|u(x−
√

αrz, t)− u(x, t)| dz dr dx

=
∫ ∞

0

∫
R

ψ(r, z)χ(0,t/α)(r)
∫

Ω
|u(x−

√
αrz, t)− u(x, t)| dx dz dr.

Again, since the integrand is uniformly bounded by an integrable function,
we can apply Lebesgue’s Theorem and pass to the limit inside the integrals.
Because u ∈ BV(R), it is continuous everywhere except for a set of measure
zero and we have for every fixed r and z ∈ R

lim
α→0
|u(x−

√
αrz, t)− u(x, t)| = 0, a.e. x ∈ R.

Therefore

limα→0

∫ ∞

0

∫
R

ψ(r, z)χ(0,t/α)(r)
∫

Ω
|u(x−

√
αrz, t)− u(x, t)| dx dz dr

=
∫ ∞

0

∫
R

ψ(r, z) lim
α→0

{
χ(0,t/α)(r)

∫
Ω
|u(x−

√
αrz, t)− u(x, t)| dx

}
dz dr

≤
∫ ∞

0

∫
R

ψ(r, z)
∫

Ω
lim
α→0
|u(x−

√
αrz, t)− u(x, t)| dx dz dr

= 0.

That D converges to zero as α→ 0 is obvious, since u ∈ L1
loc(R) and e−t/α →

0 as α → 0 for every t > 0. Hence we have shown that the limits u and ũ
agree. �

Now we will show that the limit function u is actually a weak solution of
inviscid Burgers’ equation.
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

Proposition 3.8 The function u from Proposition 3.7 obtained as a limit of uα in
C((0, T); L1

loc(R)), as α → 0, is actually a weak solution of the inviscid Burgers’
equation with initial data u0, i.e. it satisfies for all ϕ ∈ C2,2

c (R× [0, T))∫ T

0

∫
R

u ϕt +
u2

2
ϕx dx dt +

∫
R

u0(x) ϕ(x, 0) dx = 0 (3.46)

Proof We know by Proposition 3.7 that the limits of uα and uα agree, so it
is enough to show that uα converges to a weak solution of inviscid Burgers’
equation as α→ 0. We insert the second equation (3.1b) of (3.1) into the first
equation (3.1a) to obtain

uα
t + α(uα

tt − uα
xxt) + uα(uα

x + α(uα
xt − uα

xxx)) = 0, (x, t) ∈ R× (0, T),
(3.47a)

uα(x, 0) = u0,α(x), x ∈ R, (3.47b)

u0,α(x) = (ωα ∗ u0)(x), x ∈ R, (3.47c)

We rewrite the first equation, bringing all the terms which are multiplied by
α to the right-hand side:

uα
t + uαuα

x = α(−uα
tt + uα

xxt − uαuα
xt + uαuα

xxx).

Now we multiply by a test function ϕ ∈ C2,2
c (R× [0, T)) and integrate over

R× (0, T)∫ T

0

∫
R

uα
t ϕ +

(
uα2

2

)
x
ϕ dx dt = α

∫ T

0

∫
R
(−uα

tt + uα
xxt − uαuα

xt + uαuα
xxx)ϕ dx dt

(3.48)

Integrating the left-hand side of this equation by parts, it becomes∫ T

0

∫
R

uα
t ϕ +

(
uα2

2

)
x
ϕ dx dt

= −
∫ T

0

∫
R

uα ϕt +
uα2

2
ϕx dx dt−

∫
R

uα,0(x) ϕ(x, 0) dx

α→0−−→ −
∫ T

0

∫
R

u ϕt +
u2

2
ϕx dx dt−

∫
R

u0(x) ϕ(x, 0) dx

by the convergence of uα to u in C((0, T); L1
loc(R)) and uα,0 to u0 in L1(R).

This is the left-hand side of (3.46). Hence we have to show that all the
terms on the right-hand side of (3.48) converge to zero as α goes to zero.
We integrate the first two terms on the right-hand side twice, three times
respectively, by parts to obtain

α
∫ T

0

∫
R
(−uα

tt + uα
xxt)ϕ dx dt = α

∫ T

0

∫
R
−uα ϕtt − uα ϕxxt dx dt

+ α
∫

R
uα,0(x)(ϕt(x, 0) + ϕxx(x, 0))− uα

t (x, 0)ϕ(x, 0) dx

45



3. A time dependent filter

By (3.42a) uα is uniformly bounded, which gives

α
∫ T

0

∫
R
−uα ϕtt − uα ϕxxt dx dt

≤ α‖u0‖L∞
(
‖ϕtt‖L1(supp(ϕ)) + ‖ϕxxt‖L1(supp(ϕ))

) α→0−−→ 0.

For the boundary terms, we have, by (3.32) and (3.42e)

α
∫

R
uα,0(x)(ϕt(x, 0) + ϕxx(x, 0))− uα

t (x, 0)ϕ(x, 0) dx

≤ ‖u0‖L∞
(
‖ϕt(·, 0)‖L1(R) + ‖ϕxx(·, 0)‖L1(R) + TV(u0)‖ϕ‖L∞

) α→0−−→ 0.

Hence

α
∫ T

0

∫
R
(−uα

tt + uα
xxt)ϕ dx dt α→0−−→ 0.

We continue to show that the third term on the right-hand side of (3.48)
converges to zero. We integrate by parts in the variable x

− α
∫ T

0

∫
R

uαuα
xt ϕ dx dt = α

∫ T

0

∫
R
(uα

xuα
t ϕ + uαuα

t ϕx) dx dt

≤ α‖uα
x‖L∞‖uα

t ‖L1(R)‖ϕ‖L∞ T + α‖uα‖L∞‖uα
t ‖L1(R)‖ϕx‖L∞ T

≤
√

αC‖u0‖2
L∞ TV(u0)‖ϕ‖L∞ T + α‖u0‖2

L∞ TV(u0)‖ϕx‖L∞ T α→0−−→ 0,

where we used (3.42a), (3.42c) and (3.42e). Finally, we show that the forth
term on the right-hand side of (3.48) converges to zero. Again, we integrate
by parts,

α
∫ T

0

∫
R

uαuα
xxx ϕ dx dt = −α

∫ T

0

∫
R
(uα

xuα
xx ϕ + uαuα

xx ϕx) dx dt

= −α
∫ T

0

∫
R

{
1
2
((uα

x)
2)x ϕ + uαuα

xx ϕx

}
dx dt

= α
∫ T

0

∫
R

{
1
2
(uα

x)
2ϕx − uαuα

xx ϕx

}
dx dt

≤ α

{
1
2
‖uα

x‖L∞‖uα
x‖L1(R) + ‖uα‖L∞‖uα

xx‖L1(R)

}
‖ϕx‖L∞ T

≤
√

α C ‖u0‖L∞ TV(u0)‖ϕx‖L∞ T α→0−−→ 0,

where we have employed (3.42a), (3.42b), (3.42c) and (3.42d). Thus, we have
shown that the right-hand side of (3.48) converges to zero which implies
that the limit function u is a weak solution of inviscid Burgers’ equation. �
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

3.2.3 Mass conservation

In contrast to inviscid Burgers’ equation and the CFB equation with a time
independent, symmetric filter, the solution uα of (3.1) does in general not
satisfy mass conservation. Nevertheless, under the assumption that uα, uα

xt,
(uα2)xx, uα2

x vanish at infinity the difference in mass can be estimated with
respect to α to gain mass conservation in the limit α → 0. We therefore
consider again the equation for uα, (3.47),

uα
t + α(uα

tt − uα
xxt) + uα(uα

x + α(uα
xt − uα

xxx)) = 0, (x, t) ∈ R× (0, T).

We integrate the equation over the spatial domain R and use that uα and its
derivatives vanish at infinity:

0 =
∫

R
uα

t + α(uα
tt − uα

xxt) + uα(uα
x + α(uα

xt − uα
xxx)) dx

=
d
dt

∫
R

uα + αuα
t dx− α

∫
R

uα
xuα

t + uαuα
xxx dx

where we have integrated by parts in the second equation. The term uαuα
xxx

can be written as

uαuα
xxx =

1
2
(
uα2)

xxx −
3
2
(
uα2

x
)

x

which is zero integrated over R by our assumptions. We integrate the re-
maining terms over the time domain (0, T)

0 =
∫

R
uα(x, T) dx−

∫
R

u0,α(x) dx

+ α

(∫
R

uα
t (x, T) dx−

∫
R

u0,α
t (x) dx−

∫ T

0

∫
R

uα
xuα

t dx dt
)

By (3.42e), we have

α

(∫
R

uα
t (x, T) dx−

∫
R

u0,α
t (x) dx

)
≤ α

(∫
R
|uα

t (x, T)| dx +
∫

R
|u0,α

t (x)| dx
)

≤ 2α‖u0‖L∞(R) TV(u0)
α→0−−→ 0.

Using (3.42e) once more and in addition (3.42b), we obtain

α
∫ T

0

∫
R

uα
x uα

t dx dt ≤ α
∫ T

0

∫
R
|uα

x| |uα
t | dx dt

≤
√

α C T‖u0‖2
L∞(R) TV(u0)

α→0−−→ 0.

Therefore,

0 = lim
α→0

(∫
R

uα(x, T) dx−
∫

R
u0,α(x) dx

)
=
∫

R
u(x, T) dx−

∫
R

u0(x) dx.

(3.49)
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3. A time dependent filter

3.2.4 Entropy inequality

Even though (3.1) is not reversible in time, which we achieved by using a
filter depending on time, it seems impossible to show that the limit u of the
sequence uα satisfies the entropy inequality. This would be needed to show
it is an entropy solution. We will demonstrate that it is not possible to show
an entropy inequality for entropies of the form

η(u) =
up

p
, p even. (3.50)

As before, we work with Equation (3.47) which we multiply by η′(uα) =

uα(p−1)

0 = uα(p−1)uα
t + α(uα(p−1)uα

tt − uα(p−1)uα
xxt) + uαp(uα

x + α(uα
xt − uα

xxx))

= η(uα)t + q(uα)x + α(uα(p−1)uα
tt − uα(p−1)uα

xxt) + αuαp(uα
xt − uα

xxx) (3.51)

where we have denoted by q the entropy flux satisfying q′(u) = u η′(u).
We bring the terms without factor α to the left-hand side of the equation,
multiply by a nonnegative test function ϕ ∈ C3,2

c (R× (0, T)) and integrate
over the domain R× (0, T)

−
∫ T

0

∫
R
(η(uα)t + q(uα)x)ϕ dx dt

= α

(∫ T

0

∫
R

uα(p−1)uα
tt ϕ dx dt−

∫ T

0

∫
R

uα(p−1)uα
xxt ϕ dx dt

+
∫ T

0

∫
R

uαpuα
xt ϕ dx dt−

∫ T

0

∫
R

uαpuα
xxx ϕ dx dt

)
:= A + B + C + D. (3.52)

We integrate the left-hand side by parts and take the limit α→ 0

−
∫ T

0

∫
R
(η(uα)t + q(uα)x)ϕ dx dt =

∫ T

0

∫
R

η(uα)ϕt + q(uα)ϕx dx dt

α→0−−→
∫ T

0

∫
R

η(u)ϕt + q(u)ϕx dx dt

since uα is uniformly bounded. If u were an entropy solution, it should be
possible to show that the right-hand side of the above equation is greater or
equal to zero. We estimate the integrals A, B, C and D. We start with A.

48



3.2. Convergence to a weak solution of inviscid Burgers’ equation

Integrating by parts in the variable t, we get

α
∫ T

0

∫
R

uα(p−1)uα
tt ϕ dx dt = −α

∫ T

0

∫
R
(p− 1)uα(p−2)uα2

t ϕ + uα(p−1)uα
t ϕt dx dt

= −α
∫ T

0

∫
R
(p− 1)uα(p−2)uα2

t ϕ +

(
uαp

p

)
t
ϕt dx dt

= −α
∫ T

0

∫
R
(p− 1)uα(p−2)uα2

t ϕ− uαp

p
ϕtt dx dt.

The second term on the right-hand side converges to zero as α → 0 since
uα is uniformly bounded according to (3.42a) and since ϕ ∈ C3,2

c (R× (0, T)).
The first term is negative, since ϕ ≥ 0 and 2 and p − 2 are even numbers.
We consider the integral B

− α
∫ T

0

∫
R

uα(p−1)uα
xxt ϕ dx dt

= α
∫ T

0

∫
R

uα(p−1)uα
xt ϕx + (p− 1)uα(p−2)uα

xuα
xt ϕ dx dt

= α
∫ T

0

∫
R
−uα(p−1)uα

x ϕxt − (p− 1)uα(p−2)uα
t uα

x ϕx +
p− 1

2
uα(p−2)(uα2

x
)

t ϕ dx dt

= −α
∫ T

0

∫
R

uα(p−1)uα
x ϕxt + (p− 1)uα(p−2)uα

t uα
x ϕx +

p− 1
2

uα(p−2)uα2
x ϕt

+
(p− 1)(p− 2)

2
uα(p−3)uα2

x uα
t ϕ dx dt.

Note that the last term disappears if p = 2. We bound the terms on the
right-hand side: Using (3.42a) and (3.42b), we have

−α
∫ T

0

∫
R

uα(p−1)uα
x ϕxt dx dt ≤ α T ‖uα‖p−1

L∞ ‖uα
x‖L1(R)‖ϕxt‖L∞

≤ α T ‖u0‖p−1
L∞ TV(u0) ‖ϕxt‖L∞

α→0−−→ 0. (3.53)

For the second term on the right-hand side, we estimate with (3.42a), (3.42c)
and (3.42e)

−α
∫ T

0

∫
R

uα(p−2)uα
t uα

x ϕx dx dt ≤ α T ‖uα‖p−2
L∞ ‖uα

t ‖L1(R)‖uα
x‖L∞‖ϕx‖L∞

≤
√

α C T‖u0‖p
L∞ TV(u0)‖ϕx‖L∞

α→0−−→ 0.

The third term can be bounded using (3.42a), (3.42b) and (3.42c)

−α
∫ T

0

∫
R

uα(p−2)uα2
x ϕt dx dt ≤ α T ‖uα‖p−2

L∞ ‖uα
x‖L∞‖uα

x‖L1(R)‖ϕt‖L∞

≤
√

α C T‖u0‖p−1
L∞ TV(u0)‖ϕt‖L∞

α→0−−→ 0.
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3. A time dependent filter

Hence we have,

B = −α
∫ T

0

∫
R

(p− 1)(p− 2)
2

uα(p−3)uα2
x uα

t ϕ dx dt +O(
√

α)

if p > 2, and

B α→0−−→ 0

if p = 2. We continue to estimate C. Integrating by parts, we get

α
∫ T

0

∫
R

uαpuα
xt ϕ dx dt = −α

∫ T

0

∫
R

p uα(p−1)uα
t uα

x ϕ + uαpuα
x ϕt dx dt.

We use (3.42a), (3.42c) and (3.42e) to obtain

−α
∫ T

0

∫
R

p uα(p−1)uα
t uα

x ϕ dx dt ≤ α T‖uα‖p−1
L∞ ‖uα

x‖L∞‖uα
t ‖L1(R)‖ϕ‖L∞

≤
√

α C T‖u0‖p+1
L∞ TV(u0)‖ϕ‖L∞

α→0−−→ 0.

The other term can be bounded in the same way as (3.53). Thus,

C α→0−−→ 0.

For D, we write

uαpuα
xxx =

(
uα(p+1)

p + 1

)
xxx
− 3 p

2
uα(p−1)(uα2

x
)

x − p(p− 1)uα(p−2)uα3
x

Hence

D = −α
∫ T

0

∫
R

(
uα(p+1)

p + 1

)
xxx
− 3 p

2
uα(p−1)(uα2

x
)

x − p(p− 1)uα(p−2)uα3
x ϕ dx dt

= α
∫ T

0

∫
R

uα(p+1)

p + 1
ϕxxx −

3 p
2

uα(p−1)uα2
x ϕx + p(p− 1)uα(p−2)uα3

x ϕ dx dt

The first and the second term on the right-hand side converge to zero as
α → 0 by (3.42a), (3.42b) and (3.42c). For the third term we can only show
that it is bounded using the estimates derived beforehand. Therefore,

C = α
∫ T

0

∫
R

p(p− 1)uα(p−2)uα3
x ϕ dx dt +O(

√
α).

In summary, we have shown,∫ T

0

∫
R

η(uα)ϕt + q(uα)ϕx dx dt

= α
∫ T

0

∫
R
(p− 1)(−uα(p−2)uα2

t + p uα(p−2)uα3
x )ϕ

− (p− 1)(p− 2)
2

uα(p−3)uα2
x uα

t ϕ dx dt +O(
√

α). (3.54)
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

(The third term in the integral disappears if p = 2.) Unfortunately, the first
term on the right-hand side has the wrong sign and the second and the
third term do not have a sign. Hence, still if we could show that either of
them converged to zero as α converges to zero, we wouldn’t get the desired
entropy inequality.

We show by an example that the right-hand side of Equation (3.54) can have
the wrong sign. We let η be the L2-entropy η(u) = u2/2 and consider (3.1a),
(3.1b) with the periodic, smooth initial data

u0,α(x) = sin(x), x ∈ [0, 2π). (3.55)

We approximate the solution to (3.1a), (3.1b) and (3.55) on the intervall
[0, 2π) at time T = 2 by a spectral scheme and plot at every point a dis-
crete approximation of the quantity

∆E(x, t) = α((uα
t (x, t))2 − 2 (uα

x(x, t))3), (3.56)

which corresponds to the entropy ’dissipation‘ in (3.54). In addition, we
compute an approximation of the integral of (3.56) over the spatial domain
[0, 2π):

∆E(t) = α
∫

R
(uα

t (x, t))2 − 2 (uα
x(x, t))3) dx. (3.57)

α 0.8 0.4 0.2 0.1 0.05

∆E(2) 0.4094 0.6159 0.7864 0.9056 0.9897

Table 3.1: An approximation of the quantity ∆E(2) for different α for the initial value problem
(3.1a), (3.1b), (3.55).

We observe in the numerical experiments, that the quantity (3.57) (Table 3.1)
and the peak of the approximation to the local entropy ’dissipation‘ (3.56)
at x = π (Figures 3.2 and 3.4) increase as α → 0. These quantities would
be smaller or equal to zero if the entropy inequality were satisfied for this
particular example.

As entropy solutions of the inviscid Burgers’ equation satisfy the entropy in-
equality for any convex entropy function η, and hence also for Lp-entropies
(3.50), this means that the function u obtained from uα in the limit α → 0 is
not necessarily the entropy solution, as we cannot show the entropy inequal-
ity for entropies of the form (3.50).

This leads us to the conclusion that the time dependent filter (3.1b) neither
succeeds in regularizing Burgers’ equation in such a way that the limit u of
solutions uα to (3.1) is the entropy solution of Burgers’ equation.
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3. A time dependent filter

Figure 3.1: Numerical approximation of the initial value problem (3.1a), (3.1b), (3.55) at time
T = 2. α = 0.5, 100 meshpoints.

Figure 3.2: Numerical approximation of the entropy ’dissipation‘ (3.56) for the problem (3.1a),
(3.1b), (3.55) at time T = 2. α = 0.5, 100 meshpoints.
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3.2. Convergence to a weak solution of inviscid Burgers’ equation

Figure 3.3: Numerical approximation of the initial value problem (3.1a), (3.1b), (3.55) at time
T = 2. α = 0.2, 100 meshpoints.

Figure 3.4: Numerical approximation of the entropy ’dissipation‘ (3.56) for the problem (3.1a),
(3.1b), (3.55) at time T = 2. α = 0.2, 100 meshpoints.
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Chapter 4

Numerical experiments with the
shallow water equations

Having investigated the effect of filtering the velocity in Burgers’ equation,
we could also ask whether convolving one or several variables with a mol-
lifier is a justifiable technique for regularizing the solution of a system of
conservation laws. Since existence and uniqueness of solutions of general
systems of conservation laws is still an unsolved problem, we will only apply
the method to the particular case of the 1d shallow water equations, where
the properties of the solution are well known. These read in conservative
form (

h
q

)
t
+

(
q

q2

h + h2

2

)
x

= 0 (4.1a)(
h
q

)
(x, 0) =

(
h0
q0

)
(x), (4.1b)

where h and v := q/h denote the height/depth and the velocity of the fluid
respectively (we set the gravity constant g = 1). We denote u := (h, q)T.
By formally differentiating the flux function f (u) := (q, q2/h + h2/2)T, (4.1)
can be rewritten as (

h
q

)
t
+

(
0 1

− q2

h2 + h 2 q
h

)(
h
q

)
x
= 0. (4.2)

A third way of writing these differential equations is in the physical variables
h and v, (

h
v

)
t
+

(
v h
1 v

)(
h
v

)
x
= 0. (4.3)
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4. Numerical experiments with the shallow water equations

This suggests that there are various ways of applying the averaging tech-
nique, which we have examined for Burgers’ equation; one could either con-
volve components of the flux in the conservative form (4.1) with a mollifier,
or one or several components of the matrices in (4.2) and (4.3). In the follow-
ing we are going to investigate several of these possibilities numerically. We
will use the Helmholtz filter,

gα(x) :=
1

2α
e−
|x|
α , (4.4)

for our numerical experiments, since it has the advantage that we can write
the convolution uα(x) = gα ∗ uα(x) as a differential equation for uα, that is,

uα = uα − α2uα
xx. (4.5)

For convenience, we will omit writing the dependencies of the solution quan-
tities on α in the following.

4.1 Averaging the entries of the Jacobian matrix of the
flux function

4.1.1 Averaging all entries of the Jacobian in (4.2)

In a first step we convolve all entries of the Jacobian matrix of the flux func-
tion in (4.2) with the mollifier g given in (4.4). This has no effect on the
coefficients in the upper row of the matrix, since they are constant. We
obtain (

h
q

)
t
+

(
0 1

− q2

h2 + h 2
( q

h

))(h
q

)
x
= 0. (4.6)

where we have denoted(
− q2

h2 + h
)
(x) := gα ∗

(
− q2

h2 + h
)
(x)

and (
q
h

)
(x) := gα ∗

(
q
h

)
(x).

To get a numerical scheme, we discretize the spatial domain by an equidis-
tant grid with gridpoints denoted by xj+ 1

2
, j ∈ N. The cell midpoints are

denoted by xj, j ∈ N and ∆x = xj+1 − xj. In this and in the following sec-
tions, the approximations of h(xj, t) and q(xj, t) are denoted by hj(t), qj(t)
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4.1. Averaging the entries of the Jacobian matrix of the flux function

respectively and uj(t) := (hj(t), qj(t))T. Moreover, we let vj(t) := qj(t)/hj(t).
The spatial derivatives are approximated by central differences in the case
of Neumann boundary conditions and by a (pseudo) spectral derivative in
the case of periodic boundary conditions. Furthermore, we will denote from
now on the vectors of approximated quantities by y(t) := (. . . , yj(t), . . . )T, j
ranging from 1 to N in the periodic case and from 0 to N + 1 in the case of
Neumann boundary condtions. Specifically, in this section, we will need,

c(t) = (. . . , cj(t), . . . )T :=
(

. . . ,−
q2

j (t)

h2
j (t)

+ hj(t), . . .
)T

,

and

d(t) = (. . . , dj(t), . . . )T :=
(

. . . , 2
qj(t)
hj(t)

, . . .
)T

.

The semidiscrete scheme then reads,

d
dt

(
hj
qj

)
(t) = −

(
0 1

cj(t) dj(t)

)(
D0hj
D0qj

)
(t) := L(u)j(t), (4.7a)

cj(t) =
(
(I− α2D2)−1c(t)

)
j, (4.7b)

dj(t) =
(
(I− α2D2)−1d(t)

)
j, (4.7c)

j = 1, . . . , N,

where we denoted by D0hj, D0qj and D2 the approximations of the first and
second derivatives. For Neumann boundary conditions these are the central
differences

D0hj(t) :=
1

2∆x
(hj+1 − hj−1)(t), D0qj(t) :=

1
2∆x

(qj+1 − qj−1)(t), (4.8)

and D2 is the matrix of second differences,

D2 =
1

∆x2



−1 1 0 . . . 0

1 −2 1
. . .

...
0 1 −2 1
...

. . . . . . . . . . . . 0
0 1 −2 1

0 . . . 0 1 −1


. (4.9)

For the periodic boundary conditions, we use

D0hj(t) :=
(

D1h(t)
)

j, D0qj(t) :=
(

D1q(t)
)

j, (4.10)
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4. Numerical experiments with the shallow water equations

where

D1 =
1

∆x



0 − 1
2 cot 1∆x

2

− 1
2 cot 1∆x

2
. . . . . . 1

2 cot 2∆x
2

1
2 cot 2∆x

2
. . . − 1

2 cot 3∆x
2

− 1
2 cot 3∆x

2
. . .

...
...

. . . . . . 1
2 cot 1∆x

2
1
2 cot 1∆x

2 0


, (4.11)

is the matrix corresponding to the spectral differentiation [24], to approxi-
mate the first derivative. To approximate the second derivative, we need the
matrix

D2 =
1

∆x2



. . .
...

. . . − 1
2 csc2( 2∆x

2 )
. . . 1

2 csc2( 1∆x
2 )

− π2

3∆x −
1
6

1
2 csc2( 1∆x

2 )
. . .

− 1
2 csc2( 2∆x

2 )
. . .

...
. . .


, (4.12)

see [24].

Central differences or a spectral approximation of the derivative seem to
be bad choices for a conservation law, but on the one hand, we are faced
with a system written in non-conservative form which makes it impossible
to use a scheme in flux form. On the other hand, we do not want to add too
much numerical diffusion since we are mainly interested in the regularizing
effect of averaging one or several variables and the diffusion could alter
the convergence or non-convergence behavior. Moreover, we want to know
whether averaging succeeds in stabilizing the numerical scheme similarly to
how a numerical diffusion operator does.

For the discretization in time we denote the time steps by tn, 0 ≤ n ≤ NT,
with tNT = T and the approximated solutions at (xj, tn) by un

j , j = 1, . . . , N,
n = 0, . . . , NT. We choose ∆tn := tn− tn−1 small enough such that it satisfies
in each step an appropriate CFL-condition, here

∆tn+1

∆x
max

i,j
|λi(un

j )| ≤
1
2

,
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4.1. Averaging the entries of the Jacobian matrix of the flux function

where λi(un
j ) i = 1, 2, denote the eigenvalues of the matrix in (4.7a) at time

tn. In the experiments, we will use Forward Euler or the second order SSP-
Runge-Kutta method,

u∗ = un + ∆tn+1L(un)

u∗∗ = u∗ + ∆tn+1L(u∗)

un+1 =
1
2
(un + u∗∗)

where we denoted un := (. . . , un
j , . . . )T, and L(un) := (. . . ,L(u)j(tn), . . . )T

for the timestepping. For the spectral scheme, we could use a higher order
timestepping method to gain further accuracy as long as the solution is
sufficiently smooth (which is usually not the case). We test the above scheme
for different α and ∆x with the following initial data:

1. Periodic, smooth initial data

q0(x) = sin(x), (4.13a)
h0(x) = 1, x ∈ [0, 2π), (4.13b)

2. Riemann Problem 1 with qL > qR and Neumann boundary conditions

q0(x) =
{

1 if x ∈ [−2, 0),
−1 if x ∈ [0, 2],

(4.14a)

h0(x) = 1, x ∈ [−2, 2], (4.14b)

3. Riemann Problem 2 with qL < qR and Neumann boundary conditions

q0(x) =
{
−0.5 if x ∈ [−3, 0),

0.5 if x ∈ [0, 3],
(4.15a)

h0(x) = 1, x ∈ [−3, 3]. (4.15b)

4. Dam break problem with hL < hR and Neumann boundary conditions

q0(x) = 0, x ∈ [−3, 3], (4.16a)

h0(x) =
{

4 if x ∈ [−3, 0),
0.25 if x ∈ [0, 3],

(4.16b)

The exact solutions of the three Riemann problems are for (4.14)

q(x, T) =


1 if x < −0.8546 T,
0 if − 0.8546 T ≤ x < 0.8546 T,
−1 if x ≥ 0.8546 T,

h(x, T) =


1 if x < −0.8546 T,

2.1701 if − 0.8546 T ≤ x < 0.8546 T,
1 if x ≥ 0.8546 T,
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4. Numerical experiments with the shallow water equations

for (4.15)

q(x, T) =


−0.5 if x < −1.5 T,

1
27 (

3
2 + 2 x

T )(
3
2 +

x
T )

2 if − 1.5 T ≤ x < −0.75 T,
0 if − 0.75 T ≤ x < 0.75 T,

1
27 (−

3
2 + 2 x

T )(
3
2 +

x
T )

2 if 0.75 T ≤ x < 1.5 T,
0.5 if x ≥ 1.5 T,

h(x, T) =


1 if x < −1.5 T,

1
9 (

3
2 +

x
T )

2 if − 1.5 T ≤ x < −0.75 T,
0.5625 if − 0.75 T ≤ x < 0.75 T,

1
9 (

3
2 +

x
T )

2 if 0.75 T ≤ x < 1.5 T,
1 if x ≥ 1.5 T,

and for (4.16)

q(x, T) =


0 if x < −2 T,

1
27 (4 + 2 x

T )(4−
x
T )

2 if − 2 T ≤ x < 0.545 T,
2.2503 if 0.545 T ≤ x < 2.0821 T,

0 if x ≥ 2.0821 T,

h(x, T) =


4 if x < −2 T,

1
9 (4−

x
T )

2 if − 2 T ≤ x < 0.545 T,
1.32633 if 0.545 T ≤ x < 2.0821 T,

0.25 if x ≥ 2.0821 T.

We found the exact solutions by computing the rarefaction curves and the
Hugoniot locus (shock curves) emanating from the left and the right states
of the Riemann problems respectively; and their intersections, which yield
the middle states (see e.g. [12, 22, 23]). For the sine wave initial data we
will use an approximation computed with a Finite Volume scheme with Roe
flux on a mesh with 2000 points as a reference solution. If not otherwise
mentionned, we will compute an approximation of the solutions of these
four initial value problems at time T = 1.

In Figures 4.1 and 4.2, we observe that the spectral scheme yields a good ap-
proximation of the periodic initial data as long as the solution stays smooth.
At time T = 1.4 shocks have developed in the solution and the approxi-
mation becomes oscillatory and eventually blows up for larger times. We
compute an approximation of the L1-norm of the difference between the
Roe approximation and the approximation with the spectral scheme (4.7) by

E∆x
Roe = ∆x

N

∑
j=1

(
|hT

j − hRoe(xj, T)|+ |qT
j − qRoe(xj, T)|

)
,
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4.1. Averaging the entries of the Jacobian matrix of the flux function

Figure 4.1: Numerical approximation of the initial value problem (4.13) at time T = 1 by
Scheme (4.7). α = 0.05, 200 meshpoints.

Figure 4.2: Numerical approximation of the initial value problem (4.13) at time T = 1.4 by
Scheme (4.7). α = 0.05, 200 meshpoints.
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4. Numerical experiments with the shallow water equations

hT
j , qT

j respectively, denoting the approximations of (4.7) at time T and
hRoe(xj, T), qRoe(xj, T) denoting the approximations with the Roe scheme.
We obtain E∆x

Roe = 0.0309 at time T = 1 and E∆x
Roe = 0.5102 at time T = 1.4 for

N = 200 meshpoints.

Figure 4.3: Numerical approximation of Riemann Problem 1, (4.14), at time T = 1 by Scheme
(4.7). α = 0.5, 500 meshpoints.

Since we observe a lot of oscillations in the approximations to the Riemann
problems 1, 2 and 3, as it can be seen in Figure 4.3 for the Riemann problem
(4.14) (we have not included figures for the other two Riemann problems),
and we have seen that at least in the case of the regularized Burgers’ equa-
tion, smoothing the initial data results in smooth solutions for all times, we
try the same approach for this system in the hope of decreasing the oscil-
lations. We introduce a parameter δ > 0 and use instead of the Riemann
problem 1 the following initial data:

q0(x) =


1 if x ∈ [−2, 0),

2 exp{1− 1
1−( x

δ )
2 } − 1 if x ∈ [0, δ),
−1 if x ∈ [δ, 2],

(4.17a)

h0(x) = 1, x ∈ [−2, 2]. (4.17b)
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4.1. Averaging the entries of the Jacobian matrix of the flux function

Instead of Riemann Problem 2, we test with the smoothened initial data

q0(x) =


−0.5 if x ∈ [−3,−δ],

exp{1− 1
1−( x

δ )
2 } − 0.5 if x ∈ (−δ, 0],

0.5 if x ∈ (0, 3],
(4.18a)

h0(x) = 1, x ∈ [−3, 3]. (4.18b)

and Riemann Problem 3 is replaced by

q0(x) = 0, x ∈ [−3, 3] (4.19a)

h0(x) =


4 if x ∈ [−3, 0],

3.75 exp{1− 1
1−( x

δ )
2 }+ 0.25 if x ∈ (0, δ),

0.25 if x ∈ [δ, 3].
(4.19b)

We compare the approximations to (4.14) in Figure 4.3 with those to Problem
(4.17) in Figure 4.4 and see that the oscillations have decreased considerably.
The same behavior can be observed in the approximations to the second Rie-
mann problem, (4.15) and (4.18) (we have not included the corresponding
plots here): Introducing the parameter δ decreases the oscillations consider-
ably. Moreover, it does not seem to influence the convergence behavior of the
numerical schemes tested here. Therefore we will conduct the experiments
of this and the following sections with the smoothened Riemann initial data
(4.17), (4.18) and (4.19).

Convergence analysis

Comparing the approximations of (4.17) with (4.7) in Figures 4.5 and 4.6 to
the exact solution of the Riemann problem, we observe that the approxima-
tions give us a wrong middle state in the variable h. Moreover, the shock
speeds are wrong. As α decreases, we observe more oscillations, so averag-
ing the entries of the Jacobian indeed regularizes the solution to (4.6).

As we can see in Figures 4.7 and 4.8, the approximations of Problem (4.18)
with Scheme (4.7) seem to converge to the correct functions. We do not
observe a lot of oscillations, even for small α. Apparently, larger α result in
steeper gradients in the two regions where we observe a rarefaction wave
in the exact solution. We calculate an approximation of the error in the
L1-norm:

E∆x := ∆x
N

∑
j=1

(
|h(xj, T)− hT

j |+ |q(xj, T)− qT
j |
)

,

where hT
j and qT

j are the approximations to h, q respectively, at (xj, T).
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4. Numerical experiments with the shallow water equations

Figure 4.4: Numerical approximation of the initial value problem (4.17) with δ = 0.2 at time
T = 1 by Scheme (4.7). α = 0.4, 400 meshpoints.

Figure 4.5: Numerical approximation of the initial value problem (4.17) with δ = 0.2 at time
T = 1 by Scheme (4.7). α = 0.2, 1600 meshpoints.
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Figure 4.6: Numerical approximation of the initial value problem (4.17) with δ = 0.2 at time
T = 1 by Scheme (4.7). α = 0.05, 1600 meshpoints.

Figure 4.7: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.7). α = 0.2, 1600 meshpoints, E∆x = 0.4167.
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Figure 4.8: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.7) using a Forward Euler timestepping. α = 0.0125, 1600 meshpoints,
E∆x = 0.0178.

Regarding the dam break Riemann problem 3, we see in Figures 4.9 and 4.10
that the approximations differ considerably from the exact solution. Again,
decreasing α results in an increase in oscillations. We conclude that Scheme
(4.7) gives satisfactory results as long as the solution to (4.1) remains smooth,
but fails to converge if shocks are to be expected in the solution.

4.1.2 Averaging the velocity v in (4.2)

In a second try, we filter only the velocity v := q/h in the Jacobian of the
flux function in (4.2). This yields,(

h
q

)
t
+

(
0 1

−
( q

h

)2
+ h 2

( q
h

))(h
q

)
x
= 0. (4.20)

where we denoted (
q
h

)
(x) := gα ∗

( q
h

)
(x).

Using v := q/h and v = q/h, we have by (4.5)

v = v− α2 vxx,
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Figure 4.9: Numerical approximation of the initial value problem (4.19) with δ = 0.5 at time
T = 1 by Scheme (4.7). α = 0.4, 1600 meshpoints.

Figure 4.10: Numerical approximation of the initial value problem (4.19) with δ = 0.5 at time
T = 1 by Scheme (4.7). α = 0.05, 1600 meshpoints.
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and can thus rewrite (4.20) as a system of differential equations for h and v,

ht + (hv)x − α2(h vxx)x = 0,

(hv)t − α2(h vxx)t + (v2 h)x +

(
h2

2

)
x
− 2 α2 v(h vxx)x = 0.

This system is not conservative in contrast to the shallow water system. As
before, we discretize in space and denote the approximations to h, q and v by
hj, qj and vj respectively. Again, we use central differences to approximate
the spatial derivatives in the case of Neumann boundary conditions and a
spectral approximation of the derivatives in the case of periodic boundary
conditions and smooth initial data. We arrive at the semidiscrete formula-
tion of the scheme,

d
dt

(
hj
qj

)
(t) = −

(
0 1

cj(t) dj(t)

)(
D0hj
D0qj

)
(t) := L(u)j(t), (4.21a)

vj(t) =
(
(I− α2D2)−1v(t)

)
j, (4.21b)

cj(t) = (−vj
2 + hj)(t), (4.21c)

dj(t) = 2 vj(t), (4.21d)

j = 1, . . . , N,

where D0hj, D0qj and D2 have been defined in (4.8), (4.11), (4.9) and (4.12).
We test the scheme with the initial data (4.13), (4.17), (4.18) and (4.19). We
have also tested the scheme on the Riemann problems (4.14), (4.15) and
(4.16), but we do not include the results here since the approximated solu-
tions to these initial conditions are even more oscillatory, as we have seen
it for Scheme (4.7) and we do not obtain convergence to the exact solutions
either.

Similarly to the first scheme considered, we observe a good approximation
of the periodic initial data (Figure 4.11) as long as the solution stays smooth.
After shocks have developed in the exact solution, oscillations appear in the
approximation and it finally blows up (no figure).

In Figures 4.12, 4.13 and 4.14 we see the approximations to the smoothened
Riemann problems 1, 2 and 3. We observe that the rarefaction waves of
Riemann Problem 2 are quite well resolved, whereas the scheme gives us
approximations with wrong shock speeds and middle states for the Riemann
problems 1 and 3. In contrast to Scheme (4.7) these approximations are more
oscillatory too which we could have expected since we have averaged only
the variable v.

In a similar way, we did numerical experiments for the equations,(
h
q

)
t
+

(
0 1

−
( q

h

)2
+ h 2

( q
h

))(h
q

)
x
= 0, (4.22)
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Figure 4.11: Numerical approximation of the initial value problem (4.13) at time T = 1 by
Scheme (4.21). α = 0.05, 100 meshpoints, E∆x

Roe = 0.0368.

Figure 4.12: Numerical approximation of the initial value problem (4.17) with δ = 0.6 at time
T = 1 by Scheme (4.21). α = 0.2, 800 meshpoints.
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Figure 4.13: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.21). α = 0.0125, 1600 meshpoints, E∆x = 0.0186 .

Figure 4.14: Numerical approximation of the initial value problem (4.19) with δ = 0.5 at time
T = 1 by Scheme (4.21). α = 0.05, 1600 meshpoints.
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where the variables v and h are filtered. The approximations of the smoothened
Riemann problems (4.17) and (4.19) did not converge to the exact solution
either. We have not included the plots.

4.2 Filtering the entries of the matrix in (4.3)

4.2.1 Filtering all entries of the matrix

In a next step, we investigate the effect of filtering entries of the matrix in
the equation for v and h, (4.3). We start by convolving all entries with gα.
This yields (

h
v

)
t
+

(
v h
1 v

)(
h
v

)
x
= 0. (4.23)

with

h = h− α2 hxx and v = v− α2 vxx.

We can rewrite (4.23) as a system of equations for v and h,

ht + (vh)x − α2(hxxt + vhxxx + hvxxx) = 0,

(vh)t +

(
h

2

2

)
x
+ (hv2)x − α2(vhxxt + hvxxt + hhxxx + 2 hvvxxx + v2hxxx) = 0.

To obtain a numerical scheme, we approximate the spatial derivatives by
central differences in the case of Neumann boundary conditions and by
spectral differences in the case of periodic boundary conditions, as before.
We arrive at the following semidiscrete formulation

d
dt

(
hj
vj

)
(t) = −

(
vj(t) hj(t)

1 vj(t)

)(
D0hj
D0vj

)
(t) := L(u)j(t), (4.24a)

vj(t) =
(
(I− α2D2)−1v(t)

)
j, (4.24b)

hj(t) =
(
(I− α2D2)−1h(t)

)
j, (4.24c)

j = 1, . . . , N,

where D0hj, D0vj and D2 have been defined in (4.8), (4.11), (4.9) and (4.12).
We test the scheme with the initial data (4.13), (4.17), (4.18) and (4.19).

Exactly as in the first two models considered, we observe wrong shock
speeds and middle states in the approximations to the smoothened Riemann
problems 1 and 3 (Figures 4.15 and 4.17) and a good approximation of the
periodic problem (no figure) and Riemann Problem 2 (Figure 4.16). The
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Figure 4.15: Numerical approximation of the initial value problem (4.17) with δ = 0.2 at time
T = 1 by Scheme (4.24). α = 0.2, 1600 meshpoints.

Figure 4.16: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.24). α = 0.0125, 1600 meshpoints, E∆x = 0.0162.
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Figure 4.17: Numerical approximation of the initial value problem (4.19) with δ = 0.5 at time
T = 1 by Scheme (4.24). α = 0.2, 1600 meshpoints.

behavior of the approximation to Riemann Problem 2 for large α is similar
as for the first two problems, the gradients in the rarefaction regions of the
exact solution become steeper for increasing α. In Riemann Problems 1 and
3 the oscillations grow larger as α decreases.

4.2.2 Filtering of the velocity v in (4.3)

As we did it for the non-conservative system (4.2), we now consider the
variant of the model (4.23) with only v filtered,(

h
v

)
t
+

(
v h
1 v

)(
h
v

)
x
= 0. (4.25)

with

v = v− α2 vxx.

Writing the equations in terms of the variables v and h, we get

ht + (vh)x − α2hvxxx = 0,

(vh)t +

(
h2

2

)
x
+ (v2 h)x − α2(hvxxt + 2 hvvxxx) = 0.
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This regularization has already been examined in [3] in a more general form,
namely for the isentropic Euler equations,

ρt + vρx + ρvx = 0, (4.26a)

vt + vvx +
px

ρ
= 0, (4.26b)

p = κργ, (4.26c)

v− α2vxx = v, (4.26d)

where γ > 0 and κ > 0 are constants. Setting κ = 1/2 and γ = 2, this re-
duces to (4.23). In [3] the existence of smooth solutions for (4.26) is analyzed
and they conclude that for γ 6= 0 discontinuities develop in finite time in
the modified equations. Hence also in our case. We will perform numerical
experiments to investigate whether system (4.25) approximates the solution
of the shallow water equations.

In the same way as before, we approximate these equations using central
differences or a spectral approximation of the spatial derivatives,

d
dt

(
hj
vj

)
(t) = −

(
vj(t) hj(t)

1 vj(t)

)(
D0hj
D0vj

)
(t) := L(u)j(t), (4.27a)

vj(t) =
(
(I− α2D2)−1v(t)

)
j, (4.27b)

j = 1, . . . , N,

where D0hj, D0vj and D2 have been defined in (4.8), (4.11), (4.9) and (4.12).
We test the scheme with the initial data (4.13), (4.17), (4.18) and (4.19).

We observe that this method neither succeeds in approximating the correct
shock speeds and middle states in Riemann Problems 1 and 3 (Figures 4.18
and 4.20). The performance on Riemann Problem 2 is okay but worse com-
pared to Scheme (4.24), as shown in Figure 4.19. The performance of the
scheme on the periodic problem is quite good, as long as no shocks develop
in the solution. Moreover, we observe more oscillations than in the approx-
imations computed with (4.24) at the same level. This was to be expected
by the results in [3] and also since we have averaged only v in this scheme
whereas in (4.24) we also filtered the entry h of the matrix.

4.3 Filtering the eigenvalues of the Jacobian matrix of
the flux function

4.3.1 Filtering both eigenvalues

Instead of convolving the components of the Jacobian of the flux function in
the non-conservative system (4.2) one could also do the eigendecomposition
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4.3. Filtering the eigenvalues of the Jacobian matrix of the flux function

Figure 4.18: Numerical approximation of the initial value problem (4.17) with δ = 0.6 at time
T = 1 by Scheme (4.27). α = 0.2, 800 meshpoints.

Figure 4.19: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.27). α = 0.0125, 1600 meshpoints, E∆x = 0.0166.
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4. Numerical experiments with the shallow water equations

Figure 4.20: Numerical approximation of the initial value problem (4.19) with δ = 0.5 at time
T = 1 by Scheme (4.27). α = 0.2, 1600 meshpoints.

of the system and filter the eigenvalues. The Jacobian of the flux function
f (u) = (q, q2/h + h2/2)T has the eigenvalues

λ1(u) =
q
h
−
√

h, and λ2(u) =
q
h
+
√

h, (4.28)

and the eigenvectors,

r1(u) =
(

1
λ1(u)

)
, and r2(u) =

(
1

λ2(u)

)
. (4.29)

Convolving both eigenvalues of the Jacobian with gα we obtain the equa-
tions,

(
h
q

)
t
+

(
1 1

λ1(u) λ2(u)

)(
λ1(u) 0

0 λ2(u)

)(
1 1

λ1(u) λ2(u)

)−1 (h
q

)
x
= 0,

(4.30)

where

λk(u)(x) =
(

gα ∗ λk(u)
)
(x).
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4.3. Filtering the eigenvalues of the Jacobian matrix of the flux function

If we calculate the matrix multiplications explicitely, we can rewrite (4.30) as

ht + vhx − v

√
h√
h

hx +

√
h√
h

qx = 0,

qt +

√
h√
h
(h− v2)hx + vqx + v

√
h√
h

qx = 0.

Applying the product rule to the terms qx = (vh)x and qt = (vh)t and using
some algebra, we obtain evolution equations for h and v. These coincide
with a special case of the equations investigated in [19] which served as a
regularization of the homentropic Euler equations. In that paper, global exis-
tence and uniqueness of the solution to these equations is proved, speeds of
the discontinuities and solutions to Riemann problems are calculated. They
find numerical examples where the solution of the modified equations be-
haves very differently from the one of the homentropic Euler equations. We
conduct some numerical experiments to find out whether the same happens
if we approximate the equations with a finite difference scheme and a spec-
tral scheme respectively. We denote

R(u) =
(

1 1
λ1(u) λ2(u)

)
, Λ(u) =

(
λ1(u) 0

0 λ2(u)

)
(4.31)

and their discrete counterparts

Rj(t) =
(

1 1
λ1(uj)(t) λ2(uj)(t)

)
, Λj(t) =

(
λ1(uj)(t) 0

0 λ2(uj)(t)

)
,

(4.32)

uj(t) := (hj(t), qj(t))T, λk(t) := (. . . , λk(uj)(t), . . . ) and

λk(uj)(t) =
(
(I− α2D2)−1λk(t)

)
j

with D2 defined in (4.9), (4.12) respectively. The semidiscrete formulation
thus reads

d
dt

uj(t) = −Rj(t)Λj(t) Rj(t)−1 D0uj(t) := L(u)j(t), (4.33)

j = 1, . . . , N,

where D0uj and D2 have been defined in (4.8), (4.11), (4.9) and (4.12). We
test the scheme on initial data (4.13), (4.17), (4.18) and (4.19).

Considering the approximations to the Riemann problems 1 and 3 in Fig-
ures 4.21 and 4.23, we can draw the same conclusions as in [19], that is,
the shock speeds and the middle states in the Riemann problems are not
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4. Numerical experiments with the shallow water equations

Figure 4.21: Numerical approximation of the initial value problem (4.17) with δ = 0.6 at time
T = 1 by Scheme (4.33). α = 0.2, 800 meshpoints.

Figure 4.22: Numerical approximation of the initial value problem (4.18) with δ = 0.05 at time
T = 1 by Scheme (4.33). α = 0.0125, 1600 meshpoints, E∆x = 0.0158.
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4.3. Filtering the eigenvalues of the Jacobian matrix of the flux function

Figure 4.23: Numerical approximation of the initial value problem (4.19) with δ = 0.6 at time
T = 1 by Scheme (4.33). α = 0.2, 1600 meshpoints.

approximated correctly. As for Riemann Problem 2, the scheme gives a satis-
factory approximation (Figure 4.22). The same holds for the approximation
to the initial value problem with the periodic initial data, again, as long as
the solution stays smooth (no picture).

4.3.2 Filtering the velocity v in the eigenvalues

Similar to the previous sections, we can filter only the velocity in the eigen-
values instead of the eigenvalues themselves. This yields the equations,(

h
q

)
t
+

(
1 1

λ1(u) λ2(u)

)(
v−
√

h 0
0 v +

√
h

)(
1 1

λ1(u) λ2(u)

)−1 (h
q

)
x
= 0,

(4.34)

with

v = v− α2 vxx.

If we compute the product of the matrices explicitely, we see that the above
system is equivalent to

ht + (v− v)hx + qx = 0,

qt + (h− v2)hx + (v + v)qx = 0.
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4. Numerical experiments with the shallow water equations

Writing this as a system of equations for v and h gives

ht + (hv)x − α2hvxxx = 0,

(vh)t +

(
h2

2

)
x
+ (v2h)x − α2((hvxx)t + (hvvxx)x + hvvxxx −

α2

2
(v2

xx)xh
)
= 0.

We define the semidiscrete scheme

d
dt

(
hj
qj

)
(t) := L(u)j(t)

= −Rj

(
(vj −

√
hj)(t) 0

0 (vj +
√

hj)(t)

)
R−1

j

(
D0hj
D0qj

)
(t)

j = 1, . . . , N, (4.35)

where D0hj, D0qj and D2 have been defined in (4.8), (4.11), (4.9) and (4.12).
As expected, the approximations to (4.17) and (4.19) turn out to be very os-
cillatory and do not converge to the exact solution. Therefore we do not
include examples here. The approximation to the periodic initial value prob-
lem (4.13) and Riemann Problem (4.18) at time T = 1 are satisfactory as
expected.

Remark 4.1 The schemes tested in this and the previous sections have turned out
to be very unstable and oscillatory when used for the Riemann problems 1 and 3
which have solutions with shocks. Therefore we have also tested them in a modified
form with additional diffusion of Roe type, that is, we tested schemes of the form

d
dt

uj(t) = −
1

2∆x

{
DF(uj)(uj+1 − uj−1)

− |Âj+1/2|(uj+1 − uj) + |Âj−1/2|(uj − uj−1)

}
, (4.36)

where DF(uj) denotes the Jacobian matrix of f with entries or eigenvalues filtered
and Âj±1/2 the Roe matrix. Indeed, the oscillations disappear, but the approxima-
tions still differ considerably from the exact solution as it can be seen in the following
picture 4.24 for Scheme (4.33). The same wrong behavior of the approximation can
be observed if other types of numerical diffusion operators are used in (4.36) in place
of the Roe diffusion. In particular, we have tested a Lax-Friedrich type diffusion and
a diffusion operator mimicking the physical diffusion of the shallow water equations,

d
dt

uj(t) = −
1

2∆x

{
DF(uj)(uj+1 − uj−1)

−
(

0
hj+1+hj

2 (vj+1 − vj)

)
+

(
0

hj+hj−1
2 (vj − vj−1)

)}
,
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4.4. Conservative methods

Figure 4.24: Numerical approximation of the initial value problem (4.14) at time T = 1 by
Scheme (4.33) with Roe diffusion. α = 0.05, 1600 meshpoints.

We obtain a satisfactory approximation only with the physical diffusion and when
α is so small that the diffusion dominates. We compare this result to the scalar
case of the convectively filtered Burgers’ equation: In [6], Coclite and Karlsen have
shown that the solution to the convectively filtered Burgers’ equation with additional
diffusion

uα,ε
t + uα,εuα,ε

x = ε uα,ε
xx ,

uα,ε − α2uα,ε
xx = uα,ε

converges to the entropy solution of inviscid Burgers’ equation if α = o(ε) and to
a weak solution of Burgers’ equation for any ratio ε to α. Our experiments indicate
that this might be worse for systems of convervation laws: We do not even obtain
convergence to a weak solution if α is too large in comparison to ε.

4.4 Conservative methods

One could argue that the reason why the methods tested in the previous
sections do not work is that they are not conservative. Therefore we test
here the following conservative regularizations which resemble the method

81



4. Numerical experiments with the shallow water equations

suggested in [18] in the context of the one-dimensional Euler equations,

ht + hvx + vhx = 0, (4.37a)

qt + qvx + vqx + hhx = 0, (4.37b)

and

ht + hvx + vhx = 0, (4.38a)

qt + qvx + vqx +

(
h2

2

)
x
= 0. (4.38b)

As before, we denoted v := q/h and c = gα ∗ c for c ∈ {v, q, h}. Note that
the two models differ only in the second equation, where the term (h2/2)x
is replaced by hhx in the first model. With a bit of algebra, we can rewrite
these equations only in terms of the filtered quantities as

ht + (hv)x = −3α2(vxhx)x, (4.39a)

qt +

(
qv +

h
2

2

)
x
= −3α2

(
qxvx +

h
2
x

2

)
x
. (4.39b)

and

ht + (hv)x = −3α2(vxhx)x, (4.40a)

qt +

(
qv +

h2

2

)
x
= −3α2(qxvx)x. (4.40b)

For the numerical experiments, we use finite difference schemes for the
problems with Neumann boundary conditions and a spectral scheme for
the problems with periodic boundary conditions to approximate the solu-
tions of equations (4.37), (4.38), (4.39) and (4.40). We have also tested a
pseudo-spectral method as suggested [18] for these equations but we have
not obtained better results.

Approximation of the models (4.37) and (4.38)

In a first step, we analyze and compare the schemes (4.41) and (4.42). System
(4.37) is approximated by the scheme

d
dt

(
hj
qj

)
(t) = −

(
vjD0hj + hjD0vj

qjD0vj + vjD0qj + hjD0hj

)
(t) := L(u)j(t), (4.41a)

cj(t) =
(
(I− α2D2)−1c(t)

)
j, c ∈ {h, v, q} (4.41b)

j = 1, . . . , N,
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4.4. Conservative methods

where D0hj, D0vj, D0qj and D2 have been defined in (4.8), (4.11), (4.9) and
(4.12). Similarly, for (4.38), we use the scheme

d
dt

(
hj
qj

)
(t) = −

(
vjD0hj + hjD0vj

qjD0vj + vjD0qj +
1
2 D0(h2

j )

)
(t) := L(u)j(t), (4.42a)

cj(t) =
(
(I− α2D2)−1c(t)

)
j, c ∈ {h, v, q} (4.42b)

j = 1, . . . , N.

We test the schemes with initial data (4.13), (4.17), (4.18) and (4.19). We

Figure 4.25: Numerical approximation of the initial value problem (4.17) by (4.41) with δ = 0.5
at time T = 1 . α = 0.1, 400 meshpoints.

see in Figures 4.25 and 4.26 that both approximations yield the correct mid-
dle state of the height. The gradients in the regions connecting the left and
middle and the middle and right state steepen as α decreases, but the ap-
proximations become so oscillatory that they finally blow up. The same
happens if we increase the number of meshpoints. Furthermore, these two
schemes turn out to be very unstable if used to approximate the Riemann
problems (4.18) and (4.19). The approximations to (4.19) do not behave like
the exact solution at all (we have not included the pictures). However, the
approximations to the periodic initial value problem (4.13) are satisfactory
as long as the exact solution does not develop shocks (no Figure).
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4. Numerical experiments with the shallow water equations

Figure 4.26: Numerical approximation of the initial value problem (4.17) by (4.42) with δ = 0.5
at time T = 1 . α = 0.1, 400 meshpoints.

Approximation of (4.39) and (4.40)

In a second step, we test Scheme (4.46) combined with the fluxes (4.45) and
(4.47) and their spectral counterparts. To approximate (4.39), we simplify
the notation by denoting by hj(t) the approximation of h(xj, t), by qj(t) the
approximation to q(xj, t) and by vj(t) the approximation to v(xj, t). Notice
that

v = gα ∗
(

q− α2qxx

h− α2hxx

)
.

In order to find the same expression for the discrete quantities vj(t), we
simplify the notation for this section by defining the discrete Helmholtz
operator (I− α2D2) by

A c := (I− α2D2) c, A cj :=
(
(I− α2D2) c

)
j, c ∈ {q, h, v, . . . } (4.43)

with D2 given in (4.9) and (4.12), and similarly its inverse

A−1c := (I− α2D2)−1c, A−1cj :=
(
(I− α2D2)−1c

)
j, c ∈ {q, h, v, . . . }.

(4.44)
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4.4. Conservative methods

Then vj is given by

vj(t) = A−1
(A qj

A hj

)
j
(t).

We omit the dependencies of the variables on time and denote f (uj) :=
(hjvj, qjvj + h2

j /2)T. Moreover, we let

D+cj :=
1

∆x
(cj+1 − cj), D−cj :=

1
∆x

(cj − cj−1), c ∈ {v, q, h, . . . },

denote the forward and backward differences respectively. We use the same
notation for vectors of approximated quantities:

D+c :=
1

∆x
(c2 − c1, . . . , cj+1 − cj, . . . cN+1 − cN)

T, c ∈ {v, q, h, . . . },

D+c D+d :=
1

∆x2 (((c2 − c1) · (d2 − d1), . . . , (cN+1 − cN) · (dN+1 − dN))
T,

c, d ∈ {v, q, h, . . . },

(and similarly for the backward differences D−). Now we can define the
numerical flux

Fj+1/2 =
f (uj+1) + f (uj)

2
+ 3α2

(
A−1(D+v D+h)j

A−1(D+q D+v + 1
2 D+(h2))j

)
. (4.45)

We define the semidiscrete numerical scheme

d
dt

uj(t) = −
1

∆x
(Fj+1/2 − Fj−1/2)(t), (4.46)

which we will use to approximate (4.39) in the case of Neumann boundary
conditions. For (4.40) we will use (4.46) with Fj+1/2 defined by

Fj+1/2 =
f̃ (uj+1) + f̃ (uj)

2
+ 3α2

(
A−1(D+v D+h)j
A−1(D+q D+v)j

)
, (4.47)

where f̃ (uj) is given by

f̃ (uj) :=

(
hjvj

qjvj +
1
2 h̃2

j

)
,

h̃2
j := A−1((A hj)

2)
j (4.48)
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4. Numerical experiments with the shallow water equations

For the initial value problems with periodic boundary conditions, we use a
spectral method for the approximation of the derivatives, that is for (4.39),
we employ the scheme

d
dt

hj(t) = −D0(vjhj)− 3α2D0
(
A−1(D0vj · D0hj)j

)
, (4.49a)

d
dt

qj(t) = −D0

(
qjvj +

h2
j

2

)
− 3α2D0

(
A−1(D0qj · D0vj +

1
2
(D0hj)

2)
j

)
,

(4.49b)

j = 1, . . . , N

where D0 denotes a spectral approximation of the first derivative, given in
(4.10).

For (4.40) and periodic boundary conditions, we use the scheme

d
dt

hj(t) = −D0(vjhj)− 3α2D0
(
A−1(D0vj · D0hj)j

)
, (4.50a)

d
dt

qj(t) = −D0

(
qjvj +

h̃2
j

2

)
− 3α2D0

(
A−1(D0qj · D0vj

)
j

)
, (4.50b)

j = 1, . . . , N

with h̃2
j defined in (4.48). We test the schemes with initial data (4.13), (4.17),

(4.18) and (4.19).

As it can be seen Figure 4.27 the approximation with (4.46) and (4.47) of the
middle state and the shock speeds appear to be correct for initial data (4.14).
However, for increasing N or decreasing α the scheme tends to become un-
stable. Scheme (4.46) with (4.45) shows a very similar behavior. As far as
initial value problem (4.18) is concerned, the performance of the schemes is
very bad. To prevent a blow up, we have to choose the smoothing parame-
ter of the intial data δ large compared to the schemes tested in the previous
sections. This decreases the accuracy additionally. In contrast to what one
might have expected, the scheme with flux (4.45), where the height h is regu-
larized in the second equation, is even more unstable than the scheme with
flux (4.47). In Figure 4.28, an approximation of the solution at time T = 0.5
by Scheme (4.46) with (4.47) can be seen. The approximations to the dam
break problem (4.19) are not satisfactory either: In Figure 4.29 we see that
the approximation with (4.46) and (4.47) at time T = 0.5 with α = 0.05
and N = 800 behaves different from the exact solution and for larger N
and smaller α the approximation blows up. In [18] a possible explanation
for the unstable behavior of the scheme is given; they explain that it could
be caused by the term vxhxx which we obtain when applying the product
rule to the term −3α2(vxhx)x on the right hand side of equations (4.39a) and
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4.4. Conservative methods

Figure 4.27: Numerical approximation of the initial value problem (4.14) by (4.46) and (4.47)
at time T = 1. α = 0.025, 800 meshpoints.

Figure 4.28: Numerical approximation of the initial value problem (4.18) by (4.46) and (4.47)
with δ = 0.1 at time T = 0.5. α = 0.01, 1600 meshpoints.
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4. Numerical experiments with the shallow water equations

Figure 4.29: Numerical approximation of the initial value problem (4.19) by (4.46) and (4.47)
with δ = 0.3 at time T = 0.5. α = 0.01, 800 meshpoints.

(4.40a). If vx > 0, this term resembles a negative viscosity which is known to
have a destabilizing effect. This might cause the instabilities in the approx-
imations of (4.18) and (4.19). Similar to the spectral schemes investigated
previously, the spectral schemes for the conservative regularizations (4.39)
and (4.40) give an accurate approximation to the periodic problem as long
as the solution stays smooth. Nevertheless, they turn out to be very unstable
when the exact solution develops discontinuities.

Remark 4.2 We have also conducted experiments with Schemes (4.7) and (4.41)
and the Helmholtz filter replaced by the compact filter

gα(x) =
1

2α
χ[−α,α](x).

These modified schemes appear to be even more unstable. The approximations by
(4.7) turn out to be much more oscillatory than those of the same scheme with the
Helmholtz filter and the middle state of the height in Riemann Problem (4.17) is
not correct either. The approximations with the modified scheme (4.41) are very
oscillatory and tend to blow up for many choices of α and N. Nevertheless, the
middle state of the height in the approximation to Riemann Problem (4.17) seems to
be at the correct level.

88



4.5. The effect of filtering variables in finite volume schemes

Remark 4.3 Another conservative regularization of the shallow water equations
which we have tested is

ht + qx = 0, (4.51a)

qt + qvx + vqx + hhx = 0, (4.51b)

which can be written in terms of the filtered quantities as

ht + qx = 0, (4.52a)

qt +

(
qv +

h
2

2

)
x
= −3α2

(
qxvx +

h
2
x

2

)
x
. (4.52b)

In a similar way, we used finite differences and spectral methods to approximate
the above equations. In contrast to the approximations to (4.37), (4.38), (4.39) and
(4.40), we obtain a wrong middle state for the height in initial value problem (4.17).
Hence conservation of the mass and the momentum by the regularized equation is
not enough to guarantee convergence to the exact solution.

4.5 The effect of filtering variables in finite volume
schemes

The numerical results of the previous sections of this chapter have not con-
vinced us that filtering variables in the non-conservative forms of the shal-
low water equations (4.1) is a useful technique to regularize the equations.
For this reason we investigate a different approach in this section, that is we
filter the velocity v in the conservative form of the shallow water equations
(4.1), (

h
q

)
t
+

(
vh

v2h + h2

2

)
x
= 0 (4.53a)(

h
q

)
(x, 0) =

(
h0
q0

)
(x), (4.53b)

v(x) = gα ∗ v(x), (4.53c)

where gα is either the Helmholtz filter (4.4) or the normalized characteristic
function of the interval [−α, α],

gα(x) =
1

2α
χ[−α,α](x),

which we will call box filter in the following. We have conducted numerical
experiments for these equations using a standard finite volume scheme with
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4. Numerical experiments with the shallow water equations

Roe flux, and v filtered in the flux function. This means that we are adding
numerical diffusion at meshsize ∆x, i.e. we are approximating (4.53) as the
limit µ→ 0 of (

h
q

)
t
+

(
vh

v2h + h2

2

)
x
= µ

(
B(u)ux

)
x, (4.54)

where
(
B(u)ux

)
x is a viscosity term and µ is of size ∆x in the numerical

scheme. Specifically, we apply the scheme in flux form (4.46) with Fj+1/2
defined as

Fj+1/2 =
f (uj+1) + f (uj)

2
− 1

2
|Âj+1/2|(uj+1 − uj) (4.55)

where Âj+1/2 is the Roe matrix and

f (uj)(t) :=

(
vjhj

v2
j hj + h2

j /2

)
(t),

vj :=
(
(I− α2D2)−1v(t)

)
j.

Figure 4.30: Numerical approximation of the initial value problem (4.14) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.1, 1600 meshpoints.

The numerical experiments show that, if we choose α large in comparison
to the meshsize ∆x, the approximations have a very different behavior than
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Figure 4.31: Numerical approximation of the initial value problem (4.14) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.01, 1600 meshpoints.

Figure 4.32: Numerical approximation of the initial value problem (4.15) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.1, 1600 meshpoints.
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4. Numerical experiments with the shallow water equations

Figure 4.33: Numerical approximation of the initial value problem (4.15) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.01, 1600 meshpoints.

Figure 4.34: Numerical approximation of the initial value problem (4.16) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.1, 1600 meshpoints.
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4.6. Conclusions

Figure 4.35: Numerical approximation of the initial value problem (4.16) by Scheme (4.46) with
(4.55) and the Helmholtzfilter at time T = 1. α = 0.01, 1600 meshpoints.

the exact solution. They show large oscillations which become smaller in
amplitude and restrict to a smaller area as α decreases. However, the ap-
proximation seems to converge to the exact solution as α decreases (except
in the case of the dam break problem (4.16), where the standard Roe scheme
without entropy fix gives a wrong solution). This is probably because for
small α the numerical diffusion of the Roe scheme dominates. The scheme
with the box filter gives only stable approximations for small α. Interestingly,
for very small α (corresponding to a support of three cells of the box filter),
we obtain a better approximation of the correct solution of the dam break
problem (4.16) in the region arount x = 0 than the Roe scheme gives, which
can be observed in Figure 4.36. Apart from this last example, it seems that
filtering the velocity in the conservative form of the shallow water equations
(4.1) results in a very different behavior compared to the one we expect from
the solution of the shallow water equations.

4.6 Conclusions

We have conducted experiments with numerical schemes for several modi-
fications of the shallow water equations with nonlocal quantities. In most
cases the averaging of quantities fails to stabilize the numerical schemes if
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4. Numerical experiments with the shallow water equations

Figure 4.36: Numerical approximation of the initial value problem (4.16) by Scheme (4.46) with
(4.55) and the box filter at time T = 1. α = 0.005625, 1600 meshpoints.

shocks develop in the solution and more importantly, for most schemes the
approximations do not converge to the exact solution of the equations. We
have only obtained meaningful approximations of Riemann Problem 1 with
the numerical schemes for (4.37) and (4.38). These equations satisfy con-
servation of the mass and the momentum but still, this cannot be the only
reason for the better approximation as numerical experiments conducted
for other conservative modifications of the shallow water equations have
shown. Moreover, these schemes fail to capture the correct behavior of the
solution in the case of the dam break problem (4.16) too. A reason for the
incorrect behavior of most of the approximations could be that the differ-
ent ’regularizations‘ of the shallow water equations are based on the non-
conservative forms (4.2) and (4.3) of the equations. It has been observed
previously that this constitutes also a problem for viscous regularizations of
non-conservative systems insofar as different numerical diffusion operators
yield different behavior of the approximated solutions [11]. Furthermore,
we have already observed in Chapter 2 in the case of the scalar equation

uα
t + f ′(uα)uα

x = 0,

for a general flux f , that the limit function u obtained when letting α → 0
is not automatically a weak solution of inviscid Burgers’ equation since the
shock speed can be wrong. The same issue might occur here.
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4.6. Conclusions

From the experiments in Section 4.5 we conclude that even filtering in the
conservative form of the equations can result in totally different behavior of
the solution.
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Chapter 5

Conclusions

We have analyzed the convectively filtered Burgers’ equation in Chapter 2
and found that the limit u of its solutions (uα)α>0 cannot satify an entropy
inequality owing to the time reversibility of the equation. In spite of this,
it has been conjecuted that the sequence (uα)α>0 converges to the entropy
solution if the initial data is continuous. We have not made advances in
terms of proving this conjecture.

In Section 2.2 we show the non-existence of an L1-contraction estimate which
is uniform with respect to α, by presenting a counterexample. This implies
that it is very hard to find a numerical scheme which converges indepen-
dently of the parameter α to the exact solution. An open question remains
whether there exists a contraction estimate with respect to the L∞-norm of
the initial data, such as (2.26).

In Chapter 3 we investigate the CFB equation with a particular filter depend-
ing on time trying to overcome the reversibility of the equation which made
convergence to the entropy solution impossible. We have found that the se-
quence of solutions (uα)α>0 of this equation converges to a weak solution of
Burgers’ equation but that this limit does not necessarily satisfy the entropy
inequality either.

Having seen that the solution of the CFB equation converges at least to a
weak solution of Burgers’ equation, we wanted to know whether similar
facts hold for systems of conservation laws with filtered solution quantities.
We have investigated this question numerically for the particular case of
the shallow water equations. We have found that for most of the tested
modifications of the system with filtered solution quantities, this does not
seem to be the case. Furthermore, some of the tested models even fail to
regularize the solution of the conservation law in the sense that they would
smoothen discontinuities present in the solution of the unfiltered system.
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5. Conclusions

That finding the ’right‘ regularization with filtered variables can be a delicate
issue, has already been indicated in Section 2.4 where we have found that
the solution to Equation (2.29a) with filtered derivative of the flux function
does not converge to a weak solution of the corresponding conservation law
when letting α→ 0.

In summary, the results of this thesis indicate that filtering of variables might
not be an appropriate way of regularizing the solutions to systems of con-
servation laws.

Open questions

As we have already mentioned, the question whether the solutions uα of the
convectively filtered Burgers’ equation converge to the entropy solution of
Burgers’ equation if the initial data is continuous has remained unanswered.
Connected to this is the question whether there exists a stability estimate of
the form (2.26). This could be helpful for finding a numerical method for
the convectively filtered Burgers’ equation which converges independently
of α.

As far as the numerical methods for the shallow water equations are con-
sidered, it would be interesting to further investigate the reasons why cer-
tain numerical methods yield good approximations and others do not. This
could provide more insight into the effect of filtering variables in systems of
conservation laws. Moreover, we have not tested numerical methods for the
shallow water system which base on the Riemann invariants of the equations
yet. They might prove to be more suitable for approximating the solution
of the system than the finite difference and spectral methods employed in
Chapter 4.
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Appendix A

First order scheme for the convectivley
filtered Burgers’ equation

In this section, we propose a first order numerical scheme to approximate
the convectively filtered Burgers’ equation and show its convergence. We
restate the convectively filtered Burgers’ equation:

uα
t + uαuα

x = 0, (x, t) ∈ R× (0, T), (A.1a)
uα = uα ∗ gα, (x, t) ∈ R× (0, T), (A.1b)

uα(x, 0) = u0(x), x ∈ R, (A.1c)

where

gα(x) =
1
α

g
(

x
α

)
is a nonnegative, even, decreasing (with respect to the absolute value of the
argument) function with

∫
g = 1, and the initial data u0 ∈ L∞(R) ∩ BV(R) .

We discretize the spatial domain by an equidistant grid with gridpoints de-
noted by xj+ 1

2
, j ∈ Z, cell midpoints denoted by xj = j∆x, j ∈ Z, where ∆x is

the size of a cell. For ∆t chosen such that it satisfies a CFL-condition which
we will specify later, we denote by tn = n ∆t, n = 0, . . . , N; N ∆t = T, the
discretization in time. We denote by un

j an approximation of uα(xj, tn) and
by un

j an approximation of uα(xj, tn). In particular, we approximate uα(xj, tn)
by the midpoint rule:

un
j =

∆x
α ∑

l∈N

g
(

xj − xl

α

)
un

l . (A.2)

As a CFL-condition, we choose at time t = tn

sup
j
|un

j |
∆t
∆x
≤ 1

3
(A.3)
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A. First order scheme for the convectivley filtered Burgers’ equation

Then we consider the following finite difference scheme:

un+1
j =

1
2
(un

j−1 + un
j+1)−

∆t
2 ∆x

un
j (u

n
j+1 − un

j−1). (A.4)

From the approximations un
j , we define the piecewise constant function

u∆x(x, t) = un
j , (x, t) ∈ [xj−1/2, xj+1/2)× [tn, tn+1). (A.5)

Proposition A.1 Under the CFL-condition (A.3), Scheme (A.4) is conservative
and for u0 ∈ L∞(R) maximum preserving independently of α. If u0 ∈ BV(R), it
is total variation bounded with a bound depending on α, i.e.

TV(un) ≤ Cα TV(u0),

Furthermore, if we choose u0 ∈ C2
b(R) and g ∈ C2

b(R) ∩W2,1(R), u∆x(·, T),
defined in (A.5), converges uniformly to uα(·, T), as ∆x → 0:

|u∆x(x, T)− uα(x, T)| ≤ C∆x, x ∈ R,

where C is a constant depending on α, T, g and ‖u0‖C2(R), and ‖ · ‖C2(R) is the
norm in C2(R), that is ‖ f ‖C2(R) := max{supx∈R | f (x)|, supx∈R | f ′(x)|, supx∈R | f ′′(x)|}.
Moreover, in this case we have that the first and the second differences (un

j −
un

j−1)/∆x, (un
j+1 − 2un

j + un
j−1)/∆x2 respectively, are bounded independently of

∆x with a bound depending on the initial data,

|un
j − un

j−1|
∆x

≤ Cα,u0,T ‖u0‖C1 ,
|un

j+1 − 2un
j + un

j−1|
∆x2 ≤ C̃α,u0,T,g‖u0‖C2

j ∈ Z, n = 1, . . . , N and ‖ · ‖C1 is the norm on C1(R).

Proof Conservation of ∆x ∑j un
j

We show that the discrete quantity ∆x ∑j un
j which approximates the integral∫

uα(x, tn)dx is conserved at every time step. Inserting the right-hand side
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of (A.4) for un+1
j , we have

∑
j

un+1
j =

1
2 ∑

j
(un

j+1 + un
j−1)−

∆t
2∆x ∑

j
un

j (u
n
j+1 − un

j−1)

= ∑
j

un
j −

∆t
2∆x ∑

j
∆x ∑

l
gα(xj − xl) un

l (u
n
j+1 − un

j−1)

= ∑
j

un
j −

∆t
2 ∑

j
∑

l
gα(∆x(j− l)) un

l (u
n
j+1 − un

j−1)

= ∑
j

un
j −

∆t
2 ∑

j
∑

l
(gα(∆x(j− 1− l))− gα(∆x(j + 1− l)))un

l un
j

= ∑
j

un
j −

∆t
2

(
∑
j,l

gα(∆x(j− 1− l))un
l un

j −∑
j,l

gα(∆x(j + 1− l))un
l un

j

)
= ∑

j
un

j −
∆t
2

(
∑
j,l

gα(∆x(−j + 1 + l))un
l un

j −∑
j,l

gα(∆x(j + 1− l))un
l un

j

)
= ∑

j
un

j −
∆t
2

(
∑
j,l

gα(∆x(j + 1− l))un
j un

l −∑
j,l

gα(∆x(j + 1− l))un
l un

j

)
= ∑

j
un

j

where we used the symmetry of g in the sixth equation and exchanged the
summation indices j and l in the second sum of the seventh equation.

Maximum principle:

In order to show that the maximum is preserved, we rewrite the scheme in
the following incremental form:

un+1
j = un

j + Cn
j+ 1

2
(un

j+1 − un
j )− Dn

j− 1
2
(un

j − un
j−1), (A.6)

where

Cn
j+ 1

2
=

1
2
− ∆t

2∆x
un

j , Dn
j+ 1

2
=

1
2
+

∆t
2∆x

un
j+1, (A.7)

j ∈N and n = 0, . . . , N. We observe that, thanks to (A.3),

Cn
j+ 1

2
, Dn

j+ 1
2
≥ 0 and Cn

j+ 1
2
+ Dn

j− 1
2
≤ 1. (A.8)
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A. First order scheme for the convectivley filtered Burgers’ equation

Hence by (A.6) and (A.8) inductively

|un+1
j | ≤ (1− Cn

j+ 1
2
− Dn

j− 1
2
)|un

j |+ Cn
j+ 1

2
|un

j+1|+ Dn
j− 1

2
|un

j−1|

≤ (1− Cn
j+ 1

2
− Dn

j− 1
2
)max{|un

j−1|, |un
j |, |un

j+1|}

+ Cn
j+ 1

2
max{|un

j−1|, |un
j |, |un

j+1|}+ Dn
j− 1

2
max{|un

j−1|, |un
j |, |un

j+1|}

= max{|un
j−1|, |un

j |, |un
j+1|}

≤ · · · ≤ sup
j
|u0

j | ≤ ‖u0‖L∞(R).

This means that the CFL-condition (A.3) will be satisfied in every time step if
it is initially satisfied and it is justified to choose the same timestep ∆t = c∆x
for all n.

Bound on the total variation

We consider again the scheme in the incremental form (A.6). We have

|1− Cn
j+ 1

2
− Dn

j+ 1
2
| = ∆t

2∆x
|un

j − un
j+1|

≤ ∆t
2∆x

2∆x
α

∣∣∣∣∑
l

(
g
(

xj − xl

α

)
− g
(

xj+1 − xl

α

))
un

l

∣∣∣∣
≤ ∆t

α ∑
l

∣∣∣∣g( xj − xl

α

)
− g
(

xj+1 − xl

α

)∣∣∣∣ sup
k
|un

k |

≤ ∆t
α ∑

l

∣∣∣∣g( xl

α

)
− g
(

xl + ∆x
α

)∣∣∣∣ sup
k
|un

k |

≤ ∆t
α

TV(g) sup
k
|un

k |

≤
∆t Cg

α
sup

k
|u0

k | (A.9)

using the beforehand proved bound on the maximum. We rewrite the differ-
ence un+1

j+1 − un+1
j in terms of the incremental coefficients

un+1
j+1 − un+1

j =
(
1− Cn

j+ 1
2
− Dn

j+ 1
2

)
(un

j+1 − un
j )

+ Cn
j+ 3

2
(un

j+2 − un
j+1) + Dn

j− 1
2
(un

j − un
j−1). (A.10)
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Hence

TV(un+1) = ∑
j
|un+1

j+1 − un+1
j |

= ∑
j
|(1− Cn

j+ 1
2
− Dn

j+ 1
2
)(un

j+1 − un
j )

+ Cn
j+ 3

2
(un

j+2 − un
j+1) + Dn

j− 1
2
(un

j − un
j−1)|

≤∑
j

(
|1− Cn

j+ 1
2
− Dn

j+ 1
2
| |un

j+1 − un
j |

+ Cn
j+ 3

2
|un

j+2 − un
j+1|+ Dn

j− 1
2
|un

j − un
j−1|
)

≤∑
j

(
|1− Cn

j+ 1
2
− Dn

j+ 1
2
|+ Cn

j+ 1
2
+ Dn

j+ 1
2

)
|un

j+1 − un
j |

= ∑
j

(
∆t

2∆x
(
|un

j − un
j+1| − un

j + un
j+1
)
+ 1
)
|un

j+1 − un
j |

≤∑
j

(
2∆t Cg

α
sup

k
|u0

k |+ 1
)
|un

j+1 − un
j |

= TV(un) ·
(

2∆t Cg

α
sup

k
|u0

k |+ 1
)

using (A.9). Iterating over n, we obtain

TV(un) ≤
(

2∆t Cg

α
sup

k
|u0

k |+ 1
)n

· TV(u0)

≤ exp
{

2∆t Cg

α
sup

k
|u0

k | · n
}
· TV(u0)

≤ exp
{Cg,u0 T

α

}
· TV(u0)

≤ Cα,u0,T TV(u0), (A.11)

where we used (1 + x) ≤ ex, x ∈ R, in the second inequality.

Bounds on the first and second differences

Bound on the first difference un
j+1 − un

j :
We start by bounding the first difference un

j+1− un
j in terms of the maximum
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A. First order scheme for the convectivley filtered Burgers’ equation

of the first derivative of the initial data. By (A.7), (A.9) and (A.10) we have

|un+1
j+1 − un+1

j | ≤
2∆t Cg

α
sup

k
|u0

k | |un
j+1 − un

j |

+ Cn
j+ 3

2
|un

j+2 − un
j+1|+ Dn

j− 1
2
|un

j − un
j−1|

≤
(

2∆t Cg

α
sup

k
|u0

k |+ 1 +
∆t

2∆x
(un

j+1 − un
j )

)
·max{|un

j+2 − un
j+1|, |un

j+1 − un
j |, |un

j − un
j−1|}

≤
(

4∆t Cg

α
sup

k
|u0

k |+ 1
)

·max{|un
j+2 − un

j+1|, |un
j+1 − un

j |, |un
j − un

j−1|}.

We iterate over n and use (1 + x) ≤ ex, x ∈ R, in the same way as in the
proof of the TV-bound to obtain

|un
j+1 − un

j | ≤
(

4∆t Cg

α
sup

k
|u0

k |+ 1
)n

· sup
k
|u0

k+1 − u0
k |

≤ exp
(Cg,u0 T

α

)
· sup

k
|u0

k+1 − u0
k |

≤ Cα,u0,T ∆x‖u0‖C1 (A.12)

where ‖u0‖C1 = max{supx∈R |u0(x)|, supx∈R |(u0)′(x)|}.

Estimates on |un
j+1 − un

j |:
In a second step, we bound the difference of the approximation of the fil-
tered velocity. We can estimate |un

j+1 − un
j | in different ways. We can use

|un
j+1 − un

j | =
∣∣∣∆x ∑

l
gα(xj+1 − xl)− gα(xj − xl))un

l

∣∣∣
≤ ∆x ∑

l
|gα(xj+1 − xl)− gα(xj − xl)| sup

k
|un

k |

= ∆x TV(gα) sup
k
|un

k |

=
∆x
α

TV(g) sup
k
|un

k | (A.13)

or

|un
j+1 − un

j | =
∣∣∣∆x ∑

l
(gα(xl)(un

j+1−l − un
j−l)
∣∣∣

≤ ∆x |gα(0)|∑
l
|un

j+1−l − un
j−l |

=
∆x
α
|g(0)|TV(un) (A.14)
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or

|un
j+1 − un

j | =
∣∣∣∆x ∑

l
(gα(xl)(un

j+1−l − un
j−l)
∣∣∣

≤ ∆x ∑
l
|gα(xl)| sup

k
|un

k+1 − un
k |

≤ ‖g‖L1(R) sup
k
|un

k+1 − un
k | (A.15)

to bound the first difference of the filtered velocity. Estimates (A.13), (A.14)
and (A.15) are independent of the numerical scheme used to discretize the
first equation in (A.1).

Bound on the second difference (un
j+1 − 2un

j + un
j−1):

Now we are ready to bound the second difference (un
j+1 − 2un

j + un
j−1). We

rewrite it in terms of our finite difference scheme

un+1
j+1 − 2un+1

j + un+1
j−1 =

1
2
(
un

j+2 − 2un
j+1 + un

j + un
j − 2un

j−1 + un
j−2
)

− ∆t
2∆x

{
un

j+1(u
n
j+2 − un

j )− 2un
j (u

n
j+1 − un

j−1) + un
j−1(u

n
j − un

j−2)
}

. (A.16)

Adding and subtracting terms, the second part on the right hand side of
(A.16) can be rewritten as

un
j+1(u

n
j+2 − un

j )− 2un
j (u

n
j+1 − un

j−1) + un
j−1(u

n
j − un

j−2)

= (un
j+1−un

j−1)

(un
j+2 − 2un

j+1 + un
j

2
+un

j+1− 2un
j +un

j−1 +
un

j − 2un
j−1 + un

j−2

2

)
+

(un
j+1 + un

j−1

2

)(
(un

j+2 − 2un
j+1 + un

j )− (un
j − 2un

j−1 + un
j−2)

)
+ (un

j+1 − 2un
j + un

j−1)(u
n
j+1 − un

j−1) (A.17)

On the right hand side of (A.17) we recognize a discrete version of uxuxx,
uuxxx and uxxux. We estimate (un

j+1 − 2un
j + un

j−1):

|un
j+1 − 2un

j + un
j−1| =

∣∣∣∆x ∑
l

gα(xl)(un
j+1−l − 2un

j−l + un
j−1−l)

∣∣∣
≤ ∆x ∑

l
|gα(xl)| sup

k
|un

k+1 − 2un
k + un

k−1|

≤ ‖g‖L1(R) sup
k
|un

k+1 − 2un
k + un

k−1|

Thus we can bound the third term on the right-hand side of (A.17),

|(un
j+1 − 2un

j + un
j−1)(u

n
j+1 − un

j−1)|
≤ |un

j+1 − un
j−1|‖g‖L1(R) sup

k
|un

k+1 − 2un
k + un

k−1|

≤ Cα,u0,T ∆x‖u0‖C1‖g‖L1(R) sup
k
|un

k+1 − 2un
k + un

k−1|, (A.18)
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A. First order scheme for the convectivley filtered Burgers’ equation

where we used the bound on the first difference, (A.12) in the second in-
equality. For the first term on the right-hand side of (A.17), we have by
(A.13)

(un
j+1− un

j+1)

(un
j+2 − 2un

j+1 + un
j

2
+ un

j+1− 2un
j + un

j−1 +
un

j − 2un
j−1 + un

j−2

2

)
≤ ∆x

α
TV(g) sup

k
|un

k | sup
k
|un

k+1 − 2un
k + un

k−1|

≤ ∆x
α

TV(g) ‖u0‖L∞ sup
k
|un

k+1 − 2un
k + un

k−1| (A.19)

So, what is left to bound on the right-hand side of (A.16) is the term

A :=
1
2
(
un

j+2 − 2un
j+1 + un

j + un
j − 2un

j−1 + un
j−2
)

− ∆t
2∆x

(un
j+1 + un

j−1

2

)(
(un

j+2 − 2un
j+1 + un

j )− (un
j − 2un

j−1 + un
j−2)

)
=

(
1
2
− ∆t

2∆x

(un
j+1 + un

j−1

2

))(
un

j+2 − 2un
j+1 + un

j
)

+

(
1
2
+

∆t
2∆x

(un
j+1 + un

j−1

2

))(
un

j − 2un
j−1 + un

j−2
)

(A.20)

Thanks to the CFL-condition (A.3),

1
2
± ∆t

2∆x

un
j+1 + un

j−1

2
≥ 0

and we can take absolute values in Equation (A.20) and the supremum over
all k ∈N to obtain

|A| ≤ sup
k
|un

k+1 − 2un
k + un

k−1| (A.21)

Combining (A.18), (A.19) and (A.21), we get

|un+1
j+1 − 2un+1

j + un+1
j−1 |

≤
(

1+
∆t
2

(
‖g‖L1(R) Cα,u0,T ‖u0‖C1 +

2
α

TV(g) ‖u0‖L∞

))
sup

k
|un

k+1− 2un
k +un

k−1|

≤
(

1 +
∆t
2

Cα,u0,T,g

)
sup

k
|un

k+1 − 2un
k + un

k−1|

Using induction over n and (1 + x) ≤ ex, x ∈ R, in the same way as we did
in order to bound the total variation and the first difference in (A.12), we
obtain

|un
j+1 − 2un

j + un
j−1| ≤ exp

(
Cα,u0,T,g T

)
· sup

k
|u0

k+1 − 2u0
k + u0

k−1|

≤ C̃α,u0,T,g∆x2‖u0‖C2 (A.22)
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First order accuracy

Truncation error:
We denote by ũn

j := uα(xj, tn) the exact solution of (A.1) at (x, t) = (xj, tn),
j ∈ N, n = 0, . . . , N; and by Hn−m

j (ũm), 0 ≤ m ≤ n the approximation
computed at (x, t) = (xj, tn) by n − m steps with Scheme (A.4) from the
exact solution at time t = tm. Then the local truncation error of the scheme
is defined as

τj,n :=
1

∆t

(
ũn+1

j − Hj(ũn)
)

.

We denote

ûn
j := (gα ∗ uα)(xj, tn)

the exact convolution of the filter gα with uα and

ũ
n
j :=

∆x
α ∑

l∈N

g
(

xj − xl

α

)
ũn

l .

the approximated convolution. Then, since by Taylor’s Theorem∫ xl+1/2

xl−1/2

gα(xj − y)uα(y) dy =
∫ xl+1/2

xl−1/2

(
gα(xj − xl)uα(xl)

+ (y− xl)(gα(xj − xl)uα(xl))x +
(y− xl)

2

2
(gα(xj − ξy)uα(ξy))xx

)
dy

= ∆xgα(xj − xl)uα(xl) +
∫ xl+1/2

xl−1/2

(y− xl)
2

2
(gα(xj − ξy)uα(ξy))xx dy,

where ξy ∈ [xl−1/2, xl+1/2], we have

|ûn
j − ũ

n
j | =

∣∣∣∫ gα(xj − y)uα(y) dy− ∆x
α ∑

l∈N

g
(

xj − xl

α

)
ũn

l

∣∣∣
=
∣∣∣∑

l

(∫ xl+1/2

xl−1/2

gα(xj − y)uα(y) dy− ∆x
α

g
(

xj − xl

α

)
ũn

l

)∣∣∣
=
∣∣∣∑

l

∫ xl+1/2

xl−1/2

(y− xl)
2

2
(gα(xj − ξy)uα(ξy))xx dy

∣∣∣
≤∑

l

∣∣∣∫ xl+1/2

xl−1/2

(y− xl)
2

2
(gα,xx(xj − ξl)uα(ξl)

+ gα,x(xj − ξl)uα
x(ξl) + gα(xj − ξl)uα

xx(ξl)) dy
∣∣∣

≤ Cα‖u0‖C2 ∆x2 ∑
l

∫ xl+1/2

xl−1/2

|gα,xx(xj − ξl)|+ |gα,x(xj − ξl)|+ |gα(xj − ξl)|dy

≤ C̃α‖u0‖C2 ∆x2‖gα‖W2,1(R)

= Cα,g,T,u0 ∆x2,
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A. First order scheme for the convectivley filtered Burgers’ equation

where we have used that uα
x, uα

xx are bounded in terms of the first and second
derivative of the initial data (see Chapter 2) in the third inequality. Using
this, Taylor expansion and that uα satisfies Equation (A.1a), we can write
ũn+1

j as

ũn+1
j = ũn

j + ∆t (ũn
j )t +

∆t2

2
uα

tt(xj, ξ), ξ ∈ [tn, tn+1]

= ũn
j − ∆t ûn

j (ũ
n
j )x +O(∆t2)

= ũn
j − ∆t ũ

n
j (ũ

n
j )x +O(∆t2, ∆x2∆t uα

x)

= ũn
j − ∆t ũ

n
j (ũ

n
j )x +O(∆t∆x), (A.23)

since uα
x is bounded in terms of the derivative of u0 and we can rewrite uα

tt
by differentiating Equation (A.1a),

uα
tt = −(uαuα

x)t

= −uα
t uα

x − uαuα
xt

= uαuα
xuα

x + uα(uαuα
x)x,

which is bounded in terms of the first and second derivatives of the initial
data u0. For the approximation H(ũn

j ) and some ξ1, ξ2 ∈ [xj−1, xj+1], we have

Hj(ũn) =
ũn

j−1 + ũn
j+1

2
− ∆t

2∆x
ũ

n
j (ũ

n
j+1 − ũn

j−1)

= ũn
j +

∆x2

4
(uα

xx(ξ1, tn) + uα
xx(ξ2, tn))

− ∆t
2∆x

ũ
n
j

(
2∆x(ũn

j )x +
∆x2

2
(uα

xx(ξ1, tn)− uα
xx(ξ2, tn)

)
= ũn

j − ∆tũ
n
j (ũ

n
j )x +O(∆x∆t), (A.24)

again, because uα
xx is bounded in terms of the first and second derivatives of

the initial data u0 and by the CFL-condition ∆t = c∆x. We subtract (A.24)
from (A.23) to obtain

τj,n ≤ Cα∆x. (A.25)

Hence our scheme is consistent.

Stability:
We denote en

j = |ũn
j − Hn

j (ũ
0)| the error at time t = tn and En = supk en

k .
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Note that en
j ≤ 2 max{|ũn

j |, |Hn
j (ũ

0)} ≤ 2‖u0‖L∞ Then we have

Hj(ũn + en)− Hj(ũn)

=
en

j−1 + en
j+1

2
− ∆t

2∆x
(ũ

n
j + en

j )(ũ
n
j+1 + en

j+1 − ũn
j−1 − en

j−1) +
∆t

2∆x
ũ

n
j (ũ

n
j+1 − ũn

j−1)

=

(
1
2
− ∆t

2∆x
(ũ

n
j + en

j )

)
en

j+1 +

(
1
2
+

∆t
2∆x

(ũ
n
j + en

j )

)
en

j−1 −
∆t

2∆x
en

j (ũ
n
j+1 − ũn

j−1)

=

(
1
2
− ∆t

2∆x
(ũ

n
j + en

j )

)
en

j+1 +

(
1
2
+

∆t
2∆x

(ũ
n
j + en

j )

)
en

j−1

− ∆t
2∆x

en
j

(
2∆x(ũn

j )x +
∆x2

2
(uα

xx(ξ1, tn)− uα
xx(ξ2, tn)

)
,

ξ1, ξ2 ∈ [xj−1, xj+1]. We use the CFL-condition, en
j ≤ En, and that the first

and the second derivative of uα are bounded in terms of the derivatives of
the initial data, to estimate the last term by

|Hj(ũn + en, )− Hj(ũn)| ≤
(
1 + Cα,u0,T ∆x‖u0‖C1

)
En. (A.26)

First order accuracy: We decompose the error at time tn, use the estimate on
the truncation error (A.25) and the stability estimate (A.26), to obtain

en
j = |ũn

j − Hn
j (ũ

0)|
≤ |ũn

j − Hj(ũn−1)|+ |Hj(ũn−1)− Hn
j (ũ

0)|
≤ |ũn

j − Hj(ũn−1)|+ |Hj(ũn−1)− Hj(ũn−1 + en−1)|
≤ C1∆x∆t +

(
1 + C2 ∆x

)
En−1.

Thus

En ≤ C1∆x∆t +
(
1 + C2 ∆x

)
En−1. (A.27)

Using induction over the number of timesteps n, we compute

En ≤ C1∆x∆t
n−1

∑
m=0

(1 + C2 ∆x
)m

≤ C1∆x∆t
(1 + C2 ∆x

)n − 1
C2∆x

≤ C1∆x
C2

exp{nC2 ∆x}

= C3∆x exp{C4tn}

where we used the CFL-condition ∆t = c∆x in the third inequality. So,

EN ≤ ∆x exp{C T}
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A. First order scheme for the convectivley filtered Burgers’ equation

where C is a constant depending on ‖u0‖C2 , α, T and g. Since we are assum-
ing that u0 ∈ C2(R), we have for x ∈ [xj−1/2, xj+1/2],

|uα(x, T)− uα(xj, T)| ≤ ∆x Cα,T,g,u0

and thus finally

|u∆x(x, T)− uα(x, T)| ≤ ∆x Cα,T,g,u0 . �

Remark A.2 The bound on the total variation of the approximation at time T,
(A.11), is useless in the limit α → 0. In spite of this, we know that the total
variation of the solution to equations (A.1) at any time is bounded by the total
variation of the initial data, uniformly in α. Numerical experiments indicate that
the approximations computed with Scheme (A.4) might not share this property in
the limit α → 0. In particular, we have tested the scheme for α = 0 on the domain
[0, 2π) with periodic boundary conditions and the following type of initial data:

u0(x) = χ((kx) mod (2π))<π(x), x ∈ [0, 2π), k ∈N, (A.28)

where c = a mod b is defined by a = n · b + c, n ∈ N, |c| < |a| and c > 0. We
choose the time step ∆t = 0.15 ∆x, which satisfies the CFL-condition (A.3) and
compute the approximation at time T = 0.4.

Figure A.1: The initial data (A.28) for k = 10 and 800 meshpoints in the interval [0, 2π).
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Figure A.2: Numerical approximation at time T = 0.4 computed with Scheme (A.4) for α = 0
and the initial data (A.28), k = 10, 800 meshpoints.

Nx\k 1 5 10 20

200 1.7005 1.5273 0.7637 1.0353

400 2.5831 3.0915 1.7893 0.7807

800 4.5593 6.0676 4.6425 1.8864

1600 9.579 13.006 12.227 6.0916

Table A.1: The ratio TV(uN)/TV(u0) for the approximations of the initial value problem (A.28)
by Scheme (A.4) for different k, different numbers of meshpoints Nx and fixed T = 0.4.

In Figure A.3, we see that the total variation of the approximation increases in time
for k = 10 and 800 meshpoints. The initial data and the corresponding approxima-
tion can be seen in Figures A.1 and A.2.

If the approximation computed by Scheme (A.4) satisfied a bound

∑
j
|uN

j − uN
j−1| ≤∑

j
|u0

j − u0
j−1|,

for all α > 0, then it would also be satisfied for the limit case α = 0. The numerical
experiments show that this is not necessarily the case. The computed ratios in Table
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A. First order scheme for the convectivley filtered Burgers’ equation

Figure A.3: Change of the total variation of the approximation by Scheme (A.4) to (A.28) with
k = 10 in time computed on a mesh with 800 points.

A.2 indicate that maybe not even a bound of the form

∑
j
|uN

j − uN
j−1| ≤ CT ∑

j
|u0

j − u0
j−1|,

where CT is a constant not depending on α and ∆x, is available.

We could instead have used the scheme

un+1
j =

1
2
(un

j−1 + un
j+1)−

∆t
2 ∆x

(
un

j+1/2(u
n
j+1 − un

j ) + un
j−1/2(u

n
j − un

j−1)
)
,

(A.29a)

un
j±1/2 =

∆x
α ∑

l∈N

g
(

xj±1/2 − xl

α

)
un

l . (A.29b)

j ∈ Z, n = 0, . . . , N, which can be shown to be total variation diminishing and
mass conserving independently of α. However, the bound on the maximum norm
is depending on the parameter α. For fixed α, the approximations computed by this
scheme converge to the solution of (A.1) as ∆x → 0, which can be shown in a
similar way as it was done for Scheme (A.4) in the proof of Proposition A.1.

112



Bibliography

[1] H. S. Bhat and R. C. Fetecau. A Hamiltonian Regularization of the
Burgers Equation. Journal of Nonlinear Science, 16:615–638, 2006.

[2] H. S. Bhat and R. C. Fetecau. The Riemann problem for the Leray-
Burgers equation. Journal of Differential Equations, 246:3957–3979, 2009.

[3] H. S. Bhat, R. C. Fetecau, and J. Goodman. A Leray-type regularization
for the isentropic Euler equations. Nonlinearity, 20:2035–2046, 2007.

[4] V. I. Bogachev. Measure Theory. Springer-Verlag, 2007.

[5] A. Cheskidov, D. D. Holm, E. Olson, and E. S. Titi. On a Leray alpha
model of turbulence. In Proceedings of the Royal Society A, volume 461,
pages 629–649, 2005.

[6] G. M. Coclite and K. H. Karlsen. Hamiltonian Approximation of En-
tropy Solutions of the Burgers Equation. In Proceedings of HYP 2010, to
appear.

[7] G. M. Coclite, K. H. Karlsen, S. Mishra, and N. H. Risebro. A hyperbolic-
elliptic model of two-pase flow in porous media – Existence of entropy
solutions. SAM Report 6, ETH Zürich, February 2011.
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