Term Project/Semesterarbeit (Computational Science \& Engineering)

Supervisor: Prof. Dr. R. Hiptmair (SAM, D-MATH)

Numerical Simulation of Harmonic Map Heat Flow

1 Governing equations

Harmonic map heat flow refers to the gradient flow of the Dirichlet functional for vector fields of unit length. On a given computational domain $\Omega \subset \mathbb{R}^{2}$ and for a given period of time $] 0, T[, T>0$, this results in the evolution equations for $\mathbf{m}=\mathbf{m}(t, \mathbf{x}):] 0, T\left[\times \Omega \mapsto \mathbb{R}^{3}\right.$:

$$
\begin{align*}
\frac{\partial \mathbf{m}}{\partial t} & =\mathbf{m} \times(\Delta \mathbf{m} \times \mathbf{m}) \quad \text { in }] 0, T[\times \Omega \\
\mathbf{m}(0) & =\mathbf{m}_{0} \quad \text { in } \Omega \tag{1}\\
\frac{\partial \mathbf{m}}{\partial \mathbf{n}} & =0 \quad \text { on }] 0, T[\times \partial \Omega
\end{align*}
$$

The underlying energy is

$$
\begin{equation*}
\mathcal{E}(\mathbf{m})=\frac{1}{2} \int_{\Omega}|\nabla \mathbf{m}|^{2} \mathrm{~d} \mathbf{x} \tag{2}
\end{equation*}
$$

where $\nabla \mathbf{m}$ designates the Jacobi matrix of \mathbf{m} and $|\nabla \mathbf{m}|$ gives its Frobenius norm. Thanks to the boundary condition on \mathbf{m}, we find

$$
\begin{align*}
\frac{d \mathcal{E}(\mathbf{m})}{d t} & =\int_{\Omega} \nabla \mathbf{m}: \nabla \frac{\partial \mathbf{m}}{\partial t} \mathrm{~d} \mathbf{x}=-\int_{\Omega} \Delta \mathbf{m} \cdot \frac{\partial \mathbf{m}}{\partial t} \mathrm{~d} \mathbf{x} \tag{3}\\
& =-\int_{\Omega} \Delta \mathbf{m} \cdot(\mathbf{m} \times(\Delta \mathbf{m} \times \mathbf{m})) \mathrm{d} \mathbf{x}=-\int_{\Omega}|\Delta \mathbf{m} \times \mathbf{m}|^{2} \mathrm{~d} \mathbf{x}
\end{align*}
$$

This reveals that harmonic map heat flow is a dissipative process with respect to the energy from (2). Moreover,

$$
\frac{d|\mathbf{m}|^{2}}{d t}=2 \mathbf{m} \cdot \frac{\partial \mathbf{m}}{\partial t}=2 \mathbf{m} \cdot(\mathbf{m} \times(\Delta \mathbf{m} \times \mathbf{m}))=0
$$

which shows that $|\mathbf{m}(t, \mathbf{x})|=\left|\mathbf{m}_{0}(\mathbf{x})\right|$ for all $\left.(t, \mathbf{x})=\right] 0, T\left[\times \Omega\right.$. If we fix $\left|\mathbf{m}_{0}\right|=1$ almost erverywhere in Ω, which is usually done, then $|\mathbf{m}|=1$ almost everywhere for all times.

In the sequel, let us assume that $|\mathbf{m}(t, \mathbf{x})|=1$ for all $(t, \mathbf{x})=] 0, T[\times \Omega$ ("saturation"). Moreover, recall the identity

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \quad \forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3} . \tag{4}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\mathbf{m} \times(\Delta \mathbf{m} \times \mathbf{m})=\Delta \mathbf{m}-\mathbf{m}(\Delta \mathbf{m} \cdot \mathbf{m}) . \tag{5}
\end{equation*}
$$

2 Timestepping

For the temporal discretization of (11) the method of Heun can be employed. We use an equidistant grid in time and try to compute $\mathbf{m}(t)$ for instances $t_{n}:=n k, k=T / M$. We introduce the notations

$$
\mathbf{m}^{n} \approx \mathbf{m}\left(t_{n}\right) \quad, \quad \delta_{t} \mathbf{m}^{n+1 / 2} \approx \frac{\mathbf{m}^{n+1}-\mathbf{m}^{n}}{k} \quad, \quad \overline{\mathbf{m}}^{n+1 / 2} \approx \frac{1}{2}\left(\mathbf{m}^{n+1}-\mathbf{m}^{n}\right)
$$

Then the discrete evolution can be stated as

$$
\begin{equation*}
\delta_{t} \mathbf{m}^{n+1 / 2}=\overline{\mathbf{m}}^{n+1 / 2} \times\left(\Delta \overline{\mathbf{m}}^{n+1 / 2} \times \overline{\mathbf{m}}^{n+1 / 2}\right), \quad \mathbf{m}^{0}=\mathbf{m}_{0} \quad \text { in } \Omega . \tag{6}
\end{equation*}
$$

Multiplying (6) with $\overline{\mathbf{m}}^{n+1 / 2}$ we find

$$
\begin{equation*}
\left|\mathbf{m}^{n+1}\right|^{2}-\left|\mathbf{m}^{n}\right|^{2}=0 \quad \Rightarrow \quad\left|\mathbf{m}^{n}\right|=\left|\mathbf{m}_{0}\right| \quad \forall n \tag{7}
\end{equation*}
$$

which means that the conservation of modulus carries over to the semi-discrete problem (6). Further,

$$
\begin{align*}
\mathcal{E}\left(\mathbf{m}^{n+1}\right)-\mathcal{E}\left(\mathbf{m}^{n}\right) & =\frac{1}{2} \int_{\Omega}\left(\nabla \mathbf{m}^{n+1}+\nabla \mathbf{m}^{n}\right):\left(\nabla \mathbf{m}^{n+1}-\nabla \mathbf{m}^{n}\right) \mathrm{d} \mathbf{x} \tag{8}\\
& =-k \int_{\Omega} \Delta \overline{\mathbf{m}}^{n+1 / 2} \cdot \delta_{t} \mathbf{m}^{n+1 / 2} \\
& =-k \int_{\Omega} \Delta \overline{\mathbf{m}}^{n+1 / 2} \cdot\left(\overline{\mathbf{m}}^{n+1 / 2} \times\left(\Delta \overline{\mathbf{m}}^{n+1 / 2} \times \overline{\mathbf{m}}^{n+1 / 2}\right)\right) \mathrm{d} \mathbf{x} \\
& =-k \int_{\Omega}\left|\Delta \overline{\mathbf{m}}^{n+1 / 2} \times \overline{\mathbf{m}}^{n+1 / 2}\right|^{2} \mathrm{~d} \mathbf{x}
\end{align*}
$$

3 Mixed variational formulation

Let us focus on the problem to be solved in each timestep of (6): introducing new unknown $\mathbf{j}:=\nabla \overline{\mathbf{m}^{n+1 / 2}}$ we end up with

$$
\begin{aligned}
\delta_{t} \mathbf{m}^{n+1 / 2} & =\overline{\mathbf{m}}^{n+1 / 2} \times\left(\operatorname{div} \overline{\mathbf{j}}^{n+1 / 2} \times \overline{\mathbf{m}}^{n+1 / 2}\right), \\
\mathbf{j}^{n} & =\nabla \overline{\mathbf{m}}^{n} .
\end{aligned}
$$

These equations can be cast in weak form: seek $\mathbf{m}^{n+1} \in\left(L^{2}(\Omega)\right)^{3} \cap L^{\infty}(\Omega)^{3}$ and $\mathbf{j}^{n+1} \in$ $\left(\boldsymbol{H}_{0}(\operatorname{div} ; \Omega)\right)^{3}$ such that

$$
\begin{align*}
\left(\delta_{t} \mathbf{m}^{n+1 / 2}, \mathbf{v}\right)_{0} & =\left(\operatorname{div} \overline{\mathbf{j}}^{n+1 / 2} \times \overline{\mathbf{m}}^{n+1 / 2}, \mathbf{v} \times \overline{\mathbf{m}}^{n+1 / 2}\right)_{0} \quad \forall \mathbf{v} \in\left(L^{2}(\Omega)\right)^{3}, \tag{9}\\
\left(\mathbf{j}^{n+1}, \mathbf{q}\right)_{0}+\left(\operatorname{div} \mathbf{q}, \mathbf{m}^{n+1}\right)_{0} & =0 \quad \forall \mathbf{q} \in\left(\boldsymbol{H}_{0}(\operatorname{div} ; \Omega)\right)^{3} .
\end{align*}
$$

Now, let us consider an abstract spatial Galerkin discretization based on the finitedimensional spaces $Q_{h} \subset\left(L^{2}(\Omega)\right)^{3}, \mathbf{v}_{h} \in\left(\boldsymbol{H}_{0}(\operatorname{div} ; \Omega)\right)^{3}$: seek $\mathbf{m}_{h}^{n+1} \in Q_{h}, \mathbf{j}_{h}^{n+1} \in \mathbf{V}_{h}$ such that

$$
\begin{align*}
& \left(\delta_{t} \mathbf{m}_{h}^{n+1 / 2}, \mathbf{v}_{h}\right)_{0}-\left(\operatorname{div} \overline{\mathbf{j}}^{n+1 / 2} \times \overline{\mathbf{m}}_{h}^{n+1 / 2}, \mathbf{v} \times \overline{\mathbf{m}}_{h}^{n+1 / 2}\right)_{0} \tag{10}\\
& =0 \quad \forall \mathbf{v}_{h} \in Q_{h}, \\
& \left(\operatorname{div} \mathbf{q}_{h}, \mathbf{m}_{h}^{n+1}\right)_{0}+\quad\left(\mathbf{j}_{h}^{n+1}, \mathbf{q}_{h}\right)_{0} \\
& =0 \quad \forall \mathbf{q}_{h} \in \mathbf{V}_{h} .
\end{align*}
$$

The discrete energy at time t_{n} is given by

$$
\begin{equation*}
\mathcal{E}_{n}:=\frac{1}{2} \int_{\Omega}\left|\mathbf{j}_{h}^{n}\right|^{2} \mathrm{~d} \mathbf{x} \tag{11}
\end{equation*}
$$

It decays according to

$$
\begin{aligned}
\mathcal{E}_{n+1}-\mathcal{E}_{n} & =\frac{1}{2} \int_{\Omega}\left|\mathbf{j}_{h}^{n+1}\right|^{2}-\left|\mathbf{j}_{h}^{n}\right|^{2} \mathrm{~d} \mathbf{x}=\frac{1}{2}\left(\mathbf{j}_{h}^{n+1}+\mathbf{j}_{h}^{n}, \mathbf{j}_{h}^{n+1}-\mathbf{j}_{h}^{n}\right)_{0} \\
& =\left(\mathbf{j}_{h}^{n+1}-\overline{\mathbf{j}}_{h}^{n}, \overline{\mathbf{j}}_{h}^{n+1 / 2}\right)_{0}=-k\left(\operatorname{div} \overline{\mathbf{j}}_{h}^{n+1 / 2}, \delta_{t} \mathbf{m}^{n+1 / 2}\right)_{0} \\
& =-k\left\|\operatorname{div} \overline{\mathbf{j}}_{h}^{n+1 / 2} \times \overline{\mathbf{m}}_{h}^{n+1 / 2}\right\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

So, regardless of the Galerkin spaces chosen, we obtain a stable method.
Remark. We may use (5) in order to recast (10) as

$$
\begin{array}{rlrl}
\left(\delta_{t} \mathbf{m}_{h}^{n+1 / 2}, \mathbf{v}_{h}\right)_{0}-\left(\operatorname{div} \overline{\mathbf{j}}^{n+1 / 2}, \mathbf{v}_{h}\right)_{0} & =\left(\operatorname{div} \overline{\mathbf{j}}^{n+1 / 2} \cdot \overline{\mathbf{m}}_{h}^{n+1 / 2}, \overline{\mathbf{m}}_{h}^{n+1 / 2} \cdot \mathbf{v}_{h}\right)_{0} & \forall \mathbf{v}_{h} \in Q_{h}, \\
\left(\operatorname{div} \mathbf{q}_{h}, \mathbf{m}_{h}^{n+1}\right)_{0}+ & \left(\mathbf{j}_{h}^{n+1}, \mathbf{\mathbf { q } _ { h }) _ { 0 }}\right. & =0 & \forall \mathbf{q}_{h} \in \mathbf{V}_{h} . \tag{12}
\end{array}
$$

4 Finite element Galerkin discretization

We assume that Ω is covered by a triangular mesh \mathcal{M}. The following conforming finite element trial spaces will be employed:
for $\left(L^{2}(\Omega)\right)^{3} \quad$: space of \mathcal{M}-piecewise constant vectorfields on Ω, for $\boldsymbol{H}(\operatorname{div} ; \Omega)$: lowest order Raviart-Thomas finite element space
The local shape functions for the Raviart-Thomas finite element space on a triangle with vertices $\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}$ are given by

$$
\begin{equation*}
\mathbf{b}_{i}(\mathbf{x})=\frac{\left|e_{i}\right|}{2|T|}\left(\mathbf{x}-\mathbf{a}_{i}\right) \cdot \mathbf{n}_{i}, \tag{13}
\end{equation*}
$$

where e_{i} is the edge opposite to the vertes \mathbf{a}_{i} and \mathbf{n}_{i} designates the exterior unit normal vector to that edge. These local shape functions are dual to the local degrees of freedom:

$$
\begin{equation*}
\int_{e_{j}} \mathbf{b} \cdot \mathbf{n}_{j} \mathrm{~d} S=\delta_{i j}, \quad i, j=1,2,3 . \tag{14}
\end{equation*}
$$

Using the canonical global shape functions for these finite element spaces, (9) is converted into a non-limnear system of equations. It can be solved using Newton's iteration with the solutions from the previous time-step as initial guesses.

Task. Implementation of the numerical method described above and detailed studies of stability and convergence with respect to variation of spatial and temporal resolution. Parallelization on a Linux cluster.

Focus. Implementation and analysis of a finite element scheme.

$$
\begin{array}{ll}
\text { Contact: } & \text { Prof. Dr. Ralf Hiptmair } \\
& \text { Seminar for Applied Mathematics, D-MATH } \\
& \text { Room : HG G } 58.2 \\
& =: 016323404 \\
& : \text { hiptmair@sam.math.ethz.ch } \\
& : \text { http://www.sam.math.ethz.ch/~hiptmair }
\end{array}
$$

