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Vector Wave Propagation along a Sphere

Prerequisites. Knowledge about the Boundary Element method for the solution of the
Helmholtz equation [11].

Problem description. Starting from Maxwell’s equation, the electric wave equation
curlcurlE − k2E = 0 can be easily derived. It describes propagation of electromagnetic
waves in terms of the electric field E [1]. Herein, k ∈ R+ is the wave number.

This setting can be generalized by replacing E by a differential 1-form ω, subject to the
Maxwell-type equation (δd− k2)ω = 0 [7]. Herein, d denotes the exterior derivative, and
δ the co-derivative, its formal L2 adjoint [2,8]. The latter equation seamlessly extends to
dimensions n other than 3. Moreover, it can be posed in Riemannian manifolds, while the
original double curl equation relies on flat Euclidean space.

In this Master Thesis project, as a model problem, wave propagation for differential 1-
forms on a sphere S with radius R shall be considered, i.e., n = 2. A point source radiates
an incident wave ωi, which impinges on a perfect scatterer Ω ⊂ S, an ”island” on the
sphere. Ω is required to be connected and simply connected, with sufficiently smooth
boundary Γ = ∂Ω. Let Ω′ = S\Ω denote the complement of Ω in S. This situation gives
rise to a Dirichlet problem for the scattered field ω ∈ HΛ1(δd,Ω′) [7]

(δd− k2)ω = 0,

tω = −tωi,

}
(1)

where t : HΛp(δd,Ω′) → H
−1/2
⊥ Λp(d,Γ) is the tangential trace.

The boundary value problem can be recast into a boundary integral equation, which lives
on the one-dimensional boundary Γ. To that end, a fundamental solution of a Helmholtz-
type equation is required. Denote x the observation point and y the source point. We
exclude the case where x, y ∈ S are antipodal points. There is a unique minimal geodesic
that connects x to y. Denote the geodesic distance by s(x, y), and the geodesic propagator
P y
x . The geodesic propagator parallel transports a given tangent vector from y to x along

the geodesic. Note that a canonical coordinate representation of P y
x is achieved if Fermi

normal coordinates are used, since they are adapted to the geodesic [10].

At this point it is convenient to introduce double forms [3, pp. 30-33]. A double p-form is
defined for p > 0 by its action on a pair of p-tupels of tangent vectors anchored in x and
y, respectively. Double 0-forms are simply complex two-point functions. We are mainly
concerned with the cases p = 0, 1. We denote Ip(x, y) the identity double p-form, which



is defined for p = 1 by I1(x, y)[tx, ty] = g(tx, P
y
x ty), where tx, ty are tangent vectors, and

g(·, ·) is the metric tensor. Moreover, I0(x, y) = 1. The Helmholtz-Green kernel double
p-form Gp(x, y) is defined by (∆y−k2)Gp(x, y) = δ(x, y)Ip(x, y), where ∆ = d◦ δ+ δ ◦d is
the Hodge Laplacian, and δ(x, y) the Dirac delta distribution. The fundamental solution
can be written in the form Gp(x, y) = wp

(
s(x, y)

)
Ip(x, y), where each wp(s) is related to

a solution of the hypergeometric equation [4, 6].

We are now in a position to define the single layer potential ΨSL,p : H
−1/2
‖ Λp(δ,Γ) →

HΛp(δd,Ω′) [7, (21a)]:

γ 7→ ΨSL,p(γ)(x) =

∫

Γ

〈Gp(x, y),γ(y)〉 dΓ(y), x /∈ Γ,

where 〈·, ·〉 denotes the inner product for p-covectors. The Maxwell single layer and double
layer potentials ensue [1, (27),(28)], [7, (72),(21b)], (n = 2, p = 1)

Ψ̃SL,p : H
−1/2
‖ Λp(δ,Γ) → HΛp(δd,Ω′) : γ 7→ ΨSL,p(γ)−

1

k2
dΨSL,p−1(δγ),

ΨDL,p : H
−1/2
⊥ Λp(d,Γ) → HΛp(δd,Ω′) : β 7→ − ∗ dΨSL,n−1−p(∗̂

−1
β),

where ∗̂ and ∗ are the Hodge operators related to Γ and Ω′, respectively.

By taking the traces we obtain the Maxwell single layer and double layer operators,

Ṽ = t ◦ Ψ̃SL : H
−1/2
‖ Λp(δ,Γ) → H

−1/2
⊥ Λp(d,Γ),

K = t ◦ Ψ̃DL −
1

2
Id : H

−1/2
⊥ Λp(d,Γ) → H

−1/2
⊥ Λp(d,Γ),

where indices p have been omitted.

Eventually [1, (42)], [7, (97)] it can be shown that the Dirichlet problem (1) can be cast
into an equivalent boundary integral equation, whose weak variational form reads: Find
Neumann data γ ∈ H

−1/2
‖ Λ1(δ,Γ) such that

b
(
γ ′, Ṽ γ

)
= b

(
γ ′,

(1
2
Id−K

)
tωi

)
(2)

holds for all γ ′ ∈ H
−1/2
‖ Λ1(δ,Γ). Herein, b(·, ·) : H

−1/2
‖ Λ1(δ,Γ)×H

−1/2
⊥ Λ1(d,Γ) → C is the

sesquilinear form defined in [7, (31)].

The weak variational form (2) leads itself easily to discretization. To this end, we approx-
imate the boundary Γ by a Lipschitz polyhedron and the Neumann data γ by piecewise
linear continuous functions. Piecewise linear continuous functions yield a conforming dis-
cretization of H

−1/2
‖ Λ1(δ,Γ).

Issues.

1. It is expected that there exists a discrete spectrum of wave numbers k that yields
exterior or interior resonances, such that the formulation (2) breaks down.

2. The considered wave number has to exceed a certain cutoff threshold, k > kc(R),
for propagating waves to exist on the sphere.



3. Lemma 1 in [7] has to be extended and validated for the case of manifolds that
exhibit curvature.

Tasks.

1. Get acquainted with the functional analytic and differential geometric background
and setting of this Master Thesis project. All numerical implementations shall be
provided as documented Matlab code.

2. Derive and implement the Helmholtz-Green kernel double forms Gp(x, y), p = 0, 1.
Additional useful references are [5] and [9, Ch. 2]. A challenge resides in a fast and
stable numerical implementation of the hypergeometric kernel functions. Examine
the radiation of a point source on the sphere.

3. Derive and implement a Galerkin discretization with piecewise linear elements, start-
ing from the weak variational formulation (2) of the scattering problem. Consider
as test case a disc-shaped domain Ω centered in the north pole of the sphere, illu-
minated by a point source located in the south pole of the sphere.

4. Document the results as a Master Thesis that adheres to scientific standards. Give
a presentation to SAM and TU Tampere members about the outcome of the work.

Contact: Prof. Dr. Ralf Hiptmair
Seminar for Applied Mathematics, D-MATH

Room : HG G 58.2
☎ : 044 632 3404

✍ : hiptmair@sam.math.ethz.ch
➤ : http://www.sam.math.ethz.ch/˜hiptmair
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