Bachelor/Master/Diploma Thesis Project

(Mathematics, Computational Science & Engineering)

Supervisor: Prof. Dr. R. Hiptmair (SAM, D-MATH)

Asymptotic Method for Electrostatic Force Calculation

Prerequisites. Knowledge about the finite element method for the numerical solution of elliptic boundary value problems [1], cf. course of numerical solution of elliptic and parabolic partial differential equations.

Problem description. The electrostatic potential in a bounded volume Ω subject to given voltages imposed on connected components of its boundary can be computed by solving

$$-\Delta u = 0$$
 , $u = g$ on $\partial\Omega$. (1)

The total electrostatic force on a connected component Γ of $\partial\Omega$ can be expressed by the functional

$$F = \int_{\Gamma} \left| \frac{\partial u}{\partial \mathbf{n}} \right|^2 \, \mathrm{d}S \ . \tag{2}$$

Note that F is not continuous on the natural energy space $H^1(\Omega)$, but elliptic regularity theory [3, Thm. 4.24] ensures that for $g \in H^1(\partial\Omega)$ we can expect $\frac{\partial u}{\partial \mathbf{n}} \in L^2(\partial\Omega)$. Nevertheless, using standard Lagrangian finite elements and a direct evaluation of F yields poor results.

Another approach [4] replaces (1) by

$$-\Delta u_{\epsilon} = 0 \quad \text{in } \Omega , \qquad (3)$$

$$u_{\epsilon} + \epsilon \frac{\partial u_{\epsilon}}{\partial \mathbf{n}} = g \quad \text{on } \Gamma , \quad u_{\epsilon} = g \quad \text{on } \partial \Omega \setminus \Gamma .$$
 (4)

Using integration by parts, we find

$$J(\epsilon) := \int\limits_{\Omega} |\operatorname{\mathbf{grad}} u_{\epsilon}|^{2} d\mathbf{x} = \int\limits_{\partial \Omega} u \frac{\partial u_{\epsilon}}{\partial \mathbf{n}} dS = \int\limits_{\partial \Omega} g \frac{\partial u_{\epsilon}}{\partial \mathbf{n}} dS - \epsilon \int\limits_{\partial \Omega} \left| \frac{\partial u_{\epsilon}}{\partial \mathbf{n}} \right|^{2} dS.$$

This means that

$$F = -\frac{d}{d\epsilon}J(u_{\epsilon}). \tag{5}$$

Formula (5) can be used to evaluate F but computing $J(u_{\epsilon})$ for different small values of ϵ and performing extrapolation to zero [2, Sect. 9.4].

Issues. Convergence of extrapolation technquies and comparison with straightforward finite element implementation of F-evaluation.

Task. MATLAB implementation and numerical investigation of extrapolation technique. Try to provide theoretical underpinning for the choice of ϵ .

References

- [1] D. Braess, Finite Elements, Cambridge University Press, 2nd ed., 2001.
- [2] P. Deuflhard and A. Hohmann, *Numerische Mathematik I*, DeGruyter, Berlin, 3 ed., 2002.
- [3] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.
- [4] M. RAFFY, Sur l'approximation du flux d'energie rayonne a traverse une enceinte, phd thesis, Universite L. Pasteur, Strasbourg, France, 1975.