Term Project (Mathematics, Computational Science & Engineering)

Supervisor: Prof. Dr. R. Hiptmair (SAM, D-MATH)

Discretization of Linear Dirac Equations in 1D

1 Basic Model Problem

Given a real valued function $f \in C^0([0,T], W^{1,\infty}(\Omega)), \Omega \subset \mathbb{R}^d$, we consider the initial boundary value problem: seek $\mathbf{u} = \mathbf{u}(\boldsymbol{x}, t)$. $v = (v(\boldsymbol{x}, t))$ such that

$$\partial_{t} \mathbf{u} = -if \operatorname{\mathbf{grad}} v - \frac{i}{2} \operatorname{\mathbf{grad}} f v , \qquad \text{in } [0,T] \times \Omega ,$$

$$\partial_{t} v = if \operatorname{div} \mathbf{u} + \frac{i}{2} \operatorname{\mathbf{grad}} f \cdot \mathbf{u} , \qquad \text{in } [0,T] \times \Omega ,$$

$$v = 0 \quad \text{on } [0,T] \times \partial\Omega , \qquad (1)$$

$$\mathbf{u}(\boldsymbol{x},0) = \mathbf{u}_{0}(\boldsymbol{x}) \quad , \quad v(\boldsymbol{x},0) = v_{0}(\boldsymbol{x}) .$$

2 Weak Forms

• We may just test the two equation in (1) and integrate over Ω : seek $\mathbf{u} = \mathbf{u}(t, \mathbf{x})$. $v = (v(t, \mathbf{x}))$ such that

$$(\partial_t \mathbf{u}, \mathbf{q})_0 = \left(-if \operatorname{\mathbf{grad}} v - \frac{i}{2} \operatorname{\mathbf{grad}} f v, \mathbf{q}\right)_0 \quad \forall \mathbf{q} \in \boldsymbol{H}(\operatorname{div}, \Omega) , \\ (\partial_t v, w)_0 = \left(if \operatorname{div} \mathbf{u} + \frac{i}{2} \operatorname{\mathbf{grad}} f \cdot \mathbf{u}, w\right)_0 \quad \forall w \in H_0^1(\Omega) ,$$
 (2)

where $(u, v)_0 := \int_{\Omega} u \bar{v} \, \mathrm{d} \mathbf{x}$.

• Another option is to aim integration by parts at the second equation: seek $\mathbf{u} \in (L^2(\Omega))^d$, $v \in H^1_0(\Omega)$, such that

$$(\partial_t \mathbf{u}, \mathbf{q})_0 = \left(-if \operatorname{\mathbf{grad}} v - \frac{i}{2} \operatorname{\mathbf{grad}} f v, \mathbf{q}\right)_0 \quad \forall \mathbf{q} \in (L^2(\Omega))^d ,$$

$$(\partial_t v, w)_0 = -\frac{i}{2} \left(\mathbf{u} \cdot \operatorname{\mathbf{grad}} f, w\right)_0 - i \int_{\Omega} f \mathbf{u} \cdot \operatorname{\mathbf{grad}} \overline{w} \, \mathrm{d} \boldsymbol{x} \quad \forall w \in H^1_0(\Omega) .$$
(3)

• A third option is to apply integration by parts to the first equation: see $\mathbf{u} \in H(\operatorname{div}, \Omega), v \in L^2(\Omega)$ such that

$$(\partial_t \mathbf{u}, \mathbf{q})_0 = \int_{\Omega} \frac{i}{2} \operatorname{\mathbf{grad}} f \cdot \mathbf{q} \, v + ivf \operatorname{div} \mathbf{q} \operatorname{d} \boldsymbol{x} \quad \forall \mathbf{q} \in \boldsymbol{H}(\operatorname{div}, \Omega) ,$$

$$(\partial_t v, w)_0 = \left(if \operatorname{div} \mathbf{u} + \frac{i}{2} \operatorname{\mathbf{grad}} f \cdot \mathbf{u}, w \right)_0 \quad \forall w \in L^2(\Omega) .$$
(4)

3 Conservation property

The evolution respects conservation of total charge: $\frac{d}{dt}Q = 0$ for

$$Q(t) := \int_{\Omega} |\mathbf{u}|^2 + |v|^2 \,\mathrm{d}\boldsymbol{x} \,. \tag{5}$$

4 Galerkin discretization

The variational formulations (2)- (4) allow a straightforward Galerkin discretization: We equip Ω with some mesh and choose \mathcal{V} and \mathcal{W} as finite element subspaces of $L^2(\Omega)$, $H(\operatorname{div}, \Omega)$ and $H_0^1(\Omega)$, respectively. The simplest choice in 1D is piecewise linear/piecewise constant functions on some (non necessarily uniform) grid.

5 Timestepping

The timestepping scheme has to preserve the conservation of Q in the fully discrete setting. This suggests the choice of implicit Runge-Kutta-Gauss timestepping [1, Sect. 6.3.2], [1, Thm. 6.58].

For the ordinary differential equation $\dot{y} = f(t, y)$ the simplest representative of this class of Runge-Kutta methods is given by

$$y^{k+1} = y^k + \tau \delta y$$
, $\delta y = f(t^k + \frac{1}{2}\tau, y^k + \frac{1}{2}\tau \delta y)$

Here, $\tau > 0$ is the size of the timestep. If the ODE is linear, that is, $\dot{y} = \mathbf{A}(t)y$ with a time-dependent linear operator $\mathbf{A} = \mathbf{A}(t)$, then the scheme reduces to

$$\frac{y^{k+1} - y^k}{\tau} = \mathbf{A}(t^k + \frac{1}{2}\tau) \left(\frac{y^{k+1} + y^k}{2}\right) \,. \tag{6}$$

Let $\langle \cdot, \cdot \rangle$ be a (sesqui-linear) inner product on the phase space, for which $\mathbf{A}(t)$ is skew-symmetric for all times, that is,

$$\langle \mathbf{A}(t)y, z \rangle = -\langle y, \mathbf{A}(t)z \rangle \quad \forall y, z, t \; .$$

Writing $\|\cdot\|$ for the norm arising from $\langle\cdot,\cdot\rangle$, (6) involves

$$\begin{aligned} \left\| y^{k+1} \right\|^2 &- \left\| y^k \right\|^2 = \operatorname{Re} \left\langle y^{k+1} - y^k, y^{k+1} + y^k \right\rangle \\ &= \operatorname{Re} \frac{\tau}{2} \left\langle \mathbf{A}(t^k + \frac{1}{2}\tau)(y^{k+1} + y^k), y^{k+1} + y^k \right\rangle = 0 \;. \end{aligned}$$

Let us assume that for the solution of any initial value problem form $\dot{y} = \mathbf{A}(t)y$ holds

$$||y(t)|| = ||y(t^0)|| \quad \forall t .$$
 (7)

Then

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \left\| y(t) \right\|^2 = 2 \operatorname{Re} \left\langle y(t), \mathbf{A}(t) y(t) \right\rangle \quad \forall t \;.$$
(8)

Since the trajectories of solutions cover the entire phase space, the operator $\mathbf{A}(t)$ has to be skew-symmetric.

Apply these considerations to (2)-(4) with $y = {\mathbf{u} \choose v}$ and inner product $(\cdot, \cdot)_0$.

We also observe that for constant f(1) boils down to a first order wave equation. For the wave equation explicit reversible timestepping schemes (known as Störmer-Verlet or leapfrog) display an excellent approximate conservation of charge, see [2, Sect. 1.7].

6 Task

- 1. Rederive the weak formulations and prove charge conservation
- 2. Consider (1) for d = 1 and $\Omega =]0, 1[$ and examine the cases
 - (a) $f \equiv 1$ (constant function),
 - (b) $f(x) = x \exp(-2x)$ (spatially varying function),
 - (c) $f(x,t) = x \exp(-tx)$ (varying in space and time).

Discretize the initial value problem based on (2)-(4) on an equidistant spatial mesh and lowest order finite elements. Timestepping should be done using the implicit midpoint rule (see Sect. 5) or an explicit leapfrog-type scheme (optional).

3. Investigate the convergence of the methods in terms of spatial and temporal resulution (meshwidth and timestep).

Contact:	Prof. Dr. Ralf Hiptmair
	Seminar for Applied Mathematics, D-MATH
	Room : HG G 58.2
	1 01 632 3404
	a : hiptmair@sam.math.ethz.ch
	http://www.sam.math.ethz.ch/~hiptmain

References

- [1] P. DEUFLHARD AND F. BORNEMANN, *Numerische Mathematik II*, DeGruyter, Berlin, 2 ed., 2002.
- [2] R. HIPTMAIR, Numerics of hyperbolic partial differential equations. Online lecture notes, 2007. http://www.sam.math.ethz.ch/ hiptmair/tmp/NUMHYP_07.pdf.