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Discretization of Linear Dirac Equations in 1D

1 Basic Model Problem

Given a real valued function f € C°([0,T], Wh>=()), Q C R? we consider the initial
boundary value problem: seek u = u(x,t). v = (v(x,t)) such that

&gu:—z’fgradv—%gradffu,
&gv:z’fdivu—l—%gradf-u,
v=0 on[0,T] x 00Q,
u(z,0) =up(x) , v(x,0)=1vy(x).

in [0,7] x €2,

2 Weak Forms

e We may just test the two equation in ([Il) and integrate over 2: seek u = u(t, x).
v = (v(t,x)) such that

(O, q), = (—z'fgradfu — Lgrad fu, )0 Vq € H(div,Q) ,

_ i (2)
(O, w), = (zf divu+ sgrad f-u w) Yw e Hy(Q)

0
where (u,v), = [, uvdx.

e Another option is to aim integration by parts at the second equation: seek u €

(L*(Q))4, v € HY(Q), such that
(G,d)y = (—if grado — S grad fu.q), Ya e (L)

' 3
(O, w), = —% (u-grad f,w), —i/ fu-gradwdzx VYw € Hy(Q). ()
Q

e A third option is to apply integration by parts to the first equation: see u €
H(div,Q), v € L*(Q) such that

(O, q), = / %gradf -qu+ivf divqde Vq € H(div, ), n
Q

(O, w), = (if divu+ Lgrad f - u,w) Vw € L*(9) .

0



3 Conservation property

The evolution respects conservation of total charge: %Q =0 for

Q) = [ fuP+ o de o)

4 Galerkin discretization

The variational formulations ([)- @) allow a straightforward Galerkin discretization: We
equip € with some mesh and choose ¥V and W as finite element subspaces of L*((2),
H(div, Q) and H}(Q), respectively. The simplest choice in 1D is piecewise linear /piecewise
constant functions on some (non necessarily uniform) grid.

5 Timestepping

The timestepping scheme has to preserve the conservation of () in the fully discrete setting.
This suggests the choice of implicit Runge-Kutta-Gauss timestepping [1, Sect. 6.3.2], [1,
Thm. 6.58].

For the ordinary differential equation y = f(¢,y) the simplest representative of this class
of Runge-Kutta methods is given by

Yy =y +roy Sy = f(tF+ 30"+ Lrdy) .

Here, 7 > 0 is the size of the timestep. If the ODE is linear, that is, § = A(t)y with a
time-dependent linear operator A = A(t), then the scheme reduces to

E+1 0k k+1 k
y - Y A+ 1) (y 2+y) . (©)

Let (-,-) be a (sesqui-linear) inner product on the phase space, for which A(t) is skew-
symmetric for all times, that is,

(A(t)y, 2) = =(y, A(t)z) Vy,zt.

Writing ||-|| for the norm arising from (-,-), (@) involves

Hyk+1H2 o Hka2 = Re <yk+1 o yk’ykJrl 4 yk>
=Re 3 (A" + 57 (" +45), " + ) =0.

Let us assume that for the solution of any initial value problem form ¢ = A(t¢)y holds

Iyl = [y V. (7)

Then

0= % ly(®)I* = 2Re (y(t), A(t)y(t)) Vt. (8)



Since the trajectories of solutions cover the entire phase space, the operator A(t) has to
be skew-symmetric.

Apply these considerations to (@)-#) with y = (:) and inner product (-,-),.

We also observe that for constant f () boils down to a first order wave equation. For
the wave equation explicit reversible timestepping schemes (known as Stormer-Verlet or
leapfrog) display an excellent approximate conservation of charge, see [2, Sect. 1.7].

6 Task

1. Rederive the weak formulations and prove charge conservation
2. Consider [M) for d = 1 and Q2 =]0, 1[ and examine the cases

(a) f =1 (constant function),
(b) f(z) = xexp(—2z) (spatially varying function),
(¢) f(z,t) = xexp(—tx) (varying in space and time).
Discretize the initial value problem based on (B)-(#) on an equidistant spatial mesh

and lowest order finite elements. Timestepping should be done using the implicit
midpoint rule (see Sect. H) or an explicit leapfrog-type scheme (optional).

3. Investigate the convergence of the methods in terms of spatial and temporal resu-
lution (meshwidth and timestep).
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