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Discretization of Linear Dirac Equations in 1D

1 Basic Model Problem

Given a real valued function f ∈ C0([0, T ], W 1,∞(Ω)), Ω ⊂ R
d, we consider the initial

boundary value problem: seek u = u(x, t). v = (v(x, t)) such that

∂tu = −if grad v − i

2
grad f v ,

∂tv = if div u + i

2
grad f · u ,

in [0, T ] × Ω ,

v = 0 on [0, T ] × ∂Ω ,

u(x, 0) = u0(x) , v(x, 0) = v0(x) .

(1)

2 Weak Forms

• We may just test the two equation in (1) and integrate over Ω: seek u = u(t,x).
v = (v(t,x)) such that

(∂tu,q)
0

=
(

−if grad v − i
2
grad f v,q

)

0
∀q ∈ H(div, Ω) ,

(∂tv, w)
0

=
(

if div u + i
2
grad f · u, w

)

0
∀w ∈ H1

0 (Ω) ,
(2)

where (u, v)
0

:=
∫

Ω
uv̄ dx.

• Another option is to aim integration by parts at the second equation: seek u ∈
(L2(Ω))d, v ∈ H1

0 (Ω), such that

(∂tu,q)
0

=
(

−if grad v − i

2
grad f v,q

)

0
∀q ∈ (L2(Ω))d ,

(∂tv, w)
0

= −
i

2
(u · grad f, w)

0
− i

∫

Ω

fu · gradw dx ∀w ∈ H1
0 (Ω) .

(3)

• A third option is to apply integration by parts to the first equation: see u ∈
H(div, Ω), v ∈ L2(Ω) such that

(∂tu,q)
0

=

∫

Ω

i

2
grad f · q v + ivf div q dx ∀q ∈ H(div, Ω) ,

(∂tv, w)
0

=
(

if div u + i

2
grad f · u, w

)

0
∀w ∈ L2(Ω) .

(4)



3 Conservation property

The evolution respects conservation of total charge: d

dt
Q = 0 for

Q(t) :=

∫

Ω

|u|2 + |v|2 dx . (5)

4 Galerkin discretization

The variational formulations (2)- (4) allow a straightforward Galerkin discretization: We
equip Ω with some mesh and choose V and W as finite element subspaces of L2(Ω),
H(div, Ω) and H1

0 (Ω), respectively. The simplest choice in 1D is piecewise linear/piecewise
constant functions on some (non necessarily uniform) grid.

5 Timestepping

The timestepping scheme has to preserve the conservation of Q in the fully discrete setting.
This suggests the choice of implicit Runge-Kutta-Gauss timestepping [1, Sect. 6.3.2], [1,
Thm. 6.58].

For the ordinary differential equation ẏ = f(t, y) the simplest representative of this class
of Runge-Kutta methods is given by

yk+1 = yk + τδy , δy = f(tk + 1

2
τ, yk + 1

2
τδy) .

Here, τ > 0 is the size of the timestep. If the ODE is linear, that is, ẏ = A(t)y with a
time-dependent linear operator A = A(t), then the scheme reduces to

yk+1 − yk

τ
= A(tk + 1

2
τ)

(

yk+1 + yk

2

)

. (6)

Let 〈·, ·〉 be a (sesqui-linear) inner product on the phase space, for which A(t) is skew-
symmetric for all times, that is,

〈A(t)y, z〉 = −〈y,A(t)z〉 ∀y, z, t .

Writing ‖·‖ for the norm arising from 〈·, ·〉, (6) involves

∥

∥yk+1
∥

∥

2
−

∥

∥yk
∥

∥

2
= Re

〈

yk+1 − yk, yk+1 + yk
〉

= Re τ
2

〈

A(tk + 1

2
τ)(yk+1 + yk), yk+1 + yk

〉

= 0 .

Let us assume that for the solution of any initial value problem form ẏ = A(t)y holds

‖y(t)‖ =
∥

∥y(t0)
∥

∥ ∀t . (7)

Then

0 =
d

dt
‖y(t)‖2 = 2 Re 〈y(t),A(t)y(t)〉 ∀t . (8)



Since the trajectories of solutions cover the entire phase space, the operator A(t) has to
be skew-symmetric.

Apply these considerations to (2)-(4) with y =
(

u

v

)

and inner product (·, ·)
0
.

We also observe that for constant f (1) boils down to a first order wave equation. For
the wave equation explicit reversible timestepping schemes (known as Störmer-Verlet or
leapfrog) display an excellent approximate conservation of charge, see [2, Sect. 1.7].

6 Task

1. Rederive the weak formulations and prove charge conservation

2. Consider (1) for d = 1 and Ω =]0, 1[ and examine the cases

(a) f ≡ 1 (constant function),

(b) f(x) = x exp(−2x) (spatially varying function),

(c) f(x, t) = x exp(−tx) (varying in space and time).

Discretize the initial value problem based on (2)-(4) on an equidistant spatial mesh
and lowest order finite elements. Timestepping should be done using the implicit
midpoint rule (see Sect. 5) or an explicit leapfrog-type scheme (optional).

3. Investigate the convergence of the methods in terms of spatial and temporal resu-
lution (meshwidth and timestep).
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