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Abstract

Already in 1757, Leonhard Euler introduced a set of equations—nowadays
known as the Euler equations—to describe ideal fluids. Ever since, the
Euler equations have received considerable attention from a wide range
of communities including physicists, mathematicians, and engineers.
To emphasize the difficulty of these equations, we note that only very
recently blow-up of the exact solutions of the Euler equations was
observed by Elgindi. In 1822, the Euler equations were extended the
Navier-Stokes equations—the same equations with an added term to
account for resistive effects. The existence of smooth and global solu-
tions to the Navier-Stokes equation is an open problem that is one of
the millenial problems defined by the Clay Mathematics Institute. The
age of the problem and the considerable attention it has received, show
the difficulty and importance of the mathematical description of fluids.

Despite the theoretical difficulties, the Euler and Navier-Stokes equa-
tions have been succesfully used in practice by physicists and engineers.
Since in practical situations the solutions to these equations are not
known, one often resorts to the use of numerical methods. A plethora
of numerical methods has been developed for solving the Euler and
Navier-Stokes equations. Traditional finite-element methods work very
well for the Navier-Stokes equations with a dominant diffussion term,
while traditional finite-volume methods work well for the Euler equa-
tions or, equivalently, the Navier-Stokes equations without diffussion
term. A practical problem that requires attention is that of solving the
Navier-Stokes equations with a very weak diffusion term. In this case,
the solution exhibits properties of both the Euler equations and the
Navier-Stokes equations with strong diffusion. In this work, we develop
a numerical scheme on the basis of semi-Lagrangian, vectorial advection.
Numerical experiments show that this scheme performs very well for
any value of the viscosity.

The Euler and Navier-Stokes equations can also be coupled with the
Maxwell equations to obtain a mathematical description of magneto-
hydrodynamics. In this description, it is assumed that the fluid carries
the magnetic field along, while the magnetic field exhibits a force on
the fluid through the Lorentz force. We extend the scheme that we
developed for the Navier-Stokes equations to magnetohydrodynamics.
In this case, we show that the semi-Lagrangian-based scheme does not
yield a natural discretization of the Lorentz force and that this leads to
instabilities. It is also shown that the scheme fails to satisfy a discrete
energy bound and thus it is not unexpected that instabilities occur.

The code used for all numerical experiments in this thesis is made
available under the GNU Public License at [61].
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Chapter 1

Semi-Lagrangian Advection of
Differential Forms

1.1 Introduction

We search u(x, t) on a bounded domain Ω ⊂ Rn such that

∂tu − curl ε curl u + grad(β · u) + curl u × β = f , in Ω, (1.1)
u = g, on Γin, (1.2)

where ε > 0, β : Ω �→ Rn, f : Ω �→ Rn, and g : Ω �→ Rn are given. ∂Ω and
Γin denote the boundary of Ω and Γin = {x ∈ ∂Ω; β < 0}. We will assume
that the velocity β : Ω �→ Rn satisfies div β = 0. These equations have variety
of applications including (but not limited to) fluid dynamics, plasma, and
astrophysics. These applications often require values for ε that are small
compared to the other quantities.

For the scalar version of equation (1.1), we search u(x, t) on a bounded
domain Ω ⊂ Rn such that

∂tu − div ε grad u + β · grad u = f , in Ω, (1.3)
u = g, on ∂Ω, (1.4)

where ε > 0, β : Ω �→ Rn, f : Ω �→ R, and g : Ω �→ R are given. This type of
equation has received considerable attention in literature. The most common
approaches consider some form of stabilized Eulerian scheme; a type of
scheme where first spatial discretization is performed after which a suitable
timestepping scheme is chosen. Some examples of this type of methods
include discontinuous Galerkin schemes [30, 34, 52] and subgrid viscosity
techniques [19]. These methods turn out to be particularly robust against
spurious oscillations [24, 53, 41]. However, if ε > 0 is large, these techniques
require solving a large non-symmetric sparse system of non-linear equations.
This requires a lot of computational effort and is therefor undesirable.
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1. Semi-Lagrangian Advection of Differential Forms

An alternative to the above methods are semi-Lagrangian schemes. These
types of schemes perform time discretization in the Lagrangian frame of ref-
erence in a similar fashion as done for Lagrangian schemes. However, where
traditional Lagrangian schemes advect the entire mesh, semi-Lagrangian
schemes project the fields back onto a fixed-mesh. This avoids the large
computational complexity involved with remeshing at every timestep. Also,
due to the discretization in the Lagrangian frame, we avoid solving the
non-symmetric system of equations. A plethora of research is available
on semi-Lagrangian schemes for scalar advection-diffusion equations (1.1)
[6, 7, 8, 17, 20, 25, 45, 54, 58]. Also, some work has been done on semi-
Lagrangian schemes for equation (1.1) [26, 28, 27]. However, these works
only address a first-order semi-Lagrangian scheme. In [9], a second-order
semi-Lagrangian scheme was introduced for scalar advection-diffusion equa-
tions, where elements of the mesh were only approximately transported
along the velocity field. Instead of transporting the elements exactly (and
thus in general introducing curved boundaries), the vertices of the elements
were transported and interpolated to form an approximation of the trans-
ported element. In this work, we will use ideas of [27] and [9] to construct
a second-order scheme for equation (1.1). [27] also includes an elaborate
analysis of the introduced first-order semi-Lagrangian scheme for equation
(1.1). This shows that the constant of convergence remains bounded as ε → 0:
a property that is not common in Eulerian schemes. For an overview of the
analysis of semi-Lagrangian schemes we refer to [27, Chapter 5].

1.2 The calculus of differential forms

This section is meant as an introduction to the notation that will be used
in this work. For background information on differential geometry and
differential forms, the author refers to [13], [32], and [57]. In this work, we
will follow the notation as introduced in [27]. We repeat the definitions that
will be relevant in our work.

Let Ω be a smooth, compact, oriented, d-dimensional Riemannian manifold
with boundary and let TxΩ be the tangent space of Ω at x ∈ Ω. We denote
by Λk(Ω) the set of differential k-forms on Ω and by µ ∈ Λd(Ω) the volume
form of Ω. The set S(k, d) contains the permutations σ of numbers {1, . . . , d}
such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(d), and sign(σ) denotes
the sign of the permutation. In the remainder of this section, v1, . . . , vd denote
arbitrary smooth vector fields, while e1, . . . , ed denotes an orthonormal frame
with respect to a Riemannian manifold. We will need the following definitions
from [27].

Definition 1 [57, Definition 1.2.2a] The exterior product ∧ : Λj(Ω)×Λk(Ω) �→

2



1.2. The calculus of differential forms

Λj+k(Ω) is defined by

(ω∧ η)(v1, . . . , vj+k) = ∑
σ∈S(k,j+k)

sign(σ)ω(vσ(1), . . . , vσ(j))η(vσ(j+1), . . . , vσ(j+k)).

Definition 2 [57, Definition 1.2.2b] The scalar product (·, ·) : Λk(Ω)×Λk(Ω) �→
Λ0(Ω) = C∞(Ω) is defined by

(ω, η) = ∑
σ∈S(k,d)

sign(σ)ω(eσ(1), . . . , eσ(k))η(eσ(1), . . . , eσ(k)).

Definition 3 [57, Definition 1.2.2c] The Hodge operator � : Λk(Ω) �→ Λd−k(Ω)
yields the unique (d − k)-form �ω such that

η ∧ �ω = (η, ω)µ.

Definition 4 The scalar product (·, ·)Ω : Λk(Ω)× Λk(Ω) �→ R is defined by

(ω, η)Ω =
�

Ω
ω ∧ �η.

Definition 5 The scalar product (·, ·)Ω : Λl(Ω)× Λk(Ω) �→ R, l + k = d is
defined by

(ω, η)Ω =
�

Ω
ω ∧ η.

Definition 6 [57, Definition 1.2.2e] The exterior derivative d : Λk−1(Ω) �→
Λk(Ω) at x ∈ Ω is defined by

dω(v1, . . . , vk) = ∑
0≤j≤k

Dvj [ω(v1, . . . , v̂j, . . . , vk)]

+ ∑
0≤i<j≤k

(−1)i+jω([vi, vj], v0, . . . , v̂i, . . . , v̂j, . . . , vk),

where DX f denotes the differential of f ∈ Λ0(Ω) with respect to the vector
field X on Ω, [·, ·] denotes the Lie Bracket, and v̂i means that vi is omitted.

Definition 7 [57, Definition 1.2.2d] The contraction iβ : Λk(Ω) �→ Λk−1(Ω)
for a vector field β is defined by

(iβω)(v1, . . . , vk−1) = ω(β, v1, . . . , vk−1).

Definition 8 [57, p. 21] The Lie derivative Lβ : Λk(Ω) �→ Λk(Ω) is defined
by

Lβ = iβdω + diβω.

3



1. Semi-Lagrangian Advection of Differential Forms

Definition 9 [57, p. 22] Let Ω� be a manifold and ϕ : Ω �→ Ω� a smooth map,
then the pullback ϕ∗ : Λk(Ω�) �→ Λk(Ω) is defined as

(ϕ∗ω)x(v1, . . . , vk) = ωϕ(x)(Dϕxv1, . . . , Dϕxvk),

where ωx is the k-form associated with ω at x ∈ Ω and Dϕx is the differential
of ϕ at x.

Definition 10 [27] Tthe trace tr : Λk(Ω) �→ Λk(∂Ω) is the pullback of the
inclusion map i : Ω �→ ∂Ω .

Definition 11 [26, p. 8] The exterior coderivative δ : Λk(Ω) �→ Λk−1(Ω)
yields the unique (k − 1)-form δω such that

�δω = (−1)kd � ω.

An important result is the following [13]

Theorem 1 Let β : Ω �→ TΩ = Rd be stationary and Lipschitz-continuous,
then

∂

∂τ
Xτ(x) = β(Xτ(x)) (1.5)

X0(x) = x (1.6)

is well-defined and yields the following equality for ω ∈ Λk(Ω)

Lβω =
∂

∂τ
X∗

τω

����
τ=0

We are now ready to formulate the nonstationary advection-diffusion problem
as in [27]: we search ω(t) ∈ Λ1(Ω) such that

∂tω + δεdω + Lβω = ϕ, in Ω, (1.7a)

ω = ψg, on Γin, (1.7b)
ω|t=0 = ω0, (1.7c)

where ω0 and β are given, ψg ∈ Λ1(Ω) is the differential form corresponding
to the vector proxy g and also given. Γ0 denotes the boundary of Ω and
Γin = {x ∈ Γ0; β · n < 0} is the inflow boundary. From theorem 1 it is clear
that equation (1.7) constitutes a transport problem for ε = 0. In fact, we find
the formal solution

(ω(t))x = (X∗
−τω(0))x +

� t

0
(X∗

τ−t ϕ(τ))xdτ, (1.8)

where we assumed for simplicity that β · n = 0 on ∂Ω.
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1.3. Discrete differential forms

1.3 Discrete differential forms

In this section, we introduce a generalization to higher orders for differential
Whitney p-forms, a lowest-order discrete differential form. This type of
discrete differential forms has the advantage that its degrees of freedom lie
on p-simplices [21] as opposed to on q-simplices with q > p as is common
for higher-order discrete differential forms [3]. Good resources on the theory
of discrete differential forms are [4] and [3]. For an elaborate overview of the
theory presented in this section, we refer to [21].

Let Ω ⊂ Rd be a polyhedral domain, then we can define a mesh m as a
partition of Ω into d-simplices in such a way that two of those simplices are
only allowed to intersect on a common face of dimension 0 ≤ p ≤ d − 1. Let
S p and |S p| be the space of p-simplices of m and its cardinality. A p-chain
c is linear combination of simplices in S p and can be represented as a sum
c = ∑s∈S p css. In practice, c can be stored as a vector (cs)s∈S p and the space
of p-chains thus forms a vector space. A p-cochain is an element of the dual
space associated with the space of p-chains and can be associated with a
differentiable p-form as we will see later.

A p-cochain b can be constructed from a differential p-form b by defining it
as the map c �→ ∑s∈S p cs

�
s b or, on a computer, as the vector b = (

�
s b)s∈S p .

The conversion from a differential p-form to a p-cochain is called the deRham
map or the projection map, b = Rb. Given a p-cochain b : c �→ ∑s∈S p csbs
and suitable differentiable p-forms ws (to be defined later), we can construct
the differential p-form b = ∑s∈S p bsws. This construction is known as the
Whitney map (or prolongation), b = Pb. These constructions show us that
p-cochains are the discrete analogue of differential p-forms.

Another important operator is the boundary operator ∂ : S p �→ S p−1. This
operator takes a p-simplex σ and maps it to a sum of its faces (p− 1-simplices),
∂s = ∑s∈S p−1 ds

σs, where

ds
σ =





0, s /∈ ∂σ,
1, s ∈ ∂σ, orientation s agrees with orientation induced by σ,
−1, s ∈ ∂σ, orientation s disagrees with orientation induced by σ.

The map can be linearly extended to p-chains as ∂c = ∑s∈S p cs∂s. Using
the boundary operator and Stokes’ theorem, we can define the concept of
exterior derivative d for p-cochains.

Suppose b is a differential p-form, then db is a differential p + 1-form. Sup-
pose we are given Rb and we are interested in finding Rdb. The exterior
derivative of Rb is not defined, but we can take the exterior derivative of
PRb. This will yield a p+ 1-form (that is in general different from db), which
we can project onto a p + 1-cochain in order to represent it on a computer.

5



1. Semi-Lagrangian Advection of Differential Forms

This means that we are interested in integrating dPRb over p + 1-chains, say
∑s∈S p css. Using Stokes’ theorem, we find

�

∑s∈S p+1 css
dPRb =

�

∂(∑s∈S p+1 css)
PRb = ∑

s∈S p+1

cs

�

∂s
PRb.

The right-hand side of this equation can be evaluated as PRb is a p-form and
the operator ∂ reduces the p + 1-simplex s to a p-simplex ∂s, thus the above
equation is well-defined. Recall that the prolongation operator P implicitly
depends on chosen ws. It can be shown that the ws we find later has the
property that RdPRb = Rdb [21].

Let σ ∈ S p and s ∈ S p−1, then we can define λσ−s(x) to be the barycentric
coordinate associated with element σ and node l, where node l is the only
node of σ that is not contained in s. This allows us to define the differential
Whitney p-forms, ws, as follows [21].

Definition 12 The differential Whitney p-form wσ of polynomial degree 1
associated to the p-simplex σ is

wσ = ∑
s∈S p−1

ds
σλσ−sdws,

where wn = λn for p = 0 and Λp
h,1(Ω) = span{wσ; σ ∈ S p}.

It now remains to extend the definition of differential Whitney p-forms
to higher polynomial degrees. We write k = (k0, . . . , kd) for an ordered
set of integers with ki ≥ 0 and denote by |k| their sum. Then, we define
I(d+ 1, |k|) as the set of multi-index k with d+ 1 components and sum |k|. In
the remainder of the document, we will also use the notation λk = ∏d

i=0(λi)
ki .

To each multi-index k ∈ I(d + 1, |k|) and d-simplex σ corresponds a map K
defined as

K = H
�

1
k0 + 1

, a0

�
◦H

�
k0 + 1

k1 + k0 + 1
, a1

�
◦ · · · ◦H

�
kd−1 + · · ·+ k1 + 1

k + 1
, ad

�
,

where a0, . . . , ad are the vertices of σ and H is the mapping

H(r, a) : Rd � x �→ a + r(x − a) ∈ Rd.

Using K, we can define the degrees of freedom associated with differential
Whitney p-forms as the small p-simplices associated with σ, where small
simplices are defined as follows.

Definition 13 We call small p-simplices the images K(S) for all (big) p-
simplices S ∈ S p and all k ∈ I(d + 1, k), and denote them by s = {k, S}.

6



1.4. Discrete material derivative

Figure 1.1: Degrees-of-freedom of a second-order element in 2D. All the
edges between the different connection points are degrees-of-freedom. In 3D,
we simply have all these degrees-of-freedom on the faces of the simplex.

We refer to fig. 1.1 for an example of small simplices of a second-order
simplex in 2D. For a 3D simplex, there are no interior degrees-of-freedom
and we the degrees-of-freedom of the faces agree with those presented in
fig. 1.1.

We define the differential Whitney p-forms to small-simplices as follows.

Definition 14 The differential Whitney p-forms associated to small simplex
s = {k, S} is ws = λkwS, where wS is the differential Whitney p-form of
polynomial degree 1 associated to S as defined in definition 12. We denote
and Λp

h,1(Ω) = span{ws; s = {k, S}, k ∈ I(d + 1, k), S ∈ S p}.

It can be shown that the differential Whitney p-forms constitute a partition
of unity, but they are not linearly independent [21]. In practice this means
that we have to find a least-squares solution when applying the deRham
map. Also, it can be shown that the differential Whitney p-forms satisfy the
deRham complex [21].

In the remainder of this text, we may leave out the Whitney map P if it is
clear from the context that it should be applied.

1.4 Discrete material derivative

Consider the material derivative for a time-dependent differential p-form ω

Dω

Dt
:=

∂

∂τ
X∗

τω(t + τ)

����
τ=0

= ∂tω + Lβω. (1.9)

Using explicit Euler and Heun’s method, we obtain for a timestep τ > 0

Dω

Dt
=

1
τ
[ω(t)− X∗

−τω(t − τ)] +O(τ) (1.10)

and

Dω

Dt
=

1
2τ

[3ω(t)− 4X∗
−τω(t − τ) + X∗

−2τω(t − 2τ)] +O(τ2).

7



1. Semi-Lagrangian Advection of Differential Forms

For simplicity of notation, we will restrict the following explanation to the
case of first order. However, all that follows is directly applicable to the
second-order case unless stated otherwise.

Suppose that, instead of a time-dependent p-form ω(t), we have a p-cochain
defined at every timestep denoted by ω̄n, ω̄n+1, etc. We cannot simply plug
in ω̄n for ω, since the operator X∗

−τ is not defined on p-cochains. Instead,
we first apply the Whitney map P to obtain a differential p-form from the
p-cochain and plug that into equation (1.10). We find

Dω̄

Dt
=

1
τ

�
ω̄n − X∗

−τPω̄n−1
�
+O(τ).

Since X∗
−τPω̄n−1 is not a p-cochain, we need to apply the deRham map R.

We find
Dω̄

Dt
=

1
τ

�
ω̄n −RX∗

−τPω̄n−1
�
+O(τ).

Recall from section 1.3 that evaluating the deRham map R is equivalent to
evaluating integrals of p-forms over (small) p-simplices. In this work, we will
focus on the evaluation of 1-forms and thus integrals over (small) 1-simplices,
that is, straight lines. Let us denote by e such a 1-simplex, and let e1 and e2
denote its vertices. We are interested in evaluating

�
e X∗

−τPω̄n−1. We do this
in the following way

�

e
X∗
−τPω̄n−1 =

�

X−τ(e)
Pω̄n−1 ≈

�

X̄−τ(e)
Pω̄n−1, (1.11)

where

X̄−τ(e) = {(1 − t)X−τ(e1) + tX−τ(e2); 0 ≤ t ≤ 1} .

Instead of transporting the edge e using the flow X−τ exactly, we instead only
transport the vertices back and obtain a linear (second-order) approximation
of the transported edge. See fig. 1.2 for an illustration. We can approximate
the flow by solving equation (1.5) using explicit Euler or Heun’s method for
the first- and second-order case, respectively.

In fig. 1.2, we can also see that the approximate transported edge spans four
different elements of the mesh. If we need to evaluate equation (1.11), it can
happen that there are discontinuities of Pω̄n−1 along X̄−τ(e). Therefore, it is
not recommended to apply a quadrature rule over the entire integral. Instead,
we split X̄−τ(e) in four different pieces that are each contained in a single
element. Then, we can evaluate the integrals over these individual pieces
exactly, because we know that Pω̄n−1 is of polynomial form when restricted
to individual elements of the mesh (see section 1.3).

8



1.5. A first- and second-order scheme

Figure 1.2: Edge e (in red) is transported using the flow β (in blue). The
exact transported edge Xτ(e) and the approximate transported edge X̄τ(e)
are given in orange and green.

1.5 A first- and second-order scheme

We now have all the tools to our disposal to construct a fully-discrete first-
and second-order scheme to solve equation (1.7). We have the following weak
formulation

�

Ω
(

Dω
Dt� �� �

∂tω + Lβω) ∧ �η +
�

Ω
dω ∧ �dη =

�

∂Ω
dω ∧ �η +

�

Ω
f ∧ �η, ∀η ∈ Λ1(Ω),

(1.12a)

where Dω
Dt denotes the material derivative with respect to the flow β. Using

the finite-dimensional subspaces as defined in section 1.3 and using the
discrete material derivative as defined in section 1.4, we get the following
first-order scheme. Given ω̄n−1 ∈ Λ1

h,1(Ω), we search ω̄n ∈ Λ1
h,1(Ω) such that

�

Ω

1
τ

�
ω̄n −RX̄∗

−τPω̄n−1
�
∧ �η +

�

Ω
dω̄n ∧ �dη (1.13a)

=
�

∂Ω
dω̄n ∧ �η +

�

Ω
f ∧ �η, ∀η ∈ Λ1

h,1(Ω),

(1.13b)

where τ > 0 denotes the chosen timestep. A second-order scheme can be
constructed as follows. Given ω̄n−2, ω̄n−1 ∈ Λ1

h,2(Ω), we search ω̄n ∈ Λ1
h,2(Ω)

9



1. Semi-Lagrangian Advection of Differential Forms

Figure 1.3: The red line indicates the line that spans multiple elements. On
the left we see the reference element corresponding to the yellow element in
the mesh on the right.

such that
�

Ω

1
2τ

�
3ω̄n − 4RX̄∗

−τPω̄n−1 +RX̄∗
−2τPω̄n−2

�
∧ �η

+
�

Ω
dω̄n ∧ �dη =

�

∂Ω
dω̄n ∧ �η +

�

Ω
f ∧ �η, ∀η ∈ Λ1

h,2(Ω).

1.6 Implementation

This section is meant to shed some light on implementation details of the
numerical scheme. We will not go into details regarding the implementation
of discrete differential forms as those details can be found in [21]. Instead,
we will focus on a problem first described in section 1.4. In that section,
we encountered the problem that a transported edge could span multiple
elements in the mesh and we need to split this edge in individual parts that
are all contained in a single element. The presented algorithm works for
simplicial meshes of dimension 2 and higher.

Consider the situation on the right-hand side of fig. 1.3. We would like to
split the red line into four different segments that are each contained in a
single element. To do so, we will ”walk” over the red line and store the
element ids of the elements we pass. Indeed, we start our walk at the green
dot and we walk as far as we can without leaving the first element, that is,
until we reach the light-blue dot. As soon as we reach the blue dot, we store
the element id in an array for later reference. Currently, we are standing on
the light blue dot and thus we are standing on a face of the first element. The
next element we will be walking is the element on the other side of the face.

10



1.6. Implementation

Figure 1.4: The red line indicates the walking path. The yellow faces indicate
the faces of the next element that contain the edge. The corresponding black
arrows indicate their normal vectors. The pictured angle clearly needs to be
larger than 90 degrees.

We consult the mesh connectivity table to obtain the id of this element. Then,
we walk further down the line until we reach the purple point, consult the
mesh connectivity table again to find the next element, and so on. This ends
when we reach the blue point.

It remains to discuss how we determine how far we can walk before we
leave the element. Suppose we are standing at the light blue dot and would
like to see how far we can walk across the yellow element. To figure this
out, we transform the mesh element to its reference element and we also
transform the direction of the red line and the light blue and purple point to
the reference space (see left side of fig. 1.3). Since we know the coordinates
of the vertices in the reference space, we can compute how far we can walk.

In the above example, we implicitly assumed that we would always walk
across faces of the element. However, in practice, it is also possible to hit
a vertex or (in 3D) an edge. If we cross a vertex we can, just like we did
with a face, check the mesh connectivity table to see which elements are
touching this vertex. However, this could be many elements and we have
to make sure to take the right one. We can decide that by going one step
(of half the mesh-width) further down the path and then checking for every
element whether we are currently in that element. Note that this is rather
computationally expensive, but this is not an issue as hitting a vertex exactly
(up to numerical precision) barely happens. In 3D, we have a similar issue
when we hit edges. We can find the elements that touch the edge, but we
need to decide which of those elements we need. To do so, we take for every
element its two faces that contain the edge. If the normal vectors of both of

11
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Figure 1.5: Section 1.7.1 computed until 0.4 seconds using the first- and
second-order scheme as defined in section 1.5. The timestep is coupled to
the mesh width using a sufficiently small CFL condition.

these faces have an angle bigger than 90 degrees with the red line, we know
this is the element we need. See fig. 1.4 for illustration.

1.7 Experimental validation

In this section we present some numerical results that validate our first- and
second-order scheme for advection of differential forms by means of three
examples. We only consider advection (ε = 0) as that is the most challenging
case for simulation [27]. The code used for all numerical experiments can be
found at [61].

1.7.1 Vectorial rotating hump problem

This example was inspired by [27, Section 6.3]. We consider the domain
Ω = {x ∈ R2;−1 ≤ x1, x2 ≤ 1} with velocity

β =

�
x2
−x1

�
,

and source term f = 0. Also, we have the initial condition

β =

�
x2
−x1

�
,
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Figure 1.6: Section 1.7.2 computed until 1 second using the first- and second-
order scheme as defined in section 1.5. The timestep is coupled to the mesh
width using a sufficiently small CFL condition.

The vector proxy of the initial condition is given by

u0(x1, x2) =

�
grad u(x), for

�
x2

1 + (x2 − 1
4 )

2 ≤ 1
2 ,

0, else,

where

u(x1, x2) = cos


π

�
x2

1 +

�
x2 −

1
4

�2



4

.

The vector proxy of the exact solution is then given by

u(t, x) = R(t)−1u0 (R(t)x) , R(t) =
�

cos(t) − sin(t)
sin(t) cos(t)

�
.

The results of the experiment for a simulation until a final time are given in
fig. 1.5 and show a first- and second-order algebraic convergence.

1.7.2 Steady Taylor-Green vortex

We consider a Taylor-Green Vortex as introduced in [60]. We have

u(x, t) =




cos(πx) sin(πy) sin(πz)
− 1

2 sin(πx) cos(πy) sin(πz)
− 1

2 sin(πx) sin(πy) cos(πz)


 ,
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Figure 1.7: Section 1.7.3 computed until 1 second using the first- and second-
order scheme as defined in section 1.5. The time step is coupled to the mesh
width using a sufficiently small CFL condition.

and choose the source term and inflow boundary conditions such that this
is a solution to equation (1.7) with ε = 0. The results of the experiment for
a simulation until a final time of 1 second are given in fig. 1.6. Again, we
observe first- and second-order algebraic convergence.

1.7.3 An unsteady solution in 3D

We consider

u(x, t) =



−y cos( 1

4 t + yz)
−z cos( 1

4 t + xz)
−x cos( 1

4 t + xy)


 ,

and choose the source term and inflow boundary conditions such that this
is a solution to equation (1.7) with ε = 0. The results of the experiment for
a simulation until a final time of 1 second are given in fig. 1.7. Again, we
observe first- and second-order algebraic convergence.
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Chapter 2

Incompressible Euler Equations

2.1 Introduction

We search a solution u(x, t) and p(x, t) on a bounded domain Ω ⊂ Rn such
that

∂tu + u ·∇u − εΔu +∇p = f , in Ω, (2.1)
∇ · u = 0, in Ω, (2.2)
u · n = g · n, on ∂Ω, (2.3)

n ×∇× u = n ×∇× g, on ∂Ω, (2.4)
u = g, on Γin, (2.5)

where ε > 0 and g : Ω �→ Rn are given. ∂Ω and Γin denote the boundary of Ω
and the influx boundary Γin(t) = {x ∈ ∂Ω; g(x, t) · n(x, t) < 0}. The Arnold’
interpretation [5] provides a generalization of the above set of equations
to arbitrary Riemannian manifolds. In that form, it becomes clear that
the system can be interpreted as an optimal transport problem over the
infinite-dimensional Lie group of volume-preserving diffeomorphisms on
the manifold. Through this formulation it is natural to replace the first two
terms of the first equation above by the material derivative

Dtu := ∂tu + u ·∇u. (2.6)

The material derivative is equal to the derivative of the u along the velocity
field and physically corresponds to the rate-of-change of the velocity of
a specific particle [15]. Semi-Lagrangian schemes discretize the material
derivative over the flow field to preserve this natural structure of the above
set of equations.

Semi-Lagrangian schemes for the numerical solution of the incompressible
Euler equations have already received some interest in literature. In [14,
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2. Incompressible Euler Equations

64, 63], different semi-Lagrangian schemes were developed. These schemes
make use of spectral/hp elements [44, 33]—a combination of finite-element
and spectral methods—to obtain exponential convergence in space. The
degrees of freedom lie on points in the elements, so the semi-Lagrangian
approach amounts to transporting these point values using the flow map.
Although these schemes provide reasonable results, the resulting discrete
set of equations does not match the geometric structure of the underlying
continuous equations.

Although the issue of not preserving the geometric structure of equations
under discretization might not be apparant at first, it can be shown that
there is a strong link between the preservation of geometric structure and
the stability of the numerical schemes [4, 3]. There is a considerable amount
of literature available that discuss numerical methods for the Euler equations
that preserve its geometric structure [40, 22, 24, 37, 36, 66], but this literature
does not include any semi-Lagrangian-type schemes. Arnold et al. [4]
proposed a general framework for conserving geometric structure in the
discretization of partial differential equations using the concept discrete
differential forms. Heumann et al. [26, 28, 27] used this framework to
develop a semi-Lagrangian scheme for scalar and vectorial advection that
satisfies the geometric structure of the equations. However, these works did
not discuss higher-order schemes and the incompressible Euler equations
were not considered. The scheme presented in this work will fill that gap.

A class of methods similar to semi-Lagrangian methods are those termed
Lagrange-Galerkin (LG) methods. LG methods transport the velocity field
u back using the flow field and then multiply it with a test function and
integrate over it. If these integrals can be evaluated exactly, the schemes
provide unconditional stability [45, 58]. In practice it is impossible to evaluate
these integrals exactly and therefore they are often approximated using high-
order quadrature rules. Unfortunately, the approximate evaluation of the
integrals using quadrature leads to instabilities as disccused in [49, 9, 10,
39, 59, 50, 46]. The remedy for these instabilities is often to approximately
transport the mesh by only transporting the vertices using the flow map
and then to linearly interpolate to obtain the locations of the other points.
Then, the integrals can be evaluated exactly, since the integrand is piecewise-
polynomial. However, splitting the transported mesh into smaller elements
on which the integrand is polynomial, is computationally expensive in two
and three dimensions. The semi-Lagrangian method as presented in this
work does not suffer from this issue as, independently of the dimension
of the mesh, we only need to split the domains of line-integrals, i.e. one-
dimensional integrals.

In this work, we introduce a second-order, conservative, structure-preserving
semi-Lagrangian scheme to solve the incompressible Euler equations in
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2.2. The Euler equations and exterior calculus

two and three dimensions on simplicial meshes. In section 2.2, we will
introduce the geometric formulation of the incompressible Euler equations
using the language of differential forms. This section will also discuss the
conservation of energy and helicity for the incompressible Euler equations.
In section 2.3, we will introduce the numerical scheme. This includes the
spatial discretization using suitable higher-order discrete differential forms as
discussed in [21, 51]. Also, we will show how to apply the semi-Lagrangian
advection operator for discrete differential forms as introduced in [26, 28, 27]
to the incompressible Euler equations and how to extend it to second-order.
The resulting non-conservative scheme will be implicit, but only requires
solving a symmetric, linear system at every time-step. Section 2.3 will also
include a discusion on how we achieve conservation of energy and helicity
using appropriate Lagrange multipliers. Section 2.4 will provide a numerical
validation of the scheme.

2.2 The Euler equations and exterior calculus

In this section, we will review a famous work by Arnold [5]. The work
discusses infinite-dimensional Lie Groups and their application to the in-
compressible Euler equations. In particular, it shows that the incompressible
Euler equations can be interpreted as a minimization problem over the space
of measure-preserving diffeomorphisms. In the following, we will assume
sufficient regularity and we will not be particularly concerned regarding the
limitations of infinite-dimensional Lie groups. For a short introduction into
Lie groups and the associated notation, see appendix A.

2.2.1 Velocity field as volume-preserving diffeomorphism

As shown in [5], a solution u to the incompressible Euler equations can be
associated with a measure-preserving diffeomorphism ϕt by means of the
system �

∂
∂tϕt(x) = u(t,ϕt(x)),
ϕ0(x) = x.

(2.7)

It follows that for all t ∈ R+ such that the solution of the above equation
exists, we must have that ϕt : Ω �→ Ω is a diffeomorphism. We denote
SDi f f (Ω) the set of measure-preserving diffeomorphisms from Ω to itself.
We have Liouville’s Lemma as follows.

Lemma 2 Let ϕt : Ω �→ Ω be defined by equation (2.7), then, for Jt(x) =
det(Dxϕt(x)) with Dxϕt(x) the Jacobian of ϕt, we have

�
∂Jt
∂t (x) = (∇ · u)(t,ϕt(x))Jt(x)
J0(x) = 1.

(2.8)
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2. Incompressible Euler Equations

Proof See appendix B.1 �

Corollary 3 Since u as a solution to the incompressible Euler equations
is divergence-free, we must have det(Dxϕt(x)) = 1, i.e. ϕt is measure-
preserving.

We will consider SDi f f (Ω) as an infinite-dimensional Lie Group, where map
composition defines the group action. The definition of such a Lie Group is
non-trivial and mostly irrelevant for the current work. We refer to [18] for an
elaborate theoretical analysis.

The main result by Arnold is the following [5].

Theorem 4 (Arnold) Let ϕ : [0, T] � t �→ ϕ(t, ·) ∈ SDi f f (Ω) be such that ϕ̇
is constant with respect to the L2-norm and ϕ is a minimizer with respect to
the Lagrangian

� T

0
L(ϕ,ϕ̇)dt :=

� T

0

1
2

�

Ω
|ϕ̇◦ϕ(x)|2dxdt. (2.9)

Then, the vector field u = ϕ̇◦ϕ−1 solves the incompressible Euler equation
as stated in equation (2.1).

Proof The proof makes use of dynamical reduction theory. We introduce the
relevant aspects of this theory in the next section. For the complete proof
of Arnold’s theorem using the theory introduced in the next section, see
appendix B.3. �

2.2.2 Reduction theory

As we saw in the previous section, every velocity field u(x, t) can be asso-
ciated with a C1-curve ϕt ∈ SDi f f (Ω). A natural question that arises is
whether all elements of SDi f f (Ω) are required to describe the dynamics of
the system. It turns out that this is not the case. According to theorem 4, the
dynamics of the system are described by the Lagrangian on SDi f f (Ω) for
which we have

L(ϕ,ϕ̇) =
1
2

�

Ω
|ϕ̇◦ϕ(x)|2dx

=
1
2

�

Ω
|ϕ̇◦ Id(x)|2 |det(D(ϕ−1 ◦ Id))|� �� �

=1

dx = L(e,ϕ̇)
(2.10)

for any ϕ ∈ SDi f f (Ω). Indeed, we can conclude that our Lagrangian is
left-invariant by the following definition.

Definition 15 Let G be a Lie group. A lagrangian L : G × TG �→ R is
left-invariant if for all g ∈ G holds

L(g, ġ) = L(e, ġ),
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2.2. The Euler equations and exterior calculus

where e denotes the identity element of G.

Intuitively, this means that the only relevant information for the Lagrangian
is the velocity of the fluid rather than the position. Physically this makes
sense, since the behaviour of the fluid should be coordinate-independent.
Mathematically, this means that instead of considering all the tangent spaces
along a curve through SDi f f (Ω), we can simply only consider the tangent
space at the identity TeSDi f f (Ω)—the Lie algebra of SDi f f (Ω). This is a
powerful result, since it means that we can neglect the geometry of SDi f f (Ω)
and only focus on the vector space structure of TeSDi f f (Ω).

There is one problem left: our Lagrangian is defined on SDi f f (Ω), not on
TeSDi f f (Ω). Recall that the Lagrangian is only dependent on the velocity.
Suppose we have a curve in f : [0, T] �→ SDi f f (Ω) such that f (0) = g,
then we can identify the velocity ḟ (0) ∈ TgSDi f f (Ω) with a velocity in
TeSDi f f (Ω) by simply multiplying the curve f by g−1. In this way we
can define a reduced Lagrangian on TeSDi f f (Ω). This was formalized for
arbitrary Lie groups by Marsden [35] in the form of the following theorem.

Theorem 5 Let G be a Lie group, g its Lie algebra, and let L : G × TG �→ R

be left-invariant, then we can define the reduced lagrangian l : g �→ R as

TeG ∼= g � ġ �→ l(ġ) := L(e, ġ). (2.11)

Now let g : [0, T] �→ G be a curve in G, and define ξ : [0, T] �→ TeG ∼= g as
ξ(t) := d

ds

���
s=t

{s �→ g−1(t)g(s)}, then the following are equivalent.

1. The variational principle

δ
� T

0
L(g(t), ġ(t))dt = 0

holds for variations with fixed endpoints.

2. The variational principle

δ
� T

0
l(ξ(t))dt = 0

holds on g, using variations of the form

δξ = η̇ + [ξ, η],

with η : [0, T] �→ TeG and η(0) = 0 = η(T).

3. The Euler-Poincaré equations hold, that is, for all v ∈ TeSDi f f (Ω)

�
d
dt

δl
δξ

, v
�
= −

�
δl
δξ

, [ξ, v]
�

,
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2. Incompressible Euler Equations

where δl
δξ is defined such that

�
δl
δξ

, v
�
=

d
dε

����
ε=0

l(ξ + εv)

is satisfied.

Proof See appendix B.2. �

In the next section, we will see how the above theorem can be used to obtain
a geometric version of the incompressible Euler equations.

2.2.3 Geometric formulation of the Euler equations

Note that in the case of the incompressible Euler equations, we have for
ϕ : [0, T] �→ SDi f f (Ω) and ξ := d

ds

���
s=0

{s �→ ϕ−1(0)ϕ(s)}. This yields

l(ξ) =
1
2

�

Ω
|ϕ̇|2dx. (2.12)

We thus find the identification

∂l
∂ξ

= ϕ̇ = u. (2.13)

However, on the other hand, we can apply property 3 of theorem 5. Let
ω ∈ Λ1(TeSDi f f (Ω)) be such that for all η ∈ TeSDi f f (Ω)

�

Ω
ω(η)µ =

�
δl
δξ

, η

�
. (2.14)

We can thus identify u with a 1-form ω := uZ in the Hilbert space L2(Ω).
From (3) in theorem 5, we find

�

Ω

d
dt

ω(η)dx =
�

Ω
ω([ξ, η])dx. (2.15)

For Ω = Rd with d = 2, 3, this reduces to [40, section 2.2]
�

Ω

d
dt

ω(η)dx = −
�

Ω
Lξω(η)dx. (2.16)

Since we can also identify η with the 1-form v := η
Z, we find

�

Ω

dω

dt
∧ �v +

�

Ω
Lξω ∧ �v = 0. (2.17)

Since ω can be identified with ϕ̇ with ϕ a volume-preserving diffeomorphism,
we must have that the divergence of ω

\ vanishes, that is, ω
\ is incompressible.
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2.3. A semi-Lagrangian discretization

Adding a Lagrange multiplier to enforce the incompressibility of ω reveals
the pressure term. We obtain for all v ∈ Λ1(Ω), ψ ∈ Λ0(Ω), and Ω = Rd

with d = 2, 3
�

Ω

�
dω

dt
+
�

Ω
Lξω

�
∧ �v +

�

Ω
dp ∧ �v = 0. (2.18)

�
ω ∧ �dψ = 0, (2.19)

where we left out source- and boundary-terms for simplicity. Adding the
viscosity term yields

�

Ω

�
dω

dt
+
�

Ω
Lξω

�
∧ �v + ε

�

Ω
dω ∧ �dv +

�

Ω
dp ∧ �v = 0. (2.20)

�
ω ∧ �dψ = 0. (2.21)

It can be shown [16] that the inviscid, incompressible Euler equations con-
serve the energy

E(ω) =
�

Ω
ω ∧ �ω, (2.22)

and the helicity

H(ω) =
�

Ω
dω ∧ ω. (2.23)

The helicity can physically be interpreted as the total amount of corkscrew
movement present in the fluid. It is important that numerical schemes
conserve both properties on the discrete level.

2.3 A semi-Lagrangian discretization

In this section, we will discuss a semi-Lagrangian discretization of equa-
tion (2.20). In the spirit of the semi-Lagrangian approach, we will start by
discretizing the material derivative.

2.3.1 Approximation of the flow map

For the discretization of the material derivative, we proceed mostly as de-
scribed in section 1.4. However, the flow is to be set equal to the velocity field
u corresponding to the Euler equations. Therefore, equation (1.5) changes to

∂

∂τ
Xt+τ(x) = u(Xt+τ(x), t), (2.24a)

Xt(x) = x. (2.24b)

As discussed in section 1.4, we are mostly interested in flow backwards in
time. We can use explicit Euler to make the first-order approximation

Xt−τ(x) = x − τu(x, t) +O(τ), (2.25)
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2. Incompressible Euler Equations

where τ > 0 denotes the timestep. In practice, we do not have access to u as
it is an unknown. Instead, we will have access to an approximation of ω at
each timestep. Since the 1-form ω can be identified with the velocity field
u = ω

\, we can identify the approximations of ω by approximate velocity
fields . . . , un−1, un, un+1, . . . corresponding to times . . . , tn−1, tn, tn+1, . . .. Note
that on the level of implementation, un and ωn are the same and we will thus
not distinguish in the remainder of this text. Also, we will assume them to
be accurate up to sufficiently high order, such that we find

Xtn−τ(x) = x − τun(x) +O(τ). (2.26)

Note that the approximation un resides in a space of (higher-order) discrete
differential forms as discussed in section 1.3. This means that only tangential
continuity across faces of elements in the mesh is guaranteed, while dis-
continuities may appear in the normal direction of the faces. Therefore, un

is not point-wise defined—even though equation (2.26) requires point-wise
evaluation. To solve this, we need to introduce a smoothened version of un.
There are plenty of possibilities, but we would like the smoothened version
of un to be

• at least Lipschitz continuous to ensure existence and uniqueness,

• well-defined on every point in the mesh,

• practically computable,

• second-order accurate.

An easy-to-compute method of smoothing that comes to mind immediately,
is a method where we average the values over the neighbouring cells if we
are evaluating at a point that lies exactly on a vertex or face of the mesh. If
we are evaluating a point that lies within the interior of an element, we can
use the prolongation operator to obtain a value. However, this method does
not provide a function that is in C0(Ω), because there will still be jumps of
the tangential value across faces. In practice, this can lead to instabilities.

Instead, we introduce a smoothened version of un as follows. Let h denote
the mesh-width, (un

i )i=1,..,d the components of un, then

ūn
i (x) =

1
h

� xi− h
2

xi− h
2

un
i ([x1, . . . , xi−1, ξ, xi+1, . . . , xd]

T)dξ (2.27)

provides a second-order, Lipschitz-continuous approximation of un. Note
that the above integral can be evaluated up to numerical accuracy using the
algorithm as described in section 1.6 and provides a second-order approxi-
mation of un(x).

The above scheme is theoretically sound. However, in practice we do not
have access to un, but only to the approximations at the previous timesteps
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2.3. A semi-Lagrangian discretization

. . . , un−2, un−1. Since our flow field is assumed to be bounded, a suitable first-
order approximation would be to replace un by the constant extrapolation
un−1. Our final first-order approximation of Xt−τ(x) for x any vertex of the
mesh, is then

X̄t−τ(x) := x − τūn−1(x). (2.28)

For any point x that is not a vertex, we obtain X̄t−τ(x) through its barycentric
coordinates with respect to the transported vertices of the corresponding
element as described in section 1.4. Similarly, but using Heun’s method [62]
instead of explicit Euler, we find the following second-order approximations

Xt−τ(x) = x − τ

2

�
un(x) + un−1(x − τun(x))

�
+O(τ2), (2.29)

Xt−2τ(x) = x − τ
�
un(x) + un−2(x − 2τun(x))

�
+O(τ2), (2.30)

where we can replace un by the linear extrapolation u∗ = 2un−1 − un−2 to
obtain the second-order approximations for x any vertex of the mesh

X̄t−τ(x) := x − τ

2

�
ū∗(x) + ūn−1(x − τū∗(x))

�
, (2.31)

X̄t−2τ(x) := x − τ
�
ū∗(x) + ūn−2(x − 2τū∗(x))

�
, (2.32)

where we also replaced uk by the smoothened version ūk for k = n − 1, n −
2, ∗. For any point x that is not a vertex, we again obtain X̄t−τ(x) through
its barycentric coordinates with respect to the transported vertices of the
corresponding element as described in section 1.4.

2.3.2 A first- and second-order scheme

We are now ready to extend the scheme in section 1.5 to the incompressible
Euler equations. For the first-order scheme, we have the following. Given
ωn−1 ∈ Λ1

h,1(Ω), we search pn ∈ Λ0
h,1(Ω), ωn ∈ Λ1

h,1(Ω) such that

�
1
τ

�
ωn −RX̄∗

−τPωn−1
�

, η

�

Ω
+ ε (dωn, dη)Ω + (dpn, η)Ω

= ε (dωn, η)∂Ω + ( f , η)Ω , ∀η ∈ Λ1
h,1(Ω),

(ωn, dψ)Ω = 0, ∀ψ ∈ Λ0
h,1(Ω),

where R and P denote the projection and prolongation operator as defined in
section 1.3. For the second-order scheme, we use second-order timestepping.
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2. Incompressible Euler Equations

Given ωn−2, ωn−1 ∈ Λ1
h,2(Ω), we search ωn ∈ Λ1

h,2(Ω) such that
�

1
2τ

�
3ωn − 4RX̄∗

−τPωn−1 +RX̄∗
−2τPωn−2

�
, η

�

Ω

+ε (dωn, dη)Ω + (dpn, η)Ω = ε (dωn, η)∂Ω + ( f , η)Ω , ∀η ∈ Λ1
h,2(Ω),

(ωn, dψ)Ω = 0, ∀ψ ∈ Λ0
h,2(Ω).

Through numerical experiments, we will later see that these schemes in-
deed do provide first- and second-order convergence. However, there is
no guarantee that the invariants of the incompressible Euler equations are
preserved. Note that the schemes presented in this section only require
solving a symmetric, linear system of equations at every time-step.

2.3.3 Conservation of invariants

In this section, we will show how the numerical schemes from section 2.3.2
can be adapted in such a way that the invariants are preserved on the discrete
level. We will limit ourselves to the first-order scheme, but the same method
can be applied to the second-order scheme. We discuss conservation of
energy and conservation of helicity separately. However, these two methods
can be combined to design a scheme that conserves both energy and helicity.

Conservation of energy

In order to enforce energy conservation—conservation of the L2-norm—we
add a suitable Lagrange multiplier to the discrete system proposed in sec-
tion 2.3.2. Given ωn−1 ∈ Λ1

h,1(Ω), we search ωn ∈ Λ1
h,1(Ω), pn ∈ Λ0

h,1(Ω),
and µ ∈ R such that

�
1
τ

�
ωn −RX̄∗

−τPωn−1
�

, η

�

Ω

+ (dpn, η)Ω + µ (ωn, η)Ω = ( f , η)Ω , ∀η ∈ Λ1
h,1(Ω),

(ωn, dψ)Ω = 0, ∀ψ ∈ Λ0
h,1(Ω),

(ωn, ωn)Ω =
�

ωn−1, ωn−1
�

Ω
.

Note that µ is necessary to add an extra degree-of-freedom to the discrete
system such that we can use this freedom to enforce the conservation con-
straint.

Since the above system is nonlinear, it is not clear how we can obtain the value
for ωn. We propose the following fixed-point iteration. Let ωn

k−1 ∈ Λ1
h,1(Ω) be
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2.3. A semi-Lagrangian discretization

some given approximation of ωn, then we want to find a new approximation
ωn

k ∈ Λ1
h,1(Ω) that is closer to ωn. We define ωn

k to satisfy the above system
with the third equation replaced by an approximate version. We obtain
this approximate version by expanding the left-hand side using a first-order
Taylor approximation around ωn

k−1 as

(ωn, ωn)Ω ≈ (ωn
k , ωn

k )Ω =
�
ωn

k−1, ωn
k−1

�
Ω + 2

�
ωn

k−1, ωn
k − ωn

k−1
�

. (2.36)

The system that is satisfied by ωn
k is the following. Given ωn−1, ωn

k−1 ∈
Λ1

h,1(Ω), we search µk ∈ R, ωn
k ∈ Λ1

h,1(Ω), pn
k ∈ Λ0

h,1(Ω) such that

�
1
τ

�
ωn

k −RX̄∗
−τPωn−1

�
, η

�

Ω

+ (dpn
k , η)Ω + µk

�
ωn

k−1, η
�

Ω = ( f , η)Ω , ∀η ∈ Λ1
h,1(Ω),

(ωn
k , dψ)Ω = 0, ∀ψ ∈ Λ0

h,1(Ω),

�
ωn

k−1, ωn
k−1

�
Ω + 2

�
ωn

k−1, ωn
k − ωn

k−1
�
=
�

ωn−1, ωn−1
�

Ω
.

This is a symmetric, linear system that can be solved.

Conservation of helicity

In order to enforce helicity conservation, we add a suitable Lagrange multi-
plier to the discrete system proposed in section 2.3.2. Given ωn−1 ∈ Λ1

h,1(Ω),
we search λ ∈ R, ωn ∈ Λ1

h,1(Ω) such that

�
1
τ

�
ωn −RX̄∗

−τPωn−1
�

, η

�

Ω
+ (dpn, η)Ω

+λ(ωn, dη)Ω + λ(dωn, η)Ω = ( f , η)Ω , ∀η ∈ Λ1
h,1(Ω),

(ωn, dψ)Ω = 0, ∀ψ ∈ Λ0
h,1(Ω),

(ωn, dωn)Ω =
�

ωn−1, dωn−1
�

Ω
.

Similarly as for conservation of energy, we obtain the following fixed-point
iteration. At every iteration, given ωn−1, ωn

k−1 ∈ Λ1
h,1(Ω), we search λk ∈ R,
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ωn
k ∈ Λ1

h,1(Ω), pn
k ∈ Λ0

h,1(Ω) such that

�
1
τ

�
ωn

k −RX̄∗
−τPωn−1

�
, η

�

Ω
+ (dpn

k , η)Ω

+λk(ω
n
k−1, dη)Ω + λk(dωn

k−1, η)Ω = ( f , η)Ω , ∀η ∈ Λ1
h,1(Ω),

(ωn
k , dψ)Ω = 0, ∀ψ ∈ Λ0

h,1(Ω),

�
ωn

k−1, dωn
k
�

Ω +
�
ωn

k , dωn
k−1

�
Ω −

�
ωn

k−1, dωn
k−1

�
Ω =

�
ωn−1, dωn−1

�
Ω

.

Again, we obtain a linear, symmetric system of equations and it is observed
in practice that the fixed-point iteration converges in about three iterations.

2.4 Numerical Validation

In this section, we consider multiple numerical experiments for validation.
We use the non-conservative version of our scheme unless stated otherwise.
The code used for all numerical experiments can be found at [61].

2.4.1 Experiment 1: Decaying Taylor-Green Vortex

We consider the incompressible Euler equations with ε = π−2, Ω = [− 1
2 , 1

2 ]
2,

no source term, and vanishing normal boundary conditions. An exact,
classical solution is the following Taylor-Green vortex [60]

u(x, t) =
�

cos(πx1) sin(πx2)
− sin(πx1) cos(πx2)

�
e−2t. (2.40)

We ran a h-convergence analysis and summarize the results in fig. 2.1.

2.4.2 Experiment 2: Taylor-Green Vortex

We consider the incompressible Euler equations for different values of ε ∈
{0, 10−2, 1} and with vanishing boundary conditions on the domain Ω =
[− 1

2 , 1
2 ]

2. The source term is chosen such that

u(x, t) =
�

cos(πx1) sin(πx2)
− sin(πx1) cos(πx2)

�
(2.41)

is an exact, classical solution. We ran a h-convergence analysis for all parame-
ters and summarize the results in fig. 2.2. We observe first- and second-order
algebraic convergence for the corresponding schemes. An important observa-
tion is that the scheme performs similarly for different values of ε. As ε → 0
the constant of convergence remains bounded. This is in agreement with
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Figure 2.1: Convergence results for experiment 1 using the first- and second-
order, non-conservative schemes on simplicial meshes with mesh-width
h, timestep τ = 0.263214h, and final time T = 1. We observe first- and
second-order algebraic convergence.

the analysis performed on the vectorial advection equations presented in
[27]. This experiment thus suggests that this analysis can be extended to the
scheme presented in this work. For completeness, we also track the energy
for the case ε = 0 in fig. 2.3.

2.4.3 Experiment 3: A rotating hump problem

The Taylor-Green vortices are interesting to observe, since they are analytical
solutions. However, practical problems will often be significantly more
dynamic. This experiment is meant to reflect such behaviour. We consider
the incompressible Euler equations with ε = 0, Ω = [− 1

2 , 1
2 ]

2, no source term,
and vanishing normal boundary conditions. We have the following initial
condition

u0(x) =
� −πex1 cos(πx1) sin(πx2)

πex1 sin(πx1) cos(πx2)− ex1 cos(πx1) cos(πx2)

�
. (2.42)

The exact solution to this problem is unknown, so we compare our solution
to the solution produced by the incompressible Euler solver Gerris [48]. The
algorithm used in this solver is described in [47]. We computed the solution
to the problem using the second-order, conservative scheme presented in this
work. Then, we plotted the magnitude of the computed velocity vector field
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Figure 2.2: Convergence results for experiment 2 using the first- and second-
order, non-conservative schemes on simplicial meshes with mesh-width h,
timestep τ = 0.13161h, and final time T = 1. As ε → 0 the constant of
convergence remains bounded.
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Figure 2.3: Energy of the discrete solution for experiment 2 using the first-
and second-order, non-conservative schemes on a simplicial mesh with mesh-
width h = 0.189959, timestep τ = 0.025, and final time T = 1.
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Figure 2.4: Convergence results for experiment 2 using the second-order,
conservative scheme on simplicial meshes with mesh-width h, timestep
τ = 0.06580h, and final time T = 1. The reference solution is a solution
computed by Gerris [47]

for different mesh-sizes and time-steps at different time instances in figs. 2.5
to 2.8. Note that different visualisation tools were used to visualize the fields
computed using the different solvers, but we can see a clear correspondence
between the two solvers. Also, we observe that solution computed by the
semi-Lagrangian scheme comes visually closer to the solution computed
by Gerris as we decrease the mesh-width. This is confirmed by fig. 2.4,
where we display the L2 error between the solution computed using the
semi-Lagrangian scheme and the solution computed using Gerris. In fig. 2.10,
we display the vector field as computed using the second-order, conservative
semi-Lagrangian scheme.

Also, in fig. 2.11 we display the values of the L2 norm over time of the
solutions produced using our first- and second-, conservative and non-
conservative schemes. Note that the conservative schemes preserve the
L2 norm as expected. The first-order, non-conservative scheme seems unsta-
ble at first, but in reality the ordinate axis spans a very small range and it
turns out that the L2 norm converges to a bounded value for longer run-times.
Note that the helicity is not defined in two dimensions.
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(a) t = 0.25 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 2.5: Experiment 3: mesh-width h = 0.379918 and time-step τ = 0.025.

(a) t = 0.25 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 2.6: Experiment 3: mesh-width h = 0.0949795 and time-step τ =
0.00625.

(a) t = 0.25 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 2.7: Experiment 3: mesh-width h = 0.023744875 and time-step τ =
0.0015625.

(a) t = 0.25 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 2.8: Reference solution experiment 3 computed using [48].

0 1 2 3 4 5

Figure 2.9: Colorbar corresponding to figs. 2.5 to 2.8
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(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1

0 1 2 3 4 5

Figure 2.10: Velocity field for experiment 3 computed using the second-order,
conservative semi-Lagrangian scheme on a simplicial mesh with mesh-width
h = 0.189959 and time-step τ = 0.0125. The colors indicate the magnitude of
the vector.
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Figure 2.11: The L2 norm of the computed solutions for experiment 3 using
different variants of the semi-Lagrangian scheme on a simplicial mesh with
mesh-width h = 0.04748975 and time-step τ = 0.003125. In the legend, ’cons’
is short for ’conservative’.

2.4.4 Experiment 4: Taylor-Green Vortex in 3D

To observe conservation of helicity, we need to consider a problem in 3D.
We consider the incompressible Euler equations with ε = 0 and vanishing
normal boundary conditions on the domain Ω = [− 1

2 , 1
2 ]

3. The source term
is chosen such that

u(x, t) =




cos(πx1) sin(πx2) sin(πx3)
− 1

2 sin(πx1) cos(πx2) sin(πx3)
− 1

2 sin(πx1) sin(πx2) cos(πx3)


 (2.43)

is a solution. We run several experiments using the first- and second-order,
conservative semi-Lagrangian schemes. We summarize the results in fig. 2.12
and we observe first- and second-order algebraic convergence for the corre-
sponding schemes. In fig. 2.13 and fig. 2.14 we plot the L2 norm and helicity
over time of the discrete solution for both the first- and second-order scheme.
We observe that both quantities are conserved up to machine precision. Note
that the range of fig. 2.14 is very small.

2.4.5 Experiment 5: A transient solution in 3D

To verify the scheme for transient solutions in 3D, we consider the incom-
pressible Euler equations with vanishing normal boundary conditions on the
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Figure 2.12: Convergence results for experiment 4 using the first- and
second-order, conservative schemes on simplicial meshes with mesh-width h,
timestep τ = 1√

2
h, and final time T = 1.
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Figure 2.13: The L2 norm of the computed solutions for experiment 4 using
different variants of the semi-Lagrangian scheme on a simplicial mesh with
mesh-width h = 0.08838834764 and time-step τ = 0.0625. In the legend,
’cons’ is short for ’conservative’.
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Figure 2.14: The helicity of the computed solutions for experiment 3 using
different variants of the semi-Lagrangian scheme on a simplicial mesh with
mesh-width h = 0.08838834764 and time-step τ = 0.0625. In the legend,
’cons’ is short for ’conservative’.

domain Ω = [− 1
2 , 1

2 ]
3. The source term is chosen such that

u(x, t) =



−x2π cos( t

4 + πx2x3) cos(πx2)
−x3π cos( t

4 + πx1x3) cos(πx3)
−x1π cos( t

4 + πx1x2) cos(πx1)


 (2.44)

is a solution. We ran a simulation until a final time of 1 second for different
mesh-sizes with time-steps determined by a suitable CFL condition. We
summarize the results in fig. 2.15. We observe second-order convergence for
the second-order scheme. The first-order scheme also achieves higher-order
convergence than first-order, but this is expected to converge to first-order as
the mesh-size gets smaller.

2.4.6 Experiment 6: Lid-driven cavity with slippery walls

In this section, we simulate a situation that resembles a lid-driven cavity
problem for the incompressible Euler equations with ε = 0 on the domain
Ω = [− 1

2 , 1
2 ]

2. We apply vanishing normal boundary conditions and the
initial velocity field is set equal to zero. Then, to simulate a moving lid at the
top, we apply the force-field f (x, t) = [v(x), 0]T with

v(x) =

�
exp

�
1 − 1

1−100(0.5−x2)2

�
, if 1 − 100(0.5 − x2)2 > 0,

0, else.
(2.45)
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Figure 2.15: Convergence results for experiment 5 using the first- and second-
order, non-conservative schemes on simplicial meshes with mesh-width h,
timestep τ = 1√

2
h, and final time T = 1.

This force field gives a strong force in the x1-direction close to the top lid,
but quickly tappers of to zero as we go further from the top lid. In fig. 2.16,
we display the computed velocity field. Note that, because we only apply
normal boundary conditions and thus no slip-related boundary conditions,
we do not expect to observe vortices. The numerical solution reproduces this
expectation.
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0 0.5 1 1.5 2 2.5

Figure 2.16: Velocity field at T = 7.93s of experiment 6 computed using
the second-order, non-conservative semi-Lagrangian scheme on a simplicial
mesh with mesh-width h = 0.189959 and τ = 0.01.
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Chapter 3

Incompressible
Magnetohydrodynamics

3.1 Introduction

We consider the magnetostatic approximation of the resistive, viscous mag-
netohydrodynamics (MHD) equations, that is, we are interested in finding
solutions to

∂tu + (u ·∇)u + grad p − νΔu − κJ × B = f , (3.1a)
∂tB + curl E = 0, (3.1b)

curl H − J = 0, (3.1c)
div u = 0, (3.1d)
div B = 0, (3.1e)

where u : [0, T] × Ω �→ Rn is the velocity field, p : [0, T] × Ω �→ R is the
pressure, J : [0, T] × Ω �→ Rn is the current, B : [0, T] × Ω �→ Rn is the
magnetic induction, H : [0, T]× Ω �→ Rn is the magnetic field, f : [0, T]×
Ω �→ Rn is an external force stirring the fluid, ν ∈ R is the fluid viscosity, and
κ ∈ R is the magnetic coupling factor. We will apply appropriate boundary
conditions later. Additionally, we have the following two material laws

B = µH, (3.2a)
J = σ(E + u × B), (3.2b)

where µ ∈ R is the magnetic permeability and σ ∈ R the electric conductivity
—both assumed constant in space and time. If we take ν → 0 and σ → ∞,
we obtain the ideal MHD equations. For ease of notation, we will assume
µ = 1 in the remainder of this text. In [11], several modeling applications
of the incompressible MHD equations are mentioned including aluminum
electrolysis, electromagnetic pumping, and the MHD generator. Typical
values for ν and σ are given to be around 10−4 and 1 for these applications.
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The steady, incompressible MHD equations have received considerable atten-
tion in literature. In [23, 19, 55] several stabilized and mixed finite-element
schemes have been proposed for the steady, incompressible MHD equations.
Of particular interest is the scheme presented in [55]. In this work, Schötzau
et al. proposed a scheme that discretizes u with H1(Ω)-conforming finite-
elements and B with H(curl, Ω)-conforming finite-elements. This scheme
yields an approximation of the magnetic induction Bh that is only weakly
divergence-free. This means that Bh is orthogonal to all discrete gradient
fields.

In recent years, the importance of satisfying the divergence-free condition for
B on the discrete level has received increased interest for the development
of codes for the simulation of fusion reactors [2, 1]. In [12] it is shown
that when the divergence-free condition for Bh is not exactly satisfied, a
non-physical force can lead to large numerical errors. An overview of the
different methods that can be used to enforce the divergence-free condition
for the magnetic field, can be found in [31]. Other works that cover this
particular issue include [67, 65, 42, 43]. In [29], a scheme was proposed
using the formulation of the incompressible MHD equations based on the
magnetic vector potential A with B = curl A. In this scheme, a discrete
version of the magnetic vector potential Ah is constructed using H(curl, Ω)-
conforming finite-elements. Through the theory of discrete differential forms
[4, 3], it then naturally follows that the discrete magnetic field Bh = curl Ah
is divergence-free. In this work, we will follow a similar approach.

In section 3.2, we will see that A can be interpreted as the solution of
an advection equation with respect to the flow field u. This allows us to
apply the theory of advection of discrete differential forms as proposed in
[27, 26, 28] and extended to second-order in chapter 1 of this work. Also the
incompressible Navier-Stokes equation can be solved using semi-Lagrangian-
type methods as described in chapter 2 of this work. We will combine
these methods into a semi-Lagrangian scheme for the incompressible MHD
equations. We refer to chapter 1 and chapter 2 for a literature overview of
semi-Lagrangian methods for the incompressible Navier-Stokes equation and
advection-diffusion equations.

This work is organized as follows. In section 3.2, we introduce an alternative
form of the incompressible MHD equations based on the magnetic vector
potential. Then, in section 3.3 we introduce the main numerical scheme
(scheme A) and slight variations to it (partial scheme B, C, etc.). In section 3.4,
we provide numerical experiments for the validation of our method. We
observe that the scheme works well for sufficiently low conductivity or
sufficiently low viscosity, but shows instabilities for the limit case of high
conductivity and low viscosity.
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3.2 Introduction to the MHD equations

In this section, we will derive two alternative formulations of the incom-
pressilbe MHD equations that both yield slightly different schemes. First,
let us introduce the magnetic vector potential as A : [0, T]× Ω �→ Rn with
B = curl A. Then, we can reformulate the above system of equations as

∂tu + (u ·∇)u + grad p − νΔu − κcurl curl A × curl A = f , (3.3a)

curl
�

∂t A +
1
σ

curl curl A − u × curl A
�
= 0, (3.3b)

curl curl A − J = 0, (3.3c)
div u = 0. (3.3d)

Since the curl of the gradient vanishes, we can write the second equation as

curl
�

∂t A +
1
σ

curl curl A − u × curl A + grad(A · u) + grad ψ

�
= 0, (3.4)

where ψ : [0, T] × Ω �→ R is an arbitrary function. Considering A as the
vector-proxy of a 1-form and fixing the gauge, we find

∂t A + Lu A +
1
σ

curl curl A + grad ψ = 0, (3.5)

div A = 0. (3.6)

Similarly, we can regard u as the vector-proxy of a 1-form (as explained in
chapter 2) to obtain the following

∂tu + Luu + grad p + ν curl curl u − κJ × curl A = f , (3.7a)

∂t A + Lu A + grad ψ +
1
σ

curl curl A = 0, (3.7b)

curl curl A − J = 0, (3.7c)
div u = 0, (3.7d)
div A = 0. (3.7e)

We obtain a weak formulation by multiplying with a suitable vector proxy of a
1-form and integrating by parts. We search u, A, J ∈ Λ1(Ω) and p, ψ ∈ Λ0(Ω)
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such that, for all u�, A� ∈ Λ1(Ω) and p�, ψ� ∈ Λ0(Ω), we have

�

Ω
(∂tu + Luu) · u�dxdx +

�

Ω
ν curl u · curl u�dx

+
�

Ω
grad p · u�dx − κ

�

Ω
J × curl A · u�dx =

�

Ω
f · u�dx, (3.8a)

�

Ω
(∂t A + Lu A) · A�dx +

�

Ω
grad ψ · A�dx

+
1
σ

�

Ω
curl A · curl A�dx = 0, (3.8b)

�

Ω
curl A · curl J�dx −

�

Ω
J · J�dx = 0, (3.8c)

�

Ω
u · grad p�dx = 0, (3.8d)

�

Ω
A · grad ψ�dx = 0, (3.8e)

where we assumed the following boundary conditions for simplicity

u · n = 0, on ∂Ω, (3.9)
A · n = 0, on ∂Ω, (3.10)

n × curl u = 0, on ∂Ω, (3.11)
n × curl u = 0, on ∂Ω. (3.12)

We identify the following material derivatives

Dtu := ∂tu + Luu, (3.13)
Dt A := ∂t A + Lu A. (3.14)

Note that the material derivative of A is the derivative with respect to the
flow field u.

3.3 Numerical scheme

In this section, we will describe the proposed numerical schemes for solving
the incompressible MHD equations. We will denote these schemes by the
letters A, B, C, etc. Note that A is the most important scheme as that is the
scheme we study. Partial scheme B, C, etc are merely there to provide a
rigorous experimental analysis of why scheme A shows instabilities.
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3.3. Numerical scheme

3.3.1 Scheme A

Our starting point will be the weak formulation of the MHD equations as
presented in equation (3.15). Following the same philosophy as in section 2.3,
we discretize the material derivative. Given un−1

h , un−2
h , An−1

h , An−2
h ∈ Λ1

h(Ω),
we search un

h , An
h , Jn

h ∈ Λ1
h(Ω) and pn

h , ψn
h ∈ Λ0

h(Ω) such that

�

Ω

1
2τ

�
3un

h − 4RX̄∗
−τPun−1

h +RX̄∗
−2τPun−2

h

�
· u�

hdxdx

+
�

Ω
ν curl un

h · curl u�
hdx +

�

Ω
grad pn

h · u�
hdx

−κ
�

Ω
Jn

h × curl An
h · u�

hdx =
�

Ω
f · u�

hdx,

(3.15a)

�

Ω

�
3An

h − 4RX̄∗
−τPAn−1

h +RX̄∗
−2τPAn−2

h

�
· A�

hdx

+
�

Ω
grad ψn

h · A�
hdx +

1
σ

�

Ω
curl An

h · curl A�
hdx = 0, (3.15b)

�

Ω
curl An

h · curl J�hdx −
�

Ω
Jn

h · J�hdx = 0, (3.15c)

�

Ω
un

h · grad p�hdx = 0, (3.15d)

�

Ω
An

h · grad ψ�
hdx = 0, (3.15e)

for all u�
h, A�

h ∈ Λ1
h(Ω) and p�h, ψ�

h ∈ Λ0(Ω). Note that we left out the
boundary terms for simplicity and τ > 0 denotes the time-step size. Since
Dtu and Dt A denote material derivatives with respect to the flow u, Xτ

denotes the transport map with respect to the flow u defined through system
(2.24). As described in section 2.3.1, the operator RX̄∗

−τP only depends on
un−1 and un−2. Therefore, the above system decouples—we first solve for
An

h and ψn
h , then Jn

h , and finally for un
h and pn

h . This avoids the need to solve
one large linear system of equations, but requires solving three smaller linear
systems of equations. In the following, we will introduce some schemes that
are simplifications of the above scheme. These schemes cannot be applied in
practice, because they assume knowledge of some of the unknowns. However,
they can be of great help when analyzing the reasons for instability of the
above scheme in some cases.

41



3. Incompressible Magnetohydrodynamics

3.3.2 Partial scheme B

In this scheme we remove the effect of the solution An
h on the computation

of Jn
h such that we can see if the observed instabilities are inherent to the

discrete Lorentz force. To be precise, we consider equation (3.15c)

�

Ω
curl An

h · curl J�hdx −
�

Ω
Jn

h · J�hdx = 0 (3.16)

and replace it by

�

Ω
curlRA(tn, ·) · curl J�hdx −

�

Ω
Jn

h · J�hdx = 0 (3.17)

where RA(tn, ·) is the projection of A at time tn onto the space of second-
order, discrete differential forms Λ1

h,2(Ω). The rest of scheme A remains
unchanged.

3.3.3 Partial scheme C

In this scheme, we replace the fully-discrete computation of the Lorentz force
term in scheme A by a semi-discrete computation, that is, we replace

�

Ω
Jn

h × curl An
h · u�

hdx

by �

Ω
Jn

h × curl[RA(tn, ·)] · u�
hdx.

The rest of the scheme is the same as scheme A.

3.3.4 Partial scheme E

Recall that the operator X̄∗
−τ is based on the following evaluation of Heun’s

method as introduced in (2.29)

Xt−τ(x) = x − τ

2

�
un(x) + un−1(x − τun(x))

�
+O(τ2). (3.18)

For partial scheme E, we will replace un by ū(tn, ·) and thus evaluate

Xt−τ(x) = x − τ

2
[u(tn, x) + u(tn−1, x − τu(tn, x))] +O(τ2). (3.19)

The remainder of scheme A is not changed.
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3.4. Numerical results

3.4 Numerical results

In this section, we evaluate the performance of the numerical schemes. Using
scheme A we observe instabilities in the case that the conductivity is high
and the viscosity is low, i.e. in the ideal MHD limit. If either the conductivity
is low or the viscosity is high, we observe convergence of the numerical
scheme. To show this, we did elaborate numerical tests inspired by [29]. The
code used for all numerical experiments can be found at [61].

3.4.1 Approximation of the Lorentz force

In this section, we evaluate the computation of the Lorentz force based on
some given approximation of the magnetic vector potential Ah ∈ Λ1

h(Ω). We
project

A(x) =




0
sin(x)

0


 (3.20)

onto Λ1
h,p(Ω) with p = 1, 2 and denote the projection as Ah := RA. Next, we

compute Jh analogously to scheme A, that is, we find Jh ∈ Λ1
h,p(Ω) such that

for all ηh ∈ Λ1
h,p(Ω)

�

Ω
Jh · ηhdx =

�

Ω
curl Ah · curl ηhdx. (3.21)

Then, we compute the Lorentz force Fh ∈ Λ1
h,p(Ω) as

�

Ω
Fh · ηhdx =

�

Ω
Jh × curl Ah · ηhdx. (3.22)

We compute the L2-error of Jh and Fh compared with their exact solutions.
In table 3.2 and table 3.1 the computed errors are displayed for different
mesh-sizes. We observe no convergence for first-order discrete differential
forms and first-order convergence for second-order discrete differential forms.
For this reason, we only consider a second-order scheme in this work.

3.4.2 Experiment 1

In this section, we consider the following problem inspired by [29]. We fix
the magnetic coupling factor κ = 1, but vary the viscosity ν and conductivity
σ. We choose the source terms and boundary conditions such that

u(t, x) =




0
sin(t) sin(x2)

0


 (3.23)
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3. Incompressible Magnetohydrodynamics

Mesh-width L2-error L2-error
Jh Jh × curl Ah

0.707107 0.0846115 0.0348872
0.353553 0.0391167 0.0139575
0.176777 0.0183738 0.00656131
0.0883883 0.00873568 0.00314751

Table 3.1: Experiment to evaluate the accuracy of computing the Lorentz
force as described in section 3.4.1 using second-order discrete differential
forms in Λ1

h,2(Ω).

Mesh-width L2-error L2-error
Jh Jh × curl Ah

0.707107 0.104125 0.202954
0.353553 0.105169 0.102365
0.176777 0.114354 0.0566125
0.0883883 0.120679 0.0392805
0.0441942 0.128613 0.0347103
0.0220971 0.133755 0.0340028

Table 3.2: Experiment to evaluate the accuracy of computing the Lorentz
force as described in section 3.4.1 using first-order discrete differential forms
in Λ1

h,1(Ω).

and

A(t, x) =




0
sin(t + x1)

0


 (3.24)

are solutions to the incompressible MHD equations. We run all the experi-
ments on the domain Ω = [− 1

2 , 1
2 ]

3 and untill time T = 0.4. The experiments
presented in figs. 3.1 and C.4 show that the scheme converges if either the
viscosity is high enough or the conductivity is low enough, but does not work
if the viscosity is low and the conductivity is high. In other words, scheme A
does not converge if we consider the case of ideal MHD. The results suggest
that the scheme becomes unstable and we will see in experiment 3 that this
is indeed the case.

Through the experiments on partial scheme E as summarized in figs. 3.4
and C.1, we observe that the instability is less severe if the interaction of
u on A is removed. However, experiment 3 will show that the spurious
oscillation that prelude the instability are also present for this case. Through
the experiments on partial scheme C as summarized in figs. 3.5 and 3.6,
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we see that An
h in the Lorentz force does not have much of an influence on

stability. Through the experiments on partial scheme B as summarized in
figs. 3.7 and C.9, we observe that the computation of Jn

h is important for the
cause of the instability, since replacing An

h by the exact solution removes the
instability.

The experiments in chapters 1 and 2 show that the semi-Lagrangian scheme
is stable for the incompressible Euler equations and the vectorial advection
equation. This fact in combination with the reasoning above, leads us to the
conclusion that the instability is likely caused by the discretization of the
Lorentz force.

For convergence rates for the magnetic vector potential and convergence
analysis of the L∞-error, we refer to the results in figs. 3.1, 3.4 to 3.7 and C.1
to C.27.

3.4.3 Experiment 2

In this section, we consider the following problem inspired by [29]. We fix the
magnetic coupling factor κ = 1, but we vary the viscosity ν and conductivity
σ. We choose the source terms and boundary conditions such that

u(t, x) =




x2e−t

x3 cos(t)
x1


 (3.25)

and

A(t, x) =




x3
0

x2 cos(t)


 (3.26)

are solutions to the incompressible MHD equations. This case is of particular
interest, because the linear nature of the solution means that it lies in the
space of second-order discrete differential forms. We run all the experiments
on the domain Ω = [− 1

2 , 1
2 ]

3 and until time T = 0.5.

The results are similar to those of Experiment 1. However, using partial
scheme E, we now observe first-order convergence as summarized in figs. 3.10
and C.28. The results are unconclusive on whether the scheme can be con-
sidered stable in this case, but the performance is certainly better compared
to experiment 1. We will see similar behaviour of partial scheme E for ex-
periment 3, where we have the ability to visualize the results for a better
understanding. Scheme A, B, and C perform similarly as for experiment 1.
The results of a plethora of similar experiments can be found in figs. 3.10
and C.28 to C.58.
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3.4.4 Experiment 3

In this section, we consider an experiment in 2D for the incompressible MHD
equations with κ = 0.1, ε = 0, σ = ∞, vanishing normal boundary conditions,
and a source term such that

u(t, x) =
�

sin(πy) cos(πx)
− cos(πy) sin(πx)

�
e−t (3.27)

and

A(t, x) =
�

sin(πy) cos(πx)
− cos(πy) sin(πx)

�
e−t (3.28)

form a exact solution. We refer to fig. 3.12 for a summary of the results. We
observe a clear instability for scheme A, while partial scheme B performs
very well and remains stable. Partial scheme E performs rather well as it
remains stable, but converges with a rather slow rate.

In figs. 3.16 to 3.18, we display the magnitude of the velocity field, magnetic
vector potential, and Lorentz force for different times as computed using
scheme A, B, and E. We observe that for scheme A spurious oscillations in
the Lorentz force appear around t = 0.05. Then, these spurious oscillations
spill over into the the velocity field and we see clear spurious oscillations
in the velocity field around t = 0.1. Eventually these spurious oscillations
end up in an instability. The magnetic vector potential suffers the least from
the spurious oscillations as it is not directly influenced by the Lorentz force.
Partial scheme E shows similar spurious oscillations compared to scheme A,
but needs more time for the oscillations to appear. Partial scheme B shows
no spurious oscillations or instability.

In figs. 3.13 to 3.15, we display the magnitude of the velocity field, magnetic
vector potential, and Lorentz force for different meshes as computed using
scheme A, B, and E. We observe that the spurious oscillations have periods
that are associated to the mesh-width.

From this experiment, we can conclude that scheme A and E show spurious
oscillations, while partial scheme B remains stable. A potential reason for
the instability of scheme A could be that it does not satisfy an appropriate
energy bound. In [31], Hu et al. designed a numerical scheme that satisfies
a discrete energy bound that is analogous to the continuous energy bound
associated with the MHD equations. The discrete energy bound for the case
of ideal MHD is

�un
h�2 + 2τκ �Jn

h�2 ≤
���un−1

h

���
2
+ 2τ ( f n

h , un
h) . (3.29)

We track the energy (left-hand side of the inequality) and the energy bound
(right-hand side of the inequality) and visualize the results in fig. 3.11. We
observe that the discrete energy bound is not satisfied.
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Figure 3.11: Experiment 3: Energy and energy bound defined through the left-
and right-hand side of eq. (3.29) computed using scheme A on a simplicial
mesh with mesh-width h = 0.0474897 and time-step τ = 0.003125.
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condition of 0.06580367 on a simplicial mesh for fixed viscosity ε = 0 and
fixed conductivity σ = ∞. The final time T = 0.2.
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(a) Scheme A,
h = 0.3799

(b) Partial scheme E,
h = 0.3799
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Figure 3.13: Experiment 3: magnitude of the computed Lorentz force at
T = 0.2 using different schemes on simplicial meshes with mesh-width h and
time-step τ = 0.0658037427h.
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Figure 3.14: Experiment 3: magnitude of computed An
h at T = 0.2 using

different schemes on simplicial meshes with mesh-width h and time-step
τ = 0.0658037427h.
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h = 0.3799

(b) Partial scheme E,
h = 0.3799

(c) Partial scheme B,
h = 0.3799

(d) Scheme A,
h = 0.1900

(e) Partial scheme E,
h = 0.1900

(f) Partial scheme B,
h = 0.1900

(g) Scheme A,
h = 0.09498

(h) Partial scheme E,
h = 0.09498

(i) Partial scheme B,
h = 0.09498

(j) Scheme A,
h = 0.04749

(k) Partial scheme E,
h = 0.04749

(l) Partial scheme B,
h = 0.04749

0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.15: Experiment 3: magnitude of computed un
h at T = 0.2 using

different schemes on simplicial meshes with mesh-width h and time-step
τ = 0.0658037427h.
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Figure 3.16: Experiment 3: magnitude of computed un
h using scheme A on a

simplicial mesh with mesh-width h = 0.0474897 and time-step τ = 0.003125.
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Figure 3.17: Experiment 3: magnitude of computed An
h using scheme A on a

simplicial mesh with mesh-width h = 0.0474897 and time-step τ = 0.003125.
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Figure 3.18: Experiment 3: magnitude of computed Lorentz force using
scheme A on a simplicial mesh with mesh-width h = 0.0474897 and time-step
τ = 0.003125.
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Chapter 4

Conclusion

In this work, a fully-discrete method for the advection of discrete differential
forms has been extended to second-order. Using this extension, a second-
order, structure-preserving numerical scheme was developed for the transient
incompressible Euler equations that preserves both energy and helicity. The
advantage of this scheme is that it converges independently of the value for
the viscosity. Also, advances were made on the extension of this method to
the incompressible, resistive and viscous magnetohydrodynamics equations.
Unfortunately, the developed scheme gets unstable in the limit to ideal
magnetohydrodynamics. It has been established that the instability is caused
by the discretization of the Lorentz force and the failure of the scheme to
satisfy an appropriate energy bound. More work is needed to see if this
limitation can be avoided.
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Appendix A

An introduction to Lie theory

We shall need the notion of Lie groups and their Lie algebras. Let us start
with the definition of a group.

Definition 16 A group G is a set G equipped with a binary operator · :
G × G �→ G such that

• (a · b) · c = a · (b · c) for all a, b, c ∈ G,

• ∃e ∈ G s.t. for all g ∈ G we have e · g = g,

• For all a ∈ G there exists a b ∈ G s.t. a · b = e.

This allows us to define a Lie group.

Definition 17 A Lie group G is a group G that is also a smooth manifold
that satisfies

• The map · : G × G �→ G is smooth,

• The map i : G �→ G, mapping elements to their inverse, is smooth.

Lie groups are of particular interest in physics, because they can be used to
describe symmetries. To see this, we consider ”right-invariant vector fields”.
With this goal in mind, we proceed by defining for g ∈ G

rg : G �→ G
G � f �→ rg( f ) := f · g ∈ G

(A.1)

This allows us to define for a vector field X and g ∈ G the following.

Rg∗ : Γ(TG) �→ Γ(TG),
Γ(TG) � X �→ Rg∗X,

(A.2)

where

∀ f ∈ C∞(G), p ∈ G : (Rg∗X)p( f ) := Xr−1
g (p)( f ◦ rg) = Xpg−1( f ◦ rg). (A.3)
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A. An introduction to Lie theory

We say X ∈ Γ(TG) is right-invariant if

Rg∗X = X ⇔ ∀ f ∈ C∞(G) : X( f ◦ rg) = X( f ) ◦ rg. (A.4)

We define the space of right-invariant vector fields on G as the Lie Algebra
of G.

Definition 18 Let G be a Lie Group, then we define g := L(G) as the corre-
sponding Lie Algebra, where L(G) denotes the space of all right-invariant
vector fields. The multiplication operator on L(G) is defined for X, Y ∈ L(G)

∀ f ∈ C∞(G) : XY( f ) := X(Y( f )).

The corresponding Lie Bracket on L(G) is defined as

[X, Y] = XY − YX.

An important result in Lie Theory is the following

Lemma 6 TeG ∼= g.

Proof We refer to [56]. �

Remark 7 The isomorphism j : TeG �→ Γ(TG) corresponding to the above
lemma is the following

TeG � q̇ �→ j(q)

j(X)|g( f ) =
d
ds

���
s=0

( f (q(s) · g)).
(A.5)

We define the Lie bracket [·, ·] : g× g �→ g for X, Y ∈ g as

[X, Y] = j−1[j(X), j(Y)]. (A.6)
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Appendix B

Proofs for the geometric Euler
equations

B.1 Proof of lemma 2

It is clear that J0(x) = Id. To prove the ordinary differential equation given
in equation (2.8), consider

∂Jt

∂t
(x) =

∂

∂t
det(Dxϕt(x))

=
∂

∂s

����
s=0

det(Dx ϕs ◦ϕt(x))

=
∂

∂s

����
s=0

det
�

Dϕs
��
ϕt(x)Dϕt

��
x

�

= det
�

Dϕt

��
x

� ∂

∂s

����
s=0

det
�

Dϕs
��
ϕt(x)

�

= Jt(x)
∂

∂s

����
s=0

det
�

Dϕs
��
ϕt(x)

�
.

(B.1)

For ease of notation, let us set A(t) := Dxϕt(x), then A(0) = Id. Also, let us
consider the determinant as a map, det : Rd2 ∼= L(Rd) �→ R. In the following,

63



B. Proofs for the geometric Euler equations

we will consider A as an element of L(Rd) or Rd2
as needed. We have

d
dt

�����
t=0

det(A(t)) = (D det)(A(0))A�(0)

=
d
ds

�����
s=0

det(A(0) + sA�(0))

=
d
ds

�����
s=0

det(I + sA�(0))

= tr(A�(0)),

(B.2)

where we used the chain rule and inverse chain rule, and the identity

det(I + sB) = 1 + s tr(B) + O(s2), (B.3)

which holds for small enough s. We thus conclude

∂

∂t
Jt(x) = tr

�
D

∂ϕ0
∂t

����
ϕt(x)

�
Jt(x)

= tr
�

D f
��
ϕt(x)

�
Jt(x)

= (∇ · f )(t,ϕt)Jt(x)

(B.4)

B.2 Proof of theorem 5

We prove the different cases case-by-case.

• 1 ⇔ 2: Let us extend g(t) to an arbitrary curve gε(t) such that g0(t) =
g(t), gε(0) = g(0), and gε(T) = g(T). Then we can write

δg(t) =
d
dε

���
ε=0

gε(t) (B.5)

We have

δξ(t) =
d
dε

���
ε=0

�
Tgε(t)Lgε(t)−1 ġε(t)

�

=
d
dε

���
ε=0

�
d
ds

���
s=t

gε(t)−1gε(s)
� (B.6)

Let us define
η(t) := Tg0(t)Lg0(t)−1

d
dε

���
ε=0

gε(t) (B.7)

Then we have

η̇(t) =
d
ds

���
s=t

�
Tg0(t)Lg0(t)−1

d
dε

���
ε=0

gε(t)
�

=
d
ds

���
s=t

�
d
dε

���
ε=0

g0(t)−1gε(t)
� (B.8)
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B.3. Proof of theorem 4

In the following, we will use the operator j : TeG �→ Γ(TG) as defined
in appendix A. We have for f ∈ C∞(G)

j[η, ξ]( f ) = [j(η), j(ξ)]( f )
= j(η)j(ξ)( f )− j(ξ)j(η)( f ),

(B.9)

where for p ∈ G

F(p) := j(ξ(t))( f )(p) =
d
ds

���
s=t

f (ξ(s) ◦ p)

=
d
ds

���
s=t

f (g0(t)−1 ◦ g0(s) ◦ p),
(B.10)

which leads to

j(η(t))j(ξ(t))( f )(p) = j(η)(F)(p)

=
d
dε

���
ε=0

F(g−1
0 ◦ gε ◦ p)

=
d
dε

���
ε=0

d
ds

���
s=t

f (g0(t)−1 ◦ g0(s) ◦ g0(s)−1 ◦ gε(s) ◦ p)

=
d
dε

���
ε=0

d
ds

���
s=t

f (g0(t)−1 ◦ gε(s) ◦ p)

=

�
d
dε

���
ε=0

d
ds

���
s=t

g0(t)−1 ◦ gε(s)
�
( f (· ◦ p)) = j(η̇(t))( f )(p)

(B.11)

Thus
jη̇(t) = j(η)j(ξ). (B.12)

Similarly, we can show

jδξ(t) = j(ξ)j(η). (B.13)

We thus find
[ξ, η] = δξ − η̇ (B.14)

• 2 ⇔ 3: Follows by a standard variational argument. See [35] for details.

B.3 Proof of theorem 4

Let ϕε be a variation of ϕ, and define vε := ϕ̇ε ◦ ϕ−1
ε . Since ϕε are diffeomor-

phisms, we find
d
dε

���
ε=0

1
2

� 1

0

�

Ω
|vε|2dxdt = 0. (B.15)

This yields � 1

0

�

Ω

�
v(x, t),

d
dε

���
ε=0

vε(x, t)
�

dxdt = 0. (B.16)
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B. Proofs for the geometric Euler equations

Using equation (B.14), we find

� 1

0

�

Ω
(v(x, t), u̇ + [v, u]) dxdt = 0, (B.17)

where u ∈ g vanishes on the endpoints. If Ω = Rn, we find a vector
representation of [v, u], that is,

[v, u] = ∇u · v −∇v · u, (B.18)

where ∇u denotes the transpose of the Jacobian of u, Ju = ∇uT. We thus
obtain

0 =
� 1

0

�

Ω
(v, u̇ +∇u · v −∇v · u) dxdt (B.19)

Let us consider the last part of the integral,
�

Ω
(v,∇v · u)dx =

�

Ω
(v, Jvu)dx

=
�

Ω
(JT

v v, u)dx

=
�

Ω
(

1
2
∇|v|2, u)dx

=
�

∂Ω

1
2
|v|2u · ndx −

�

Ω

1
2
|v|2∇ · udx = 0,

(B.20)

since ∇ · u = 0 and, on ∂Ω, u · n = 0, because u is the time derivative of a
diffeomorphism on Ω. Note that for the second part of equation (B.19), we
have

�

Ω
(v,∇u · v)dx =

�

Ω
(v, Juv)dx

=
�

Ω
(v,∇(v · u))− (u, Jvv)dx

=
�

∂Ω
(v · u)v · ndx −

�

Ω
∇ · v(v · u)dx −

�

Ω
(Jvv, u)dx

= −
�

Ω
(v ·∇v, u)dx,

(B.21)

since ∇ · v = 0 and, on ∂Ω, v · n = 0, because v is the time derivative of a
diffeomorphism on Ω. We thus find, after integration by parts in time with u
vanishing on the endpoints,

� 1

0

�

Ω
(v̇ + v ·∇v, u)dxdt = 0 (B.22)
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B.3. Proof of theorem 4

Since this holds for arbitrary u ∈ g ∼= TeSDi f f (Ω), we find that v̇ + v ·∇v is
orthogonal to all elements in SDi f f (Ω). Now suppose that, for a vector field
q, we have � 1

0

�

Ω
(v̇ + v ·∇v + q, u)dxdt = 0. (B.23)

Using the Helmholtz decomposition (see [38]), we can write q = ∇p + z,
where ∇ · z = 0 (so z ∈ SDi f f (Ω)) and

�
Ω(∇p, z)dx = 0. Then, if we choose

u = z, we find

0 =
� 1

0

�

Ω
(v̇ + v ·∇v +∇p + z, z)dxdt

=
� 1

0

�

Ω
(v̇ + v ·∇v, z)dxdt +

� 1

0

�

Ω
(∇p, z)dxdt +

� 1

0

�

Ω
(z, z)dxdt

=
� 1

0

�

Ω
(z, z)dxdt.

(B.24)

We can thus conclude that z = 0, but p is not necessarily zero. We can now
conclude that, for some p, we have

v̇ + v ·∇v +∇p = 0. (B.25)
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Appendix C

Some additional experimental results

This Appendix includes some additional experimental results regarding the
MHD equations.
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Figure C.1: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.2: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.

2×
10
−1

3×
10
−1

4×
10
−1

6×
10
−1

mesh-width [h]

10−3

L2
Er

ro
r

A

ν = 0
ν = 10−4

ν = 10−3

ν = 10−2

ν = 10−1

ν = 100

Figure C.3: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.4: Experiment 1 performed using scheme A using a CFL condition

of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .

2×
10
−1

3×
10
−1

4×
10
−1

6×
10
−1

mesh-width [h]

10−3

L2
Er

ro
r

A

ε = 0
ε = 10−4

ε = 10−3

ε = 10−2

ε = 10−1

ε = 100

Figure C.5: Experiment 1 performed using scheme A using a CFL condition

of
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1
5 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.6: Experiment 1 performed using scheme A using a CFL condition

of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.7: Experiment 1 performed using partial scheme C using a CFL

condition of
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1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.9: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.10: Experiment 1 performed using partial scheme B using a CFL

condition of
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1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.11: Experiment 1 performed using partial scheme B using a CFL

condition of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.12: Experiment 1 performed using partial scheme E using a CFL

condition of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.13: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.14: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.15: Experiment 1 performed using partial scheme E using a CFL

condition of
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1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.16: Experiment 1 performed using scheme A using a CFL condition

of
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1
5 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.17: Experiment 1 performed using scheme A using a CFL condition

of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.18: Experiment 1 performed using scheme A using a CFL condition

of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.19: Experiment 1 performed using scheme A using a CFL condition

of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.20: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.21: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .

2×
10
−1

3×
10
−1

4×
10
−1

6×
10
−1

mesh-width [h]

10−2

Li
nf

Er
ro

r
A

ε = 0
ε = 10−4

ε = 10−3

ε = 10−2

ε = 10−1

ε = 100

Figure C.22: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.23: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.24: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.25: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.26: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
5 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.27: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
5 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.28: Experiment 2 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.29: Experiment 2 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.30: Experiment 2 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.31: Experiment 2 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.32: Experiment 2 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.33: Experiment 2 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.34: Experiment 2 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.35: Experiment 2 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.36: Experiment 2 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.37: Experiment 2 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.38: Experiment 2 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.39: Experiment 2 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.40: Experiment 2 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.41: Experiment 2 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.42: Experiment 2 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.43: Experiment 1 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.44: Experiment 1 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.45: Experiment 1 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.46: Experiment 1 performed using partial scheme E using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.47: Experiment 1 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.48: Experiment 1 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.49: Experiment 1 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed conductivity

σ = ∞.
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Figure C.50: Experiment 1 performed using scheme A using a CFL condition

of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying values for

the conductivity σ = 1
ν .
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Figure C.51: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.52: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.53: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.54: Experiment 1 performed using partial scheme C using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.55: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.56: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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Figure C.57: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for varying viscosities ε and fixed

conductivity σ = ∞.
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Figure C.58: Experiment 1 performed using partial scheme B using a CFL

condition of
�

1
20 on a simplicial mesh for fixed viscosity ε = 0 and varying

values for the conductivity σ = 1
ν .
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[48] Stéphane Popinet. The Gerris Flow Solver, 2007.

[49] A. Priestley. The Lagrange-Galerkin Method: Quadrature is Dead, Long
Live Inexact Integration. Technical report, 1993.

[50] A Priestley. Exact projections and the Lagrange-Galerkin method: A real-
istic alternative to quadrature. Journal of Computational Physics, 112(2):316–
333, 1994.

[51] Francesca Rapetti. High order Whitney forms on simplices.

[52] William H Reed and Thomas R Hill. Triangular mesh methods for the
neutron transport equation. Technical report, Los Alamos Scientific Lab.,
N. Mex.(USA), 1973.

[53] Hans-G. Roos, Martin Stynes, and Lutz Tobiska. Robust Numerical
Methods for Singularly Perturbed Differential Equations. Springer-Verlag
Berlin Heidelberg, 2 edition, 2008.

[54] Thomas F Russell. Time stepping along characteristics with incomplete
iteration for a Galerkin approximation of miscible displacement in
porous media. SIAM Journal on Numerical Analysis, 22(5):970–1013, 1985.
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