
Modulated Fourier expansions for
ODEs with oscillatory solutions

Bachelor Thesis

Ambra Toletti

Spring semester 2012

Advisors: Prof. Dr. R.Hiptmair

Department of Mathematics, ETH Zürich

Abstract

The aim of my theses is to investigate the application of collocation
approach, with modulated Fourier expansions as trial set, to ordinary
differential equations with oscillatory solutions and to implement the
obtained method using matlab [6]. This will be done as follows.

First of all (chapter 1) we recall the definitions of second order differential
equation with oscillatory solution and modulated Fourier expansion and we
present the collocation approach for approximating the solution of a dif-
ferential equation.

Then (chapter 2) we apply the collocation approach to the equation of
a perturbed oscillation using the set of modulated Fourier expansions
as trial set for getting a model that can be implemented with matlab.
Here we distinguish two classes of perturbed oscillations: the oscilla-
tions whose perturbation depends on the state and the ones whose
doesn’t. We also identify two classes of numerical methods: the matrix
form’s and the one step form’s ones.

It follows the implementation of the methods using matlab (chapter
3) and two numerical experiments (chapters 4 and 5), where the im-
plementations are used and compared. The third chapter contains
the functions corresponding to the methods developed in the previous
chapter: an ad hoc method for oscillations whose perturbations depend
on the time only, a general matrix form’s method for oscillations with
arbitrary perturbation function and finally an implementation of the
one step form’s method. Applications of these functions can be found
in chapters four and five together with the study of obtained errors.

Finally (chapter 6) the results of the numerical experiments are used
for drawing conclusions about the different methods and their imple-
mentations (precision, efficiency, . . .).

i

Contents

Contents iii

1 Introduction 1
1.1 ODEs with oscillatory solutions 1

1.1.1 The linear oscillation . 2
1.2 Collocation approach . 2
1.3 Truncated modulated Fourier expansions 3

2 Collocation for ODEs with oscillatory solutions 5
2.1 Collocation conditions . 5
2.2 Special case: the linear oscillation 7

2.2.1 The matrix form . 7
2.2.2 Regularity of B . 8
2.2.3 Exactness of solution . 10

2.3 General case with perturbation 11
2.4 The Newton method for perturbed oscillations 12
2.5 One step collocation method 13

2.5.1 The procedure . 13
2.5.2 Explicit computation . 15

3 MATLAB implementations 19
3.1 The collocation matrix . 19
3.2 Collocation method for state-independent perturbation function 20
3.3 General matrix form collocation method 22
3.4 One step collocation method 24

4 Numerical experiments 27
4.1 The problem . 27
4.2 Projection error . 28
4.3 The linear case . 30

iii

Contents

4.4 The perturbed case and error’s analysis using the ad hoc method 32
4.4.1 Error w.r.t m and p . 32
4.4.2 Error w.r.t ε . 34
4.4.3 Error w.r.t. t1 . 35

4.5 Errors analysis for the other methods 36
4.6 Conclusion . 38

5 Another numerical experiment 41
5.1 The (new) problem . 41
5.2 The reference solution . 41
5.3 The implementation . 43
5.4 Error’s analysis for the matrix form’s method 43
5.5 Errors analysis for the one step method 46
5.6 Errors for different frequencies 48
5.7 Conclusion . 49

6 Conclusion 51

A Useful MATLAB functions 53
A.1 xvec . 53
A.2 HelpFunction . 53
A.3 Cmat . 54
A.4 yvec . 55
A.5 HelpIncrements . 56
A.6 yEx . 56

Bibliography 59

iv

Chapter 1

Introduction

In this chapter we define the problem and some tools that are useful to solve
it (or to find an approximation of its solution).

1.1 ODEs with oscillatory solutions

The subject of my theses are ordinary differential equations (ODEs) with oscilla-
tory solutions, i.e. equations of the form

z̈ + ω2z = g(t, z) (1.1)

with given initial conditions

z(t0) = z0 and ż(t0) = ż0 (1.2)

where t corresponds to the time variable (t ∈ I ⊂ R≥0), z represents the state
at time t (z : I → D for some open D ⊂ Rd, d ∈ N), ω ∈ R∗ is some given
parameter and g : I × D =: Ω→ Rd is a given function.

Remarks:

1. Equation (1.1) can be seen as a linear oscillation (see next subsection)
with a perturbation g(t, z).

2. By setting y(t) :=
(

z(t)
ż(t)

)
and consequently ẏ(t) :=

(
ż(t)
z̈(t)

)
, (1.1) can

be transformed in the first-order ordinary differential equation

ẏ =

(
0 1
−ω2 0

)
y +

(
0

g(t, y1)

)
(1.3)

with initial condition

y(t0) = y0 :=
(

z0
ż0

)
(1.4)

1

1. Introduction

The right hand side of (1.3) can be written as a function f : Ω →
R2d that describes the relation between ẏ and (t, y), i.e. (1.3) can be
rewritten as ẏ = f(t, y).

3. From now on we’ll just consider the one dimensional case, i.e. we set
d = 1 to be fixed.

1.1.1 The linear oscillation

The linear oscillation is a special case of ODE with oscillatory solution. This
corresponds to the case g ≡ 0 and is given by the following second-order
ODE:

z̈ = −ω2z (1.5)

The one-dimensional case (i.e. d = 1) has exact solution given by

z(t) = α cos(ωt) + β sin(ωt) (1.6)

with α, β some constant values that can be determined using initial condi-
tions.
In this case, by setting y as above we can rewrite equation (1.5) as follows

ẏ =

(
0 1
−ω2 0

)
y (1.7)

i.e. a first-order ODE in R2 with solution

y(t) =
(

α cos(ωt) + β sin(ωt)
ω(−α sin(ωt) + β cos(ωt))

)
(1.8)

1.2 Collocation approach

In this section we present the collocation approach (cfr. section 2.2.1 in [4],
section 6.3 in [1] and section II.1.2 in [3]), that is a method for finding a
numerical approximation of y(t1) for some t1 ∈ I, where y is the solution of
problem (1.3-4).

Recall the first-order differential equation (1.3-4)

ẏ = f (t, y) (1.9)

with initial condition
y(t0) = y0 (1.10)

The idea of collocation’s approach is to find a function yh : [t0, t1] → R2

that approximates the solution y(t) of the ODE for t ∈ [t0, t1] in some s + 1-
dimensional trial space V (s ∈ N depends on the choice of V). Often V is

2

1.3. Truncated modulated Fourier expansions

set to be Ps (the set of univariate polynomials of degree at most s), but later
(see next section) we will choose a different V.

The function yh ∈ V is then defined by the following initial and collocation
conditions

yh(t0) = y0 (1.11)
ẏh(τj) = f(τj, yh(τj)), j = 1, . . . , s (1.12)

where s = dim V − 1 and t0 ≤ τ1 < . . . < τs ≤ t1 are called the collocation’s
points and can be chosen in several ways (e.g. equidistant points, Gauss
points, etc). We require the collocation’s points

{
τj
}

to be unisolvent for the
function set V.

1.3 Truncated modulated Fourier expansions

For fixed p, m ∈ N the set of truncated modulated Fourier expansions Vm,p is
given by functions

v(t) =
m

∑
k=−m

eikωt · µk(t) (1.13)

where µk ∈ Pp. In this case the dimension of Vm,p is given by

dim(Vm,p) = (2m + 1)(p + 1) (1.14)

Remark: In (1.13) the exponential term may be replaced by cos(kωt) and
sin(kωt):

v(t) = µ0(t) +
m

∑
k=1

(sin(kωt)µk(t) + cos(kωt)µ−k(t)) (1.15)

3

Chapter 2

Collocation for ODEs with oscillatory
solutions

Consider the ODE defined in section 1.1 and let t1 ∈ I be some time for
which one wants to compute an approximative solution zh(t1) using the
collocation method defined in section 1.2, with truncated modulated Fourier
expansions (section 1.3) as trial space. This approach is usually ([7], page
453) called the method of envelopes: the

{
eikωt} are called the carriers and the

{µk} the envelopes.

2.1 Collocation conditions

Consider the ODE given by (1.1-2) in the form described in (1.3-4). Define
yh ∈ Vm,p to be as in section 1.2, i.e. yh is defined by conditions (1.11-12)
that, in this case become

yh(t0) = y0 =

(
z0
ż0

)
(2.1)

ẏh(τj) =

(
0 1
−ω2 0

)
yh(τj) +

(
0

g
(
τj, yh,1(τj)

)) , j = 1, . . . , s (2.2)

Fix m, p ∈N and let Vm,p be as defined in (1.13). Let zh ∈ Vm,p, then

zh(t) =
m

∑
k=−m

eikωt · µk(t) (2.3)

żh(t) =
m

∑
k=−m

eikωt · (ikωµk(t) + µ̇k(t)) (2.4)

z̈h(t) =
m

∑
k=−m

eikωt ·
(
−k2ω2µk(t) + 2ikωµ̇k(t) + µ̈k(t)

)
(2.5)

5

2. Collocation for ODEs with oscillatory solutions

Set yh(t) =
(

zh(t)
żh(t)

)
. We get

yh(t) =
m

∑
−m

eikωt ·
(

µk(t)
ikωµk(t) + µ̇k(t)

)
(2.6)

ẏh(t) =
m

∑
−m

eikωt ·
(

ikωµk(t) + µ̇k(t)
−k2ω2µk(t) + 2ikωµ̇k(t) + µ̈k(t)

)
(2.7)

Using

yh(t0) =
m

∑
k=−m

eikωt0 ·
(

µk(t0)
ikωµk(t0) + µ̇k(t0)

)
y0 =

(
z0
ż0

)
can rewrite the initial condition (2.1) as

m

∑
k=−m

eikωt0 ·
(

µk(t0)
ikωµk(t0) + µ̇k(t0)

)
=

(
z0
ż0

)
(2.8)

and using (2.6-7) we can rewrite collocation conditions (2.2) as

m

∑
−m

eikωτj ·
(

ikωµk(τj) + µ̇k(τj)
−k2ω2µk(τj) + 2ikωµ̇k(τj) + µ̈k(τj)

)
= ẏh(τj)

=

(
0 1
−ω2 0

)
yh(τj) +

(
0

g
(
τj, yh,1(tauj)

))
=

m

∑
−m

eikωτj ·
(

ikωµk(τj) + µ̇k(τj)
−ω2 · µk(τj)

)
+

(
0

g
(

τj, ∑m
k=−m eikωτj · µk(τj)

))
(2.9)

The condition for the first component in (2.9) is, naturally, always satisfied,
hence we reduce (2.9) to

z̈h(τj) =
m

∑
k=−m

eikωτj ·
(
−k2ω2µk(τj) + 2ikωµ̇k(τj) + µ̈k(τj)

)
= −ω2

m

∑
k=−m

eikωτj · µk(τj) + g

(
τj,

m

∑
k=−m

eikωτj · µk(τj)

)
= −ω2zh(τj) + g(τj, zh(τj))

(2.10)

where t0 ≤ τ1 < . . . < τs ≤ t1 as in (1.12).

Note that here s = dim Vm,p − 2 (for p > 0) because, since dim d2

dt2 Vm,p =
dim Vm,p− 2, one can obtain at most dim Vm,p− 2 linearly independent equa-
tions of the form (2.10). Other two equations are required in order to have a

6

2.2. Special case: the linear oscillation

uniquely determined system and they are given by (2.8), i.e.{
zh(t0) = z0
żh(t0) = ż0

(2.11)

2.2 Special case: the linear oscillation

Consider ODE (1.5) with some initial conditions z(t0) = z0 and ż(t0) = ż0.
In this case the first collocation’s condition is given by (2.11) and the second
one is obtained by removing the perturbation in (2.10), i.e. we have

z̈h(τj) =
m

∑
k=−m

eikωτj ·
(
−k2ω2µk(τj) + 2ikωµ̇k(τj) + µ̈k(τj)

)
= −ω2

m

∑
k=−m

eikωτj · µk(τj)

(2.12)

for t0 ≤ τ1 < . . . < τ(2m+1)(p+1)−2 ≤ t1.

2.2.1 The matrix form

Last equations can also be written as

m

∑
k=−m

eikωτj ·
(
−ω2 (k2 − 1

)
· µk(τj) + 2ikωµ̇k(τj) + µ̈k(τj)

)
= 0 (2.13)

These together with (2.11) give a linear system of (2m + 1)(p + 1) equalities
in (2m+ 1)(p+ 1) variables (because of (1.14)) that can be written as follows

B · a = c (2.14)

where

1. a is a vector containing the coefficients of the polynomials µk with the
following notation: let µk(t) = ∑

p
d=0 ak,dtd, then put the {ak,d} in a with

indices {k · (p + 1) + d}.
Note that we use indices in {−m · (p + 1), . . . , m · (p + 1) + p}.

2. c =

0
...
0
z0
ż0

 corresponds to the right hand side of the system

7

2. Collocation for ODEs with oscillatory solutions

3. B =
{

bj,k·(p+1)+d

}
1≤j≤(2m+1)(p+1),−m≤k≤m,0≤d≤p

is the matrix containing

the coefficients.

bj,k(p+1)+d =

−eikωτj ω2(k2 − 1), if d = 0

eikωτj
(
−ω2(k2 − 1)τj + 2ikω

)
, if d = 1

eikωτj
(
−ω2(k2 − 1)τd

j + 2ikωdτd−1
j + d(d− 1)τd−2

j

)
, if d ≥ 2

(2.15)
for 1 ≤ j ≤ (2m + 1)(p + 1)− 2 and

b(2m+1)(p+1)−1,k(p+1)+d = eikωt0 td
0 (2.16)

b(2m+1)(p+1),k(p+1)+d =

{
eikωt0 ikω, if d = 0

eikωt0

(
ikωtd

0 + dtd−1
0

)
, if d ≥ 1

(2.17)

Hence the linear case is uniquely solvable if and only if the matrix B is reg-
ular, and in the case a is obtained by computing B−1c and it is unique.

Remarks:

1. The approximation zh(t1) can be computed as <(〈a, x(t1)〉) where x(t1)
is a vector whose entries correspond to the monomials td

1eikωt1 (see func-
tion xvec in appendix A1 for a matlab definition of x), 〈·, ·〉 denotes
the scalar product in C(2m+1)(p+1) and <(·) is the real part of a complex
number.

2. In section 3.1 is presented a matlab function that, for given m, p, t0, ω
and τ1, . . . , τ(2m+1)(p+1)−2, computes matrix B.

2.2.2 Regularity of B

Let us take a look at the condition of B: a condition value near to 1 indicates
that B is well conditioned, i.e. solving a linear system including this matrix
won’t produce errors. A large condition value, indicates that inverting B will
produces errors and consequently the solution of a linear system including
B by matrix inversion will be inexact, in particular if the condition is equal
∞ the matrix is singular and cannot be inverted. (cfr. documentation of cond
in [6]).
Since the condition depends on scaling too, before computing the condition
it is a good idea to rescale B s.t. the diagonal contains only 1’s. In Figures
2.1 and 2.2 are plotted the conditions of scaled B corresponding to m = 1
and m = 3 respectively, with ω = 102, t0 = 0 and t1 = 1 for p = 1, . . . , 10
and using both equidistant and Gauss’ collocation points in [t0, t1].

8

2.2. Special case: the linear oscillation

Figure 2.1: Condition of B for m = 1 and ω = 102

Figure 2.2: Condition of B for m = 3 and ω = 102

Remark: One can see that the condition increases as p increases (and the
same happens for different values of m and ω) but it doesn’t reach ∞. There-
fore, we may conclude that B is regular, but for large values of p it becomes
very ill-conditioned, and this will produces errors when solving (2.14), and
a will be inexact.

9

2. Collocation for ODEs with oscillatory solutions

2.2.3 Exactness of solution

Reminder: The exact solution of the linear oscillation is of the form (1.6). i.e

z(t) = α cos(ωt) + β sin(ωt)

For fixed initial values z(t0) = z0 and ż(t0) = ż0 we write

z(t0) = α cos(ωt0) + β sin(ωt0) = z0

ż(t0) = ω · (−α sin(ωt0) + β cos(ωt0)) = ż0

and we get

α = z0 cos(ωt0)−
ż0

ω
sin(ωt0) (2.18)

β = z0 sin(ωt0) +
ż0

ω
cos(ωt0) (2.19)

Using the identities

sin(x) =
1
2i

(
eix − e−ix

)
(2.20)

cos(x) =
1
2

(
eix + e−ix

)
(2.21)

the exact solution can be written in exponential form as follows

z(t) =
α + βi

2
e−iωt +

α− βi
2

eiωt (2.22)

Note that z(t) ∈ Vm,p, hence we expect that the approximation given by the
above method is equal to the exact solution, i.e. a =

(
ak(p+1)+d

)
−m≤k≤m,0≤d≤p

satisfies:

ak(p+1)+d =

α+βi

2 , if k = −1 and d = 0
α−βi

2 , if k = 1 and d = 0
0 , otherwise

(2.23)

where α and β as defined in (2.20) and (2.21) and, consequently,

a−(p+1) =
α + βi

2
=

(
z0

2
+

ż0i
2ω

)
eiωt0 (2.24)

ap+1 =
α− βi

2
=

(
z0

2
− ż0i

2ω

)
e−iωt0 (2.25)

Now, we plug a in B · ã = c. For 1 ≤ j ≤ s, we have

Bj,. · a = bj,−(p+1)︸ ︷︷ ︸
=0

a−(p+1) + bj,p+1︸ ︷︷ ︸
=0

ap+1 = 0 (2.26)

10

2.3. General case with perturbation

and for j = n− 1, n we have

Bn−1,. · a = bn−1,−(p+1)a−(p+1) + bn−1,p+1ap+1

= e−iωt0

(
z0

2
+

ż0i
2ω

)
eiωt0 + eiωt0

(
z0

2
− ż0i

2ω

)
e−iωt0

=
z0

2
+

ż0i
2ω

+
z0

2
− ż0i

2ω
= z0

(2.27)

Bn,. · a = bn,−(p+1)a−(p+1) + bn,p+1ap+1

= −iωe−iωt0

(
z0

2
+

ż0i
2ω

)
eiωt0 + iωeiωt0

(
z0

2
− ż0i

2ω

)
e−iωt0

= −iω
z0

2
+

ż0

2
+ iω

z0

2
+

ż0

2
= ż0

(2.28)

i.e. a is a solution of B · ã = c, from the regularity of B it follows uniqueness
of this solution. Hence we’ve proven the theoretical exactness, a numerical
proof is performed in section 4.3.

2.3 General case with perturbation

Now we go back to the general case described in section 1.1 (for d = 1,
again), and we try to apply the method of envelopes, i.e. we use collocation
conditions (2.10-11) on this problem. It can be helpful to rewrite (2.10) in the
form

m

∑
k=−m

eikωτj ·
(
−ω2 (k2 − 1

)
· µk(τj) + 2ikωµ̇k(τj) + µ̈k(τj)

)
= g

(
τj,

m

∑
k=−m

eikωτj · µk(τj)

) (2.29)

Note that the left hand side is the same as in (2.13), hence it can be written
as B · a, with a and B as defined for (2.14).

At this point there are two possibilities:

1. If g is a function that does not depend on the state, i.e. g(t, z) = g(t),
then the right hand side can be written as g(τj) and does not depend
on a. Hence

a = B−1c̃, with c̃ =

g(τ1)

...
g(τs)

z0
ż0

 (2.30)

See chapter 4 for an application.

11

2. Collocation for ODEs with oscillatory solutions

2. otherwise one cannot derive a ”nice” system as for the previous case
and we must apply some iterative method like the Newton’s method, de-
scribed in the following section or use the one step collocation method
presented in section 2.5.
See chapter 5 for an application.

2.4 The Newton method for perturbed oscillations

In this section we look for an approximation for the second case described
in the previous section.

First of all, assume the existence of functions
{

gj
}

s.t.

gj (a) = g

(
τj,

m

∑
k=−m

eikωτj · µk(τj)

)
, for all j = 1, . . . , s (2.31)

then, the system can be written as

B · a−

g1 (a)

...
gs (a)

z0
ż0

 = 0 (2.32)

with s = (2m + 1)(p + 1)− 2.
Let us denote the left hand side of (2.32) by G (a), and using the Newton
method, find a root of G, i.e. a solution of (2.32).

The Newton method is the following (cfr. [4] at pages 235-236)

1. Choose an arbitrary start-point a(0) ∈ R(2m+1)(p+1).

2. Define recursively

a(l+1) := a(l) −
(

DG
(

a(l)
))−1

·G
(

a(l)
)

(2.33)

where

DG
(

a(l)
)
= B−

∂g1
∂a1

(
a(l)
)

. . . ∂g1
∂as+2

(
a(l)
)

...
...

...
∂gs
∂a1

(
a(l)
)

. . . ∂gs
∂as+2

(
a(l)
)

0 . . . 0
0 . . . 0

(2.34)

12

2.5. One step collocation method

3. Stop when some l′ with a(l
′) = a(l

′−1) (or some previously fixed lmax)
is reached, and set a = a(l

′)

Remarks:

1. G(·) and DG(·) can be computed using the matlab function HelpFunction

(see appendix A.2).

2. In order to make the computation more efficient one can use DG
(

a(0)
)

instead of DG
(

a(l)
)

, this increases the error, but it reduces signifi-
cantly the computation time. This variation of Newton method is often
(see [4] p.235 and [1] p.266) called simplified Newton method.

2.5 One step collocation method

In this section we present the one step form of collocation method (cfr. pp.
144-147 in [4], section II.2.1 in [3] and section 6.3 in [1]). The first part is
dedicated to the presentation of the one step approach and the second one
to the explicit computation of the approximation.

2.5.1 The procedure

Let us consider the ODE (1.1-2) in the following form

z̈(t) = −ω2 · z(t) + g(t, z(t)) =: f (t, z(t)) (2.35)

with initial conditions

z(t0) = z0 and ż(t0) = ż0 (2.36)

and let Vm,p be the set of truncated modulated Fourier expansions for some
chosen parameters m and p, and let s = (2m + 1)(p + 1)− 2 be the dimen-
sion of the space Wm,p :=

{
d2

dt2 v(t)|v ∈ Vm,p
}

.

The main idea of this method is to interpolate f into the space Wm,p and then
to integrate twice the resulting interpolation for getting the approximative
solution function zh.

First of all, we rewrite the collocation’s nodes in interval [t0, t1] (t0 ≤ τ1 <
. . . < τs ≤ t1) as

τi = t0 + ci · h (2.37)

where h = t1 − t0 and 0 ≤ c1 < . . . < cs ≤ 1 are the interpolation nodes.

13

2. Collocation for ODEs with oscillatory solutions

For j = 1, . . . , s, let us define some auxiliary functions Hj(·) s.t.

Hj(c) ∈
{

d2

dt2 v(c)|v(·) ∈ Vm,p
}

(2.38)

Hj(ci) =

{
1, if i = j

0, otherwise
(2.39)

Using these functions we can interpolate f in Wm,p and write

z̈h(t0 + c · h) =
s

∑
j=1

k j · Hj(c) (2.40)

where k j are the increments and are defined by

k j = f (t0 + cj · h, zh(t0 + cj · h)) (2.41)

By integrating we get

żh(t0 + c · h) = żh(t0) +
∫ t0+c·h

t0

z̈h(τ)dτ

= ż0 + h ·
s

∑
j=1

k j ·
∫ c

0
Hj(ξ)dξ

= ż0 + h ·
s

∑
j=1

k j · (Hi(c)−Hi(0))

where Hi is the primitive of Hi. By another integration we get

zh(t0 + c · h) = z(t0) +
∫ t0+c·h

t0

żh(τ)dτ

= z0 + h ·
∫ c

0
(ż0 + h ·

s

∑
j=1

k j · (Hj(ξ)−Hj(0)))dξ

= z0 + (hż0 − h2 ·
s

∑
j=1

k j ·Hj(0)) · c + h2 ·
s

∑
j=1

k j ·
∫ c

0
Hi(ξ)dξ

At this point by setting

aji =
∫ ci

0
Hj(ξ)dξ (2.42)

bj =
∫ 1

0
Hj(ξ)dξ (2.43)

we can rewrite the increments as

ki = f (t0 + ci · h, z0 + (hż0 − h2 ·
s

∑
j=1

k j ·Hj(0)) · ci + h2 ·
s

∑
j=1

k j · aji) (2.44)

14

2.5. One step collocation method

and define the approximative solution at time t1 as

zh(t1) = z0 + hż0 − h2 ·
s

∑
j=1

k j ·Hj(0) + h2 ·
s

∑
j=1

k j · bj (2.45)

2.5.2 Explicit computation

Let us propose a practical way for computing an approximative solution us-
ing this method. Let the interpolation nodes {ci}1≤i≤s be fixed (e.g. choose
them to be either the equidistant or the Gauss’ nodes in [0, 1].

First of all we need to find the auxiliary functions Hj(·) for j = 1, . . . , s
according to (2.38-39). Condition (2.38) is equivalent to say that there exist
coefficients

{
hj

k,d

}
−m≤k≤m,0≤d≤pk

(with pk = p − 2 if k = 0 and pk = p

otherwise) such that Hj(·) can be written in form

Hj(c) =
p−2

∑
d=0

hj
0,d · c

d +
m

∑
k=−m,k 6=0

p

∑
d=0

hj
k,d · c

deikωc =
〈

hj, x̃(c)
〉

(2.46)

where hj is a vector containing the coefficients hj
k,d and x(c) is defined to

be the same as vector x(c) defined in section 2.2.1 but without the entries
corresponding to 1 and c.

Using this notation we can rewrite condition (2.39) for every j as

x(c1)
T

...
x(cs)T

︸ ︷︷ ︸

=:C

·hj =

0
...
1
...
0

 (2.47)

where the 1 of the vector in RHS corresponds to the jth row. By defining
h =

(
h1, . . . , hs

)
we can rewrite (2.39) as

C · h = Is (2.48)

and consequently we get
h = C−1 (2.49)

i.e. the jth column of the inverse of C contains the coefficients
{

hj
k,d

}
of Hj(·).

15

2. Collocation for ODEs with oscillatory solutions

Remark: See function Cmat in appendix A.3 for an application using mat-
lab.

At this point we may also find an explicit formula for finding directly the
coefficients Hj(0), aij and bj in order to save computation time when we’ll
go to the machine.

Note that because of the linearity of integrals, the primitive of Hj(·) can be
found by computing the scalar vector of hj with a vector (say x̃(·)) whose
entries are the primitives of x(·)’s components. i.e. x̃(c) = {x̃k,d(c)} where

k = 0→ x̃k,d(c) =
∫

cddc =
cd+1

d + 1
(2.50)

k 6= 0→ x̃k,d(c) =
∫

cdeikωcdc

=
cdeikωc

ikω
− d

ikω

∫
cd−1eikωcdc

= . . .

=
d

∑
l=0

(−1)ld!
(ikω)l+1(d− l)!

· cd−leikωc

(2.51)

Therefore, by setting H(0) :=

H1(0)
...

Hs(0)

 we can compute the Hj(0) as

H(0) = hT · x̃(0) (2.52)

Remark:The entries of x̃(0) are

k = 0→ x̃k,d(0) = 0

k 6= 0→ x̃k,d(0) =
(−1)dd!
(ikω)d+1

In order to compute aij and bj according to (2.42-43) we need to compute the
primitive of Hj(·) too. As before we use linearity that allows us to write the
primitive of Hj(·) as the scalar product of hj with a vector (say ˜̃x(·)) whose
components are the primitives of x̃(·)’s entries. Using the results of (2.50-51)
we can compute the components { ˜̃xk,d(c)} of ˜̃x(c) as

k = 0→ ˜̃xk,d(c) =
∫ cd+1

d + 1
dc =

cd+2

(d + 1)(d + 2)
(2.53)

16

2.5. One step collocation method

k 6= 0→ ˜̃xk,d(c) =
∫ d

∑
l=0

(−1)ld!
(ikω)l+1(d− l)!

· cd−leikωcdc

=
d

∑
l=0

(−1)ld!
(ikω)l+1(d− l)!

·
∫

cd−leikωcdc

=
d

∑
l1=0

d−l1

∑
l2=0

(−1)l1+l2 d!
(ikω)l1+l2+2(d− l1 − l2)

· cd−l1−l2 eikωc

(2.54)

Remark: See function yvec in appendix A.4 for an application using mat-
lab.

Using this notation we get∫ c

0
Hj(ξ)dξ =

〈
hj, ˜̃x(c)− ˜̃x(0)

〉
(2.55)

Therefore by setting a =
(
aij
)

1≤i,j≤s and b =
(
bj
)

1≤j≤s we can compute the
coefficients aji and bj as follows

a = hT ·
(

˜̃x(c1)− ˜̃x(0), . . . , ˜̃x(cs)− ˜̃x(0)
)

(2.56)

b = hT ·
(

˜̃x(1)− ˜̃x(0)
)

(2.57)

Now the approximative solution at time t1 can be found by solving the
non-linear system of equations given by (2.44) with the recently computed
coefficients Hj(0) and aji and by plugging the resulting increments with co-
efficients into equation (2.45).

Remark: The system of equations for the increments is not linear, hence one
has to solve it using some iterative method as the Newton method presented
in the previous section or using the matlab function fsolve.

17

Chapter 3

MATLAB implementations

In this chapter we present the implementations in matlab ([6]) of the method
of envelopes described in the previous chapter for finding a approximation
of the solution at time t1 of a second order ordinary differential equation of
the form

z̈(t) + ω2 · z(t) = g(t, z(t)) (3.1)

with initial conditions

z(t0) = z0 (3.2)
ż(t0) = ż0 (3.3)

in the time-interval [t0, t1].

The first function corresponds to the method developed ad hoc for the first
case described in section 2.3, i.e. when the perturbation g depends on the
time only (g(t, z(t)) ≡ g(t)) , while the other two are the functions corre-
sponding to the methods that use either the Newton iterations (see section
2.4) or the one step form (see section 2.5) and that can be applied to any
ODE of the type (3.1-3). In the following we’re calling the first two matrix
form methods and the last one one step form method.

3.1 The collocation matrix

First of all we write a function Bmat that defines matrix B for given t0, ω, m,
p and τ according to (2.15-17)

1 function [B] = Bmat(t0, omega, m, p, tau)
2 %Bmat compute the matrix B using (2.15−17)
3 % t0 = initial time
4 % omega = parameter of the ODE

19

3. MATLAB implementations

5 % m = truncation parameter
6 % p = maximal degree of polynomials
7 % tau = (2m+1)(p+1)−2 vector containing the collocation's
8 % points
9

10 % Initialization
11 n = (2*m+1)*(p+1);
12 B = zeros(n,n);
13 s = n−2;
14

15 % Fill the matrix according to (2.15−17)
16 l = m*(p+1)+1;
17 for k=−m:m
18 % second collocation condition (2.15)
19 for j= 1:s
20 % d=0
21 B(j,k*(p+1)+l) = −exp(1i*k*omega*tau(j))*omegaˆ2*(kˆ2−1);
22 % d=1
23 HP = −omegaˆ2*(kˆ2−1)*tau(j)+2i*k*omega;
24 B(j,k*(p+1)+1+l) = exp(1i*k*omega*tau(j))*HP;
25 % d=>2
26 for d=2:p
27 HP1 = −omegaˆ2*(kˆ2−1)*(tau(j))ˆd;
28 HP2 = 2i*d*k*omega*(tau(j))ˆ(d−1)+d*(d−1)*(tau(j))ˆ(d−2);
29 HP = HP1+HP2;
30 B(j,k*(p+1)+d+l) = exp(1i*k*omega*tau(j))*HP;
31 end
32 end
33

34 % first collocation condition
35 for d=0:p
36 B(n−1,k*(p+1)+d+l) = exp(1i*k*omega*t0)*t0ˆd; %(2.16)
37 end
38 B(n,k*(p+1)+l) = exp(1i*k*omega*t0)*1i*k*omega;
39 for d=1:p %(2.17)
40 HP = 1i*k*omega*t0ˆd+d*t0ˆ(d−1);
41 B(n,k*(p+1)+d+l) = exp(1i*k*omega*t0)*HP;
42 end
43 end
44

45 end

3.2 Collocation method for state-independent pertur-
bation function

Then, we write a function ad hoc for the first case described in section 2.3. We
define a function FindAppr that, for given time interval (T = [t0, t1]), ODE
parameter (ω), initial values (Z0 = (z0, ż0)′), truncation and polynomial pa-
rameters (m and p, respectively) and for a perturbation function g that only
depends on the time variable, computes an approximative solution of the

20

3.2. Collocation method for state-independent perturbation function

corresponding ODE (z̈ + ω2z = g(t)) at time t1 according to (2.19) and using
either equidistant or Gausses points as collocation’s points (depending on
the last input argument).

1 function [zAppr] = FindAppr(T, omega, g, Z0, m, p, t)
2 %FindAppr gives an approximative solution of in the ODE where the
3 %perturbation depends on the time only for the parameters:
4 % T = chosen time interval for the approximation
5 % omega = the chosen parameter
6 % g = the perturbation function
7 % Z0 = initial conditions (i.e. z(t0) and z'(t0))
8 % m = truncation parameter
9 % p = maximal polynomial's degree

10 % t = 0 if want equidistant points, 1, for Gauss points
11

12 s = (2*m+1)*(p+1)−2;
13

14 % Define collocation points
15 if t==0
16 %(equidistant)
17 h = (T(2)−T(1))/(s−1);
18 tau = [T(1):h:T(2)];
19 else
20 %(Gauss)
21 tau = GaussQuad(s−1);
22 tau = (T(2)−T(1))/2*tau+(T(1)+T(2))/2;
23 end
24

25 % Compute B;
26 B = Bmat(T(1), omega, m, p, tau);
27

28 % Compute c;
29 c = zeros(s+2,1);
30 for j=1:s
31 c(j)=g(tau(j));
32 end
33

34 c(s+1) = Z0(1);
35 c(s+2) = Z0(2);
36

37 % Find coefficients according to (2.30)
38 a = B\c;
39

40 % Compute the approximation at t1:
41 x = xvec(m,p,T(2),omega);
42 zAppr = a.'*x ;
43 zAppr = real(zAppr);
44

45 end

Remarks:

21

3. MATLAB implementations

1. Function GaussQuad called at line 21 is defined in [5] at page 115.

2. Function xvec called at line 41 is defined in appendix A.1.

3.3 General matrix form collocation method

Now we want to write a function that computes a numerical approximation
(at some chosen time) for any given ODE of the form (3.1-3) using the matrix
approach.

We define function FindAppr2 that, for given time interval (T = [t0, t1]),
ODE parameter (ω), initial values (Z0 = (z0, ż0)′), truncation and polyno-
mial parameters (m and p, respectively) and for a perturbation function g
that can depend on state variable too, computes an approximative solution
of the corresponding ODE (z̈ + ω2z = g(t, z)) at time t1 using either equidis-
tant or Gausses points as collocation’s points (depending on the last input
argument) through a Newton iteration (see section 2.4 for a description).

1 function[zAppr] = FindAppr2(T, omega, g, Z0, m, p, t)
2 %FindAppr2 computes a numerical approximation of the ODE
3 %y''+omegaˆ2*y = g(t,y) using the method of envelopes.
4 % T = time−interval
5 % omega = ODE parameter
6 % g = perturbation function
7 % m = truncation parameter
8 % p = polynomial's degree parameter
9 % Y0 = initial conditions (i.e. y(t0) and y'(t0))

10 % t = nodes parameter (i.e. 0 for equidistant nodes,
11 % 1 for Gauss nodes)
12

13 % Define initial and final time
14 t0 = T(1);
15 t1 = T(2);
16

17 % Define the initial conditions
18 z0 = Z0(1);
19 z1 = Z0(2);
20

21 % Find s
22 s = (2*m+1)*(p+1)−2;
23

24 % Find matrix B for equidistant (t=0)
25 if t==0
26 h = (t1−t0)/(s−1);
27 tau = t0:h:t1;
28 % or Gauss points (t=1)
29 else
30 tau = GaussQuad(s−1);
31 tau = (t1−t0)/2*tau+(t0+t1)/2;

22

3.3. General matrix form collocation method

32 end
33

34 B = Bmat(t0, omega, m, p, tau);
35

36 % Define Start vector
37 a old=zeros(s+2,1);
38 a old((m−1)*(p+1)+1)=(z0/2+1i*z1/(2*omega))*exp(1i*omega*t0);
39 a old((m+1)*(p+1)+1)=(z0/2−1i*z1/(2*omega))*exp(−1i*omega*t0);
40 [G, DG0] = HelpFunction(a old, B, g, omegaˆ2, m, p, tau, Z0, 0);
41

42 % Use (simplified) Newton−Method
43 k=0;
44 kMax = 4000; % Fixed maximal quantity of iterations
45 Shot2 = 0; % Is a second shot required?
46

47 % If the start vector gives a highly ill conditioned matrix,
48 % then the obtained approximation will be very bad, therefore in
49 % order to save computation time we do not compute it.
50 if rcond(DG0) < 1E−16
51 Shot2 = 1;
52 else
53 while k < kMax
54 a new = a old−DG0\G; % according to (2.33)
55 if isnan(a new)
56 Shot2 = 1;
57 break
58 end
59 if norm(a new−a old) < 1E−11
60 a old = a new;
61 break
62 end
63 a old = a new;
64 k=k+1;
65 [G, DG] = HelpFunction(a old, B, g, omega, m, p, tau, Z0, 1);
66 end
67 end
68

69 % a second possibility for divergent iterations
70 if Shot2 == 1
71 % Define a new Start vector
72 a old=zeros(s+2,1);
73 [G, DG0] = HelpFunction(a old, B, g, omegaˆ2, m, p, tau, Z0, 0);
74 % As before
75 if rcond(DG0) < 1E−16
76 zAppr = Inf;
77 return
78 end
79 k=0;
80 while k < kMax % Fixed maximal quantity of iterations
81 a new = a old−DG0\G; % according to (2.33)
82 if isnan(a new)
83 zAppr = NaN;
84 return
85 end

23

3. MATLAB implementations

86 if norm(a new−a old) < 1E−11
87 a old = a new;
88 break
89 end
90 a old = a new;
91 k=k+1;
92 [G, DG] = HelpFunction(a old, B, g, omega, m, p, tau, Z0, 1);
93 end
94 end
95

96 a = a old;
97

98 % Compute approximation at time t1
99 x = xvec(m, p ,t1, omega);

100 zAppr = x.'*a;
101 zAppr = real(zAppr);
102

103 end

Remarks:

1. Function GaussQuad called at line 30 is defined in [5] at page 115.

2. Note that the first ”Start vector” (lines 37-39) used for Newton itera-
tions corresponds to the vector containing the coefficients of the linear
case’s solution.

3. Function HelpFunction called at line 40 is defined in appendix A.2.

4. The motivation for variable Shot2 defined at line 45 is the following:
the convergence of Newton iterations is connected with the choice of
the start vector. Sometimes changing the start vector one can make
convergent a divergent iteration. For this reason we give a ”second
shot” to divergent iterations.

5. Function xvec called at line 99 is defined in appendix A.1.

3.4 One step collocation method

Finally we write a function, called osm, that computes a numerical approxi-
mation of the ODE (z̈ + ω2z = g(t, z)) using the one step method presented
in section 2.5. With given time interval (T = [t0, t1]), ODE parameter (ω),
initial values (Z0 = (z0, ż0)′), truncation and polynomial parameters (m and
p, respectively) and with an arbitrary perturbation function g, using either
equidistant or Gausses points as collocation’s points (depending on the last
input argument).

1 function [zAppr] = osm(T, omega, g, Z0, m, p, t)
2 % osm finds an approximative solution of ODE

24

3.4. One step collocation method

3 % z''+omegaˆ2 z = g(t,z) at time T(2) using the one
4 % step form of the collocation method with truncated
5 % modulated Fourier expansions as trial set.
6 % T = time interval
7 % omega = ODE parameter
8 % g = perturbation function
9 % Z0 = initial conditions

10 % m = truncation parameter
11 % p = polynomial degree parameter
12 % t = equidistant (t=0) or Gauss nodes?
13

14 % initialization
15 s = (2*m+1)*(p+1)−2;
16 s1 = m*(p+1)+1;
17 s2 = m*(p+1)−1;
18 h = T(2)−T(1);
19

20 % Define collocation points
21 if t==0
22 %(equidistant)
23 c = 0:(1/(s−1)):1;
24 else
25 %(Gauss)
26 c = GaussQuad(s−1);
27 c = 1/2*c+1/2;
28 end
29

30 % Find HelpFunctions according to (2.38−39)
31 C = Cmat(omega, m, p, c);
32 H = inv(C); %(2.49)
33

34 % Find H0
35 y = zeros(s,1);
36 for k = 1:m
37 for d = 0:p
38 y(−k*(p+1)+d+s1) = (−1)ˆd*factorial(d)/(−1i*k*omega)ˆ(d+1);
39 y(k*(p+1)+d+s2) = (−1)ˆd*factorial(d)/(1i*k*omega)ˆ(d+1);
40 end
41 end
42 H0 = H.'*y; %(2.52)
43

44 % Find a ij and b i
45 y0 = yvec(omega, m, p, 0);
46 Y = zeros(s);
47 for j=1:s
48 yj = yvec(omega, m, p, c(j));
49 Y(:,j) = yj−y0;
50 end
51 a = H.'*Y; %(2.56)
52 y1 = yvec(omega, m, p, 1);
53 b = H.'*(y1−y0); %(2.57)
54

55 % Find increments according to (2.44)
56 K = fsolve(@(K) HelpIncrements(T, omega, g, Z0, s, c, h, a, H0, K),ones(s,1),optimset('TolFun',10ˆ(−11)));

25

3. MATLAB implementations

57

58 % Compute approximation at time t1 according to (2.45)
59 zAppr = Z0(1)+h*Z0(2)−hˆ2*K.'*H0+hˆ2*K.'*b;
60

61 end

Remarks:

1. Function GaussQuad called at line 26 is defined in [5] at page 115.

2. Function Cmat called at line 31 is defined in appendix A.3.

3. Function yvec called at line 45 is defined in appendix A.4.

4. Function HelpIncrements called at line 72 is defined in appendix A.5.

26

Chapter 4

Numerical experiments

In this chapter we test the three functions of the previous chapter on a ODE
with oscillatory solutions of the first type presented in section 2.3, i.e. when
the perturbation is a function of the time only. In particular we are interested
in testing function FindAppr, which was developed ad hoc for this situation.
We also try to use the other two functions and we compare the obtained
results.

4.1 The problem

Take the the second order equation used as numerical example in [7] at page
486.

z̈ +
z
ε2 =

e−t

ε2 for ε > 0 (4.1)

with initial conditions

z(0) = 1 +
1

1 + ε2 (4.2)

ż(0) = − 1
1 + ε2 (4.3)

The solution of this ODE is given by

z(t) = cos
(

t
ε

)
+

e−t

1 + ε2 (4.4)

In Figure 4.1 is shown the exact solution for some values of ε.

Now we want to find numerically an approximation zh(t1) at time t1 = 1,
using the matlab implementations of the method of envelopes presented in
the previous chapter.

27

4. Numerical experiments

Figure 4.1: Exact solution for some εs

(a) ε = 1 (b) ε = 0.1

(c) ε = 0.01 (d) ε = 0.001

4.2 Projection error

Before doing anything it may be helpful to study how good is the chosen
trial space Vm,p for this particular problem.

Consider (4.1) in the following form:

z̈ = − 1
ε2 z +

e−t

ε2︸ ︷︷ ︸
=: f (t,z(t))

(4.5)

using (4.4) f can be written as:

f (t) = f (t, z(t)) = − 1
ε2 cos

(
t
ε

)
+

e−t

ε2

(
1− 1

1 + ε2

)
(4.6)

The study of the projection of f in the space of the second derivatives of
Vm,p, i.e. in Wm,p :=

{
d2

dt2 v : v ∈ Vm,p
}

may give a clue about how good the
approximation (at time t1 = 1) given by the method of envelopes for this

28

4.2. Projection error

problem will be, because the interpolation error of z in Vm,p is bounded by
the projection error of f in Wm,p (see Theorem 2.2.30 in [4]).

The functions w(t) ∈Wm,p are of the form

w(t) =
p−2

∑
d=0

r0,dtd +
m

∑
k=−m,k 6=0

e
ikt
ε

(
p

∑
d=0

rk,dtd

)
(4.7)

and the projection of f must satisfy
w f (τ1) = f (τ1)

...
w f (τs) = f (τs)

(4.8)

where 0 ≤ τ1 < . . . < τs ≤ 1 are the interpolation points and can be chosen
in several ways (we’ll use equidistant and Gauss nodes).

From (4.7) it’s evident that dim Wm,p = (2m + 1)(p + 1)− 2. Therefore for
the projection of f into Wm,p we need s = (2m + 1)(p + 1)− 2 interpolation
pairs (τj, f (τj)). The coefficients of w f , {rk,d}−m≤k≤m,0≤d≤p, are computed
by solving system (4.8), which in matrix form becomes T · r = f, where f
is a vector containing the values f (τj), and T =

(
Tj,l(k,d)

)
is a matrix with

entries Tj,l(k,d) = τd
j e

ikτj
ε (where l(k, d) is some function that for k and d gives

the position in the matrix T).

At this point the projection’s error is given by ‖ f − w‖∞. If we consider the
interval [0, 1], the values of these errors for ε = 0.01, m = 1 and p = 1, . . . 9
are shown in Figure 4.3.

Remarks:

1. One can see that the projection error converges exponentially, in par-
ticular for Gauss’ nodes.

2. However, if T is bad conditioned (e.g. for p = 10 and using equidistant
nodes), the error increases (e.g. 1.5997 · 103). Hence, we may have
problems when using the method of envelopes, due to the condition
of B.

29

4. Numerical experiments

Figure 4.2: Projections of f in W

Figure 4.3: Projection errors for m = 1 and ε = 10−2

4.3 The linear case

In this section we study how good the implemented methods are when ap-
plied to a linear oscillation.

First we try to solve the linear case using matrix inversion on (2.14): we

30

4.3. The linear case

define matrix B using function Bmat for some chosen ω, m and p together
with the initial values and both equidistant and Gauss’ nodes in [0, 1] as τ
to compute the coefficients.
And we compare the obtained a with the theoretical one described in (2.23).
Looking at the maximum-norm of the difference between the obtained a
and the theoretical one, we see that for m = 1, ε = 10−2 and p = 1, . . . , 10,
it is equal to 0.1110 · 10−15, that is the machine precision, when using Gauss’
nodes and also when using equidistant nodes but for p = 5, 6 (for these
values the error’s value is above 10−7), i.e. we can conclude that in general
this method finds the exact solution for the linear case.

Then we apply the functions implemented in the previous chapter using
g ≡ 0, t1 = 1, m = 1 and different values of p and we compare it with the
exact solution given by combining (1.6) and (2.8-9).
Using function FindAppr with Gauss nodes we get errors equal 0 for all
p = 1, . . . , 10, using equidistant nodes we also have the most part of the
errors equal to 0 and below 10−7 for p = 5, 6. Therefore we can say that this
function finds the exact solution for the linear oscillation.
Function FindAppr2 gives all errors equal 0 for both Gauss and equidistant
nodes and p = 1, . . . , 9 (for p = 10 we got 0 when using Gauss and ∞ for
equidistant ones), this is also due to the choice of the start vector for the (sim-
plified) Newton iteration (see lines 37-39 in the code of FindAppr2), which
corresponds to the vector containing the exact coefficients of the truncated
modulated Fourier expansions representing the solution of the linear oscil-
lation. Hence, also this function solves exactly the linear case.
The errors given by the one step method by solving the linear case are shown
in Table 4.1. One can see that for small values of p the approximation is very
good, but it degenerates for bigger values. The explanation of this phenom-
ena is that the condition of the matrices (let the first one be called DIncr)
used by fsolve for finding the increments become very high for large values
of p.

Note that also the jacobian of function G for the start vector of the (simpli-
fied) Newton iteration (called DG0) performed by FindAppr2 can be very
ill conditioned and consequently produce large errors’ values. In Figure 4.4
are shown the the evolutions with respect to p of conditions of scaled DIncr
and DG0 for the linear case. In these plots one can see that the condition
increases with p and it tends to be larger when using equidistant nodes.
Therefore, it may be a good idea to use only small values of p in functions
FindAppr2 and osm.

31

4. Numerical experiments

Table 4.1: Errors using osm for m = 1 and ε = 10−2

p equidistant points Gauss points
1 5.1456e-013 3.4455e-014
2 4.4075e-012 3.9344e-012
3 3.1734e-012 5.1240e-011
4 1.5210e-011 1.0740e-011
5 1.2599e+000 4.9800e-010
6 1.8331e+000 4.0749e-011
7 2.1937e+000 1.7692e+000
8 1.2070e-009 1.5886e+000
9 2.8912e-001 1.9872e+000
10 2.5665e+000 5.0346e-008

Figure 4.4: Condition of the (scaled) matrix . . .

(a) DG0 used in FindAppr2 (b) DIncr used by fsolve in osm

4.4 The perturbed case and error’s analysis using the
ad hoc method

Now we look for an approximation for the perturbed case. Note, again,
that we are in the first case described in section 2.3. Therefore we apply
to problem (4.1-3) the ad hoc function FindAppr for different parameters’
choices and we analyse the accuracy of the found approximations (with
respect to the given exact solution (4.4)).

4.4.1 Error w.r.t m and p

First of all let us fix ε = 0.01 (i.e. ω = 102) and t1 = 1. Look at the plots of
the approximation’s errors for m = 1 and m = 3 and p going from 1 to 10 in
Figure 4.5.

32

4.4. The perturbed case and error’s analysis using the ad hoc method

Figure 4.5: log(error) vs. p for t1 = 1, ε = 0.01 and . . .

(a) m = 1 (b) m = 3

Remarks:

1. In both plots one can note exponential convergence for the errors, in
particular when using Gauss’ points.

2. It may also be concluded that Gauss’ nodes tend to give smaller error’s
values.

3. In Figure 4.6 one can see that even for smaller ε analogous conclusions
can be drawn. Moreover, in that case one can also note that error’s
values do not converge when using m = 3 and equidistant nodes.

Figure 4.6: log(error) vs. p for t1 = 1, ε = 10−4 and . . .

(a) m = 1 (b) m = 3

Now take a look at the situation in which p stays fixed and m increases
(Figure 4.7). Note that in this case the errors don’t seem to converge.

33

4. Numerical experiments

Figure 4.7: log(error) vs. m for t1 = 1 and p = 3

4.4.2 Error w.r.t ε

In this section we analyse the errors of the approximation at time t1 = 1 for
ε = 10−k with k going from 1 to 10, keeping m and p fixed. First, take a look
at Figure 4.8.

Figure 4.8: log(error) vs. -log(ε), t1 = 1, m = 1 and p = 3

34

4.4. The perturbed case and error’s analysis using the ad hoc method

The plot highlights that

1. The error’s value increases as ε decreases for both equidistant and
Gauss points.

2. Using Gauss nodes gives, in general, smaller errors than using equidis-
tant ones.

Note that the same behaviour is observed when using different values of m
and p (Figure 4.9).

Figure 4.9: log(error) vs. -log(ε), t1 = 1, m = 3 and p = 9

4.4.3 Error w.r.t. t1

Finally, we analyse the relation between the errors and the parameter t1. i.e.
we compute the approximation’s errors at t1 varying from 0.5 to 10 (with
step length 0.5). Consider Figure 4.10.

This plot shows that:

• In general Gauss nodes give smaller errors

• In the cases in which equidistant nodes produce better results, the
difference is small.

• The difference between the results can also be considerable, in the
cases where Gauss nodes give smaller errors.

The same reasoning can be made when looking at Figure 4.11, where we use
different values of m, p and ε

35

4. Numerical experiments

Figure 4.10: log(error) vs. t1, ε = 0.01, m = 1 and p = 3

Figure 4.11: log(error) vs. t1, ε = 0.01, m = 1 and p = 9

4.5 Errors analysis for the other methods

In this section we apply to problem (4.1-3) the general methods instead of
the ad hoc one.

We begin by using the general matrix form method, i.e. we apply function

36

4.5. Errors analysis for the other methods

FindAppr2. The obtained error plots w.r.t p and for different values of m
and ε are shown in Figures 4.12-13.

Figure 4.12: log(error) vs. p using function FindAppr2 for t1 = 1, ε = 0.01 and . . .

(a) m = 1 (b) m = 3

Figure 4.13: log(error) vs. p using function FindAppr2 for t1 = 1, ε = 10−4 and . . .

(a) m = 1 (b) m = 3

Remarks:

1. Note that for the error corresponding to the Gauss nodes there’s no
difference with the above plots.

2. When using equidistant nodes some error’s values are not displayed.
This means that for such p’s the matrix DG is very ill conditioned and
therefore this method gives a very inexact solution or no solution at
all.

Finally let us apply the one step form’s function osm to this problem and

37

4. Numerical experiments

take a look of the obtained errors (Figure 4.14).

Figure 4.14: log(error) vs. p using function osm for t1 = 1, m = 1 and ε = 10−2

We can see that for small p values the plot is very similar to the ones obtained
with the previous two methods, but for higher values it degenerates and
losses precision (with respect to the other methods) exactly as it did solving
the linear case (see Table 4.1 and Figure 4.4) due to the condition of the used
matrices.

4.6 Conclusion

From the error analysis of previous sections one can conclude that in gen-
eral it is better to use collocation with Gauss’ nodes than equidistant nodes.
This is because the first one yields often to smaller error’s values, in par-
ticular when using large t1 and/or small ε. Even if the error produced by
collocation with equidistant nodes is smaller, the difference is often a small
fry. Conversely, if equidistant points are used and the error value is bigger
than the one that would be produced by using Gauss’ points, the obtained
approximation can be considerably worse.

Moreover, the plots of the errors with respect to the p-value for the matrix
form methods show that for Gauss nodes we have exponential convergence
(i.e. the error’s values go to zero as p increases), while this is not always
true if using equidistant points. A sort of convergence for Gauss’ nodes can
be seen in the plots of the one step method too: in fact for p = 1, . . . , 6 the
behaviour of the green lines is the same as in the previous ones.

38

4.6. Conclusion

For the general methods one can also note that collocation with Gauss nodes
is safer because a solution is always found. This does not hold when using
equidistant nodes (see in particular Figures 4.12-13).

Another important point is the relative efficiency and precision of the meth-
ods: the ad hoc one (function FindAppr) is extremely faster than the others
and the produced approximations are at least as good as the ones given by
the others. Therefore, we suggest to use this method, whenever possible.

39

Chapter 5

Another numerical experiment

In this chapter we investigate the quality of the implemented methods through
the application to an oscillation with state-depending perturbation.

5.1 The (new) problem

Let us consider a new ODE with oscillatory solution: the equation for the
mathematical pendulum

z̈ = −λ sin(z) (5.1)

where λ ∈ R is a (large) fixed parameter, with initial conditions

z(0) = z0 (5.2)
ż(0) = 0 (5.3)

where z0 a small initial displacement’s parameter.

Remark: In this case there’s no known general solution, therefore we have
to compute the reference solution using some other numerical method: here
we use the Störmer-Verlet procedure and the matlab integrator ode45.

As for the previous example, we want to compute a numerical approxima-
tion zh(t1) at some time t1 (as before we’ll use t1 = 1).

5.2 The reference solution

Since no general solution for this ODE is available, we have to compute the
reference solution at time t1 using numerical methods. It is useful to call f
the RHS of (5.1), i.e.

f (t, z) = −λ · sin(z) (5.4)

41

5. Another numerical experiment

A first way to find zre f (t1) is to use the Störmer-Verlet procedure (cfr. [4],
section 1.4.4, pp. 104-116 and [2]) i.e.

1. Divide the interval [0, t1] into N ∈ N timesteps of length h = t1
N and

get a time-grid
{

0 = t(0), t(1), . . . , t(N−1), t(N) = t1

}
2. Define recursively zk ≈ z(t(k)) according to

zk+1 = −zk−1 + 2zk + h2 f (zk) (5.5)

3. Set zre f (t1) = yN .

Remark: Note that for the calculation of z1 we need z0 and z−1, therefore we
consider z0 to be the initial displacement and for z−1 we consider a virtual
point t(−1) = t(0) − h for which it holds

z1 = −z−1 + 2z0 + h2 f (z0) (5.6)
z1 − z−1

2h
= ż(t(0)) = 0 (5.7)

i.e.

z−1 = z0 − h · 0 + h2

2
f (z0) (5.8)

Another way for finding zre f (t1) is to transform (5.1) into a 1st order system
of ODEs and find a solution using the matlab integrator ode45, i.e.

1. Define y(t) :=
(

z(t)
ż(t)

)
and consequently y0 :=

(
z0
ż0

)
.

2. Get

ẏ(t) =
(

ż(t)
z̈(t)

)
=

(
ż(t)

f (z(t))

)
=: F(y(t)) (5.9)

3. Apply ode45:

1 [t,y] = ode45(F,[0,t1],y0, options)

4. Set zre f to be the first component of y.

Remark: See function yEx in appendix A.6 for an application.

Note that the zre f given by the two methods are very similar, in particular
for large values of N, see Figure 5.1.

42

5.3. The implementation

Figure 5.1: zre f for z0 = 10−2, λ = 100 and t1 = 1

5.3 The implementation

In order to apply the method developed in the previous chapters and find an
approximative solution using the implemented matlab functions, we need
to write the problem in form (1.1):

z̈ = − λ︸︷︷︸
=:ω2

z + λ · (z− sin(z))︸ ︷︷ ︸
=:g(t,z)

(5.10)

Note that we are in the second case described in section 2.3. Therefore we
must use the functions for the general case, i.e. function FindAppr2 or osm.

5.4 Error’s analysis for the matrix form’s method

We begin by investigating the precision of the matrix form’s method, i.e. we
apply function FindAppr2 to problem (5.1-3) and we study the errors pro-
duced for different values of p and m. From now on let t1 = 1.
Please note that for the perturbed oscillation we do not have any ”given”
exact solution formula. Therefore we’ll use both reference solutions found
in section 5.2 to get the approximation’s error.

Remark: In section 4.3 was proven that function FindAppr2 solves exactly
the linear case. Therefore here we only consider the perturbed case.

43

5. Another numerical experiment

In Figure 5.2 are plotted the errors at t1 w.r.t. both reference solutions for
m = 1, N = 106 (the parameter of Störmer-Verlet iterations), p = 1, . . . , 10,
λ = 102 and for different values of z0.

Figure 5.2: log(error) vs. p using function FindAppr2 for t1 = 1, m = 1, λ = 102 and . . .

(a) z0 = 10−1 (b) z0 = 10−2

(c) z0 = 10−3 (d) z0 = 10−4

One can see that we got smaller errors when using Gauss nodes instead of
equidistant nodes. For larger values of z0 (i.e. plots (a-c)) we got a sort of
convergence of errors’ values for increasing p. However this convergence
degenerates for ”too large” p, due to the condition of the used matrix for
the Newton iterations (cfr. Figure 4.4 that shows the behaviour of this con-
dition for p increasing in the linear case). For this value of parameter N (i.e.
N = 106), the error with respect to the reference solution corresponding to
the Störmer-Verlet method is smaller than the one with respect to the ode45

reference solution. It may also be interesting to note that smaller initial
displacements give smaller average error’s values, in particular in (d) the
error’s value is constant because the maximal machine precision has been
reached.

44

5.4. Error’s analysis for the matrix form’s method

In Figure 5.3 one can see the plots corresponding to the same situations as
in Figure 5.2 but with λ = 104.

Figure 5.3: log(error) vs. p using function FindAppr2 for t1 = 1, m = 1, λ = 104 and . . .

(a) z0 = 10−1 (b) z0 = 10−2

(c) z0 = 10−3 (d) z0 = 10−4

In these cases the error’s value corresponding to Gauss’ nodes is quite con-
stant, but for larger z0 values (e.g. (a-c)) is larger than the most part of
the errors produced by using equidistant nodes. Again, one can see that
the average error’s value decreases together with the initial displacement.
Moreover, this value reaches the machine precision when a very small value
for the initial displacement is chosen (e.g. (d)). Note that the error value
corresponding to some values of p is not shown the plots in Figure 5.3.
This happens most often when using equidistant nodes and it is due to the
condition of DG(·): in these cases the method does not produce an approx-
imative solution to our problem. Therefore, we may conclude (again) that
Gauss’ nodes are recommended.

45

5. Another numerical experiment

5.5 Errors analysis for the one step method

Now we apply function osm to ODE (5.1-3) with m = 1 fixed and with differ-
ent values of p and to compare the resulting approximations to the reference
solutions computed in section 5.2.

Remark: For this method the application to the linear case has been already
studied in section 4.3. Therefore in this section only the perturbed case will
be studied.

In Figure 5.4 one can see the plots corresponding to the same situations
of Figure 5.2, but this time we used function osm instead of FindAppr2 for
finding the approximative solution.

Figure 5.4: log(error) vs. p using function osm for t1 = 1, m = 1, λ = 102 and . . .

(a) z0 = 10−1 (b) z0 = 10−2

(c) z0 = 10−3 (d) z0 = 10−4

These plots highlight that:

1. Again, collocation with Gauss’ points gives smaller errors than the one

46

5.5. Errors analysis for the one step method

with equidistant nodes.

2. The values obtained for Gauss’ nodes are very similar to the ones pro-
duced by using the matrix form method. For equidistant nodes we got
bigger error’s values for p = 1 and p > 4, i.e. when neither the linear
case is correctly solved.

3. Exactly as in Figures 5.2-3, the average value of the errors decreases
together with the initial displacement value.

4. It may be important to note that this method gives a solution for all
values of p for both equidistant and Gauss’ nodes.

In Figure 5.5, we plotted the errors produced by osm and corresponding to
the same situations as in Figure 5.3. One can conclude the same as for the
previous Figures.

Figure 5.5: log(error) vs. p using function osm for t1 = 1, m = 1, λ = 104 and . . .

(a) z0 = 10−1 (b) z0 = 10−2

(c) z0 = 10−3 (d) z0 = 10−4

47

5. Another numerical experiment

5.6 Errors for different frequencies

Finally, it may be interesting to see how the approximative solutions pro-
duced by the implemented functions behave with respect to the parameter
λ, i.e. with respect to the frequency of the oscillation. This time let m = 1,
p = 3, t1 = 1 and z0 = 10−2 be fixed and observe (in Figures 5.6-7) what
happens by applying functions FindAppr2 and osm to our problem with dif-
ferent values of λ i.e. for λ = 10k with k = 1, . . . , 8.

Figure 5.6: errors vs. λ using FindAppr2 for m = 1, p = 3, t1 = 1 and z0

In these figures one can see that in both cases the error increases with λ and
that in general it may be a good idea to use Gauss’ nodes than equidistant
ones. Because no solution is found when using FindAppr2 with equidistant
nodes and large values of p and because the errors produced by the first
ones are often smaller than the others when using osm.
Moreover, using regression, we get that in the first case (i.e. using function
FindAppr2) the error’s values tend to stay quite constant among all the p
and in the second one (i.e. using function osm) the following relation holds

error ≈ Θ
(

λ1.1
)

(5.11)

i.e. the error increases as fast as parameter λ.

Therefore we may conclude that errors do not increase faster as λ and con-
sequently we may get good results even if λ is considerably large.

48

5.7. Conclusion

Figure 5.7: errors vs. λ using osm for m = 1, p = 3, t1 = 1 and z0

5.7 Conclusion

The previous sections suggest that in general the use of Gauss’ collocation
nodes is recommended because it often produces smaller error’s values than
collocation with equidistant nodes and even when the approximation ob-
tained by using the others appears to be better, the difference is always a
small fry. Moreover, for such a choice of nodes the plots show some conver-
gence, which blows up at some point (often p = 6) because of the condition
of the matrix used in the (simplified) Newton iterations (in FindAppr2) or
because of the error produced by fsolve trying to solve the system of equa-
tions for the increments (in osm). Therefore, we may conclude that one needs
to reach a compromise between the desire of precision (i.e. the temptation
to choose a large p) and the limit imposed by the condition of the matrices
used by the functions. For this particular example such a compromise may
be to choose p = 5.

Another important aspect is the relation between the size of the initial dis-
placement value z0 and the average size of the errors obtained with the im-
plemented functions: the smaller the initial value, the smaller the produced
error. In particular, one can see in Figures 5.2-4 that for very small values
of z0 (e.g. 10−4), the error’s value is constant among the p values because
machine precision is reached.

Finally, section 5.6 highlights that the error’s size increases together with p.

49

5. Another numerical experiment

Hence, we may choose quite large values for λ and still keep some accuracy
in the approximation (e.g. in Figures 5.6-7 one can see that for such a pa-
rameters’ choice the error size is about 10−6 even if we choose λ = 105).

50

Chapter 6

Conclusion

From the error’s analysis performed for the numerical experiments in pre-
vious chapters we can draw the following conclusions about the methods
presented in chapter 2 and their implementations using matlab described
in chapter 3.

First of all, the error’s analysis for the linear oscillation performed in section
4.3 shows that the matrix form methods and their implementations solves
correctly the linear case for all but few values of the polynomial degree’s
parameter p. Conversely, the one step form implementation finds approxi-
mative solution’s of the linear oscillation than can be quite far away from
the exact value. In particular when using equidistant collocation nodes and
large values of parameter p. These error’s values are due to the fact that
the matrices used for the (simplified) Newton method (in FindAppr2) and
by function fsolve (in osm) become ill conditioned for increasing p value.

Applied to both linear and perturbed oscillations, the use of Gauss’s collo-
cation nodes tends to give better results than collocation with equidistant
nodes. Moreover, for matrix form methods applied to oscillations with state-
independent perturbation this type of collocation shows exponentially con-
vergent error’s size (see chapter 4, in particular Figures 4.5-6 and 4.12-13)
and a solution is always produced (this is not true when using equidistant
nodes).

The first numerical experiments shows even another important point: when
the perturbation function is independent from the state, (i.e. g(t, z) ≡ g(t)),
the use of function FindAppr (i.e. to find the coefficients of the modulated
Fourier expansion by matrix inversion as described in the first part of sec-
tion 2.3) is recommended because it is more efficient (i.e. it run much faster)

51

6. Conclusion

and gives results as least as precise as the ones that would be produced by
the other methods: e.g. error’s size in the order of ≈ 10−11 (about machine
precision) for the the first proposed numerical experiment. Moreover, Fig-
ures 4.12-14 show that functions FindAppr2 and osm ”fail” for some (large)
values of p: the first one because it doesn’t produce a solution and the sec-
ond one because it gives quite large error’s values.

The second numerical experiment (chapter 5) shows that the error’s size is
strictly connected with the choice of the oscillation’s initial displacement:
the smaller the chosen parameter, the smaller the approximative solution’s
error. For very small initial parameter’s choice the errors tend to stay con-
stant because the maximal machine precision’s value is reached.
Another point is that both general methods tend to ”blow up” for increasing
p values. For the one step form’s method (i.e. function osm) this problem
was already highlighted during the first numerical experiment’s analysis for
both the linear and the perturbed oscillation: in Table 4.1 one can see that for
p > 4 using equidistant nodes and for p > 6 using Gauss nodes this func-
tion gives a very inaccurate approximation for the linear oscillation, while
in Figure 4.14 one can see that for the same values of p the approximation
of the perturbed oscillation’s solution blows up too.

Therefore we have to reach a compromise between the theoretically conver-
gence of the error’s size for increasing p value and the limits imposed by
the condition of the needed matrices, which for too large values of p be-
come very ill conditioned and cause inaccuracy. A ”rule of thumb” may be
to choose p in the interval [3, 6].

52

Appendix A

Useful MATLAB functions

A.1 xvec

1 function[x] = xvec(m,p,t,omega)
2 % xvec gives a vector containing the monomials of the collocation
3 % method at a given time t.
4 % m = truncation parameter
5 % p = polynomial's degree parameter
6 % t = time
7 % omega = ODE parameter
8

9 x = zeros((2*m+1)*(p+1),1);
10 l = m*(p+1)+1;
11

12 for k=−m:m
13 for d=0:p
14 x(k*(p+1)+d+l) = tˆd*exp(1i*k*t*omega);
15 end
16 end
17

18 end

A.2 HelpFunction

1 function [G , DG] = HelpFunction(a, B, g, omega, m, p, tau, Y0, u)
2 %HelpFunction gives the values of G and DG
3 % a = coefficients vector
4 % B = collocation matrix
5 % g = perturbation function
6 % omega = ODE parameter
7 % m,p = collocation parameters
8 % tau = collocation nodes vector
9 % Y0 = initial conditions

53

A. Useful MATLAB functions

10 % u = gaussian required if 0
11

12 % initialization
13 y0 = Y0(1);
14 y1 = Y0(2);
15 n = (2*m+1)*(p+1);
16 y = zeros(n,1);
17

18 % for DG
19 if u == 0
20 Y = zeros(n,n);
21 ah = sym('ah',[n,1]);
22 xh = sym('xh',[n,1]);
23 th = sym('th');
24 Dg = jacobian(g(th,xh.'*ah),ah);
25 end
26

27 % Computation of the g j and of the Dg j
28 for j=1:n−2
29 x = xvec(m,p,tau(j),omega);
30 y(j) = g(tau(j),x.'*a);
31 if u == 0
32 Yh = subs(Dg, th, tau(j));
33 Yh = subs(Yh, xh, x);
34 Y(j,:) = subs(Yh, ah, a);
35 end
36 end
37

38 y(n−1) = y0;
39 y(n) = y1;
40

41 % Definition of G and of DG
42 G = B*a−y; % according to (2.32)
43 if u == 0
44 DG = B−Y; % according to (2.34)
45 else
46 DG = 'Not Required';
47 end
48

49 end

A.3 Cmat

1 function [C] = Cmat(omega, m, p, c)
2 %Cmat gives the matrix for finding the coefficients of functions H i
3 % omega = ODE parameters
4 % m = truncation parameter
5 % p = polynomial degree parameter
6 % c = 0−1 collocation nodes' vector
7

8 s = (2*m+1)*(p+1)−2;

54

A.4. yvec

9 C = zeros(s);
10 l = m*(p+1)+1;
11

12 for j = 1:s
13 x = xvec(m, p, c(j), omega);
14 x = x.';
15 C(j,:) = x([1:l+p−2,l+p+1:end]);
16 end
17

18 end

A.4 yvec

1 function [y] = yvec(omega, m, p, t)
2 %yvec gives the primitives of auxiliary functions at t
3 % omega = ODE parameter
4 % m = truncation parameter
5 % p = polynomial degree parameter
6

7 % Initialization
8 s = (2*m+1)*(p+1)−2;
9 s1 = m*(p+1)+1;

10 s2 = m*(p+1)−1;
11 y = zeros(s,1);
12

13 % k=0 according to (2.53)
14 for d=0:(p−2)
15 y(d+s1) = tˆ(d+2)/((d+1)*(d+2));
16 end
17

18 % k\=0 according to (2.54)
19 for k=1:m
20 for d=0:p
21 y1 = 0;
22 y2 = 0;
23 for l1 = 0:d
24 for l2 = 0:(d−l1)
25 l = l1+l2;
26 y1 = y1+(−1)ˆ(l)*factorial(d)*tˆ(d−l)*exp(−1i*k*omega*t)/((−1i*k*omega)ˆ(l+2)*factorial(d−l));
27 y2 = y2+(−1)ˆ(l)*factorial(d)*tˆ(d−l)*exp(1i*k*omega*t)/((1i*k*omega)ˆ(l+2)*factorial(d−l));
28 end
29 end
30 y(−k*(p+1)+d+s1) = y1;
31 y(k*(p+1)+d+s2) = y2;
32 end
33 end
34

35 end

55

A. Useful MATLAB functions

A.5 HelpIncrements

1 function [G] = HelpIncrements(T, omega, g, Z0, s, c, h, a, H0, K)
2 % HrlpIncrements helps finding the increments
3

4 % initialization
5 f = @(t,z) −omegaˆ2*z+g(t,z); % f defined as in (2.35)
6 G = zeros(s,1);
7

8 for j=1:s
9 th = T(1)+c(j)*h;

10 yh = Z0(1)+h*Z0(2)*c(j)+hˆ2*(a(:,j)−c(j).*H0).'*K;
11 G(j) = f(th,yh)−K(j); % according to (2.44)
12 end
13

14 end

A.6 yEx

1 function [ySt, yod] = yEx(y0, lambda, t1, N)
2 %yEx computes a numerical approximation of y at time t 1 using
3 %Stoermer−Verlet method and ode45 integrator
4

5 % y0 = initial displacement (small)
6 % lambda = ODE parameter
7 % t1 = final time
8 % N = Quantity of timesteps for Stoermer−Verlet (min 10ˆ6)
9

10 % RHS Definition as in (5.4)
11 f = @(y) −lambda*sin(y);
12

13 %Stoermer−Verlet Approximation:
14 % Step−length
15 h = t1/N;
16

17 % Start points
18 y old = y0+hˆ2*f(y0)/2; % according to (5.8)
19 y new =y0;
20

21 % Iteration according to (5.5)
22 for k=1:N
23 y = −y old+2*y new+hˆ2*f(y new);
24 y old = y new;
25 y new = y;
26 end
27

28 ySt = y new;
29

30 % ode45 Approximation

56

A.6. yEx

31 % set tight tolerance
32 options = odeset('abstol',1E−11,'reltol',1E−11,'stats','on');
33

34 % solve the 1st order ODE
35 odefun = @(t,y) [y(2);f(y(1))]; % according to (5.9)
36 [t,y] = ode45(odefun, [0,t1],[y0;0],options);
37

38 yod = y(end,1);
39

40 end

57

Bibliography

[1] P Deuflhard and F. Bornemann, Numerische mathematik 2, gewöhnliche dif-
ferentialgleichhungen, de Gruyter, Berlin, Germany, 2008.

[2] C.Lubich E.Hairer and G.Wanner, Geometric numerical integration illus-
trated by the störmer-verlet method, Acta Numerica 12 (2003), 399–450.

[3] , vol 31 of springer series in computational mathematics, Geometric
numerical integration (2, ed.), Springer, Heidelberg, Germany, 2006.

[4] Prof. Ralf Hiptmair and Dr. Vasile Gradinaru, Numerische mathematik (nu-
merik der odes), Lecture’s notes 2011, available at http://www.sam.math.
ethz.ch/~hiptmair/tmp/NUMODE11.pdf.

[5] Daniel Kressner, Numerische methoden, Lecture’s notes 2010, available
at http://www.math.ethz.ch/education/bachelor/lectures/fs2010/
math/nm/skript.pdf.

[6] MATLAB, version 7.12.0 (r2011a), The MathWorks Inc., Natick, Mas-
sachusetts, 2011.

[7] W.L. Miranker and M. van Veldhuizen, The method of envelopes, Mathe-
matics of computation 32 (1978), 453–496.

59

http://www.sam.math.ethz.ch/~hiptmair/tmp/NUMODE11.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NUMODE11.pdf
http://www.math.ethz.ch/education/bachelor/lectures/fs2010/math/nm/skript.pdf
http://www.math.ethz.ch/education/bachelor/lectures/fs2010/math/nm/skript.pdf

	Contents
	Introduction
	ODEs with oscillatory solutions
	The linear oscillation

	Collocation approach
	Truncated modulated Fourier expansions

	Collocation for ODEs with oscillatory solutions
	Collocation conditions
	Special case: the linear oscillation
	The matrix form
	Regularity of B
	Exactness of solution

	General case with perturbation
	The Newton method for perturbed oscillations
	One step collocation method
	The procedure
	Explicit computation

	MATLAB implementations
	The collocation matrix
	Collocation method for state-independent perturbation function
	General matrix form collocation method
	One step collocation method

	Numerical experiments
	The problem
	Projection error
	The linear case
	The perturbed case and error's analysis using the ad hoc method
	Error w.r.t m and p
	Error w.r.t
	Error w.r.t. t1

	Errors analysis for the other methods
	Conclusion

	Another numerical experiment
	The (new) problem
	The reference solution
	The implementation
	Error's analysis for the matrix form's method
	Errors analysis for the one step method
	Errors for different frequencies
	Conclusion

	Conclusion
	Useful MATLAB functions
	xvec
	HelpFunction
	Cmat
	yvec
	HelpIncrements
	yEx

	Bibliography

