
Periodic solution of non-linear parabolic value problem

December 30, 2003

1 Description of the problem

On Ω =]0, 1[2 consider the boundry value problem

d
dtu− div(α(|grad u|)grad u) = 0 in Ω,

α(|grad u|) · n = g · sin( 2π
T t) on ∂Ω,

u(0, ·) = u(T, ·),
(1)

where T > 0 is the known period, g ∈ H−
1
2 (∂Ω), and α ∈ ([0;∞]), 0 < α0 ≤ α(s) ≤ α1, with α′(s) >

0, ∀s ≥ 0. In a concrete electromagnetic application (ferromagnetic materials) the coefficent function α is
well approximated by

α(s) ≈ α1 − α1 − α0

1 + exp (k(s− s0))
,

where s0 > 0 and k > 0.
The problem can be cast in a variational form as seek u = u(t, ·) ∈ C1([0;T ],H1(∂Ω)) such that

∫

Ω

d

dt
u v + α(|grad u|)grad u · grad v dx = sin(

2π

T
t)

∫

∂Ω

gv dS ∀v ∈ H1(Ω). (2)

It can be discretized on a regular triangular grid Ωh with meshwidth h = 1
N−1 , N ∈ N the number of

gridlines in each direction. More precisely, the grid arises by subdividing the squares of a tensor-product
grid of meshwidth h into two triangles each. The finite element discretization of (2) employs piecewise
linear, globally continuous finite elements on Ωh. In the case of α ≡ 1 this will give rise to the usual
5-point stencil for the Laplacian.

The evaluation of the discretized operator involves numerical quadrature. In detail the semi-discrete
variational problem reads seek uh = uh(t, ·) ∈ C1([0;T ], Vh) such that

∑

K

(
|K|
3

3∑

j=1

d

dt
uh(t,aK

j )vh(aK
j )+

+ |K|α(|grad uh(t, cK)|)grad uh(t, cK) · grad vh(cK)

)
=

sin(
2π

T
t)

∑

e⊂∂Ω

|e|
2

(g(pe
1)vh(pe

1) + g(pe
2)vh(pe

2)) , (3)

for all vh ∈ Vh. Here, aK
j are the vertices of the triangle K, cK is its center of gravity, and pe

1, p
e
2 stand for

the endpoints of the boundary edge e. In compact form, using ~u to denote the coefficient vector belonging
to a finite element solution, this semidiscrete problem can be written as

M
d

dt
~u(t) + A(~u) ~u = sin(

2π

T
t) ~f ,
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with a diagonal mass matrix M ∈ RN2,N2
and a stiffness matrix A(~u) ∈ RN2,N2

.

Writing J(~u) := A(~u) ~u, we obtain as Jacobian

DJ(uh)whvh =
∑

K

|K|α(|grad uh(cK)|)grad wh(cK) · grad vh(cK)+

+ |K|α
′(|grad uh(cK)|)
|grad uh(cK)| (grad uh(cK) · grad wh(cK))(grad uh(cK) · grad vh(cK)).

2 MATLAB implementation

The crucial MATLAB function is (File evaluation.m)

function [y,J] = evaluation(N,u,t,T)

N : resolution of the mesh, meshwidth h = 1/(N − 1),
u : coefficient column vector ~u ∈N2

,
t : current time,
T : periodicity.

This function returns

y : y = M−1(sin( 2π
T t) ~f −A(~u) ~u)

J : Jacobian −M−1 DJ(uh) ∈N2,N2
as sparse matrix

Auxiliary MATLAB functions are

• function [va,da] = alpha(s)

which returns the values va= α(s) and da= α′(s). Altering this function changes the strength of
the non-linearity.

function [va,da] = alpha(x)

alf1 = 1.0; alf0 = 0.001; k = 10; s0 = 1;
efn = exp(k*(x-s0));
den= 1+efn;
va = alf1 - (alf1-alf0)./den;
da=k*(alf1-alf0)*efn./(den.*den);

• function g = gfun(x,y)

which provides the Neumann data g.

3 Simple shooting method

Now set, using the notations introduced above,

F (~u, t) := M−1(sin(
2π

T
t)~f −A(~u)~u) .

Then the semi-discretized two-point boundary value problem corresponding to (1) can be stated as

d

dt
~u = F (~u, t) , ~u(0) = ~u(T ) . (4)
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Writing Φ : [0; T ] × RN2 7→ RN2
for the evolution operator associated with (4) we can formulate the

problem as non-linear equation

Φ(T, ~u0) = ~u0 . (5)

This equation can be solved by the Newton’s method

( dΦ
d~u0

(~u(m)
0 , T )− Id)~δ(m) = −(Φ(~u(m)

0 , T )− ~u
(m)
0 )

~u
(m+1)
0 = ~u

(m)
0 + ~δ(m).

(6)

In its course we need the following evaluations

Φ(T,~v) and (
dΦ
d~u0

(T,~v)− Id)~s ,

for ~v,~s ∈ RN2
. Note that

dΦ
d~u0

(T,~v) can be obtained as the solution of the initial-value problem

d

dt
Z =

dF

d~u
(~u(t), t) Z , Z(0) = Id , (7)

where ~u is the solution of

d

dt
~u = F (~u, t) , ~u(0) = ~v .

Remark. It is very important to keep in mind that both (4) and (7) are stiff problems. Therefore explicit
timestepping is not an option. At least semi-implicit methods have to be used. This is why the MATLAB
routine evaluatiuon.m also provides the Jacobian.

3.1 Outline of the shooting algorithm

In this particular case we have to deal with

F (~u, t) = M−1(~q(t)− J(~u)) . (8)

The evolution Φ(t, ~u) will be approximated by means of a semi-implicit Euler scheme with fixed timestep
τ > 0, which reads, k = 1, . . . , N , N := T/τ ,

~v0 = ~u ,

(M + τ DJ(~vk−1))δ~v = τ(~q(tk)− J(~vk−1)) ,

~vk = ~vk−1 + δ~v .

(9)

Eventually, we end up with Φ(T,~v) = ~vN . In lockstep with the integration of the initial value problem,
we can approximately solve (7): for k = 1, . . . , N compute

~z0 = ~s ,

(M + τ DJ(~vk))~zk = M~zk−1 .
(10)

3.2 Implementation of the shooting algorithm

The used MATLAB functions are

function [Dphi w,phi] = shootingII(N,u,T,n,w)

and

3



function phi = phi shooting(N,u,T,n)

with

N : resolution of the FEM mesh,
u : column vector ~v ∈ RN2

,
T : periodicity,
n : number of time-steps in the Euler method,
w : column vector ~s ∈ RN2

.

The functions return

Dphi w : ( dΦ
d~u0

(T,~v)− Id)~s,
phi : −(Φ(T,~v)− ~v).

Remark: The shooting function doesn’t return the entire Matrix ( dΦ
d~u0

(T,~v) − Id) because in the run of

solving the linear problem (11) it is only used as a multiplication with a column vector ~s ∈ RN2
(consult

section 4, Newton update).

4 Newton update

In each Newton step, one has to solve the linear equation

( dΦ
d~u0

(~u(m)
0 , T )− Id)~δ(m) = −(Φ(~u(m)

0 , T )− ~u
(m)
0 ). (11)

It is solved in an iterative conjugated gradient squared method. In its course we need in every iteration
step the evaluation of the right and the left hand side of the equation, what is done by the above
introduced functions. It is obvious that the more iteration steps are needed until sufficient convergence,
the more time is needed to reach a satisfying result. The relative tolerance demanded for the abortion of
the iteration method as well as the maximum of iteration steps affect the total computation time of the
algorithm very sensitively.

4.1 Implementation of the Newton algorithm

The Newton iteration is provided by the MATLAB function

function u=newton4(N,u,TolN,T,n)

with

N : FEM mesh resolution,
u : starting vector of the Newton iteration,
TolN : relative tolerance of for the Newton residual,
T : periodicity of the initial equation,
n : number of time-steps in the shooting method.

The function returns the values of the initial scalar field u(0, ·) for the initial problem (1) at the vertices
of the FEM mesh in the N2 vector u. For further use u can be converged to matrix form.
The Newton update ~δ(m) from (11) is found by a conjugated gradient squared method, provided in

function [x,phi,flag,it,relres,resvec]=shoot CGS(N,u,T,n,tol,maxit,psi,v0)
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N : resolution of the mesh, meshwidth h = 1/(N − 1),
u : coefficient column vector ~u ∈N2

,
T : periodicity,
n : number of time-steps in the semi-implicit Euler method,
tol : relative tolerance, that has to be reached until abortion (default is 10−6),
maxit : maximum number of iterations (default is min(30, N2)),
psi : optional default right hand side of the linear equation (11),
v0 : starting vector of the iteration (default is zero).

This function returns

x : solution of the linear equation (i.e. the next Newton update)
phi : right hand side of the linear equation (11), psi if used,

flag :

0 then shoot CGSconverged to the desired tolerance tol within maxit iterations without
failing for any reason,

1 then shoot CGS iterated maxit times but did not converge,
2 then a system of equations was ill-conditioned,
3 then shoot CGS stagnated,
4 then one of the scalar quantities calculated during shoot CGS became

too small or too large to continue computing,
relres : the relative residual at the end of the iteration,
resvec : a vector of all residuals computed during iteration.

5 Example

For an example of the use of the algorithm the function [u,A]=start BVP can be used, where the param-
eters for the algorithm can be set. In its course the result vector u of the newton4 function is converted
to the matrix A. A protocol of the evaluation is written to the text file example.txt, where run-time
information can be observed.

6 MATLAB-files

For the use of the algorithm the following m-files have to be saved in the bin directory:
aplha.m : provides the non-linear function α(s) from the initial problem (1),
evaluation.m : for the FEM,
gfun.m : provides the Neumann data at boundary of the problem,
massvec.m : calculates the mass matrix of the FEM,
newton4.m : the Newton algorithm,
phi shooting.m : calculates the right hand side of (11),
shoot CGS.m : returns the Newton update,
shootingII.m : calculates the left and the right hand side of (11),
start BVP.m : the example problem.

7 Performances

For k = 10 in the non-linearity function α(s) and the Neumann data g = 10 · sinh(1− (x + y)) the run of
the calculation gave showed the following performance, where N is the FEM resolution, n the number
of time steps in the shooting algorithm, TolN the demanded relative tolerance of the Newton residual
and NNI the number of Newton iteration until convergence.
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N n TolN NNI
10 20 10−14 3

40 10−10 3
80 10−14 3
160 10−10 2
320 10−10 2

15 40 10−10 3
80 10−10 3
160 10−10 2
320 10−10 2

20 20 10−14 6

Results for k = 1 and g = 2 are listed in the tabular below.

N n TolN New. Iter.
10 20 10−14 3

40 10−10 3
80 10−10 2
160 10−10 2
320 10−10 2

15 40 10−10 2

For a third example k = 3, g = 2 · cosh(1− (x + y)).

n TolN New. Iter.
8 40 10−12 3

80 10−12 2
160 10−12 2
320 10−12 2
640 10−12 2

The number of CGS iterations in every Newton step never became higher than 1. If in any particular
example the shoot CGS routine doesn’t converge this fast anymore, one has to think about changing
relative or absolute tolerance in the iterative method.
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