Term Project

Dual Mesh Calderon Preconditioning for
Single Layer Boundary Integral Operator

Yulia Smirnova

31.07.2012

1. THEORETICAL BACKGROUND

The construction of the preconditioner is based on the following theorem

[1]:

THEOREM: Let V}, and W), be finite-dimensional subspaces of reflexive
Banach spaces V, W such that

Let a € L(V x V,C), b € L(W x W,C) be continuous sesquilinear forms
that fulfill the inf-sup conditions

a(uy, v
sup M >ca |l un v, Yuy € Vi, (2)
v EVY H Up, HV

b qh, Wh
sup M >cp || an |lw, vy, € Wi, (3)

wp €Wy, H W, HW

Let d € L(V x W,C) be a continuous sesquilinear form that satisfies
another inf-sup condition

d
sup LA | oy, Vo e Vi (4)

wpEW) H Wh HW

Then picking up bases by, ...,by of V}, and ¢y, ..., g of W}, and introducing
Galerkin-matrices

A = (a(bi, b))t D := (d(bi, 4;)) 1 B := (b(¢i, ;) =1 (5)



we get

Lallll o1l d i

cAch2D

k( D'BDTA) < (6)

where k(-) stands for the spectral condition number of a square matrix.

In BEM we want to use this theorem in the following way: we chose the
bilinear forms corresponding to single-layer and hyper-singular potentials as
a(u,v) and b(g, w) correspondingly and standard Ls scalar product as d(v, w):

1 _1
a(u,v) .:/F/qu(w)v(y)dS(w,y), u,v € H 2" (7)

1 1
b(u,v) := / / ———curlpu(z)curlpo(y)dS(z, y), u,v € H 2(curly,T)
rJrdr |z —y| @)

d(u,v) = (U,U)L2(F) (9)

In order to satisfy the condition (1) we use a dual mesh (based on the
barycentric refinement). Then choosing as V}, piecewise constant functions
on the original surface mesh and as W), linear continuous functions on the
dual mesh we make sure that this condition holds.

The preconditioner constructed in this way is called Calderon precondi-
tioner.

2. IMPLEMENTATION

The construction of the preconditioner was implemented in the BETL
library [2], that already has modules to compute single-layer and hyper-
singular potentials, assemble mass-matrices and perform many other neces-
sary BEM operations.

Our aim was to write a module that constructs Galerkin matrices D and
B and then to create a preconditioner in the form, given by the theorem, i.e.

P1=D'BD 7, (10)



where both matrices D and B are of the size n x n, where n is a number
of elements in the original mesh.

The strategy of the construction is the following:
1. construct a barycentric refinement;

2. assemble embedding matrices that establish weighted mappings between
original and dual meshes and between barycentric refinement and dual
mesh (see definitions in 2.1);

3. assemble Galerkin matrix B for the hyper-singular potential,
4. assemble mass matrix D;

5. arrange all the constructed matrices into the final preconditioner.

2.1 Construction of the barycentric refinement

We limit ourselves with 3-nodal triangular meshes.

The construction of the barycentric refinement is a simple geometrical
task: given some original mesh we create new nodes at the center of mass
of each element and at the centers of the edges of these elements. After-
wards using these new nodes original triangles are split into six new ones
(see figure 1).

@ - originalnode
@ - centerof the edge node

* - center of the element node

Figure 1: Scheme of the barycentric refinement

The advantage of the implemented barycentric refinement (in comparison
with the circumscribed constructions) is that it can be created for any mesh
and does not depend on the quality of the original elements.



The barycentric refinement is not a dual mesh. Dual mesh is a mesh with
polygonal elements, whose nodes are the centers of the original triangles.
(On the figure 2 an element of the barycentric refinement is depicted in blue
and an element of the dual mesh is depicted in pink.)

Figure 2: Barycentric refinement and dual mesh

The number of elements in the original triangular mesh equals the number
of nodes in the dual mesh, thus if we chose as b; — piecewise constant basis
functions and as ¢; — linear continuous basis functions the condition (1) will
be satisfied.

However BEM cannot work with polygonal elements. This is the reason
why we create the barycentric refinement and introduce embedding matrices
that relate these two meshes.

2.2 Embedding matrices

Since we have three different meshes — original, barycentric refinement
and dual — and we have different BE bases on these meshes we also need to
establish some correspondence between these meshes/bases. This is done via
embedding matrices.

The first embedding matrix — By — tells us how we want to combine the
linear basis functions of the barycentric refinement {v;}™, (where m is a
number of nodes in the barycentric refinement) to get linear basis functions
of the dual mesh {®;}" ;. This is our choice of basis for this particular
problem.

The matrix is sparse and has the following non zero entries:

e one entry Bff = 1 in the columns that correspond to the nodes of the
original mesh,



Figure 3: Linear continuous basis function of the dual mesh

e two entries Bflj = % in the columns that correspond to the nodes in the

centers of the edges of the original mesh,

e [ entries Bflj = % in the columns corresponding to the centers of mass
of the elements, where k is the number of triangles in the original mesh
that have a vertex at the given node.

% % + node at the center of the edge
Bl = i i i i < node at the center of the element
L + node of the original mesh

(11)
Thus in the case depicted on the figure 3 we have:

1 1 1 1
Sy =0a+ =(¥p, + B, + ¥B,) + —c + —Vp + —Vg, (12)
2 ko kp kg

where in this particular case kc = kp = 5 and kg > 6.

The second embedding matrix — B, — transforms piecewise constant basis
on the barycentric refinement {¢;}$", into the the piecewise constant basis
on the original mesh {¢;}" ;. Le. matrix B, € R"*" and has six entries
B¥% =1 in each column.



1 —
1 —
1 + rows with 'l" correspond to
B,=1 ... ... ... ... siz small triangles into which — (13)
... ... < the original element was cut
1 —
1 —

2.3 Galerkin matrix for the hyper-singular potential

Using the build-in BETL function we calculate the Galerkin matrix for
the hyper-singular potential Dy, on the barycentric refinement using linear
continuous functions {¢; }*,, where m is a number of nodes in the barycentric
refinement. However the desired B-matrix is the Galerkin matrix for the
hyper-singular potential on the dual mesh, evaluated using linear continuous
functions {®;} ;.

The obtained Dy, € R™ ™ hence we need to adjust this matrix to the
desired size — n x n. We do this using an embedding matrix B; € R™"*™, i.e.
the desired B has the following form

B = B,D;,B}. (14)

2.4 Mass matrix

The mass matrix D in our case should be the matrix of scalar products
between piecewise constant functions of the original mesh {¢;}7 , — this is
the basis on which we calculate the matrix V; for which we are building a
preconditioner, and between linear continuous functions on the dual mesh
{®;}"_,, which are combinations of {t;}, that are formed using the matrix
By.

Of course we could have calculated this matrix straightforwardly, but due
to the specifics of the BETL library it is easier to use another approach.



BETL allows to assemble mass matrix between any two bases on the same
mesh and due to specific construction of the matrix Dj,s we already have
in place linear continuous and piecewise constant bases on the barycentric
refinement, {1;}7, and {¢;}%", correspondingly. Thus for these two bases
we get a matrix M of the size m x 6n with M;; = fﬂ Yi-@;dS. And afterwards
we transform it into the desired matrix D using embedding matrices By and

B,.

M ( v, @i )
:l: Bd i Bv (15)
D ( q)i ) (bj )

L.e. the desired D has the following form
D = B,MB,. (16)

2.5 Assembling matrices

Finally gathering the formulae (10), (14), (16) for matrices D and B to-
gether we obtain the following formula for the preconditioner

Pt = (B4MB,) Y (B4Dy,BY)(B4M B,)™ " (17)

where

M € RS ™ _ is an auxiliary mass matrix between bases {y;}%", and

{wl ’1(217

By € RV {®;}7, — {¢;}*, — embedding matrix that specifies cor-
respondence between linear bases on the barycentric refinement and dual
mesh,

B, € R : {p}6" — {¢;}" |, — embedding matrix between elements of
the original mesh and the barycentric refinement,

Dys € R™™ — hyper-singular potential matrix on the barycentric refine-
ment.



2.6 Algorithmic concerns

2.6.1 Assembling matrices
Matrices Dy and M are assembled using existing BETL functions.

Embedding matrices By, B, are assembled using maps between elements
and nodes of the three existing meshes. These matrices are sparse, as is
the matrix M. This property is widely utilized to speed up the algorithm
and to decrease memory usage. A special matrix product module for sparse
matrices was implemented, allowing to perform matrix-matrix multiplication
just once during the construction of the preconditioner.

2.6.2 Matrix Inversion

BETL architecture does not require explicit matrix storage and all matrix
operations are carried out using a matrix-vector product routine (amuz) that
is implemented for all matrix-types.

That is why we did not explicitly compute inverse matrices using addi-
tional existing packages, but used an iterative solver to implement an amuz
method for an inverse matrix. I.e. for each given vector & our routine calcu-
lates y = A~ 'z using GMRes algorithm. Hence we have created an implicit
inverse matrix.

The termination criterion for the GMRes is:
e cither tolerance is less then the given one, i.e. € < 107%;
e or the maximum number of iterations is achieved N,,,, = 10, 000.

Using GMRes for matrix inversion proved to be very efficient in our case.
The matrix that we are inverting — the mass matrix — is a regular sparse
matrix. Moreover it is diagonally dominant, and thus Jacobi preconditioner
improves the convergence of the method. As a result in all the models, that
we have tested, the number of iterations needed for inversion was always
~ 10 —20. And since this approach proved to be so efficient for our matrices,
we decided to stay with it.

2.6.3 Problems with the matrix Dy,

The matrix Dpg is singular (it allows rigid body movement). Since the
preconditioner should be non-singular, we have to correct this matrix. This is
done via special gauger (already implemented in BETL). In short rankD;,s =
dimDys — k, where k — is a number of connected components in the mesh.
In order to make the rank of the matrix Dy full, we sequentially form k&



gauger vectors [2] and add k& matrices in the form v; - v7. Thus we make the
following substitution:

k
Dys — Dy + Z ( U;f (18)

i=1
Finally we get a preconditioner that is symmetric (by construction), non-
singular and positive-definite.

But assembling of the Dj matrix is still the bottleneck of the calculation.
Since m = 3n, for reasonable original mesh sizes n ~ 300.000 the size of
the D, matrix becomes m =~ 900.000. Even with accelerators that are
implemented in BETL this part of the code takes most of the time.

3. RESULTS

Originally the following system of equations is solved:

Vslw =b. (19)

After implementing the preconditioner the system changes to:

P Wz =b=P'b. (20)

Our preconditioner should increase the convergence speed, i.e the number
of iterations in iterative methods should significantly decrease. Moreover this
number should stabilize and remain unchanged after reaching some mesh size.
In order to check this we performed simulations for several basic geometries:
a sphere, a hollow cylinder, 3D L-shape and an h-beam (see figure 4).

You XY

a) sphere ) hollow cylinder ) 3D L-shape ) H-beam

Figure 4: Test geometry



Since we are not interested in physical meaning of the problem that we
solve, we just let b be a vector of all ones, i.e. we are solving the following

system of equations:
1

1

Vaz = I (21)
1
1

And we solve this system with two methods — conjugate gradient and
GMRes. For both methods we use the same termination criterion as we did
in matrix inversion, i.e.

e cither tolerance is less then the given one, i.e. € < 107%;

e or the maximum number of iterations is achieved N,,,, = 10, 000.

The results are presented in the tables 1-4 and in the figure 5.

# of elements | GMRes w/o PC | GMRes with PC | CG w/o PC | CG with PC
128 28 9 30 10
512 39 10 44 11
2048 o1 10 58 11
8192 65 10 80 11
32768 80 10 106 11
131072 100 10 142 11
524288 125 10 191 11

Table 1: Results for the sphere

# of elements | GMRes w/o PC | GMRes with PC | CG w/o PC | CG with PC
1144 58 15 73 24
4576 76 15 99 22
18304 100 14 140 21
73216 127 13 189 19

292864 165 14 263 20

Table 2: Results for the cylinder

10



# of elements

GMRes w/o PC

GMRes with PC

CG w/o PC

CG with PC

662
2648
10592
42368
169472
677888

51
86
146
239
602
951

24
30
36
44
64
73

60
115
238
474
1422
2650

32
39
48
58
145
149

Table 3: Results for the L-shape

# of elements

GMRes w/o PC

GMRes with PC

CG w/o PC

CG with PC

3376
13504
54016

216064
864256

72
117
193
384
498

52
62
75
86
115

95
178
352
885

3218

67
80
97
118
132

Table 4: Results for the H-beam

Sphere Hollow cylinder
250 300
—+—GMRes w/o preconditioner —+—GMRes w/o preconditioner
=fli=GMRes with preconditioner =il GMRes with pri i /i
250 H
200 [ =#=CG w/o pr =tr=CG w/o pre ne
- =G with preconditioner - = CG with preconditioner
E= E=4
.0 'O 200
E 150 E
£ £ Pt
= = 150
5 1
200 2
§ § 100
E z /
50
/ so
o o
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000
Number of elements Number of elements
3D L-shape H-beam
3000 3500
—+—GMRes w/o preconditioner —+—GMRes w/o preconditioner
~8=GMRes with preconditioner H with pr f
2500 L ia 3000
=G wfo preconditioner =G wfo preconditioner
- =G with preconditioner 2500 || ==CGwith preconditioner
c c
.D 2000 .D /
o @ 2000
x x
= 1500 =
5 5
] & 1500
a a
E 1000 E
z / / 2 1000
500 /‘
_¥r‘{/ *
o o =
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000

Number of elements

Number of elements

Figure 5: Test results

11




We can clearly see that for a sphere and for a cylinder the number of itera-
tions for the case with preconditioner stabilizes almost immediatly and stays
constant, when we increase the size of the mesh. For the other two geome-
tries we don’t see definite stabilization (judging from the plots we can safely
assume that they will, however the computational resources are not available
to make these tests). But the number of iterations with preconditioner is
drastically small compared with the case with no preconditioner.

REMARK. Of course we controlled that the solutions in both cases are
identical (up to a given precision).

Thus our preconditioner significantly speeds up the solution of the system.

To make sure that our preconditioner does not somehow ’spoils’ the solu-
tion, we ran one test on the realistic physical model. The model consists of
six electrodes in a casing. One of the electrodes has non-zero potential, i.e.
V' =1, the rest of the structure has free boundary (see figure 6). And we are
interested in the distribution of the charge density.

(a) Mesh (b) BC: Potential

Figure 6: Test model ”six electrodes”

Solutions of the problem with and without preconditioner are represented
on the figure 7.

12



E8.4714 E8.1875

£20 i20

o I

E-2O E-ZO

-28.0287 -28.0292
(a) Without preconditioner (b) With preconditioner

Figure 7: Test model ”six electrodes”: charge density distribution

The results correspond well: the qualitative pictures are identical, the
difference in values is of the order ~ le — 6.

But this is a rather specific model:
e the mesh is very uneven (with A4/ Amin =~ 1000);
e it has several separate components.

Thus the original number of iterations using CG method is very high. But
with preconditioner it decreased enormously for both methods (see table 5).

And thus the calculation time also decreased, making the total time of
creating the preconditioner and solving the preconditioned system less than
the time of solving the system straightforwardly (see table 6). The difference
in time is not so considerable, if we only make one calculation, i.e. have only
one load-case. However if we would want to calculate several load-cases for
one model, using a preconditioner would have been much more advantageous.

# of elements | GMRes w/o PC | GMRes with PC | CG w/o PC | CG with PC
50648 2708 63 9719 47

Table 5: Test model ”six electrodes”: number of iterations

# of elements | GMRes w/o PC | GMRes with PC | CG w/o PC | CG with PC
50648 1651 1591 2633 1631

Table 6: Test model ”six electrodes”: calculation time (in seconds)

13



APPENDIX: Description of C++ files

File: dual_mesh.hpp

Implements a new class DualMesh, which is inherited from the BETL
Mesh class.

It is used to create a barycentric refinement of a given mesh.

Has no methods. The creation of the barycentric refinement is done in
the class constructor:

DualMesh ( const PARENT_MESH_T& parent_mesh )

Given a mesh in the BETL mesh format the constructor uses internal
methods to create all the necessary geometrical entities and to make a barycen-
tric refinement in the same format, i.e. in the ordinary BETL mesh-format.

File: dual_preconditioner.hpp
Implements a new class DualPreconditioner.
It is used to assemble a preconditioner for a given mesh.

The class constructor has two arguments: original mesh and dofhandler
of the piecewise constant basis functions on the original mesh.

DualPreconditioner( const parent_mesh_t& parent_mesh,
const dh_parent_const_t& v_orig).

Using these input variables the class creates all the necessary matrices and
assembles them.

The class has an operator ():
template <class T> void operator () (T* x) const.

For any given vector x it returns a vector P~!x, i.e. implements multipli-
cation by the matrix P~

And as preconditioner can be considered as a particular matrix type, it
supports the standard BETL matrix functions, i.e.

e template <class T>
void amux ( Tx x, T* y, T alpha, T beta, char op) const

Calculates standard BETL matrix-vector product:

P~ amuz(z,y,a, 8, N) = a(P~) "z + By,

14



where N indicates, whether we want to use a transpose matrix;
e size_t GiveCols( ) const

returns number of columns in P~!;
e size_t GiveRows( ) const

returns number of rows in P~1;

File: dual_gauger.hpp

Implements a new class HyperMatrixGauger, which is inherited from the
BETL LaplaceGauger class.

It is used to perform the correction of the D), matrix (see §2.6.3).
It supports the standard BETL matrix functions, i.e.

e template <class T>
void amux ( T* x, T* y, T alpha, T beta, char op) const

e size_t GiveCols( ) const

e size_t GiveRows( ) const

File: inverse_matrix.hpp

Implements a new class InverseMatriz WithPreconditioner. This class in-
verts a given matrix, using a given preconditioner.

It is used to invert a matrix by means of the GMRes algorithm (see §2.6.2).
The class constructor has the following structure.

InverseMatrixWithPreconditioner (const MATRIX_T& A,
const PRECONDITIONER_T* P,
int GMRes_max_iter,
double GMRes_tolerance)

Since the result of the inversion is again a matrix, it supports the standard
BETL matrix functions, i.e.

e template <class T>
void amux ( Tx x, T* y, T alpha, T beta, char op) const

e size_t GiveCols( ) const

e size_t GiveRows( ) const

15



The file also includes class specializations for the existing Jacobi precon-
ditioner and for the case, when no preconditioner is used.

References

[1] R.Hiptmair, Operator Preconditioning. Computers and mathematics with
Applications 52 (2006) 699-706.

[2] L.Kielhorn, BETL Documentation. SAM - Seminar for Applied Mathe-
matics, ETH Zurich.

16



