
Master Thesis

Calderon Preconditioning for Higher Order
Boundary Element Method

Yulia Smirnova

11.07.2013

Contents

Introduction 2

1 Introduction 2

2 Hierarchical Preconditioner for Scalar Bases 3
2.1 General Hierarchical Preconditioner Formula 3
2.2 Hierarchical Splitting in Case of Nodal Basis Functions 4
2.3 Hierarchical Preconditioner Formula for Bases of Nodal Basis

Functions . 5
2.4 Implementation . 7

2.4.1 Projection Matrix Pc . 7
2.4.2 Matrix T Local . 7
2.4.3 Inverse Block Diagonal Submatrix 8
2.4.4 Assembling matrices . 9

2.5 Results . 9
2.5.1 Validation Model . 9
2.5.2 Test Models: Constant Basis 10
2.5.3 Test Models: Linear Basis 13
2.5.4 Test Models: Quadratic Basis 16
2.5.5 Industrial Application . 19

3 Hierarchical Vector Bases 22
3.1 Quadratic Vector Functions . 22

3.1.1 Definitions . 22
3.1.2 Quadratic Vector Functions on the Reference Triangle . . 23
3.1.3 Quadratic Vector Functions on an Arbitrary Triangle . . 25
3.1.4 curlΓ and divΓ of the Quadratic Vector Functions 25

3.2 Maxwell Matrix for Quadratic Basis 27
3.3 Local Interpolation Routines 28

3.3.1 Edge functions . 29
3.3.2 Face functions . 29
3.3.3 Final Interpolation Scheme for Triangles 30

1

3.4 Interpolation Errors for R0 and R1 Spaces 30

4 Edge Calderon Preconditioner 32
4.1 Preconditioner Formula . 32
4.2 Additional Matrices . 33

4.2.1 Embedding matrix P . 33
4.2.2 Embedding matrix R . 35
4.2.3 Gram matrix . 36

4.3 Results . 37
4.3.1 Validation Model . 37
4.3.2 Test Models: Linear Vector Basis 38
4.3.3 Complicated Geometry 39
4.3.4 Low Frequency Test . 41

5 Hierarchichal Edge Preconditioner 43
5.1 Preconditioner Formula . 43
5.2 Additional Matrices . 43

5.2.1 Block Diagonal Preconditioner 43
5.2.2 Projection Matrix Pc . 45

5.3 Results . 45
5.3.1 Validation Model . 45
5.3.2 Test Models . 46
5.3.3 Complicated Geometry 47

6 Conclusions 48
6.1 Quadratic Vector Basis . 48
6.2 Preconditioners . 48

6.2.1 Scalar Hierarchical Preconditioner 48
6.2.2 Dual Vector Preconditioner 48
6.2.3 Vector Hierarchical Preconditioner 48

6.3 Algorithmic Concerns . 49
6.3.1 Inverse Block Diagonal Preconditioner 49

6.4 Matrix Inversion . 49
6.5 Additive Subspace Correction 49
6.6 Time for BEM Matrices Evaluation 50

A Description of C++ files 51
A.1 Dual Mesh . 51

A.1.1 File: dual mesh.hpp . 51
A.2 Dual Scalar Preconditioner . 51

A.2.1 File: preconditioner.hpp 51
A.2.2 File: gauger.hpp . 52

A.3 Hierarchical Scalar Preconditioner 52
A.3.1 File: preconditioner.hpp 52

2

A.3.2 Files: T local functor.hpp and T local functor.cpp 53
A.3.3 File: hierarchical basis.hpp 53
A.3.4 File: low frequency extractor.hpp 54
A.3.5 File: inverse block diagonal.hpp 54

A.4 Dual Vector Preconditioner . 55
A.4.1 File: preconditioner.hpp 55
A.4.2 File: coupling matrix.hpp 56
A.4.3 File: averaging matrix.hpp 56

A.5 Hierarchical Vector Preconditioner 57
A.5.1 File: preconditioner.hpp 57
A.5.2 File: low frequency extractor.hpp 57
A.5.3 File: inverse block diagonal.hpp 58

A.6 Other Files . 58
A.6.1 File: inverse matrix.hpp 58
A.6.2 File: preconditioner from matrix.hpp 59
A.6.3 File: chain preconditioner.hpp 59

Bibliography 60

3

1 Introduction

Previously a dual Calderon preconditioner based on [3] was created in
BETL library [4] for scalar constant discontinuous basis.

Now we want to broaden the application of the dual meshes and dual
preconditioners by first creating a hierarchical scalar preconditioner based on
the existing dual Calderon preconditioner (Sec.2). The hierarchical structure
allows effective work with BEM matrices evaluated on higher order bases.

Secondly a similar dual Calderon preconditioner for lowest order vector
functions based on [1] was implemented in Sec.4.

And finally by analogy we constructed a similar hierarchical preconditioner
for the vector case (Sec.5). To this end a higher order vector basis was created
and tested (Sec.3).

Throughout this work we limit ourselves with 3-nodal triangular meshes.
The similar structures can be created for quadrilaterals as well as for curved
geometries.

4

2 Hierarchical Preconditioner for Scalar Bases

2.1 General Hierarchical Preconditioner Formula

Consider a variational problem defined on the Hilbert space H written in
the abstract form:

find u ∈ H such that a(u, v) = (f, v) ∀v ∈ H, (2.1.1)

where a(·, ·) is a continuous bilinear form on H and f ∈ H .

Introducing a conformal boundary element discretization Hh ⊂ H and a
piecewise polynomial basis of Hh, the discrete variational problem becomes:

find uh ∈ Hh such that a(uh, vh) = (f, vh) ∀vh ∈ Hh. (2.1.2)

Index h stands for the discrete spaces and matrices.

After choosing a basis {φi}Ni=0 in Hh we obtain from (2.1.2) a system of
linear equations given by

Ahuh = bh (2.1.3)

where uh is the vector of unknowns and bh is the right hand side vector.

Imagine that Hh is a space of polynomials of degree k ≥ 1. Then Hh can
be decomposed into a constant part Hc and a complementary part Hs, which
is of the order k, i.e :

Hh = Hc ⊕Hs,
∀uh ∈ Hh uh = uc + us, where uc ∈ Hc and us ∈ Hs.

(2.1.4)

This space-splitting induces us to choose a special basis of Hh, which
constitutes a union of the basis functions of Hc – {ψci}Nc

i=0 and the basis
functions of Hs – {ψsi }Ns

i=0:

{φ̂i}Ni=0 = {ψci}Nc
i=0 ∪ {ψsi }

Ns
i=0. (2.1.5)

In this new basis {φ̂i}Ni=0 the original system matrix Ah of (2.1.3) acquires
a 2× 2 block structure: (

Acc Acs
Asc Ass

)(
uc
us

)
=

(
bc
bs

)
(2.1.6)

In case of boundary elements discretization, when A(·, ·) is the single layer
potential, all problems hide in the constant part, thus the matrix Acc needs

5

special preconditioning. Whereas for the surplus part Ass a simple (Jacobi-
like) preconditioner would be sufficient. The idea is inspired by a similar
approach to linear systems arising from finite element discretization: the
lowest order part requires a special preconditioner, the higher order parts
allow local treatment. And this approach results in the concept of a block
preconditioner, which we suggest constructing in the following way:

P−1 =

(
P−1
cc 0
0 J−1

ss

)
, (2.1.7)

where P−1
cc is a special preconditioner for the constant part and J−1

ss is a
Jacobi-like preconditioner for the surplus part.

The splitting (2.1.4) into constant and correction parts is a particular case.
The approach is more general and similar constructions could be implemented
for any arbitrary splitting Hh = H1 ⊕H2.

2.2 Hierarchical Splitting in Case of Nodal Basis Functions

In the scalar case the space H = H1/2(Γ) and Hh is the space spanned by
piecewise polynomial discontinuous functions of order k denoted as Sk. The
basis functions of Sk in BETL are the standard interpolatory nodal basis
functions. Such bases do not form a hierarchical sequence, i.e. {φki }

Nk
i=0 6⊂

{φk+1
i }

Nk+1

i=0 , where {φki }
Nk
i=0 are the nodal basis functions of Sk.

In case of hierarchical bases the splitting of the system matrix Ah into
block structure (2.1.6) could be simply accomplished via reordering of the
functions. Whereas in the case of nodal basis functions a special pre-treatment
of the basis is needed to fulfill the splitting (2.1.4). And to this end we create
a special matrix T.

Let’s consider one triangle. Denote the basis functions corresponding to
this triangle by {ϕloci}ni=0 ⊂ Hh. We want to switch to the new basis functions
{ϕ̂loci}ni=0 ⊂ Hh, such that ϕ̂loc0 = 1. This is a simple linear transformation
Tloc:

Tloc : {ϕ̂loci}ni=0 → {ϕloci}ni=0

ϕ̂loci = T Tlocϕloci for i = 1, 2, ..., n.
(2.2.1)

On the Fig.1 an example of the matrix Tloc for 1D hat functions is pre-
sented.

6

Figure 1: Tloc matrix in 1D case

We can preform this transformation on every triangle. In the case of
discontinuous basis of Hh basis functions only exist on one triangle and thus
they split up into independent groups of n functions. Hence we can apply
Tloc transformation independently on each triangle of the mesh, and thus the
global T matrix would be a block diagonal matrix with Tloc blocks on the
diagonal:

T =

Tloc . . .
Tloc

 . (2.2.2)

Then any bilinear form A(·, ·) will change in the following way

A := (A(ϕi, ϕj))
N
i,j=1 → Â := (A(ϕ̂i, ϕ̂j))

N
i,j=1 = T TAT (2.2.3)

After this transformation the matrix Â obtains the desired block structure
(2.1.6).

2.3 Hierarchical Preconditioner Formula for Bases of Nodal Basis
Functions

Now let’s return to our system (2.1.3): Ahuh = bh.

The matrix T (2.2.2) is a linear transformation and our system matrix A
would change following the bilinear form transformation formula, i.e.

AH = T TAT ⇒ V = T−TVHT
−1, (2.3.1)

7

where index H stands for ’hierarchical’ and matrix AH has a 2× 2 block
structure (2.1.6):

AH =

(
Acc Acs
Asc Ass

)
(2.3.2)

Thus we can rewrite (2.1.3) as

T−TAHT
−1x = b (2.3.3)

or in preconditioned form

P−1T−TAHT
−1x = b∗ = P−1b (2.3.4)

Let’s choose the preconditioner in the following way

P−1 = TP−1
H T T = T

(
P−1
cc 0
0 J−1

ss

)
T T (2.3.5)

so that with the change of basis it changes almost like A, i.e. as a bilinear
form.

Then the final formula for the system is

TP−1
H T TT−TAHT

−1x = TP−1
H AHT

−1x = b∗ (2.3.6)

We can see that our choice of preconditioner (2.3.5) leads to a reasonable
system (2.3.6). Going from right to left we see that

· first matrix T−1 transforms x to the hierarchical basis,
· then the system with the matrix and preconditioner both in the hierar-

chical block form – AH and P−1
H – is solved,

· and finally matrix T transforms our solution back from the hierarchical
basis to the original.

If the system matrix Ah and the preconditioner for the lowest order part
P−1
cc are symmetric, then the preconditioner (2.3.5) is also symmetric by

construction. Moreover it does not depend on the choice of the basis functions
in non-constant part of the hierarchical basis, i.e. the choice of the remaining
(n− 1) rows of the matrix T .

The lowest order preconditioner matrix P−1
cc is never computed, but real-

ized using the BETL preconditioner routine.

8

2.4 Implementation

The final strategy of the construction of the preconditioner is the following:

1. calculate Tloc matrices for the given basis of Hh;

2. create the global T matrix from the identical local blocks Tloc;

3. create a routine that will extract lowest order (constant) basis functions;

4. create inverse block diagonal preconditioner for the surplus part;

5. assemble all these matrices into one preconditioner structure.

2.4.1 Projection Matrix Pc

The purpose of this matrix is to expand the lowest order preconditioner
matrix Bcc, which has the size n = dimHc to the size of the original matrix
that we precondition, i.e to N = dimHh by adding zero rows and columns.
Thus Pc is a n×N sparse matrix, that has the following structure:

(Pc)ij =

{
1 if j’s dof in Hh corresponds to i’s dof in Hc

0 otherwise.
(2.4.1)

2.4.2 Matrix T Local

As described above the matrix Tloc maps hat basis functions of the given
order into hierarchical basis (2.2.1). Below this matrix is given for two cases:
linear and quadratic hat functions on the reference triangle:

T̂ := {(x̂1, x̂2) : 0 < x̂2 < x̂1 < 1} . (2.4.2)

On this triangle in linear scalar case we have the following basis functions

ϕ0 = λ0 = 1 − x̂1 ,
ϕ1 = λ1 = x̂1 − x̂2 ,
ϕ2 = λ2 = x̂2 ,

(2.4.3)

where λi, i = 0, 1, 2 – are the barycentric coordinates on the triangle.

Thus we get that
1 = ϕ0 + ϕ1 + ϕ2. (2.4.4)

And hence the matrix T has the following structure:

T =

1 1 0
1 −1 1
1 0 −1

 . (2.4.5)

9

In quadratic case the original basis functions used in BETL are

ϕ0 = λ0(2λ0 − 1) = 1− 3x̂1 + 2x̂2
1,

ϕ1 = λ1(2λ1 − 1) = −x̂1 + 2x̂2
1 + x̂2 − 4x̂1x̂2 + 2x̂2

2,
ϕ2 = λ2(2λ2 − 1) = −x̂2 + 2x̂2

2,
ϕ3 = 4λ0λ1 = 4x̂1 − 4x̂2

1 − 4x̂2 + 4x̂1x̂2,
ϕ4 = 4λ1λ2 = 4x̂1x̂2 − 4x̂2

2,
ϕ5 = 4λ2λ0 = 4x̂2 − 4x̂1x̂2.

(2.4.6)

We still have that

1 =
5∑
i=0

ϕi, (2.4.7)

and thus we choose the following T :

T =


1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 −1 −1
1 0 0 0 0 1

 . (2.4.8)

For each new basis Hh the matrix Tloc should be evaluated manually.

2.4.3 Inverse Block Diagonal Submatrix

The block diagonal preconditioner is built in the following way:

· from the matrix A, that we precondition, extract Dss,loc – n×n diagonal
blocks corresponding to each element, where n is the number of basis
functions on a triangle;

· evaluate the product TlocDss,locT
T
loc := D̂ss,loc for each element;

· invert the lower right (n− 1)× (n− 1) subblock of D̂ss,loc using Lapack

routine and zero out the remaining entries, thus creating D̂−1
ss,loc;

· construct the global matrix D−1
ss from D̂−1

ss,loc, placing them back on the
diagonal.

D̂ss,loc =

(
∗ ∗
∗ Dsub

)
→ D̂−1

ss,loc =

(
0 0
0 D−1

sub

)
(2.4.9)

Extracting the blocks Dss,loc from the original A matrix is very expensive,
that’s why a simple recalculation of the diagonal blocks was implemented.

10

Moreover the Lapack inversion is only carried out once at the construction
step. Altogether D−1

ss is a BETL-sparse matrix.

2.4.4 Assembling matrices

Finally the preconditioner is constructed using the following formula:

P−1 = T (Pc
TBccPc +D−1

ss)T T (2.4.10)

where

Bcc – is the lowest order preconditioner;

T – is the matrix that divides local basis functions into constant and
non-constant parts;

Pc – extracts the constant part of the basis;

D−1
ss – is inverse block diagonal preconditioner for the remaining part.

From this formula one can clearly see, that the choice of the basis functions
in Hs = Hh \Hc does not matter. Since D−1

ss,loc = (TlocDsslocT
T
loc)
−1, and thus

for the second summand in (2.4.10) we have just D−1
ss,loc, matrix T cancels

out.

2.5 Results

2.5.1 Validation Model

We are testing our preconditioner on the first kind boundary integral equa-
tion arising from a Dirichlet problem for the Laplace operator:

VhuN =

(
1

2
Mh +Kh

)
uD (2.5.1)

Vh – is the Galerkin matrix of the Laplace single layer potential evaluated
on discontinuous scalar functions of order k,

Kh – is the Galerkin matrix of the Laplace double layer potential matrix
evaluated on discontinuous scalar function of order k and continuous scalar
function of order k + 1,

Mh – is the mass matrix between discontinuous scalar function of order k
and continuous scalar function of order k + 1.

Knowing uD we solve (2.5.1) and then compare the solution against uN to
validate it.

11

First we perform these tests on simple geometries: sphere, cylinder, cube
and Fichera corner.

(a) sphere (b) cylinder (c) cube (d) Fichera corner

Figure 2: Test geometry

As a preconditioner for the constant part two existing preconditioners
are used: Dual Calderon [3] and ABPX [8]. We make tests for linear and
quadratic scalar bases, i.e. for k = 1, 2 using default BETL ACA settings.
Resulting numbers of iterations are presented in Sec.2.5.2, 2.5.3 and 2.5.4.

2.5.2 Test Models: Constant Basis

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

128 25 24 10 25 24 10
512 34 28 10 34 28 10
2048 43 32 10 43 32 10
8192 53 36 10 53 36 10
32768 66 40 11 66 40 11

Table 1: constant basis for Vh, sphere

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

254 38 25 13 38 25 13
1016 53 31 15 53 31 15
4064 85 35 18 85 35 18
16256 149 42 20 149 42 20

Table 2: constant basis for Vh, cylinder

12

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

384 16 23 7 16 23 7
1536 26 28 8 26 28 8
6144 33 31 8 33 31 8
24576 41 35 8 41 35 8

Table 3: constant basis for Vh, cube

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

144 45 29 13 45 29 13
576 62 36 14 62 36 14
2304 80 42 15 80 42 15
9216 100 52 16 100 52 16
36864 124 53 17 124 53 17

Table 4: constant basis for Vh, Fichera corner

102 103 104

10

20

30

40

50

60

70

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 3: constant basis for Vh, sphere

13

103 104
0

20

40

60

80

100

120

140

160

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 4: constant basis for Vh, cylinder

103 104

5

10

15

20

25

30

35

40

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 5: constant basis for Vh, cube

14

102 103 104

20

40

60

80

100

120

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 6: constant basis for Vh, Fichera corner

2.5.3 Test Models: Linear Basis

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

384 49 56 22 59 61 23
1536 62 64 23 78 70 25
6144 77 71 23 104 77 26
24576 97 80 23 144 85 26
98304 130 84 24 205 89 28

Table 5: linear basis for Vh, sphere

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

762 73 63 28 96 69 30
3048 102 73 32 146 79 36
12192 182 84 37 306 91 41
48768 388 115 46 778 121 62

Table 6: linear basis for Vh, cylinder

15

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

1152 42 60 20 46 62 19
4608 52 72 21 65 74 22
18432 69 81 21 89 81 22
73728 91 86 20 131 85 22

Table 7: linear basis for Vh, cube

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

432 86 76 41 123 82 41
1728 113 93 63 168 103 72
6912 144 102 68 230 111 78
27648 184 121 81 313 132 93
110592 242 123 90 453 133 99

Table 8: linear basis for Vh, Fichera corner

103 104 105

50

100

150

200

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 7: linear basis for Vh, sphere

16

103 104

0

100

200

300

400

500

600

700

800

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 8: linear basis for Vh, cylinder

103 104 105

20

40

60

80

100

120

140

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 9: linear basis for Vh, cube

17

103 104 105
0

100

200

300

400

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 10: linear basis for Vh, Fichera corner

2.5.4 Test Models: Quadratic Basis

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

768 99 70 33 143 73 33
3072 129 80 35 195 85 37
12288 161 88 36 259 92 38
49152 196 97 36 345 100 40
196608 243 107 36 470 109 40

Table 9: quadratic basis for Vh, sphere

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

1524 149 78 42 234 82 42
6096 198 90 47 346 94 51
24384 350 103 56 769 106 63
97536 418 112 62 1278 121 73

Table 10: quadratic basis for Vh, cylinder

18

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

2304 80 75 30 108 74 29
9216 106 89 33 150 87 34
36864 142 98 33 220 95 35
147456 168 103 32 291 99 33

Table 11: quadratic basis for Vh, cube

of DOFs GMRes GMRes GMRes CG CG CG
w/o PC ABPX PC DUAL PC w/o PC ABPX PC DUAL PC

864 159 94 44 288 97 44
3456 229 116 45 412 122 49
13824 287 129 46 555 134 51
55296 398 150 48 829 157 55

Table 12: quadratic basis for Vh, Fichera corner

103 104 105
0

100

200

300

400

500

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 11: quadratic basis for Vh, sphere

19

104 105

0

200

400

600

800

1,000

1,200

1,400

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 12: quadratic basis for Vh, cylinder

104 105

50

100

150

200

250

300

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 13: quadratic basis for Vh, cube

20

103 104

0

200

400

600

800

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

CG with DUAL preconditioner

CG with ABPX preconditioner

CG without preconditioner

GMRes with DUAL preconditioner

GMRes with ABPX preconditioner

GMRes without preconditioner

Figure 14: quadratic basis for Vh, Fichera corner

2.5.5 Industrial Application

The tests above validate our preconditioner. However it is interesting to
evaluate the performance on a more sophisticated problem to make sure that
our preconditioner does not somehow ’spoil’ the solution.

To this end we choose a model that consists of six electrodes in a casing.
One of the electrodes has non-zero potential, i.e. V = 1050, the rest of
the structure has free boundary (see Fig.15). And we are interested in the
distribution of the charge density.

We thus solve the following equation with the constant Dirichlet data:

V u = MuD in Ω,
uD = g on ∂Ω,

g =

{
1050 on one electrode,
0 elsewhere.

(2.5.2)

For this model we only use dual Calderon preconditioner for the lowest
order part.

Solution of the problem is represented on the Fig.16.

21

(a) Mesh (b) BC: Potential

Figure 15: Test model ”six electrodes”

Figure 16: Test model ”six electrodes”: charge density distribution

Results with and without preconditioner correspond well: the qualitative
pictures are identical, the difference in values is of the order ≈ 1e− 6.

Basis # of DOFs GMRes GMRes CG CG
w/o PC DUAL PC w/o PC DUAL PC

CONSTANT 50648 750 26 750 26
LINEAR 151944 976 47 >10000 160

QUADRATIC 303888 1620 54 >10000 165

Table 13: Test model ”six electrodes”: number of iterations

22

But this is a rather specific model: the mesh is very non-uniform (with
Amax/Amin ≈ 1000). This results in high conditional numbers of the sys-
tem matrix, which is especially crucial for CG. We observe extremely high
iteration numbers for pure CG. This makes the necessity of the precondi-
tioner very obvious. And we can see that the preconditioned CG results in a
moderate number of iterations as does also the preconditioned GMRes (see
table 13). Partly it is because our hierarchical preconditioner is based on a
Jacobi-like preconditioner, that balances the mesh size.

The overall calculation time for CG also decreased, making the total time
of creating the preconditioner and solving the preconditioned system less
than the time of solving the system straightforwardly (see table 14).

In case of GMRes time for solving the system without preconditioner is
less than that with preconditioner. But the assembly of the preconditioner
can be accelerated in OpenMP. Moreover if we make several calculation, i.e.
have several load-cases for one model, using a preconditioner would be much
more advantageous.

Basis # of DOFs GMRes GMRes CG CG Assembling
w/o PC DUAL PC w/o PC DUAL PC of PC

CONSTANT 50648 291 253 292 254 1342
LINEAR 151944 1382 542 >104 1474 1384

QUADRATIC 303888 5975 657 >104 1950 1504

Table 14: Test model ”six electrodes”: calculation time (in seconds)

−20 0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

No of iteration step

E
u
c
l
id
e
a
n
n
o
r
m

o
f
t
h
e
r
e
si
d
u
a
l

CG with DUAL preconditioner

GMRes with DUAL preconditioner

CG without preconditioner

GMRes without preconditioner

Figure 17: Test model ”six electrodes”: residuals for linear basis for Vh

23

3 Hierarchical Vector Bases

3.1 Quadratic Vector Functions

3.1.1 Definitions

On the reference triangle the H(curlΓ)- and H(divΓ)-conforming spaces
are defined in the following way:

Rk = (Pk−1)2 ⊕ Sk, Sk = {p ∈ (P̃k)
2 : x · p = 0}

Dk = (Pk−1)2 ⊕ (P̃k−1 · x)
(3.1.1)

where P̃k – are monomials of the order k. These spaces can be converted into
each other by a 90 degree rotation of the vector fields.

With this definition we get that curl and div of the functions in Rk and
Dk correspondingly are polynomials of the order (k − 1):

curl : Rk → (Pk−1)2

div : Dk → Pk−1
(3.1.2)

In this paper we only work with flat triangles. On such elements both Rk

and Dk have 3(k + 1) edge functions and 2k face functions.

Thus the lowest (zero’s) order H(curl)-conforming functions on a triangle
are all only edge functions. In FEM case they are defined in [7] as:

e−12 = λ2gradλ1 − λ1gradλ2

e−23 = λ3gradλ2 − λ2gradλ3

e−31 = λ1gradλ3 − λ3gradλ1

(3.1.3)

where λi for i = 1, 2, 3 are barycentric coordinates on a triangle.

We base our BEM functions for H(curlΓ)-conforming basis on (3.1.3), only
instead of the ordinary gradient grad we use surface gradient gradΓ:

e−12 = λ2gradΓλ1 − λ1gradΓλ2

e−23 = λ3gradΓλ2 − λ2gradΓλ3

e−31 = λ1gradΓλ3 − λ3gradΓλ1

(3.1.4)

where λi for i = 1, 2, 3 are barycentric coordinates on a triangle.

REMARK: in the case of triangular mesh we work not only on a given triangle, but also on

the reference triangle. Thus we introduce notations: for any entity a we denote by plain a the

value on a given triangle of the mesh and by â on the reference triangle.

The lowest order H(divΓ)-conforming functions on a triangle can be ob-
tained from H(curlΓ) functions by simply rotating the latter, i.e.

e−ij div = e−ij curl × n, i = 1, 2, 3, (3.1.5)

24

where n is the outer normal vector.

The div-functions can also be rewritten in a more easily geometrically
interpreted way:

e−ij =
x− xk

2A
i, j, k = 1, 2, 3, (3.1.6)

where xi, i = 1, 2, 3 – are the vertices of the triangle and A – is its area.

These linear functions have already been incorporated into BETL. We
intend to implement the next spaces – the first order H(curlΓ)- and H(divΓ)-
conforming functions.

The functions of R1 consist of the functions of R0 (3.1.4), which are sup-
plemented with 3 more edge functions:

e+
12 = λ2gradΓλ1 + λ1gradΓλ2

e+
23 = λ3gradΓλ2 + λ2gradΓλ3

e+
31 = λ1gradΓλ3 + λ3gradΓλ1

(3.1.7)

and 2 face functions:
f1 = λ2e

−
31

f2 = λ3e
−
12

(3.1.8)

As in the zero’s order case, the corresponding D1 functions can be obtained
from R1 functions by simple rotation, i.e. by cross-product with the normal
vector.

3.1.2 Quadratic Vector Functions on the Reference Triangle

As in scalar case we first want to evaluate our basis functions on the
reference triangle

T̂ := {(x̂1, x̂2) : 0 < x̂2 < x̂1 < 1} . (3.1.9)

For this purpose we need to make some definitions.

The mapping from T̂ to an arbitrary triangle T is given by:

x(x̂) =
3∑
i=1

xiφi(x̂) , x̂ ∈ R2, x ∈ R3, (3.1.10)

where φi(x̂) – are interpolatory nodal basis functions on T̂ and xi – are the
vertices of the triangle T , i = 1, 2, 3.

Then if we define tangent vectors as

ti :=
∂x

∂x̂i
, (3.1.11)

25

we can write the Jacobi matrix of this mapping as

J :=
[
t1 t2

]
(3.1.12)

Subsequently we introduce the Gramian matrix and its determinant:

G := JTJ, g = det(G). (3.1.13)

Finally for Dirichlet trace we have the following transformation rule:

γDu(x) = n× (u(x)× n) = JG−1û(x̂) , (3.1.14)

where û(x̂) := J>u(x) = J>γDu(x) is the trace of the function u(x) on
the reference triangle, x ∈ R3 and x̂ ∈ R2.

Now in order to calculate the values of the quadratic vector functions, we
need to evaluate gradΓλi. For the surface gradient of any scalar function ϕ
we get

gradΓϕ := γDgradϕ = JG−1 ĝradϕ, (3.1.15)

where ĝradϕ is the ordinary 2D gradient on the reference triangle:

ĝradϕ :=

[
∂ϕ/∂x̂1

∂ϕ/∂x̂2

]
(3.1.16)

With λ1

λ2

λ3

 =

 1− x̂1

x̂1 − x̂2

x̂2

 (3.1.17)

the gradients ĝradλi are

ĝradλ1 =

[
−1
0

]
, ĝradλ2 =

[
1
−1

]
, ĝradλ3 =

[
0
1

]
. (3.1.18)

Hence, the local edge- and face-functions are

ê−12 =

[
λ1 + λ2

−λ1

]
, ê−23 =

[
−λ3

λ2 + λ3

]
, ê−31 =

[
−λ3

−λ1

]

ê+
12 =

[
λ1 − λ2

−λ1

]
, ê+

23 =

[
λ3

λ2 − λ3

]
, ê+

31 =

[
−λ3

λ1

]

f̂1 = λ3

[
λ1 + λ2

−λ1

]
, f̂2 = λ1

[
−λ3

λ2 + λ3

]
.

(3.1.19)

26

3.1.3 Quadratic Vector Functions on an Arbitrary Triangle

Following (3.1.15) we get that edge- and face functions on any given tri-
angle can be obtained from the functions on the reference triangle by multi-
plication by JG−1. However we also have to account for the orientation of
the edges in the triangle.

The orientation in BETL is induced by vertices numeration. An arbitrary
edge Eab between nodes with indices a and b is positively oriented, if b>a.
Then we say that σEij

= 1, where σ stands for orientation. Otherwise σEij
=

−1.

A flat triangle is stored as a triplet of vertex indices, i.e. T = (i, j, k).
This triangle has three edges: Eij, Ejk and Eki. They correspond to edges

Ê01, Ê12 and Ê20 of the reference triangle T̂ correspondingly. In (3.1.19) we

assume that on T̂ all edges are positively oriented. Thus if the orientation
of the edges of the triangle T differ from those of their prototypes on T̂ , we
have to correct them.

Hence for e−ij and for fi we add an orientation factor σEij
. Functions e+

ij

are symmetric and do not require orientation correction:

e−ij = σEij
JG−1ê−ij

e+
ij = JG−1ê+

ij

f1 = σE31 JG−1̂f1

f2 = σE12 JG−1̂f2

(3.1.20)

3.1.4 curlΓ and divΓ of the Quadratic Vector Functions

For the vector surface curl we have

curlΓϕ := gradϕ× n =
1
√
g
JHĝradϕ, H =

(
0 1
−1 0

)
. (3.1.21)

Matrix H preforms a 90◦ clockwise rotation in 2D plane.

This is equivalent to

curlΓϕ =
1
√
g
Jĉurlϕ, (3.1.22)

where ĉurl is given by

ĉurlϕ :=

[
∂ϕ/∂x̂2

−∂ϕ/∂x̂1

]
(3.1.23)

27

Thus the scalar surface curl of vector valued functions can be expressed
via the 2-dimensional scalar curl in the reference domain in the following way

curlΓu =
1
√
g
JT ĉurlû (3.1.24)

where ĉurl is given by

ĉurlû :=
∂û2(x̂)

∂x̂1

− ∂û1(x̂)

∂x̂2

. (3.1.25)

As in (3.1.20) we have to make a correction for orientation of the edges
on the original triangle, i.e.

curlΓe−ij = 1√
g
σEij

JT ĉurlê−ij,

curlΓe+
ij = 1√

g
JT ĉurlê+

ij

curlΓf1 = 1√
g
σE31J

T ĉurl̂f1

curlΓf2 = 1√
g
σE12J

T ĉurl̂f2

(3.1.26)

On the reference triangle we obtain:

ĉurlê−ij = −2

ĉurlê+
ij = 0

ĉurl̂f1 = 3λ2 − 1

ĉurl̂f2 = 3λ3 − 1

(3.1.27)

Values of surface divergence of H(divΓ)-conforming functions and scalar
surface curl of H(curlΓ)-conforming functions coincide, and thus from (2.4.3),
(3.1.26) and (3.1.27) we get:

divΓe−12div
divΓe−23div
divΓe−31div
divΓe+

12div
divΓe+

32div
divΓe+

31div
divΓf1div

divΓf2div


=



curlΓe−12curl
curlΓe−23curl
curlΓe−31curl
curlΓe+

12curl
curlΓe+

32curl
curlΓe+

31curl
curlΓf1curl

curlΓf2curl


=

1
√
g



−2σE12 −2σE12 −2σE12

−2σE23 −2σE23 −2σE23

−2σE31 −2σE31 −2σE31

0 0 0
0 0 0
0 0 0

−σE31 2σE31 −σE31

−σE12 −σE12 2σE12


︸ ︷︷ ︸

Dloc

λ1

λ2

λ3



(3.1.28)

28

3.2 Maxwell Matrix for Quadratic Basis

The general Maxwell problem for electric field reads as follows: curlcurlE + κ2E = 0 in Ω
E = Einc in Γ = ∂Ω
Silver-Müller radiation condition at ∞

(3.2.1)

where E – is the unknown electric field, Einc – is the incoming electric field
and κ = ω

√
εµ ∈ C is the wave number associated to the frequency ω.

Using the Stratton-Chu representation formula we arrive at the following
variational boundary integral equation of the first kind for the unknown
tangential component of the electric field u [2, 5]:

Find u ∈ H−1/2(divΓ,Γ) such that
Ψ(u,v)− 1

κ2
Φ(divΓu, divΓv) = (f ,v), f ∈ H−1/2(divΓ,Γ)

is fulfilled ∀v ∈ H−1/2(divΓ,Γ)
(3.2.2)

where the sesqui-linear forms Φ(·, ·) and Ψ(·, ·) are scalar and vectorial Helmholtz
single layer potentials:

Φ(u, v) :=

∫
Γ

∫
Γ

G(y − x)u(x)v(y)ds(y)ds(x), (3.2.3a)

Ψ(u,v) :=

∫
Γ

∫
Γ

G(y − x) (u(x),v(y)) ds(y)ds(x). (3.2.3b)

based on the fundamental solution of the Helmholtz equation

G(z) =
exp(iκ|z|)
|z|

, z 6= 0. (3.2.4)

We define the sesqui-linear form corresponding to the left hand side of the
equation (3.2.2) as V (·, ·):

V (u,v) := Ψ(u,v)− 1

κ2
Φ(divΓu, divΓv). (3.2.5)

This is the Maxwell counterpart of the single layer potential operator.

A Galerkin discretization of this boundary integral equation by means of
the vector functions described in Sec.3 results in a system of linear equations:

Vhuh = bh, (3.2.6)

where uh is the vector of unknowns and bh is the right hand side vector.

29

The matrix Vh is a composite matrix, based on two similar BEM matrices.
However in BETL we cannot directly pass divergences of the basis functions
into the BEM matrix class. Thus we propose the following approach for
evaluating Vh.

In case of linear basis functions divergences are constant (3.1.28):

dive−ij = − 2
√
g
σEij

(3.2.7)

This allows us to assemble the Vh matrix in the following way:

Vh = Ψh −
1

κ2
Dh Φh D

T
h , (3.2.8)

where Ψh – is the Galerkin matrix of the vectorial Helmholtz single layer
potential (3.2.3b) evaluated on the linear vector basis functions e−ij, Φh – is
the Galerkin matrix of the scalar Helmholtz single layer potential (3.2.3a)
evaluated on the constant scalar basis functions and Dh – is the divergence
matrix constructed from 3× 1 blocks Dloc corresponding to each triangle.

Dloc =

−
2√
g
σE12

− 2√
g
σE23

− 2√
g
σE31

 (3.2.9)

We use the same structure (3.2.8) for quadratic vector basis, only now
Ψh – is the Galerkin matrix of the vectorial Helmholtz single layer potential
evaluated on the quadratic vector basis functions, Φh – is the Galerkin matrix
of the scalar Helmholtz single layer potential evaluated on the linear nodal
basis functions and Dh – is the divergence matrix constructed from 8 × 3
blocks Dloc from (3.1.28).

3.3 Local Interpolation Routines

The new quadratic functions should support the interpolation routine as
well. I.e. for a given vector function u we have to be able to approximate its
Dirichlet trace on any triangle in the following way:

γDu ≈ α−12e
−
12 + α−23e

−
23 + α−31e

−
31+

α+
12e

+
12 + α+

23e
+
23 + α+

31e
+
31+

β1f1 + β2f2

(3.3.1)

Naturally two slightly different strategies for edge and face functions are
used.

30

3.3.1 Edge functions

For the edge Eij between nodes i and j of a triangle T we define the in-
terpolation coefficients corresponding to edge basis functions in the following
integral form:

ασij =

∫
Eij

mσ(γDu)>tijdE =

∫ 1

0

m̂σ(û, t̂ij)ds (3.3.2)

where tij denotes the respective normalized tangent vector, σ = {−,+}
and mσ – are some moments yet to be determined. Hat notations as usual
correspond to the same entities on the reference triangle.

We choose moments m̂+ and m̂− such that∫ 1

0
mσ1

(
t̂ij, ê

σ2
kl

)
ds = δ(ij)(kl)δσ1σ2∫ 1

0
mσ
(
t̂ij, f̂l

)
ds = 0

(3.3.3)

This gives us
m−(s) := 1, m+(s) := 3(1− 2s). (3.3.4)

3.3.2 Face functions

Similarly to the edge case for face functions we want the coefficients to be
defined as

βi =
∫
T

u> (n× m̃i) dT =
∫
T̂

(
m̂,J>u

)
dT̂ ,

where m̂ := −H ̂̃m ,H =

(
0 1
−1 0

)
(3.3.5)

In particular we choose the moments m̂1, m̂2 such that∫
T̂

(
m̂i, f̂j

)
dT̂ = δij . (3.3.6)

This yields

m̂1 =

[
16
8

]
, m̂2 =

[
8
16

]
. (3.3.7)

In this case however ∫
T̂

(
m̂i, ê

σ
jk

)
dT̂ 6= 0 . (3.3.8)

31

3.3.3 Final Interpolation Scheme for Triangles

Finally from Sec.3.3.2 and Sec.3.3.1 we have



1
1

1
1

1
1

4 −4 −4
3

8
3
−4

3
1

4 −4 −8
3

4
3

4
3

1


︸ ︷︷ ︸

C



α−12

α−23

α−31

α+
12

α+
23

α+
31

β1

β2


︸ ︷︷ ︸

α

=



∫ 1

0
(t̂12,J

>u) ds∫ 1

0
(t̂23,J

>u) ds∫ 1

0
(t̂31,J

>u) ds∫ 1

0
3(1− 2s)(t̂12,J

>u) ds∫ 1

0
3(1− 2s)(t̂23,J

>u) ds∫ 1

0
3(1− 2s)(t̂31,J

>u) ds∫
T̂

(m̂1,J
>u) dT̂∫

T̂
(m̂2,J

>u) dT̂


.

︸ ︷︷ ︸
α̂

(3.3.9)

Thus for the resulting interpolation coefficients α we get

α = C−1α̂. (3.3.10)

3.4 Interpolation Errors for R0 and R1 Spaces

To validate the implementation of the interpolation we calculate an inter-
polation error using the interpolation scheme described in Sec.3.3.3:

‖e‖L2 = ‖u− uh‖L2 , (3.4.1)

where u – is a plane wave function (4.3.1), uh – is u interpolated using linear
or quadratic vector basis functions.

l h eR0

el−1
R0

elR0

eR1

el−1
R1

elR1

0 0.1506 0.0792 - 0.0054 -
1 0.0773 0.0411 1.9277 0.0015 3.5905
2 0.0389 0.0208 1.9793 0.0004 3.8688
3 0.0195 0.0104 1.9943 9.9e-05 3.9544
4 0.0098 0.0052 2.0000 2.5e-05 3.9858
5 0.0049 0.0026 2.0000 6.2e-06 3.9961
6 0.0024 0.0013 2.0000 1.5e-06 3.9974

Table 15: Interpolation error for linear and quadratic vector functions

32

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

Mesh size

L
2
-e
r
r
o
r

Linear basis

Quadratic basis

Figure 18: Interpolation error for linear and quadratic vector functions

From 15 we can clearly see that as expected

‖e‖R0
L2
≤ Ch,

‖e‖R1
L2
≤ Ch2.

(3.4.2)

33

4 Edge Calderon Preconditioner

4.1 Preconditioner Formula

We construct the preconditioner following the article [1].

Imagine we have two meshes: original and barycentric refinement. And
we have 4 bases associated with these meshes:

{Φi}ni=1 – linear, continuous, div-conforming basis functions on the original
mesh;

{ϕdi }mi=1 – linear, continuous, div-conforming basis functions on the barycen-
tric refinement;

{ϕci}mi=1 – linear, continuous, curl-conforming basis functions on the barycen-
tric refinement;

{ψi}ni=1 – linear, continuous, div- and quasicurl-conforming basis functions
on the dual mesh defined in [1].

The latter functions are strictly div-conforming by construction. They also
are quasicurl-conforming in the sense that the Gram matrix linking {ψi}ni=1

and {Φi}ni=1 bases is well conditioned.

Imagine we have some bilinear form Z(·, ·) that we want to precondition.
And the corresponding system is:

Zhxh = bh (4.1.1)

where Zh – is the matrix evaluated on {Φi}ni=1.

We want to use similar matrix as a preconditioner, i.e. Zh,prec on {ψi}ni=1.

Instead of calculating two BEM matrices we only calculate one: Zh,b –
similar matrix on the barycentric refinement, i.e. on {ϕdi }mi=1.

Afterwards we create two incidence matrices R and P between barycentric
refinement and original or dual mesh correspondingly.

Then we can get both Zh and Zh,prec from Zh,b:

Zh = RTZh,bR,
Zh,prec = P TZh,bP

(4.1.2)

Thus we come to the system

Zh,precG
−1Zhxh = b̂h = Zh,precG

−1bh. (4.1.3)

34

In (4.1.3) G is the mass matrix between {Φi}ni=1 and {ψi}ni=1 and it has
the following form

G = RTGbP, (4.1.4)

where Gb is the mass matrix between linear, continuous, div- and curl- con-
forming basis functions on the barycentric refinement, i.e. between {ϕdi }mi=1

and {ϕci}mi=1.

Finally from (4.1.2) and (4.1.3) we obtain the following formula for the
preconditioner

P−1 = P TZh,bP (RTGbP)−1 (4.1.5)

where

P ∈ Rm×n : {ϕi}mi=1 → {ψi}ni=1 – realizes the mapping between div-
conforming vector functions defined on the barycentric refinement and the
div- and quasicurl-conforming vector functions on the dual mesh,

Zh,b ∈ Rm×m – Maxwell matrix on the barycentric refinement, i.e. evalu-
ated on basis {ϕi}mi=1,

R ∈ Rm×n : {ϕi}mi=1 → {Φi}ni=1 – maps from the div- conforming space
on the barycentric refinement onto the div- conforming space on the original
mesh,

Gb ∈ Rm×m – is the mixed Gram matrix linking div- and curl- conforming
vector functions on the barycentric refinement, i.e. {ϕdi }mi=1 and {ϕci}mi=1.

4.2 Additional Matrices

4.2.1 Embedding matrix P

On the Fig.19 a typical mesh part is given. The coefficient corresponding
to the reference edge is only influenced by the functions of the colored edges
of the barycentric refinement. Arrows symbolize edge orientations used in
the article [1].

35

Figure 19: Edge orientations for P matrix: thick lines denote original mesh, thin lines –
barycentric refinement

The coefficients of this matrix are given in [1] and are as follows:

• for edges of the barycentric refinement that contain the first vertex of
the reference edge the coefficients are assigned counterclockwise:

c̃ai = −N1−i
2N1

, i = 1, ..., 2N1− 1, where N1 is the number of edges of the
original mesh coming out of the first vertex of the reference edge;

• for edges of the barycentric refinement that contain the second vertex
of the reference edge the coefficients are assigned counterclockwise:

cai = N2−i
2N2

, i = 1, ..., 2N2 − 1, where N2 is the number of edges of the
original mesh coming out of the second vertex of the reference edge;

• for edges of the barycentric refinement crossing the reference edge in the
middle:

ca0 = 1 and c̃a0 = −1.

In BETL edges are oriented differently. Thus we have to correct the
orientation. In order to do this we need to take into account two additional
orientations:

1. the mesh-induced edge orientation: from the node with lower index to
the node with higher index;

2. the geometrical or BETL-induced edge orientation (Fig.20).

The mesh-induced orientation of red edges is always proper, since the
additional nodes of the barycentric refinement always have higher indices
by construction. Whereas green edges may have different orientation, that’s
why we need to correct their orientation by additional factor σm,i = ±1.

36

The geometrical or BETL-induced edge orientation is given by the order,
in which vertices of the given triangle are stored. It is fixed for all elements
of the barycentric refinement and is given on the Fig.20.

Figure 20: Geometry-induced edge orientation

Thus the final coefficients cBETLi of the matrix P will look this way:

cBETLi = σmi σ
g
i c
a
i , (4.2.1)

where σmi corrects the mesh-induced orientation and σgi corrects the geometry-
induced orientation of the edge of the barycentric refinement.

4.2.2 Embedding matrix R

On the Fig.21 an element of the original mesh with six corresponding
elements of the barycentric refinement is given. The reference edge is edge
AB. The coefficient corresponding to this edge is only influenced by the
functions of the red edges of the barycentric refinement. Arrows symbolize
edge orientations used in the article [1].

caEFH
= 1/6 caEEH

= −1/6
caEAH

= 1/3 caEBH
= −1/3

caEAD
= 1 caEBD

= 1
(4.2.2)

As in the case with P matrix the coefficients of the R-matrix (4.2.2) are
given in [1] and we only have to apply the orientation correction. Again
some edges, i.e edges AD, BD, AH and BH, have proper mesh-induced
orientation, since the additional nodes of the barycentric refinement always

37

Figure 21: Edge orientation for R matrix

have higher indices by construction. Whereas edges FH and HE can be
arbitrary oriented.

And of course we have to account for geometry-induced orientation.

Finally we correct the original coefficients using formula:

cBETLEij
= σmEij

σgEij
caEij

, (4.2.3)

where σmEij
corrects mesh-induced orientation and σgEij

corrects geometry-
induced orientation of the edge Eij.

4.2.3 Gram matrix

As a part of the preconditioner we need to invert the matrix G (4.1.4).

BETL architecture does not require explicit matrix storage and all matrix
operations are carried out using a matrix-vector product routine (amux) that
is implemented for all matrix-types.

That is why we do not explicitly compute inverse matrices using additional
existing packages, but use an iterative solver to implement an amux method
for an inverse matrix. I.e. for each given vector x our routine calculates
y = A−1x using GMRes algorithm. Hence we create an implicit inverse
matrix.

The termination criterion for the GMRes in this case is:

• either tolerance is less then the given one, i.e. ε < 10−5;

• or the maximum number of iterations is achieved Nmax = 1000.

38

Using GMRes for matrix inversion proved to be very efficient in our case.
The matrix that we are inverting – the mass matrix – is a regular sparse
matrix. Moreover it is diagonally dominant, and thus Jacobi preconditioner
improves the convergence of the method. As a result in all the models, that
we have tested, the number of iterations needed for inversion was always
≈ 10. A small number of iterations is sufficient, because the matrix G is well
conditioned independently of the resolution of the surface mesh.

Since this approach proved to be so efficient for our matrices, we decided
to stay with it.

4.3 Results

4.3.1 Validation Model

As Zh matrix we are using the Maxwell matrix described above (3.2.8).

We are using a plane wave model, i.e.

u(r) = p exp(iκ d · r) (4.3.1)

where d – is the direction of wave propagation ‖d‖ = 1, p – is polarization,
i.e. the direction in which the electric field points (p ·d) = 0, κ – is the wave
number and r – is the position vector.

We validate our model on the Calderon identity:(
−
(

1
2
Mh +Kh

)
Vh

1
κ2
Vh −

(
1
2
Mh −Kh

)∗)(uD
uN

)
=

(
0
0

)
(4.3.2)

Vh – is the Galerkin matrix of the Maxwell single layer potential defined
in (3.2.8) evaluated on linear continuous div-conforming vector functions,

Kh – is the Galerkin matrix of the Maxwell double layer potential evalu-
ated on linear continuous div-conforming and linear continuous curl-conforming
vector functions,

Mh – is the mass matrix evaluated on linear continuous div-conforming
and linear continuous curl-conforming vector functions.

We start with simple geometries (Fig.2). The tests parameters are: κ =
1.0, p = (−1, 1, 0) and d = (1, 1, 1) before normalization. We use default
BETL ACA settings.

39

4.3.2 Test Models: Linear Vector Basis

of DOFs w/o PC with PC
192 81 8
768 140 8
3072 239 8
12288 403 8

Table 16: Sphere

of DOFs w/o PC with PC
381 127 11
1524 226 11
6096 385 11
24384 720 11

Table 17: Cylinder

of DOFs w/o PC with PC
576 124 12
2304 207 12
9216 360 13
36864 577 13

Table 18: Cube

of DOFs w/o PC with PC
216 129 10
864 228 11
3456 377 11
13824 609 12

Table 19: Fichera corner

103 104

0

100

200

300

400

500

600

700

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

sphere with prec.

sphere w/o prec.

cylinder with prec.

cylinder w/o prec.

cube with prec.

cube w/o prec.

Fichera corner with prec.

Fichera corner w/o prec.

Figure 22: Test models, dual edge preconditioner

40

4.3.3 Complicated Geometry

In this case we use a two-discs model. It consists of two concentric discs
with radius Rd = 10 and thickness h = 2, set apart on the distance d = 6 and
connected by a cylinder with radius Rc = 3. All sharp corners are rounded
with r = 0.5.

Figure 23: ”Two discs” model: mesh

We apply a plane wave Dirichlet boundary conditions with p = (−1, 1, 0)
and d = (1√

3
, 1√

3
, 1√

3
). We set κ = 0.1. And use the default ACA settings.

Figure 24: ”Two discs” model: boundary conditions

41

Figure 25: ”Two discs” model: solution

GMRes w/o PC GMRes with PC
of iterations 1120 24
GMRes time, min 174 6
Assembling of preconditioner, min - 306
Total time, min 174 312

Table 20: ”Two discs” model: dual edge preconditioner results

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

No of iteration step

E
u
c
l
id
e
a
n
n
o
r
m

o
f
t
h
e
r
e
si
d
u
a
l

GMRes with preconditioner

GMRes without preconditioner

Figure 26: ”Two discs” model: residuals

42

4.3.4 Low Frequency Test

To test the quality of the preconditioner we also ran a couple of tests for
low frequency plane wave boundary conditions. As a test model we chose a
sphere R = 1 with a moderate size mesh (12288 dofs). For the plane wave
(4.3.1) we chose the following parameters p = (−1, 1, 0) and d = (1, 1, 1).
And varied κ ∈ [0.001, 1].

κ 1 0.1 0.05 0.01 0.005 0.001
if iter. w/o prec 403 437 420 307 294 225
if iter. with prec 8 6 6 6 6 8

Table 21: Low frequency test, iteration numbers

10−3 10−2 10−1 100

0

100

200

300

400

κ

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

GMRes with preconditioner

GMRes without preconditioner

Figure 27: Low frequency test, iteration numbers

We observe the decrease in number of iterations for GMRes without pre-
conditioner as κ decreases. However the results without preconditioner are
affected by huge errors.

43

(a) theoretical solution (b) solution with preconditioner

(c) solution w/o preconditioner (d) solution w/o preconditioner,
scaled to match theoretical solution

Figure 28: Low frequency test, κ = 0.005, uD

44

5 Hierarchichal Edge Preconditioner

5.1 Preconditioner Formula

We follow the same strategy as in the scalar case (Sec.2.1). Only now
we have eight basis functions on each triangle (3.1.20). And not just one,
but the first three of them e−ij are the basis functions of the lowest order
space available, i.e. of the linear space. Besides our bases are hierarchical by
construction (Sec.3.1.1), that’s why we don’t need a special transformation
T in Sec.2.4.4.

Hence the formula for the hierarchical edge preconditioner simplifies to:

P−1 = Pc
TBccPc +D−1

ss (5.1.1)

We have only implemented one case, when Vh = R1 and Vc = R0.

5.2 Additional Matrices

5.2.1 Block Diagonal Preconditioner

We want to create the matrix D−1
ss as in scalar case (2.4.3) – an inverse

block diagonal structure. However in scalar case we dealt with discontinuous
bases and discontinuous basis functions existed only on one triangle each and
thus there we could work with blocks corresponding to different triangles
separately. In case of vector functions and Maxwell equations we need to
work with continuous bases. In this case neighboring triangles have common
basis functions (Fig.29) and the corresponding blocks Dss,loc overlap and we
cannot work with them independently.

The straightforward approach would be to assemble the complete block
diagonal matrix Dss first, invert it using some external package and then
zero out the lines corresponding to the lowest order functions by means of
incidence matrices. However there is an easier and faster way.

We have chosen to apply additive subspace correction.

Let the discrete space Vh ⊂ H−1/2(divΓ,Γ) be a vector boundary element
space with the basis functions described in Sec.3. It can be decomposed in
the following way:

Vh = Vlow +
Ne∑
k=1

Vhigh,k, (5.2.1)

where Ne is the number of elements in the mesh,

45

Figure 29: Dof’s distribution in quadratic vector basis

Vlow consists of the functions e−ij from (3.1.20) corresponding to all edges
of the mesh – marked orange on Fig.29,

Vhigh,k for each k consists of the remaining five functions e+
ij and fi on

the kth triangle: on Fig.29 dofs corresponding to Vhigh,i of the element i are
marked by a red frame and dofs corresponding to Vhigh,j of the element j are
marked by a blue frame.

Clearly spaces Vhigh,k corresponding to neighboring triangles overlap by a
common higher order edge function, e.g. on Fig.29 elements i and j have a
common higher order function that belongs both to Vhigh,i and to Vhigh,j.

Now let our system matrix A be a Galerkin matrix evaluated on the same
basis. It has the block structure (2.1.6). And we want to build a block Jacobi
preconditioner for the Ass part. Here is the algorithm we use.

46

Additive Subspace Correction Method

c = 0

for i=1:Ne

(1) Evaluation of elements dof indices

- calculate indices idx of the five vector functions on the ith triangle that comprise Vhigh,i

(2) Extraction of block submatrix

- extract the corresponding 5 × 5 submatrix Ai from A: Ai = A(idx, idx)

(3) Matrix inversion

- evaluate w = A−1
i r(idx), where r is the residuals vector

(4) Additive correction

- add the result to the corresponding positions in the global vector c(idx) = c(idx) + w

end

5.2.2 Projection Matrix Pc

The purpose of this matrix is to expand the lowest order preconditioner
matrix Bcc, which has the size n = dimHc to the size of the original matrix
that we precondition, i.e to N = dimHh by adding zero rows and columns.
Thus Pc is a n×N sparse matrix, that has the following structure:

(Pc)ij =

{
1 if j’s dof in Hh corresponds to i’s dof in Hc

0 otherwise.
(5.2.2)

5.3 Results

5.3.1 Validation Model

We are using the same equation, boundary conditions, plane wave param-
eters and models as in Sec.4.3.1. Only now in the Calderon identity(

−
(

1
2
Mh +Kh

)
Vh

1
κ2
Vh −

(
1
2
Mh −Kh

)∗)(uD
uN

)
=

(
0
0

)
(5.3.1)

Vh – is the Galerkin matrix of the Maxwell single layer potential defined in
(3.2.8) evaluated on quadratic continuous div-conforming vector functions,

Kh – is the Galerkin matrix of the Maxwell double layer potential evalu-
ated on quadratic continuous div-conforming and quadratic continuous curl-
conforming vector functions,

Mh – is the mass matrix evaluated on quadratic continuous div-conforming
and quadratic continuous curl-conforming vector functions.

47

5.3.2 Test Models

of DOFs w/o PC with PC
640 406 48
2560 779 51
10240 1021 51
40960 1330 55

Table 22: Sphere

of DOFs w/o PC with PC
1270 666 86
5080 1075 86
20320 1620 91
81280 2276 90

Table 23: Cylinder

of DOFs w/o PC with PC
1920 711 94
7680 1004 92
30720 1479 95
122880 2697 97

Table 24: Cube

of DOFs w/o PC with PC
720 538 72
2880 1327 76
11520 1835 83
46080 2913 86

Table 25: Fichera corner

103 104 105

0

500

1,000

1,500

2,000

2,500

3,000

Dof

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

sphere with prec.

sphere w/o prec.

cylinder with prec.

cylinder w/o prec.

cube with prec.

cube w/o prec.

Fichera corner with prec.

Fichera corner w/o prec.

Figure 30: Test models: hierarchical edge preconditioner

48

5.3.3 Complicated Geometry

We are again using the two discs model (Fig.23) with the same boundary
conditions (Fig.24), plane wave parameters and ACA settings. κ = 0.1.

GMRes w/o PC GMRes with PC
of iterations 3051 101
GMRes time, min 565 29
Assembling of preconditioner, min - 367
Total time, min 565 396

Table 26: ”Two discs” model: hierarchical edge preconditioner results

49

6 Conclusions

6.1 Quadratic Vector Basis

Based on the formulae from [7], 2nd order (quadratic) div- and curl- con-
forming vector bases on flat triangular elements were implemented. A special
2nd order accurate interpolation routine, different for edge and face functions,
was also put in place.

6.2 Preconditioners

6.2.1 Scalar Hierarchical Preconditioner

We observe a significant decrease in iteration numbers, when we apply
our preconditioner.These numbers remain almost constant, when we refine
the mesh. However the time for the preconditioner construction is quite
substantial. And on the tested models only in case of quadratic basis func-
tions did the time for constructing preconditioner and solving the system
with it was less than a simple GMRes. But for the tests for this paper we
used sequential approach (i.e. just one processor). OpenMP environment
will significantly speed the part of preconditioner construction. And in this
case only CG/GMRes time will be important. Moreover if several launches
of the model with different boundary conditions are planned, then using a
preconditioner becomes highly effective.

6.2.2 Dual Vector Preconditioner

We generally observe the same behavior as in scalar hierarchical precon-
ditioner case. The total time with preconditioner is still greater than that
without it. But similarly OpenMP environment will definitely make time
concerns less important.

However in this case the preconditioner has one more advantage. Not only
does it decrease the number of iterations, but it also stabilizes the solution
in low frequency case (Sec.4.3.4).

6.2.3 Vector Hierarchical Preconditioner

So far this model was the most laborious. We had a composite Maxwell
BEM matrix, evaluated on the quadratic vector functions, and then we ap-
plied a dual Calderon preconditioner and wrapped it into a hierarchical struc-

50

ture. Thus the overall memory consumption and the total run-time for this
model were enormous.

But in this case we finally do get a smaller total time for the case with
preconditioner. Even without OpenMP.

6.3 Algorithmic Concerns

6.3.1 Inverse Block Diagonal Preconditioner

In order to create an inverse block-diagonal preconditioner for the surplus
part of the hierarchical preconditioner we need to extract diagonal blocks
of the original BEM matrix. But since BEM matrices in BETL are never
explicitly stored, extraction would be very costly (n2 complexity). That is
why we recalculate these blocks once again inside the preconditioner routine.
This approach results in linear complexity.

Of course in case of Laplace single layer potential for one diagonal block
we only perform one block-integration, because this matrix is a simple BEM-
matrix and basis functions used to evaluate it are discontinuous, thus the
diagonal blocks are independent. Whereas for the Maxwell single layer po-
tential we do several integrations of this type, because the basis is continuous
and the matrix is a composition of two BEM-matrices and a sparse one. Still
this approach is faster.

6.4 Matrix Inversion

As described in Sec.4.2.3 we use GMRes with Jacobi preconditioner to
invert a sparse matrix. We used this approach for all the tests in this work
and not only the average number of iterations was small (≈ 10−15), but also
the average time for an inversion was significantly smaller than one matrix-
vector multiplication for a BEM matrix. However for future models using one
of the existing softwares for inversion of mass-matrices might be considered.

6.5 Additive Subspace Correction

In case of hierarchical vector preconditioner the diagonal blocks of the
Maxwell matrix are interdependent, because the basis functions are continu-
ous and exist on 2 triangles. Thus formally we would have to invert the block
diagonal matrix Dss as a whole and zero out rows and columns correspond-
ing to the lowest order functions using a sparse incidence matrix. Instead we
opted for an additive approach (Sec.5.2.1).

51

6.6 Time for BEM Matrices Evaluation

In all the models, of course, most of the time is spent on creating the
Galerkin matrices for the boundary integral operators. That is why we want,
if possible, to minimize their quantity. Usually, when we talk about dual pre-
conditioners, we have to calculate at least two BEM matrices: single layer
potential matrix V on the original mesh – the system matrix that we pre-
condition, and a bigger hyper singular potential matrix D on the barycentric
refinement. However in case of simple Calderon preconditioner the system
matrix can be obtained from the BEM matrix evaluated on the barycen-
tric refinement via multiplication by an incidence matrix. This saves a lot
of time. Unfortunately this approach is not possible in case of hierarchical
preconditioners.

52

A Description of C++ files

A.1 Dual Mesh

A.1.1 File: dual mesh.hpp

Implements a new class DualMesh, which is inherited from the BETL
Mesh class.

template < typename PARENT_MESH_T >

class DualMesh : public Mesh < BaryElement >

It is used to create a barycentric refinement of a given mesh.

Has no methods. The creation of the barycentric refinement is done in
the class’ constructor:

DualMesh (const PARENT_MESH_T& parent_mesh)

Given a mesh in the BETL mesh format the constructor uses internal
methods to create all the necessary geometrical entities and to make a barycen-
tric refinement in the same mesh-format, i.e. in the ordinary BETL mesh-
format.

A.2 Dual Scalar Preconditioner

A.2.1 File: preconditioner.hpp

Implements a new class Preconditioner. It assembles all the submatrices
necessary for the creation of the preconditioner.

template < enum PARALLEL PAR , enum ACCELERATION ACC >

class Preconditioner

The class constructor has two arguments: original mesh and dofhandler
of the piecewise constant basis functions on the original mesh.

DualPreconditioner(const parent_mesh_t& parent_mesh ,

const dh_parent_const_t& dh_const).

Using these input variables the class creates dual mesh, evaluates all the
necessary matrices and assembles them.

The class has an operator ():

template <class T>

void operator ()(T* x) const.

For any given vector x it returns a vector P−1x, i.e. implements multipli-
cation by the matrix P−1.

53

A.2.2 File: gauger.hpp

Implements a new class HyperMatrixGauger, which is inherited from the
BETL LaplaceGauger class.

template < class MATRIX >

class HyperMatrixGauger: public LaplaceGauger < 1 >

It is used to perform the correction of the matrix of the hypersingular
potential:

Dhs → Dhs + α
k∑
i=1

vi · vTi , (A.2.1)

where k – is a number of connected components in the mesh, ~v – is the
gauger vector and α – is the scaling coefficient: α ≈ 0.5(λmax + λmin) ,
λmax, λmin – are the minimal and the maximal eigenvalues of the matrix Dhs

[6].

The class constructor has two arguments: matrix Dhs and the correspond-
ing dofhandler.

template < class DOFHANDLER >

HyperMatrixGauger(const DOFHANDLER& dh, const MATRIX& A)

It supports the standard BETL matrix functions, i.e.

• template <class T>

void amux (T* x, T* y, T alpha , T beta , char op) const

• size_t GiveCols() const

• size_t GiveRows() const

A.3 Hierarchical Scalar Preconditioner

A.3.1 File: preconditioner.hpp

Implements a new class Preconditioner, that is used to assemble a precon-
ditioner described in Sec.2.4.4.

template < typename LOW_ORDER_PRECOND_T ,

typename DOFHANDLER_LOW_ORDER_T ,

typename DOFHANDLER_HIGH_ORDER_T >

class Preconditioner

The class constructor has four arguments: preconditioner for the lowest
order part, lowest order dofhandler, higher order dofhandler and an integra-
tor.

54

template < typename INTEGRATOR_T >

Preconditioner(const LOW_ORDER_PRECOND_T& low_order_prec ,

const DOFHANDLER_LOW_ORDER_T& dh_low ,

const DOFHANDLER_HIGH_ORDER_T& dh_high ,

const INTEGRATOR_T& integrator);

Dofhandlers are used to properly position preconditioners entries corre-
sponding to dofs of lower and higher order. Integrator is used to recalculate
diagonal blocks of the original matrix, which are used to create the inverse
block diagonal part of the preconditioner.

Using these input variables the class creates all the necessary matrices and
assembles them.

The class has an operator ():

template <class T>

void operator ()(T* x) const.

For any given vector x it returns a vector P−1x, i.e. implements multipli-
cation by the matrix P−1.

A.3.2 Files: T local functor.hpp and T local functor.cpp

Implements a new class T local, that creates matrices Tloc for the given
higher order basis.

template < std:: size_t DIM >

class T_local

So far just two matrices T local< 3 > – (2.4.5), and T local< 6 > – (2.4.8)
were implemented.

The class constructor has no arguments.

T_local()

The class has two standard methods: giveMatrix() and operator (i,j):

const_reference giveMatrix() const

double operator ()(const std:: size_t row ,

const std:: size_t col) const .

A.3.3 File: hierarchical basis.hpp

Implements a new class HierarchicalBasis, which is inherited from the
BETL RootSparseOperator class.

55

template < typename DOFHANDLER_HIGH_ORDER_T >

class HierarchicalBasis : public betl:: RootSparseOperator

It is used to assemble a global T matrix, that will split the basis into
lowest order and surplus parts (2.2.2).

The class constructor has only one argument: higher order dofhandler.

HierarchicalBasis(const DOFHANDLER_HIGH_ORDER_T& dh_high);

The class has only one method compute:

template < typename T_LOCAL >

void compute(T_LOCAL t_local);

This functions creates small blocks of Tloc (2.2.1) from t local and spreads
them on the global positions.

A.3.4 File: low frequency extractor.hpp

Implements a new class LowFrequencyExtractor, which is inherited from
the BETL RootSparseOperator class.

template < typename DOFHANDLER_LOW_ORDER_T ,

typename DOFHANDLER_HIGH_ORDER_T >

class LowFrequencyExtractor : public

betl:: RootSparseOperator

It is used to assemble an incidence matrix Pc (2.4.1).

The class constructor has two arguments: lower and higher order dofhan-
dlers.

LowFrequencyExtractor(const DOFHANDLER_LOW_ORDER_T& dh_low ,

const DOFHANDLER_HIGH_ORDER_T& dh_high);

The class has only one method compute:

void compute()

that assembles the matrix according to the formula (2.4.1).

A.3.5 File: inverse block diagonal.hpp

Implements a new class InverseBlockDiagonalOperator, which is inherited
from the BETL RootSparseOperator class.

template < typename DOFHANDLER_HIGH_ORDER_T >

class InverseBlockDiagonalOperator : public

betl:: RootSparseOperator

56

It is used to assemble the block diagonal part of the preconditioner D−1
ss

(2.4.9).

The class constructor has only one argument: higher order dofhandler.

InverseBlockDiagonalOperator

(const DOFHANDLER_HIGH_ORDER_T& dh);

The class has one method compute:

template < typename INTEGRATOR_T >

void compute(const INTEGRATOR_T& integrator);

This functions creates the matrix D−1
ss as described in Sec.2.4.3.

A.4 Dual Vector Preconditioner

A.4.1 File: preconditioner.hpp

Implements a new class DualEdgePreconditioner.

template < enum ACCELERATION ACC , enum PARALLEL PAR >

class DualEdgePreconditioner

The class constructor has three arguments: original mesh, dofhandler of
the linear continuous vector basis functions on the original mesh and a parser
with ACA settings.

DualEdgePreconditioner

(const parent_mesh_t& mesh ,

const parent_dofhandler_t& parent_dh ,

const settings_parser_t& parser)

Using these input variables the class creates dual mesh, evaluates all the
necessary matrices and assembles them.

The class has a function compute:

void compute(const complex_t kappa)

that assembles all necessary submatrices.

This preconditioner class is a bit different from the others. Since in this
case as a preconditioner we use a matrix of the same type as a system matrix,
we can save time by calculating it only once. Thus the DualEdgePrecondi-
tioner class has the following methods:

preconditioner_reference givePreconditioner()

matrix_reference giveSystemMatrix()

The system matrix and the preconditioner obtained this way have all the
standard functions, i.e. amux and operator() correspondingly.

57

A.4.2 File: coupling matrix.hpp

Implements a new class coupling operator, that assembles R incidence ma-
trix (Sec.4.2.2). It is inherited from RootSparseOperator class.

template < typename DUAL_DOFHANDLER_T ,

typename PARENT_DOFHANDLER_T >

class coupling_operator: public

betl:: RootSparseOperator

The class constructor has two arguments: dofhandlers of the linear con-
tinuous vector basis functions on the original mesh and on the barycentric
refinement.

coupling_operator(const dual_dh_t& dual_dh ,

const parent_dh_t& parent_dh)

The class has a function compute:

void compute(const complex_t kappa)

that assembles the R matrix.

A.4.3 File: averaging matrix.hpp

Implements a new class averaging operator, that assembles P incidence
matrix (Sec.4.2.1). It is inherited from RootSparseOperator class.

template < typename DUAL_DOFHANDLER_T ,

typename PARENT_DOFHANDLER_T >

class averaging_operator: public

betl:: RootSparseOperator

The class constructor has two arguments: dofhandler of the linear con-
tinuous vector basis functions on the original mesh and on the barycentric
refinement.

averaging_operator(const dual_dh_t& dual_dh ,

const parent_dh_t& parent_dh)

The class has a function compute:

void compute(const complex_t kappa)

that assembles the P matrix.

58

A.5 Hierarchical Vector Preconditioner

A.5.1 File: preconditioner.hpp

Implements a new class Preconditioner.

It is used to assemble a preconditioner for a given mesh.

The class constructor has six arguments: the first three are as in the
scalar hierarchical preconditioner case – preconditioner for the lowest order
part, lowest order dofhandler, higher order dofhandler, and then we have two
integrators and a scalar, because this time the system matrix is a composite
one, i.e. created on base of two integrators and with a parameter κ.

template < typename INTEGRATOR_T1 , typename INTEGRATOR_T2 >

Preconditioner(const LOW_ORDER_PRECOND_T& low_precond ,

const DOFHANDLER_LOW_ORDER_T& dh_low ,

const DOFHANDLER_HIGH_ORDER_T& dh_high ,

const INTEGRATOR_T1& integrator1 ,

const INTEGRATOR_T2& integrator2 ,

const complex_t scalar)

Dofhandlers are used to properly position preconditioners entries corre-
sponding to dofs of lower and higher order. Integrators and scalar are used
to recalculate diagonal blocks of the original matrix, which are used to create
the block diagonal part of the preconditioner.

Using these input variables the class creates all the necessary matrices and
assembles them.

The class has an operator ():

template <class T>

void operator ()(T* x) const.

For any given vector x it returns a vector P−1x, i.e. implements multipli-
cation by the matrix P−1.

A.5.2 File: low frequency extractor.hpp

Implements a new class LowFrequencyExtractor, which is inherited from
the BETL RootSparseOperator class.

template < typename DOFHANDLER_LOW_ORDER_T ,

typename DOFHANDLER_HIGH_ORDER_T ,

typename T >

class LowFrequencyExtractor : public

betl:: RootSparseOperator

59

It is used to assemble an incidence matrix Pc (5.2.2).

The class constructor has two arguments: lower and higher order dofhan-
dlers.

LowFrequencyExtractor

(const DOFHANDLER_LOW_ORDER_T& dh_low ,

const DOFHANDLER_HIGH_ORDER_T& dh_high);

The class has only one function compute:

void compute()

that assembles the matrix according to the formula (5.2.2).

A.5.3 File: inverse block diagonal.hpp

Implements a new class InverseBlockDiagonalOperator, which is inherited
from the BETL RootSparseOperator class .

template < typename DOFHANDLER_HIGH_ORDER_T ,

typename T >

class InverseBlockDiagonalOperator

It is used to assemble the block diagonal part of the preconditioner D−1
ss

(Sec.5.2.1).

The class constructor has only one argument: higher order dofhandler.

InverseBlockDiagonalOperator

(const DOFHANDLER_HIGH_ORDER_T& dh);

The class has only one method compute:

template < typename INTEGRATOR_T , typename EDGE_BEM_T >

void compute(const INTEGRATOR_T& integrator ,

const EDGE_BEM_T& edge_bem , T scalar)

This functions creates the matrix D−1
ss as described in Sec.2.4.3.

A.6 Other Files

A.6.1 File: inverse matrix.hpp

Implements a new class InverseMatrixWithPreconditioner with proper in-
heritance from MatrixExpression class.

template <class MATRIX_T , class PRECONDITIONER_T >

class InverseMatrixWithPreconditioner:

public betl:: linalg :: MatrixExpression

< InverseMatrixWithPreconditioner

< MATRIX_T , PRECONDITIONER_T > >

60

This class inverts a given matrix, using a given preconditioner.

It is used to invert a matrix by means of the GMRes algorithm (Sec.4.2.3).

The class constructor has the following structure:

InverseMatrixWithPreconditioner(const MATRIX_T& A,

const PRECONDITIONER_T* P,

int GMRes_max_iter ,

double GMRes_tolerance)

Since the result of the inversion is again a matrix, it supports the standard
BETL matrix functions, i.e.

• template <class T>

void amux (T* x, T* y, T alpha , T beta , char op) const

• size_t GiveCols() const

• size_t GiveRows() const

The file also includes class specializations for the existing Jacobi precon-
ditioner and for the case, when no preconditioner is used.

A.6.2 File: preconditioner from matrix.hpp

Implements a new class PreconditionerFromMatrix.

template < typename MATRIX_T >

class PreconditionerFromMatrix

It is a simple wrapper that for a given matrix A implements the standard
preconditioner function compute:

template < typename T >

void operator ()(T* x) const

A.6.3 File: chain preconditioner.hpp

Implements a new class ChainPreconditioner.

template < typename PRECONDITIONER_A_T ,

typename PRECONDITIONER_B_T >

class ChainPreconditioner {

This class consequently applies two given preconditioners.

It is a simple wrapper that implements the standard preconditioner func-
tion compute:

template < typename T >

void operator ()(T* x) const

61

References

[1] F.P.Andriulli et al., A Multiplicative Calderon Preconditioner for the Elec-
tric Field Integral Equation. IEEE Transactions on Antennas and Propa-
gation Vol.56, No.8, August 2008, 2398-2409.

[2] A. Buffa, M. Costabel, and C. Schwab, Boundary element methods for
Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002),
679-710.

[3] R.Hiptmair, Operator Preconditioning. Computers and mathematics with
Applications 52 (2006) 699-706.

[4] L.Kielhorn, BETL Documentation. SAM - Seminar for Applied Mathe-
matics, ETH Zurich.

[5] P.E.Meury, Stable Finite Element Boundary Element Galerkin Schemes
for Acoustic and Electromagnetic Scattering. Diss. No. 17320, ETH
Zurich.

[6] G.Of, BETI–Gebietszerlegungsmethoden mit schnellen Randelementver-
fahren und Anwendungen. Dissertation, Institut für Angewandte Analysis
und Numerische Simulation, Universität Stuttgart, 2006.

[7] J.Schöberl, S.Zaglmayr, High order Nédélec elements with local complete
sequence properties. COMPEL: The International Journal for Computa-
tion and Mathematics in Electrical and Electronic Engineering, Vol. 24,
Iss: 2 pp. 374 - 384

[8] O.Steinbach, Artificial Multilevel Boundary Element Preconditioners.
PAMM, Volume 3, Issue 1, pages 539–542, December 2003.

62

	Introduction
	Introduction
	Hierarchical Preconditioner for Scalar Bases
	General Hierarchical Preconditioner Formula
	Hierarchical Splitting in Case of Nodal Basis Functions
	Hierarchical Preconditioner Formula for Bases of Nodal Basis Functions
	Implementation
	Projection Matrix Pc
	Matrix T Local
	Inverse Block Diagonal Submatrix
	Assembling matrices

	Results
	Validation Model
	Test Models: Constant Basis
	Test Models: Linear Basis
	Test Models: Quadratic Basis
	Industrial Application

	Hierarchical Vector Bases
	Quadratic Vector Functions
	Definitions
	Quadratic Vector Functions on the Reference Triangle
	Quadratic Vector Functions on an Arbitrary Triangle
	 curl and div of the Quadratic Vector Functions

	Maxwell Matrix for Quadratic Basis
	Local Interpolation Routines
	Edge functions
	Face functions
	Final Interpolation Scheme for Triangles

	Interpolation Errors for R0 and R1 Spaces

	Edge Calderon Preconditioner
	Preconditioner Formula
	Additional Matrices
	Embedding matrix P
	Embedding matrix R
	Gram matrix

	Results
	Validation Model
	Test Models: Linear Vector Basis
	Complicated Geometry
	Low Frequency Test

	Hierarchichal Edge Preconditioner
	Preconditioner Formula
	Additional Matrices
	Block Diagonal Preconditioner
	Projection Matrix Pc

	Results
	Validation Model
	Test Models
	Complicated Geometry

	Conclusions
	Quadratic Vector Basis
	Preconditioners
	Scalar Hierarchical Preconditioner
	Dual Vector Preconditioner
	Vector Hierarchical Preconditioner

	Algorithmic Concerns
	Inverse Block Diagonal Preconditioner

	Matrix Inversion
	Additive Subspace Correction
	Time for BEM Matrices Evaluation

	Description of C++ files
	Dual Mesh
	File: dual_mesh.hpp

	Dual Scalar Preconditioner
	File: preconditioner.hpp
	File: gauger.hpp

	Hierarchical Scalar Preconditioner
	File: preconditioner.hpp
	Files: T_local_functor.hpp and T_local_functor.cpp
	File: hierarchical_basis.hpp
	File: low_frequency_extractor.hpp
	File: inverse_block_diagonal.hpp

	Dual Vector Preconditioner
	File: preconditioner.hpp
	File: coupling_matrix.hpp
	File: averaging_matrix.hpp

	Hierarchical Vector Preconditioner
	File: preconditioner.hpp
	File: low_frequency_extractor.hpp
	File: inverse_block_diagonal.hpp

	Other Files
	File: inverse_matrix.hpp
	File: preconditioner_from_matrix.hpp
	File: chain_preconditioner.hpp

	Bibliography

