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Abstract

We attempt to construct an explicit method for solving the scalar wave equa-
tion based on interior penalty discontinuous finite element methods (IP-DG
FEM). The method is explicit in the sense that the solution can be developed
one element at a time. We derive the method formally and show how to con-
struct a Matlab program to run the method on a tensor product mesh with
vertical edges and bilinear elements. Unfortunately numerical experiments
give evidence that the method is unstable for any choice of parameters. This
is further investigated in a von Neumann stability analysis which results in
strong (numerical) evidence that the method is unconditionally unstable -
at least for this certain type of trial-/testspace.

A possible remedy could be to use a mesh that avoids vertical edges (ex-
cept on the boundary). This is required in somewhat similar, but successful
(non-IP) DG-methods, [1, 2, 3].



Preface 2

0 Preface

This report is the written result of a bachelor thesis carried out during the
summer term of 2007, the second half of the authors exchange year at ETH-
Zürich, Switzerland.

The following tasks were given:

1. Derivation of interior penalty DG equations for the wave equation

∂2u

∂t2
− ∂2u

∂x2
= f(x, t)

2. Investigation of stability using linear stability analysis for different val-
ues of stabilization parameter.

3. Numerical experiments to study the convergence of the method, if con-
ditional stability can be achieved

The project is a combination of theory (the first point) and implementation
(the remaining two), the dominating part being the latter. The main portion
of the time used was indeed spent implementing the method in Matlab and
Maple. The extend of the project is 15 ECTS points.

The project was supervised by Prof. Dr. Ralf Hiptmair whom the author
thanks for his efforts.
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1 Introduction

The scalar wave equation is used for the simulation of many physical prob-
lems within electromagnetism, elastics and acoutics. Many numerical solu-
tion methods exist, the most dominant being some kind of spatial discretiza-
tion followed by a timestepping method. Among these, using a discontinuous
Galerkin finite element method (DG-FEM) as the spatial discretization gives
good results, see e.g. [4]. One problem with these methods, however, is that
they impose a global CFL condition, which makes local mesh-refinement
difficult.

One way to avoid this problem is to instead treat space and time as
equivalent variables. We then partition the entire space-time domain into
a mesh and then apply some kind of FE-method. In 1990 Hulbert and
Hughes presented a semi-discontinuous space-time method for second order
hyperbolic equations, [5] - semidiscontinuous because they use functions that
are continuous in space, but discontinuous in time.

An (almost) fully discontinuous space-time method for the wave equation
was first introduced by Richter in 1994 in [1], a method he generalized first in
1999 in [2] with Falk and again in 2003 with Monk in [3]. In the latter article
a fully discontinuous explicit space-time method for solving linear symmetric
hyperbolic systems in possibly inhomogeneous media is devised and proved
to be stable.

In this thesis we shall attempt something similar (though less general)
as Richter et. al, but now using interior penalizing to enforce continuity,
yielding an IP-DG-FEM. These methods were first introduced in the 1970’s,
originally motivated by Nitsche’s idea to weakly enforce homogeneous bound-
ary conditions on the elliptic problem −∆u = f . Similarly continuity of the
solution is enforced weakly on all edges by penalizing jumps of the discon-
tinuous test functions, first introduced in [6].

So far it seems this approach has only been used for elliptic and parabolic
problems and in this thesis we will try to apply the IP-DG-FEM to the scalar
wave equation on a tensor product mesh. In section 2 we introduce the
required notation and formally derive the defining equations of the method.
Section 3 presents the Matlab-code that was written to run the method on
a model problem. In section 4, we numerically investigate the stability of
the method and finally in section 5 we briefly compare our method to the
method proposed by Richter in [1].
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2 Problem and method

2.1 The wave equation

Throughout this report, we deal with the scalar second order inhomogeneous
wave equation in one spatial variable

utt − uxx = f in Ω× J (2.1)
u = 0 on ∂Ω× J (2.2)
u = u0 in Ω× {t = 0} (2.3)
ut = v0 in Ω× {t = 0} (2.4)

with homogeneous Dirichlet boundary conditions (2.2) and initial conditions
as specified in (2.3) and (2.4). The spatial domain Ω ⊂ R is assumed to
be a bounded interval and J is a time interval J =]0, T [⊂ R and we set
Q = Ω× J .

2.2 Notation

We introduce the following notation for L2-inner products over an area Q or
a curve Γ:

(v, w)Q =
∫

Q
vw dQ

〈v, w〉Γ =
∫

Γ
vw dΓ

For futher simplicity, we use the following abbreviations:

∇u = (ux, ut)
♦u = (ux,−ut)

∇ · u = ux + ut

�u = uxx − utt

Along an edge e in R2, for which the function v is defined on both sides of
e, we define

{v} = (v+ + v−)/2
[v] = v+n+ + v−n−

where v+ and v− are the traces of v from the two sides of e and n+ and n−

are the corresponding outward pointing normal vectors (see figure 1).
We see that {v} denotes the average of the values of the traces of v from

the two sides of e, while [v] denotes the jump between the two sides (v is not
necessarily continuous across e).
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v+

−v

e

Jump

Figure 1: Discontinuous function v defined across the edge e.

2.3 Formulation of the method

With the notation of section 2.2, we see that we can write (2.1) as

−�u = −∇ · (♦u) = f (2.5)

and we note the similarity with the usual way of writing Poisson’s equation:
−∆u = −∇ · (∇u) = f . In a similar fashion as in the elliptic case, we
can now develop the weak formulation of (2.5) acompanied by (2.2)-(2.4):
Multiplying (2.5) by a test function v, integrating both sides over Q and
using the integration by parts formula∫

Q

∂ψ

∂xi
ϕdx =

∫
∂Q
ψϕni dS −

∫
Q
ψ
∂ϕ

∂xi
dx (2.6)

element by element, we obtain∫
Q

♦u∇v dx−
∫

∂Q
♦u · nv dS =

∫
Q
fv dx (2.7)

or simply
(♦u,∇v)Q − 〈♦u · n, v〉∂Q = (f, v)Q

This is the general weak formulation of the problem. However to solve this di-
rectly in practice would require boundary conditions specified at the endtime
T , which is not desirable for obvious physical reasons. Instead we consider
a mesh M = {Ki} that covers Q. Then∫

Q
(utt − uxx)v dx =

∫
Q
fv dx

is equivalent to ∑
K∈M

∫
K

(utt − uxx)v dx =
∑

K∈M

∫
K
fv dx
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Now using (2.6) over K gives∑
K∈M

(♦u,∇v)K −
∑

K∈M
〈♦u · n, v〉∂K =

∑
K∈M

(f, v)K

The DG magic formula,
∑

K∈M〈♦u · n, v〉∂K = 〈{♦u}, [v]〉E + 〈[♦u], {v}〉EI

(proof in appendix C), then gives the equation∑
K∈M

(♦u,∇v)K − 〈{♦u}, [v]〉E − 〈[♦u], {v}〉EI
=

∑
K∈M

(f, v)K

where E denotes the edge set of M and EI = E −∂M, i.e. the interior edges.
Obviously the term 〈[♦u], {v}〉EI

is irrelevant for consistency, so we replace
it with the term 〈{♦v}, [u]〉E (which likewise does not affect consistency) to
obtain a symmetric variational problem. We then arrive at∑

K∈M
(♦u,∇v)K − 〈{♦u}, [v]〉E − 〈{♦v}, [u]〉E =

∑
K∈M

(f, v)K (2.8)

Since it is our intention to search for u in (and test with functions from) a
space that contains discontinuous functions, we add the term 〈α[u], [v]〉E to
enforce continuity weakly across edges of the mesh. Here α is the so called
stabilization parameter, usually chosen to be k/h, where k is some constant
and h is the minimal sidelength in each element. Hence α is in fact some
piecewise constant function of x and t. In each element K, we just need to
solve the equation

aK(u, v) = `K(v) (2.9)

where

aK(u, v) = (♦u,∇v)K − 〈{♦u}, [v]〉∂K − 〈{♦v}, [u]〉∂K + 〈α[u], [v]〉∂K

and `K(v) = (f, v)K . It is apparent from (2.9) that the solution in each
element only depends on its immediate neighbours. This implies that we
can solve the entire problem in a piecewise fashion.

Now the numerical scheme is obvious: For all K in M,

find uh ∈ Vh(M) such that aK(uh, vh) = `K(vh), for all vh ∈ Pp(K) (2.10)

where Vh(M) =
⊗

K∈M Pp(K) and Pp(K) is some space of suitable polynomials
of (total or maximum) degree p on K.

2.4 Calculation in practice
As already mentioned, solving (2.10) is a local problem for each element. Choosing
a basis B = {bi} for Vh(M) =

⊗
K∈M Pp(K), writing the solution u and the

test function (which is only supported in K) as linear combinations of these basis
functions, and plugging all this into (2.9) yields the equation

aK(
∑

i

µibi,
∑

j

qjbj) = `K(
∑

j

qjbj)
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(a) An element and its surroundings (b) The flow of information

Figure 2: Stencil in a tensor product mesh

Since this equation must hold for all test functions, it must hold for any choice of
the coefficients qi. Choosing in particular one of these coefficients (e.g. the mth) to
be 1 and the rest to be zero then gives

aK(
∑

i

µibi, bm) = `K(bm), m = 1, 2, . . .

which, due to the linearity of aK , is equivalent to∑
i

µiaK(bi, bm) = `K(bm), m = 1, 2, . . .

which can be written

A~µ = ~̀, where Aij = aK(bi, bj), and ~̀i = `K(bi) (2.11)

However, since the terms aK(bi, bm) are non-zero only when bi and bm are supported
in the same or adjacent elements, and since the bm are only supported in K (and
not in adjacent elements), A is a belt-matrix, implying that we can write (2.11) as

A
(n−1)
j ~µ

(n−1)
j +A

(n)
j−1~µ

(n)
j−1 +A

(n)
j ~µ

(n)
j +A

(n)
j+1~µ

(n)
j+1 +A

(n+1)
j ~µ

(n+1)
j = ~̀ (2.12)

where we used the notation of figure 2(a). Here the ~µ’s contain the coefficients of
the solution in the corresponding element and the corresponding matrix contains
the only non-zero aK(bi, bj) that exists for that element. We then finally arrive at
the actual computational method by simply isolating ~µ(n+1)

j in (2.12):

~µ
(n+1)
j =

(
A

(n+1)
j

)−1

~̀−A
(n−1)
j ~µ

(n−1)
j −

j+1∑
i=j−1

A
(n)
i ~µ

(n)
i

 (2.13)

We see from the formula, that the solution in the future (larger t) only depends on
the solution in the past, which makes physical sense. Figure 2(b) shows how the
information flows. The solution in K(n+1)

j depends on the solution in K(n)
j−1, K

(n)
j ,

K
(n)
j+1 and K(n−1)

j giving a so called 5 point stencil.
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3 Implementation

3.1 Basis functions and mesh
Let now

• GI(N) denote an equidistant grid on the interval I with N gridpoints.

• ∆x denote the distance between gridpoints in the x-direction

• ∆t denote the distance between gridpoints in the t-direction

• T denote the endtime, i.e. the time at which the evolution should stop

We then use the mesh of rectangles defined by the points GΩ(N) × G[0,T ](T/∆t),
and this mesh then complety covers the domain Q = Ω × [0, T ], which is where
we want to solve (2.1)-(2.4). This tensorproduct mesh consists of rectangles with
corners a1

K , . . . , a
4
K and they can all be written

Ka1 = [a1
x, a

1
x + ∆x]× [a1

t , a
1
t + ∆t]

see figure 3.

a t
1a1 (ax

1 , )=

a4 a3

a2

K

∆x

∆ t

Figure 3: A generic element of the mesh

Note that in this construction we have taken equidistant grids in each coordinate
direction. The consequence is that the sidelengths of the elements of M are the
same for all elements, namely ∆x and ∆t. This is chosen for simplicity. The code
that will be presented in section 3.2 is however perfectly capable of handling the
more general non-equidistant mesh.

Now let K be some element of M. We denote by Q1(K) the space of poly-
nomials of degree at most 1 in each coordinate direction, supported only in K,
i.e.

Q1(K) = span{1, x, t, xt} in K

The test and trial space we use is then Vh =
⊗

K∈MQ1(K). Note that this mesh
dependent space contains discontinuous functions, since we do not require continuity
across the edges. Instead this continuity is weakly enforced, as described in section
2.3.

For easier implementation we use the basis B = {b1, b2, b3, b4} of the space
Q1(K) where

bi = b̂i ◦ Φ−1
K , i = 1, . . . , 4



Implementation 10

where the b̂i are the standard bilinear basis functions on the reference square
K̂ = [0, 1]2 and ΦK is the affine mapping, that maps K̂ bijectively to K. Explicitly

b̂1(x̂, t̂) = (1− x̂)(1− t̂)

b̂2(x̂, t̂) = x̂(1− t̂)

b̂3(x̂, t̂) = x̂t̂

b̂4(x̂, t̂) = (1− x̂)t̂

and
ΦK(x̂, t̂) =

(
∆x 0
0 ∆t

) (
x̂
t̂

)
+

(
a1

x

a1
t

)
where a1 = (a1

x, a
1
t ) is the lower left corner of the element K.

These basis functions have the nice property that bi(aj) = δij (the Kroenecker
delta), which makes many terms in the integrals that we need to calculate vanish.
In figure 4 the functions b̂1, . . . , b̂4 are depicted on the reference square.
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(a) The function b̂1(x̂, t̂) = (1− x̂)(1− t̂)
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(b) The function b̂2(x̂, t̂) = x̂(1− t̂)
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(c) The function b̂3(x̂, t̂) = x̂t̂
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(d) The function b̂4(x̂, t̂) = (1− x̂)t̂

Figure 4: Basis functions for the space Q1(K̂)

3.2 Structure of code
Since we are more interested in the theoretical aspects of the computational method,
the code was written so that it is easy understandable, sometimes at the cost of
speed.
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We store and compute the solution in timeslabs. One timeslab is simply one
row of elements, e.g. the part of the mesh covering Ω × [t0, t0 + dx], where t0 is
the t-value of a lower corner of an element in the timeslab. We can then store the
solution in a 3D-array S ∈ R4×N×(T/∆t). In the mth layer Lm ∈ R4×N of S we
then store the point values of the four corners in a column and we do this for each
of the N elements. Then S = [L1, . . . , L(T/∆t)].

Below an overview of the structure of the code is presented, starting with the
highest level functions and then descending:

• evolve(Ω,∆x,∆t,T,α)

→ Calculate L1 and L2 from initial conditions (2.3)-(2.4) and store in
S(·, ·, 1) and S(·, ·, 2).

→ for step = 3 . . . T/∆t
S(·, ·,step) = calc_new_slab(two previous slabs)

end

→ Plot solution with plot_solution(S).

end

• new_slab = calc_new_slab(two previous slabs)

→ for j = 2 . . . N − 1
~µ

(n+1)
j = calc_one_elem(~µ(n)

j−1, ~µ
(n)
j , ~µ(n)

j+1, ~µ
(n−1)
j )

end

→ Calculate point values for elements on boundary

end

• ~µ
(n+1)
j = calc_one_elem(~µ(n)

j−1, ~µ
(n)
j , ~µ(n)

j+1, ~µ
(n−1)
j )

→ Define elements matrices from (2.11)-(2.12)

→ Calculate µ(n+1)
j from (2.13):

~µ
(n+1)
j =

(
A

(n+1)
j

)−1

~̀−A
(n−1)
j ~µ

(n−1)
j −

j+1∑
i=j−1

A
(n)
i ~µ

(n)
i


end

The full transcripts of the Matlab-code used can be seen in appendix A. As
seen, the code is rather simple, and the only real challenge lies in the computation
of the entries of the element matrices. When using the local space Qp(K) on each
element K, we obtain [(p+ 1)2]× [(p+ 1)2] matrices. In the implementation done
here, we used p = 1, and hence the element matrices were of size 4× 4. With this
relatively small size, the integrations needed for the calculation of the entries in
these matrices can be carried through analytically. Even though the same is pos-
sible for larger p, this quickly gets messy, and one could use numerical quadrature
instead.

In appendix B the Maple-code for analytically calculating the entries of the
element matrices for p = 1 is included.



Implementation 12

Throughout the process of writing the code, Matlab was used to check if the
method was consistent (as an indicator of possible errors or typos). This was done
by the function seen in appendix A.6. That turned out to be a valuable tool,
eliminating many mistakes on the way.

3.3 Numerical experiments: Instability
The program was tested on the following model problem:

utt − uxx = 0 in [0, π]× J

u(0, t) = u(π, t) = 0 ∀t ∈ J
u = sin(x) in [0, π]× {t = 0}
ut = 0 in Ω× {t = 0}

which has the solution u(x, t) = sin(x) cos(t). It was however imidiately clear that
the program produced an exploding solution for this problem:

(a) Evoluted 8 timesteps (b) Evoluted 10 timesteps

Figure 5: Result of running program with ∆x = 0.1, ∆t = 0.03 and α = 1/3

Figure 6: Result of running program with ∆x = 0.2, ∆t = 0.03 and α = 0.

Clearly we have produced something that, for this problem, is unstable. This
unfortunate property will be closer investigated in the next section.
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4 Stability

4.1 Theory
We want to investigate the numerical stability of (the homogeneous part of) our
method, which is defined by

A
(n+1)
j ~µ

(n+1)
j = −A(n)

j ~µ
(n)
j −A

(n)
j+1~µ

(n)
j+1 −A

(n)
j−1~µ

(n)
j−1 −A

(n−1)
j ~µ

(n−1)
j (4.1)

Since this is a linear evolution, we can do a classical von Neumann analysis: We
make the substitution ~µ(n)

j = eiκj∆x~v(n) and plug this into (4.1). After simplifying,
we then have

A
(n+1)
j ~v(n+1) = −A(n)

j ~v(n) − eiκ∆xA
(n)
j+1~v

(n) − e−iκ∆xA
(n)
j−1~v

(n) −A
(n−1)
j ~v(n−1)

= −
(
A

(n)
j + eiκ∆xA

(n)
j+1 + e−iκ∆xA

(n)
j−1

)
~v(n) −A

(n−1)
j ~v(n−1)

Now taking v(n+s) = ~aqs gives(
A

(n+1)
j q

)
~a = −

(
A

(n)
j + eiκ∆xA

(n)
j+1 + e−iκ∆xA

(n)
j−1

)
~a−

(
A

(n−1)
j q−1

)
~a

This is a quadratic eigenvalue problem of the type

(qX + Y + q−1Z)~a = 0 ⇔ (q2X + qY + Z)~a = 0 (4.2)

with

X = A
(n+1)
j

Y = A
(n)
j + eiκ∆xA

(n)
j+1 + e−iκ∆xA

(n)
j−1

Z = −A(n−1)
j

(4.3)

This problem can be recast into a normal generalized eigenvalue problem in the
following manner:

With the substitution ~b = (qX + Y )~a, (4.2) turns into(
qI Z
−I qX + Y

) (
b
a

)
= 0

which is equivalent to[(
0 Z
−I Y

)
+ q

(
I 0
0 X

)](
b
a

)
= 0

Now this is a general eigenvalue problem of the form

E~ξ = qF ~ξ, with E =
(

0 Z
−I Y

)
and F =

(
−I 0
0 −X

)
(4.4)

which we can easily solve numerically. If for all κ ∈]− π/∆x, π/∆x[ the largest
eigenvalue (measured in absolute value) is less than 1, the method is stable - possibly
with a certain condition on ∆x and ∆t, i.e. a local CFL-like condition.
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4.2 Numerical investigation
Now we want to solve the generalized eigenvalue problem with the matrices specified
in (4.4). We use again the bilinear elements specified in section 3.1, which means
that the element matrices are as given in appendix A.5 and on page 26. This is
done with the following Matlab-code:

1 function maxev = getmaxev(dx,dt,alph,kappa) % function start
2 %
3 [As,Aw,Ac,Ae,An] = defmatrices(dx,dt,alph); % Define element matrices
4
5 X = An; % Define X,...
6 Y = Ac + exp(i*kappa*dx)*Ae + exp(-i*kappa*dx)*Aw; % Y and
7 Z = - As; % Z
8 zrs = zeros(4); ID = eye(4); % 0- and ID-matrix
9

10 E = [zrs, Z; -ID, Y]; % Define E and
11 F = [-ID, zrs; zrs -X]; % F of the generalized EV-problem
12 %
13 maxev = max(abs(eig(E,F))); % Calculate maximal eigenvalue
14 %
15 end % function end
16
17 % Auxiliary function that defines the element matrices (Appendix A.5)
18 function [As,Aw,Ac,Ae,An] = defmatrices(dx,dt,alph)
19 ...
20 end

Now running this code many times with different values of γ = ∆t/∆x, α and
sampling κ from the interval ]− π/∆x, π/∆x[ gives different maximal eigenvalues.
In practice we of course do not redefine the element matrices again and again. The
code above serves only for clarification of the principle. The results are plotted
in figure 7. Already from figure 7, it is evident that the method suffers from

−40
−20

0
20

40

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

x 10
6

κ

Constant α

γ

M
ax

im
al

 e
ig

en
va

lu
e 

(a
bs

)

(a) Constant α = 1/∆x and ∆x = 1/10.
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(b) Constant γ = 1/10 and ∆x = 1/10.
Varying κ ∈]− π/∆x, π/∆x[ and varying α.

Figure 7: The maximal eigenvalue (magnitude) of the eigenvalue problem
(4.4) for different choises of the parameters γ = ∆t/∆x, α and κ.

instability for certain choices of the parameters. It seems the maximal eigenvalue
grows exponentially with linearly growing γ, while the dependence of κ is weaker -
even though it looks as if larger κ gives a worse maximal eigenvalue. Figure 8 shows
the maximal eigenvalue with yet another parameter held constant. We see strong
evidence that the method is unconditionally unstable. In figure 8(a), we see that
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(a) Constant α = 1/∆t and constant κ = 1.
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(b) Constant α = 1/∆t and γ = 1/10. Vary-
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Figure 8: The maximal eigenvalue (magnitude) of the eigenvalue problem
(4.4) for different choices of the parameters γ = ∆t/∆x, α and κ.

when γ approaches zero, the maximal eigenvalue semms to approach 1, but from
above, indicating that under no conditions, we get a maximal eigenvalue below 1.
Figure 8(b) shows that for a constant γ greater than 0 (namely 1/10), the maximal
eigenvalue is greater than 1 for all κ, again indicating instability. In figure 9 we see
a close-up graph of what happens for γ close to zero and we simply see again, that
the eigenvalue approaches 1 from above. This evidence of instability is of course
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Figure 9: Constant α = 1/∆t and constant κ = 1. Varying ∆t and ∆x = 1/10.

what we expected from the numerical experiments that we saw in section 3.3 and it
unfortunately confirms the fact that we have developed a method that is certainly
unstable if bilinear elements are used on a tensor product mesh. This however says
nothing about if the method is stable for other elements, since the matrices used in
the calculation of the eigenvalues are specific to this particular finite element space.
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5 Another approach: G. Richter

In this section we take a brief look at a somewhat similar semi-discontinuous space-
time FE-method devised by G.R. Richter in [1] from 1994.

5.1 The method
We first generalize the notation introduced in section 2.2 to d spatial dimensions
by simply redefining as follows

∇̄u := (ux1 , . . . , uxd
)

∇u := (∇̄u, ut)
♦u := (∇̄u,−ut)

∇ · u := ux1 + · · ·+ uxd
+ ut

n̄ := (nx1 , . . . , nxd
)

n := (n̄, nt)

Then
−∇ · (♦u) = f ⇔ utt −∆u = f

which is exactly the slighty more general wave equation Richter tries to solve in his
paper.

For an element K of the mesh, Richter divides the boundary of it in three
categories: the inflow boundary Γin(K) if nt < 0, outflow boundary Γout(K) if
nt > 0 and the ∂Q-boundary if nt = 0 and generally requires that nt = 0 only on
the boundary of Q.

Richter then uses the bilinear form

âK(u, v) = (utt −∆u, vt)K −
∫

Γin(K)

{
([ut]vt + [∇̄u] · ∇̄v)nt − ([ut]∇̄v + [∇̄u]vt)n̄

}
With the integration by parts formula (2.6) we see that

(utt −∆u, vt)K = −(∇ · ♦u, vt) = (♦u,∇vt)K − 〈♦u · n, vt〉∂K

which after usage of the DG magic formula turns into exactly our bilinear form of
(2.8) (i.e. the final bilinear form excluding the interior penalty term).

Richther, however, does not make use of an interior penalty term. His numerical
scheme reads:

For all K ∈M, seek uh ∈ Vh such that

1. â(uh, vh) = (f, (vh)t)K for all vh ∈ Pp(K)
2. [uh(x∗)] = 0, for one arbitrarily chosen point x∗ ∈ Γin(K)

where Pp(K) and Vh are as in section 2.3.
The second constraint of continuity in one point (this could for example be the

midpoint of the edge) serves two purposes. Since we test with ∂tvh, we actually
indirectly reduce the size of the testspace, and thus the second requirement is
needed to close the system, i.e. bring the number of equations up to the number
of unknowns. Secondly it enforces the continuity of the solution in combination
with the weak enforcement from the second term (the integral over Γin(K)) of âK .
Finally Richter enforces the boundary conditions strongly.
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5.2 Mesh requirements
Possibly the most interesting difference between Richters method and the method
presented in section 2 is the mesh requirements imposed by Richter. He requires
that all non-boundary edges satisfy

|nt| − |n̄| ≥ γ > 0 (5.1)

which is equivalent to requiring that n makes an angle less than π/4 from the t-
direction. This requirement specifically rules out vertical edges in the interior, since
we there have |nt| = 0.

Since this requirement limits the maximal time-distance within one element
in relation to the maximal space-distance, this requirement is in fact some kind
of CFL-condition. If we restrict ourselves to using meshes that repeat the same
pattern over and over again, it is not difficult to imagine meshes that satisfy this
condition.

However when we are in several spatial dimensions the creation of meshes that
still satisfy (5.1) is non-trivial. Richter, Falk and Monk give examples of such
meshes in [2, 3]. One of the strengths of even using a method on a true space-time
mesh is the possibility of refining the mesh locally according to possible irregularities
in the solution. Clearly this also requires some thought when constructing meshes
that still must satisfy (5.1). This is a drawback of the Richters method - even
though it can be handled.

5.3 Comparison
There are two obvious differences between Richters method and the method we
devised:

1. The different ways of enforcing continuity

2. The difference in the meshes allowed

Exactly to determine the importance of the first point above requires a deeper anal-
ysis and is beyond our scope here. But we can of course note that the requirement
of continuity at one point on every edge required by Richter plays an essential role
in the proof of stability of his method.

It is easier to figure out whether or not the usage of a mesh with vertical edges is
what causes instability in our method. This can be tested simply by implementing
it and perform a few experiments. This is something that we will do in the very
near future.
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6 Concluding remarks

In this thesis we have attempted to construct an interior penalty space-time dis-
continuous Galerkin finite element method for the wave equation. The motivation
was the succes of the same method for elliptic problems such as Poisson’s equation,
originally in [6].

We implemented the method in Matlab and unfortunately numerical experi-
ments showed blow up in the solution - and this regardless of the choice of param-
eters. This property was confirmed by a Von Neumann stability analysis, which
gave numerical evidence that the method indeed is unconditionally unstable for the
type of finite element space we used.

There are however other space-time DG and semi-DG methods that have suc-
ceeded for hyperbolic equations, [1, 2, 3, 5]. These methods differ from our method
firstly in that they do not use the method of interior penalty of interelement jumps
to enforce continuity. Secondly, and this is specific for [1, 2, 3], certain (quite
strict) conditions are imposed on the mesh. The mesh we used does not satisfy
these requirements.

Whether or not imposing these mesh-conditions on our method would remedy
the problems of our method is unclear since we currently do not know if the problem
is caused by the interior penalty, the mesh structure, the local FE space used or
something else. Our implementation was facilitated considerably by the use of a
tensorproduct mesh. It would be a more sizeable job to implement the method on
more general meshes and this is certainly one of our tasks for the future.
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A Code: Matlab

A.1 EVOLVE.M

1 function sol = evolve(xs,xe,dx,timesteps,dt,k)
2
3 N = ceil(abs(xe-xs) / dx); % Number of gridpoints
4 spaceGRID = linspace(xs,xe,N+1); % The spacegrid
5 sol = zeros(4,N,timesteps+2); % Initialize solution 3D-array
6
7 % Calculate initial conditions:
8 [sol(:,:,1),sol(:,:,2)] = calc_ICs(spaceGRID);
9

10 % Iteration
11 for j=3:timesteps+2
12
13 % Calculate next timeslab given the two previous
14 sol(:,:,j) = calc_new_slab(sol(:,:,j-1),sol(:,:,j-2),N,dx,dt,k);
15
16 end
17
18 % Plot the solution:
19 plotsolution(sol,spaceGRID,dt,timesteps,N);

A.2 CALC_NEW_SLAB.M

1 function new_slab = calc_new_slab(slab_im1,slab_im2,N,dx,dt,k)
2
3 % N = Number of elements per slab
4
5 new_slab = zeros(size(slab_im1)); % Initialize new slab
6
7 % For each element in slab, calculate its value,
8 % given the relevant values from the previous two slabs:
9 for i=2:N-1

10 new_slab(:,i) = ...
11 calc_one_elem( slab_im1(:,i-1),slab_im1(:,i),...
12 slab_im1(:,i+1),slab_im2(:,i),dx,dt,k );
13 end
14 % Calculate boundary elements:
15 % These depend on one less element, hence the special function:
16 new_slab(:,1) = calc_one_elem_BDL_ex(slab_im1(:,1),...
17 slab_im1(:,2),slab_im2(:,1),dx,dt,k);
18 new_slab(:,N) = calc_one_elem_BDR_ex(slab_im1(:,N-1),...
19 slab_im1(:,N),slab_im2(:,N),dx,dt,k);

A.3 CALC_ONE_ELEM.M

1 function [muN,As,Aw,Ac,Ae,An] = calc_one_elem(muW,muC,muE,muS,dx,dt,k)
2
3 % function that calculates alpha from h
4 % where h is the min. sidelength of the element:
5 alpha_func = @(h)( k / h );
6 alph = alph_func(dt); % Current alpha
7
8 % Define element matrices:
9 [As,Aw,Ac,Ae,An] = defmatrices(dx,dt,alph)

10
11 % Calculate new element:
12 muN = - AnINV * (As*muS + Aw*muW + Ac*muC + Ae*muE );
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A.4 CALC_ICS.M

1 function [slab_m1,slab_0] = calc_ICs(spaceGRID);
2
3 u0 = @(x)( sin(x) );
4 %v0 = @(x)( ... );
5
6 N = length(spaceGRID)-1;
7
8 temp = zeros(4,N);
9

10 % Assign values to temp according to the numbering used throughout:
11 for i=1:N
12
13 temp([1,4],i) = u0( spaceGRID(i) );
14 temp([2,3],i) = u0( spaceGRID(i+1) );
15
16 end
17
18 % Assuming v(x) = 0
19 % the two first slabs are then identical:
20 slab_m1 = temp;
21 slab_0 = temp;

A.5 DEFMATRICES.M

1 function [As,Aw,Ac,Ae,An] = defmatrices(dx,dt,alph)
2
3 % This function defines the element matrices for p = 1
4 % so the matrices are 4x4.
5 % Notation used: As = A-south, Aw = A-west, Ac = A-center, etc.
6 % All entries stem from exact integrations (See Maple code)
7
8 gam = dt / dx; gamINV = 1/gam;
9

10 % ---------------------------- As ------------------------------- %
11 As = zeros(4);
12 As([1 6 11 16]) = 1/6;
13 As([2 5 12 15]) = 1/12;
14 As([9 14]) = -1/6 * (1 + alph * dt);
15 As([10 13]) = -1/3 * (1 + alph * dt);
16 As = As*gamINV;
17
18 % ---------------------------- Aw ------------------------------- %
19 Aw = zeros(4);
20 Aw([1 6 11 16]) = - 1/6;
21 Aw([4 7 10 13]) = - 1/12;
22 Aw([5 12]) = - 1/3 * (-1 + alph * dx);
23 Aw([8 9]) = - 1/6 * (-1 + alph * dx);
24 Aw = Aw*gam;
25
26 % ---------------------------- Ac ------------------------------- %
27 Ac = zeros(4);
28 Ac([1 6 11 16]) = 1/3 * (dx * alph + dt * alph);
29 Ac([2 5 12 15]) = 1/6 * dx * alph;
30 Ac([4 7 10 13]) = 1/6 * dx * alph;
31
32 % ---------------------------- Ae ------------------------------- %
33 Ae = zeros(4);
34 Ae([1 6 11 16]) = - 1/6;
35 Ae([4 7 10 13]) = - 1/12;
36 Ae([2 15]) = - 1/3 * (-1 + alph * dx);
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37 Ae([3 14]) = - 1/6 * (-1 + alph * dx);
38 Ae = Ae*gam;
39
40 % ---------------------------- An ------------------------------- %
41 An = zeros(4);
42 An([1 6 11 16]) = 1/6;
43 An([2 5 12 15]) = 1/12;
44 An([3 8]) = -1/6 * (1 + alph * dt);
45 An([4 7]) = -1/3 * (1 + alph * dt);
46 An = An * gamINV;
47
48 end

A.6 CONSCHECK.M

1 function diff = conscheck(dx,dt,k)
2
3 % This function checks if the entire method is consistent with
4 % the function f defined below:
5
6 f = @(x,t)( x+t ); % The method should be consistent with
7 % e.g. linear functions like this one
8
9 % Calculate values of "previous elements":

10 muS = zeros(4,1); muW = muS; muC = muS; muE = muS;
11 muS = [f(dx,0), f(2*dx,0), f(2*dx,dt), f(dx,dt)]’;
12 muW = [f(0,dt), f(dx,dt), f(dx,2*dt), f(0,2*dt)]’;
13 muC = [f(dx,dt), f(2*dx,dt), f(2*dx,2*dt), f(dx,2*dt)]’;
14 muE = [f(2*dx,dt), f(3*dx,dt), f(3*dx,2*dt), f(2*dx,2*dt)]’;
15
16 % What the method SHOULD produce:
17 REALMUN = [f(dx,2*dt), f(2*dx,2*dt), f(2*dx,3*dt), f(dx,3*dt)]’;
18
19 % Calculate what the method DOES produce:
20 muN = calc_one_elem(muW,muC,muE,muS,dx,dt,k);
21
22 % Compare the two:
23 diff = muN - REALMUN;
24 reldiff = diff ./ REALMUN;
25
26 thr = 1e-9;
27
28 % Output if method is consistent, relative to thr:
29 if norm(diff) < thr
30 fprintf(’Consistent.’)
31 else
32 fprintf(’Not consistent.’)
33 end

A.7 PLOTSOLUTION.M

1 function plotsolution(sol,spaceGRID,dt,timesteps,N);
2
3 % This function plots the solution calculated with evolute
4
5 % The resolution to be used in EACH dimension in EACH element:
6 PLOTRES = 3;
7
8 figure; hold on; view([12 30 20]); % INIT figure
9

10 % For each timeslab:
11 % Plot timeslab with the function plot_time_slab (see below)
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12 for i = 1:timesteps+2
13 cur_points = gen_points_slab(spaceGRID,(i-1)*dt,i*dt);
14 temp = sol(:,1:N,i);
15 cur_vals = temp(:);
16 plot_time_slab(cur_points,cur_vals,PLOTRES);
17
18 end % END FOR
19
20 % Generate (x,t) points according to numbering used throughout
21 function points = gen_points_slab(spaceGRID,ts,te)
22
23 Nelems = length(spaceGRID)-1;
24 points = zeros(4*Nelems,2);
25
26 for j = 1:Nelems;
27
28 points(j*4-3,:) = [spaceGRID(j),ts]; % Setting the correct
29 points(j*4-2,:) = [spaceGRID(j+1),ts]; % values, numbering from
30 points(j*4-1,:) = [spaceGRID(j+1),te]; % lower left corner of square
31 points(j*4-0,:) = [spaceGRID(j),te]; % and moving counterclockwise
32
33 end % END FOR
34 end % END FUNCTION gen_points_slab
35
36 % Plot ONE time slab:
37 function plot_time_slab(points,vals,plotres)
38
39 % For each element in time slab, plot element using plot_elem_func:
40 for k = 1:4:length(vals);
41
42 cur_points = points(k:k+3,:) % The (x,t)-points and the function
43 cur_vals = vals(k:k+3); % values in currect element
44
45 plot_elem_func(cur_points,cur_vals,plotres); % Plot the element
46
47 end % END FOR
48 end % END FUNCTION plot_time_slab
49
50 % Plot one element function:
51 function plot_elem_func(a,z,plotres)
52
53 dx = abs( a(2,1) - a(1,1) ); % Delta x
54 dt = abs( a(4,2) - a(1,2) ); % Delta t
55 x=linspace(a(1,1),a(1,1)+dx,plotres); % x-Gridpoints WITHIN element
56 t=linspace(a(1,2),a(1,2)+dt,plotres); % t-Gridpoints WITHIN element
57 [X,T]=meshgrid(x,t); % Create meshgrid for plotting
58 XH = (X-a(1,1))/dx; % Calculate X-hat (from PHI-map)
59 TH = (T-a(1,2))/dt; % Calculate T-hat (from PHI-map)
60
61 % Calculate function values in element:
62 ZH = z(1)*(1-XH).*(1-TH) + z(2)*XH.*(1-TH) + z(3)*XH.*TH+z(4)*TH.*(1-XH);
63
64 surf(X,T,ZH); % Plot the function
65
66 end % END FUNCTION plot_elem_func
67 end % END FUNCTION plotsolution
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B Code: Maple

B.1 CALC_ELEM_MATRICES.MWS

> restart: with(LinearAlgebra):

Defining the map Φ for the element and all surrounding elements:
> xh[1]:=(x-a1x)/(dx): th[1]:=(t-(a1t-dt))/(dt):
> xh[2]:=(x-(a1x-dx))/(dx): th[2]:=(t-a1t)/(dt):
> xh[3]:=(x-a1x)/(dx): th[3]:=(t-a1t)/(dt):
> xh[4]:=(x-(a1x+dx))/(dx): th[4]:=(t-a1t)/(dt):
> xh[5]:=(x-a1x)/(dx): th[5]:=(t-(a1t+dt))/(dt):

Defining basis funcstion in the element and all surrounding elements:
> for i from 1 by 1 to 5 do

b1[i]:=unapply((1-th[i])*(1-xh[i]),(x,t)):
end do:

> for i from 1 by 1 to 5 do
b2[i]:=unapply(xh[i]*(1-th[i]),(x,t)):

end do:
> for i from 1 by 1 to 5 do

b3[i]:=unapply(xh[i]*th[i],(x,t)):
end do:

> for i from 1 by 1 to 5 do
b4[i]:=unapply(th[i]*(1-xh[i]),(x,t)):

end do:

Defining outer unit normal vectors to the element and their negatives:
> N[1] := Vector([0, -1]): Nm[1] := -N[1]:
> N[2] := Vector([-1, 0]): Nm[2] := -N[2]:
> N[4] := Vector([1, 0]): Nm[4] := -N[4]:
> N[5] := Vector([0, 1]): Nm[5] := -N[5]:

Defining functions used in calculation of bilinear form:
> dia := (u,x,t) -> Vector([D[1](u)(x,t), -D[2](u)(x,t) ]):
> jump := (vp,vm,vecp,vecm,x,t) -> vp(x,t)*vecp + vm(x,t)*vecm:
> avg := (up,um) -> 1/2 * (up + um):

The bilinear form broken into pieces corresponding to the elements on each side of the
center element. Number 1 is south, 2 west, 3 center, 4 east and 5 is north. In these
definitions, u must be a basis function supported outside the center element, while v
must be supported inside the center element. The definitions are from (2.9).

> bilin[1] := (um,vp) -> int( -avg(dia(0,x,a1t),dia(um,x,a1t)).
jump(vp,0,N[1],Nm[1],x,a1t) - avg(dia(vp,x,a1t),dia(0,x,a1t)).
jump(0,um,N[1],Nm[1],x,a1t) + alphS * jump(0,um,N[1],Nm[1],x,a1t).
jump(vp,0,N[1],Nm[1],x,a1t) , x=a1x..a1x+dx):

> bilin[2] := (um,vp) -> dt*int( -avg(dia(0,a1x,a1t+(1-s)*dt),
dia(um,a1x,a1t+(1-s)*dt)).jump(vp,0,N[2],Nm[2],a1x,a1t+(1-s)*dt)
- avg(dia(vp,a1x,a1t+(1-s)*dt),dia(0,a1x,a1t+(1-s)*dt)).
jump(0,um,N[2],Nm[2],a1x,a1t+(1-s)*dt) + alphW * jump(0,um,N[2],Nm[2],
a1x,a1t+(1-s)*dt).jump(vp,0,N[2],Nm[2],a1x,a1t+(1-s)*dt) , s=0..1):
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> bilin[4] := (um,vp) -> int( -avg(dia(0,a1x+dx,t),dia(um,a1x+dx,t)).
jump(vp,0,N[4],Nm[4],a1x+dx,t) - avg(dia(vp,a1x+dx,t),dia(0,a1x+dx,t)).
jump(0,um,N[4],Nm[4],a1x+dx,t) + alphE * jump(0,um,N[4],Nm[4],a1x+dx,t).
jump(vp,0,N[4],Nm[4],a1x+dx,t) , t=a1t..a1t+dt):

> bilin[5] := (um,vp) -> dx*int( -avg(dia(0,a1x+(1-s)*dx,a1t+dt),
dia(um,a1x+(1-s)*dx,a1t+dt)).jump(vp,0,N[5],Nm[5],a1x+(1-s)*dx,a1t+dt)
- avg(dia(vp,a1x+(1-s)*dx,a1t+dt),dia(0,a1x+(1-s)*dx,a1t+dt)).
jump(0,um,N[5],Nm[5],a1x+(1-s)*dx,a1t+dt) + alphN * jump(0,um,N[5],
Nm[5],a1x+(1-s)*dx,a1t+dt).jump(vp,0,N[5],Nm[5],a1x+(1-s)*dx,
a1t+dt) , s=0..1):

Defining function to calculate the element matrices 1, 2, 4 and 5:
> A := i -> Matrix([[

simplify( bilin[i](b1[i],b1[3]) ),simplify( bilin[i](b2[i],b1[3])),
simplify( bilin[i](b3[i],b1[3]) ),simplify( bilin[i](b4[i],b1[3]))],
[simplify( bilin[i](b1[i],b2[3])),simplify( bilin[i](b2[i],b2[3])),
simplify(bilin[i](b3[i],b2[3])),simplify(bilin[i](b4[i],b2[3]))],
[simplify( bilin[i](b1[i],b3[3])),simplify( bilin[i](b2[i],b3[3])),
simplify( bilin[i](b3[i],b3[3])),simplify( bilin[i](b4[i],b3[3]))],
[simplify( bilin[i](b1[i],b4[3])),simplify( bilin[i](b2[i],b4[3])),
simplify( bilin[i](b3[i],b4[3])),simplify( bilin[i](b4[i],b4[3]))]]):

Now for the element matrix corresponding to the center element, there are more
that one integral contributing. We define all contributions:
> bilinc[1] := (up,vp) -> int( -avg(dia(up,x,a1t),dia(0,x,a1t)).

jump(vp,0,N[1],Nm[1],x,a1t) - avg(dia(vp,x,a1t),dia(0,x,a1t)).
jump(up,0,N[1],Nm[1],x,a1t) + alphS * jump(up,0,N[1],Nm[1],x,a1t).
jump(vp,0,N[1],Nm[1],x,a1t) , x=a1x..a1x+dx):

> bilinc[2] := (up,vp) -> dt*int(-avg(dia(up,a1x,a1t+(1-s)*dt),
dia(0,a1x,a1t+(1-s)*dt)).jump(vp,0,N[2],Nm[2],a1x,a1t+(1-s)*dt)
-avg(dia(vp,a1x,a1t+(1-s)*dt),dia(0,a1x,a1t+(1-s)*dt)).jump(up,0,N[2],
Nm[2],a1x,a1t+(1-s)*dt) + alphW * jump(up,0,N[2],Nm[2],a1x,a1t+
(1-s)*dt).jump(vp,0,N[2],Nm[2],a1x,a1t+(1-s)*dt) , s=0..1);

> bilinc[3] := (u,v)->int(int( D[1](u)(x,t)*D[1](v)(x,t)-
D[2](u)(x,t)*D[2](v)(x,t) ,x=a1x..a1x+dx),t=a1t..a1t+dt);

> bilinc[4] := (up,vp) -> int( -avg(dia(up,a1x+dx,t),dia(0,a1x+dx,t)).
jump(vp,0,N[4],Nm[4],a1x+dx,t) - avg(dia(vp,a1x+dx,t),dia(0,a1x+dx,t)).
jump(up,0,N[4],Nm[4],a1x+dx,t) + alphE * jump(up,0,N[4],Nm[4],a1x+dx,t).
jump(vp,0,N[4],Nm[4],a1x+dx,t) , t=a1t..a1t+dt);

> bilinc[5] := (up,vp) -> dx*int( -avg(dia(up,a1x+(1-s)*dx,a1t+dt),
dia(0,a1x+(1-s)*dx,a1t+dt)).jump(vp,0,N[5],Nm[5],a1x+(1-s)*dx,
a1t+dt) - avg(dia(vp,a1x+(1-s)*dx,a1t+dt),dia(0,a1x+(1-s)*dx,a1t+dt)).
jump(up,0,N[5],Nm[5],a1x+(1-s)*dx,a1t+dt) + alphN * jump(up,0,N[5],
Nm[5],a1x+(1-s)*dx,a1t+dt).jump(vp,0,N[5],Nm[5],a1x+(1-s)*dx,
a1t+dt) , s=0..1);

Similar to the function A above, we define:
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> Ac := i -> Matrix([[
simplify(bilinc[i](b1[3],b1[3])),simplify(bilinc[i](b2[3],b1[3])),
simplify(bilinc[i](b3[3],b1[3])),simplify(bilinc[i](b4[3],b1[3]))],
[simplify(bilinc[i](b1[3],b2[3])),simplify(bilinc[i](b2[3],b2[3])),
simplify(bilinc[i](b3[3],b2[3])),simplify(bilinc[i](b4[3],b2[3]))],
[simplify(bilinc[i](b1[3],b3[3])),simplify(bilinc[i](b2[3],b3[3])),
simplify(bilinc[i](b3[3],b3[3])),simplify(bilinc[i](b4[3],b3[3]))],
[simplify(bilinc[i](b1[3],b4[3])),simplify(bilinc[i](b2[3],b4[3])),
simplify(bilinc[i](b3[3],b4[3])),simplify(bilinc[i](b4[3],b4[3]))]]);

Now the following commands produce the element matrices that we wanted:
> As:=A(1): Aw:=A(2): Ae:=A(4): An:=A(5):
> Ac_TOTAL := Ac(1) + Ac(2) + Ac(3) + Ac(4) + Ac(5):

And the result is

As =
∆x
∆t


1/6 1/12 −(1 + α∆t)/6 −(1 + α∆t)/3
1/12 1/6 −(1 + α∆t)/3 −(1 + α∆t)/6

0 0 1/6 1/12
0 0 1/12 1/6



Aw =
∆t
∆x


−1/6 (1− α∆x)/3 (1− α∆t)/6 −1/12

0 −1/6 −1/12 0
0 −1/12 −1/6 0

−1/12 (1− α∆x)/6 (1− α∆t)/3 −1/6



Ae =
∆t
∆x


−1/6 0 0 −1/12

(1− α∆x)/3 −1/6 −1/12 (1− α∆x)/6
(1− α∆x)/6 −1/12 −1/6 (1− α∆x)/3

−1/12 0 0 −1/6



An =
∆x
∆t


1/6 1/12 0 0
1/12 1/6 0 0

−(1 + α∆t)/6 −(1 + α∆t)/3 1/6 1/12
−(1 + α∆t)/3 −(1 + α∆t)/6 1/12 1/6



Ac = α


(∆x+ ∆t)/3 ∆x/6 0 ∆t/6

∆x/6 (∆x+ ∆t)/3 ∆t/6 0
0 ∆t/6 (∆x+ ∆t)/3 ∆x/6

∆t/6 0 ∆x/6 (∆x+ ∆t)/3


which is exactly the expressions we used in the matlab implementation (see ap-
pendix A.5).
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C Proof of the DG Magic Formula

We want to proof the DG Magic Formula, which in the version we need it, is∑
K

∫
∂K

♦u · nv dS =
∫
E
{♦u}[v]n +

∫
EI

[♦u]n{v}

where the sum runs over all elements K of the mesh M. The set of edges of M is
denoted E , the set of boundary edges is E∂ and EI = E − E∂ . In addition, we let
v+ and v− denote the trace of the function v on either side of an edge e. Similarly
are n+ and n− outwards directed unit normal vectors corresponding to v+ and v−,
and obviously n− = −n+.

First we expand the first term∫
E
{♦u}[v]n =

∑
EI

∫
e

{♦u}[v]n +
∑
E∂

∫
e

{♦u}[v]n

=
∑
e∈EI

∫
e

1
2
(♦u+ + ♦u−)(n+v+ + n−v−) +

∑
e∈E∂

∫
e

♦u · nv

The second term is∫
EI

[♦u]n{v} =
∑
e∈EI

∫
e

(n+♦u+ + n−♦u−)
1
2
(v+ + v−)

Summing the two and expanding gives∫
E
{♦u}[v]n +

∫
EI

[♦u]n{v} =∑
e∈EI

∫
e

1
2
(♦u+ + ♦u−)(n+v+ + n−v−) + (n+♦u+ + n−♦u−)

1
2
(v+ + v−) +

∑
e∈E∂

∫
e

♦u · n =

1
2

∑
e∈EI

∫
e

[
♦u+n+v+ + ♦u−n−v− + ♦u+n+v+ + ♦u−n−v−+

♦u+n−v− + ♦u−n+v+ + ♦u+n+v− + ♦u−n−v+
]
+

∑
e∈E∂

∫
e

♦u · n

Now because n− = −n+, the four terms in the second line in the [ ]-brackets cancel,
and we are left with∫

E
{♦u}[v]n +

∫
EI

[♦u]n{v} =
∑
e∈EI

∫
e

♦u+n+v+ + ♦u−n−v− +
∑
e∈E∂

∫
e

♦u · n

= 2
∑
e∈EI

∫
e

♦u · nv +
∑
e∈E∂

∫
e

♦u · n

=
∑

K∈M

∑
e∈K

♦u · nv =
∑

K∈M

∫
∂K

♦u · nv

which is exactly what we wanted to show.


