ETH ZURICH

BSc THESIS

A Parallel Hybrid Particle
Mesh Framework

Author:
J. Progsch

Supervisors:
Dr. A. Adelmann & Prof. Dr. R. Hiptmair

July 20, 2012

Abstract

Modern computing platforms pose new challenges to developers by
requiring the handling of multiple levels of parallelism and by incor-
porating heterogeneous compute units in the form of multicore pro-
cessors and accelerators. This report proposes an approach to take
these developments into account and outlines an extensible frame-
work architecture for grid and particle based simulations based on tag
dispatching.

1 Introduction

Parallelism has become the key to achieving high performance in modern
computing. Parallel computing has become commonplace on all levels of
hardware all the way down to mobile platforms. Massively parallel solutions
have even found their way into desktop platforms in the form of graphics
processing units. In the domain of high performance computing highly inte-
grated massively parallel solutions such as Intel MIC (Many Integrated Core)

architecture [1] will play an important role in the future since they greatly
improve the overall compute power and energy efficiency of systems on all
scales. To accommodate these changes in computing hardware software and
the frameworks and libraries it is based on have to be designed around het-
erogeneity and parallelism. Existing libraries such as IPPL (Independent
Parallel Particle Layer) [2] and POOMA (Parallel Object-Oriented Methods
and Applications) [3] are designed to support a single execution model at
a time and provide only MPI (Message Passing Interface) or shared mem-
ory parallel programming models. It is therefore desirable to develop a new
framework that focuses on unification and integration of current and future
trends in high performance computing. This report focuses on the design
of such a framework for particle and grid based simulation. Applications
of such simulations include gravitational N-body simulations, space charge
simulations in beam optics as well as finite difference schemes on grids. This
report will use a simple stencil operation (the discrete Laplace operator) on a
three dimensional grid to demonstrate and explain the concepts of the frame-
work. The framework prototype serves as a proof-of-concept. It is developed
in C++ and heavily relies on template meta programming and the Boost [4]
libraries.

2 Data Parallelism

The parallelization for the framework is done mostly with a data parallel ap-
proach based on domain decomposition. A finite simulation domain is chosen
such that it contains all the particles and regions of interest. This domain
is then divided into sub domains which are distributed among the compute
units (such as MPI nodes, processors, accelerators etc.). The domain decom-
position can have multiple levels to reflect the hierarchical structure of the
used hardware. Such a system can for example consist of multiple MPI nodes
each containing one or multiple multicore processors and accelerators. It is
possible to abstract these kind of systems by pure MPI parallelism. However,
the hierarchical structure and different compute powers and bandwidths are
not taken into account which in turn can prevent good load balancing. The
different hierarchies of the parallelization are shown in figure [II The sim-
ulation domain is first divided into as least as many sub domains as there
are MPI nodes. Preferably even a multiple of the actual amount of compute
units (processor cores). These sub domains are then distributed among MPI

Global Domain

Subdomains (Chunksﬁ
MPI Domains /%

\

8

Single MPI Node ~ Gridl
Grid2

Grid3

\
/

Task 1 Task 2 Task 3

Local Tasks

\\]
NN
NN
:‘\\D

Figure 1: Domain decomposition into MPI and task domains.

nodes. When a task is launched for multiple data structures (grids, parti-

cle containers) that share the same domain decomposition, one sub task is
launched per sub domain and operates only on the elements inside that sub
domain. This way the sub tasks are independent of each other and can be
scheduled according to the available compute units. They might be sched-
uled sequentially on a single core node or in multiple threads on a multicore
node. The tasks can even be distributed among heterogeneous compute units
(CPUs and accelerators) within the same MPI node. For the purposes of ap-
plying the discrete Laplace operator mentioned in the introduction two grids
are needed. A source and a destination grid. Those grids have to share the
same domain decomposition such that their data chunks match in size and
position. Zhe operation does not depend on the outer shape of the chunks.
This allows us to choose any decomposition of the grid we deem appropriate
for the underlying hardware configuration. A reasonable starting point would
be to uniformly subdivide such that the amount of sub domains matches the
total amount of compute units/processors. On execution of the task one
thread is created for each sub domain. Each of those threads then executes
the stencil operation independently on it’s assigned source and destination
chunks by taking the source chunk as input and writing the result to the
destination chunk.

3 Programming Techniques

3.1 Template Meta programming

Through templates C++ provides the means to offload significant amounts
of logic to compile time. Furthermore since templates are evaluated stati-
cally they don’t incur additional run time cost through dynamic dispatching
or dynamic casting. Sadly template meta programming is cumbersome and
hard to debug. To reduce the burden of writing template code and improve
maintainability Boost provides powerful meta programming libraries such as
MPL [5] 6], Fusion [7] and Proto [§]. MPL mimics the functionality of the
standard template library (STL) by providing container and algorithms for
types (as opposed to run time data). It allows templates to store, manipu-
late and iterate over collections of types. The Fusion library connects pure
compile time type constructs with run time data. It does so by providing the
essentially same types as type containers as MPL with the difference that
Fusion types can be instantiated and can serve as heterogeneous collections

of data while still allowing for iteration and retrieval of type information
of the members (see Appendix for a more detailed explanation and an
example). MPL and Fusion are central to the implementation of the dis-
cussed design. The third mentioned library (Proto) builds upon MPL and
Fusion and provides means to implement expression templates and domain
specific languages within C++. It is not used in the current proof of concept
implementation of the design, but could be used to great effect to provide
expressive interfaces for higher level operations such as stencil operators and
particle updates.

3.2 Tag Dispatching

An important feature of the framework has to be extensibility. Preferably
extending the functionality, to for example additional execution models like
OpenCL [9] or CUDA (Compute Unified Device Architecture) [10], should
be doable in a non intrusive fashion and without adding strong dependencies
to the core framework. One way to do this is to provide hooks via tem-
plate specialization for tags. This technique is called tag dispatching and is
closely related to “traits” that are for example extensively used in the Boost
libraries. It is based on the ability to provide different implementations of
a template class based on the template arguments. By providing specializa-
tion for new types one can therefore change and extend the functionality of
internally used template types in a framework. Tags are empty types that
are there solely to provide named types for which such templates can be
specialized. The tag can then be passed to the framework which in turn
can “pull in” all the functionality associated with that tag. This mechanism
simplifies the addition of new functionality by providing well defined entry
points for the extensions while also decoupling the extension from internals
of the framework.

And example of this technique is provided in Listing [Il In the proposed
framework the components can be supplied with sequences of such tags to
attach multiple different behaviors to a single component.

4 Structure of a Particle-Mesh library

The framework has to provide two central data structures which are grids
and particle containers. Along with these structures it also has to expose

1

2

4

Listing 1 Example for tab based extensions.

template<class T, class Tag>
struct PlatformSpecific;

template<class T, class Tag>

5 class Container {

17

5 public:

/7. ..
private:
PlatformSpecific<T, Tag> representation;

}
class cpu_tag { };

template<class T>

5 struct PlatformSpecific<T, cpu_tag> {

std::vector<T> data;

};
class acc_tag { };

template<class T>
struct PlatformSpecific<T, acc_tag> {
acc_buffer<T> data;

};

ways to implement and execute operators that act on them which includes
stencil operations, particle updates, particle particle interactions, gather and
scatter operations of particle data onto and off the grids. The particle con-
tainers and grids are attached to a layout object which holds the information
about how the data chunks are distributed among MPI processes. In the
proposed approach the layout in turn is attached to a context object that
determines which resources are usable by the attached structures. The con-
text contains the MPI communicator used for the process level parallelism as
well as tagged Processor components that contain the information required
for the different execution models such as single threaded execution, thread
pool based, OpenCL based etc.. Similarly the data chunks contain tagged
representation objects that allow the chunk to switch between different
representations required for different execution models. The tasks that oper-
ate on the grids and particle containers are implicitly defined by a TaskInfo
object and one or more TaskImplementation template specializations. The
TaskInfo object is a user defined type that contains the required information
about the arguments of the Task. The TaskImplementation template gets
specialized for any desired TaskInfo/tag combination. By doing this exist-

Context TasklInfo Taskimpl<Taskinfo,cpu>

- void execute(TaskInfo) - void run()

| Argument (Grid/Particles)

ProcessorContext<cpu>

| Argument (Grid/Particles)

Taskimpl<Taskinfo,gpu>

ProcessorContext<gpu>

| Other arguments... | - void run()

| ProcessorContext<...>

|

Taskimpl<Taskinfo,...>

- void run()
Layout
Node LUT
| ~
Distributed Grid Distr. Particles
Grid Chunk Part. Chunk

representation<cpu> representation<cpu>

representation<gpu> representation<gpu>

representation<...> representation<...>

Figure 2: Diagram of principal components

ing TaskInfo objects can be extended to additional execution models with
relative ease. On execution the context tries to instantiate a fitting imple-
mentation template and on success enqueues one instance of the task for each
data chunk of the arguments on their respective processors. A component
diagram of the proposed framework is presented in Figure

4.1 Context

The Context object takes one template argument which has to be a MPL con-
tainer containing one or more tags for the execution models available through
that context. In addition the constructor takes a Boost.MPI communicator

that it stores and exposes to the attached objects. The tag container is
then used to instantiate a Boost.Fusion map that provides a mapping of tag
to ProcessorContext<tag> where the ProcessorContext template is spe-
cialized to hold the specific resources required for execution of tasks on the
computing resources associated with tag. So the thread pool_tag for exam-
ple would instantiate the actual thread pool object in the ProcessorContext
and a opencl_tag would create the required OpenCL contexts, queues etc..

4.2 Layout

The layout has the sole purpose to associate domains of the grids/particle
containers to chunks and their respective “address” within the MPI nodes.
It does so by storing domain/rank-pairs in a node look up table (LUT). In
addition it forwards the Context it takes in the constructor to the attached
objects. In the prototype framework the rank to domain mapping is provided
by a multipmap. The inverse mapping is done by searching the value set of
the multimap which could be improved on by using a tree data structure as
it is done in IPPL [2].

4.3 DistributedGrid and DistributedParticles

The DistributedGrid/-Particle objects take a Layout object and create data
chunks for each domain in the layout on the MPI rank associated with that
domain. The Chunk objects acquire the tag list from the Context via the
Layout and similarly to the map of ProcessorContext objects in the context
the chunks contain maps of ChunkRepresentation objects. These represen-
tation objects allow the chunk to be converted into execution model specific
representations such as for example device side buffers for accelerator cards.

4.4 Tasks

Tasks that can be executed on the grids and particle containers are specified
by a TaskInfo object which can be any type that exposes the associated ar-
guments through a fusion sequence. The actual implementation of the task
is done inside a specialization of the TaskImplementation<TaskInfo, Tag>
template which has a run () member function that takes the arguments speci-
fied in the info object in their tag specific representation as a fusion sequence.
For the purpose of our discrete Laplace operator the task information will

be supplied by a user defined template struct LaplaceStencil. The class
simply stores references to the source and destination grids and exposes them
as fusion sequence in its argument member. The TaskImplementation then
gets specialized for LaplaceStencil in the first template argument and the
tag of the target execution model in the second template argument. Possible
implementations are shown in Listing 2]

5 Parallel Execution Models

In the proposed approach process parallelism through MPI is implicitly sup-
ported by the Context and Layout objects. Thread parallelism and other
parallel execution models such as OpenCL and CUDA is provided by in-
stancing the context with additional tags to pull in the respective Processor
objects and data representations. For pure MPI parallel execution one would
only pass a tag for single threaded execution to the context. For a mixed ap-
proach with multiple threads per process and OpenCL one would instantiate
a context object with a thread pool and a OpenCL tag to pull in the respec-
tive processor objects and data representations. Thread pool parallelism can
be implemented by means of C+411, Boost.Threads or Intel Treading Build-
ing Blocks. Thanks to the tag dispatching mechanism these implementations
can be made interchangeable.

6 Conclusion

An extensible design for a particle mesh framework has been developed and
a prototype has been implemented as a proof of concept. The prototype
shows that the proposed method of tag based dispatch to different compute
units and data representations can be efficiently implemented in terms of
template meta programming within libraries provided by Boost. In addition
different approaches to thread level parallelism and GPGPU execution mod-
els in the form of OpenCL have been studied to aid with the design of the
architecture. Future development towards a production level framework will
include the integration of expression template [11] [12] [13] functionality to
lift the burden of explicit implementation of tasks from the user (most likely
by means of Boost.Proto). Further challenges arise from the need to load
balance the different execution models that can be present in the framework

18

[CENCEE

(ST SO Ryt

NN N NN

W oW W W W NN
TR W= O ©

Listing 2 Implementation of a TaskInfo and TaskImplementation objects
for the discrete Laplace operator. L and T are template arguments of the
DistributedGrid templates. L supplies the Layout type and T is the ele-
ment type of the grids.

template<class L, class T>
struct LaplaceStencil {
// constructor taking source and destination grid
LaplaceStencil (DistributedGrid<L, T> &source,
DistributedGrid<L, T> &destination)
arguments (source, destination) { }

// the arguments are stored in a fusion sequence type
typedef fusion::vector<

DistributedGrid<L, T>&, DistributedGrid<L, T>&
> Arguments_t;

Arguments_t arguments;

};

// implementation for execution in a thread pool (thread_pool_tag)
template<class L, class T>
class TaskImplementation<LaplaceStencil<L,T>, thread_pool_tag> {
public:

template<class A>

void run(A arguments) const

{
// extract the arguments from the fusion sequence
auto &source = fusion::at_c<0>(arguments);
auto &destination = fusion::at_c<1>(arguments);
// find local domain
NRange<index_t ,3> local = source.chunk.bounds();
// perform the stencil operation
for(index_t i = local[0].begin;i<local[0].end;++1i)
for(index_t j = locall[l].begin;j<locall1l].end;++j)
for(index_t k = local[2].begin;k<local[2].end;++k)
{
destination.chunk(i,j,k) = -6xsource.chunk(i,j,k)
+ source.chunk(i+l,j,k) + source.chunk(i-1,j,k)
+ source.chunk(i,j+1,k) + source.chunk(i,j-1,k)
+ source.chunk(i,j,k+1) + source.chunk(i,j,k-1);
}
}

10

and from assuring efficient latency hiding between the many asynchronous
communication layers.

References

1]

[11]
[12]

[13]

Intel MIC. http://www.intel.com/content/www/us/en/
architecture-and-technology/many-integrated-core/
intel-many-integrated-core-architecture.html.

A. Adelmann. The IPPL (Independent Parallel Particle Layer) Frame-
work . Technical Report PSI-PR-09-05, Paul Scherrer Institut, 2009.

POOMA. http://acts.nersc.gov/formertools/pooma/index.html.
Boost. http://www.boost.org/.

Boost.MPL. http://www.boost.org/doc/libs/1_50_0/1ibs/mpl/
doc/index.html.

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogram-
ming: Concepts, Tools, and Techniques from Boost and Beyond (C++
in Depth Series). Addison-Wesley Professional, 2004.

Boost.Fusion. http://www.boost.org/doc/1libs/1_50_0/1libs/
fusion/doc/html/index.html.

Boost.Proto. http://www.boost.org/doc/libs/1_50_0/doc/html/
proto.html.

OpenCL. http://www.khronos.org/opencl/.

CUDA. http://www.nvidia.com/content/cuda/
cuda-developer-resources.htmll

Todd Veldhuizen. Expression templates, c++ report 7. 1995.

C. Pflaum and Z. Rahimi. Parallelization of staggered grid codes with
expression templates.

J. Progsch, Yves Ineichen, and Andreas Adelmann. A new vectoriza-
tion technique for expression templates in c++. American Journal of
Undergraduate Research, Volume 10, Number 4, 2012.

11

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://acts.nersc.gov/formertools/pooma/index.html
http://www.boost.org/
http://www.boost.org/doc/libs/1_50_0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_50_0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_50_0/libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/1_50_0/libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/1_50_0/doc/html/proto.html
http://www.boost.org/doc/libs/1_50_0/doc/html/proto.html
http://www.khronos.org/opencl/
http://www.nvidia.com/content/cuda/cuda-developer-resources.html
http://www.nvidia.com/content/cuda/cuda-developer-resources.html

A Devlog Entries

The following subsections are entries of a development weblog that was writ-
ten during development of the prototype framework. The entries treat vari-
ous implementation aspects in more detail.

A.1 Fun with Fusion

Lets have a look at Fusion. Fusion is a part of Boost and provides facilities
to handle fusion sequences. These sequences bridge the gap between compile
time type containers such as Alexandrescus typelists or the classes present
in Boost’s MPL and run time types. As opposed to a pure type containers
fusion sequences can be instantiated. A fusion sequences is anything that
fulfills the necessary concepts (similar to STL containers). A lot of types
that are commonly used already are fusion sequences or can be adapted
as such. Examples are std: :pair, tuples, arrays and even structs can be
adapted as fusion sequences. Fusion also has it’s own types that we can use
like for example fusion: :vector

typedef fusion::vector<int,float,char> sequence_t;
sequence_t sequence (42, 3.14f, ’c’);

cout << fusion::size(sequence) << endl;

5 cout << fusion::at_c<1>(sequence) << endl;

//we can also get compile time information
int array[fusion::result_of::size<sequence_t>::Value];

remove_reference<
fusion::result_of::at_c<sequence_t, 1>::type
>::type foo; // foo is a float

Fusion is generally very useful for meta programming and is used by many
of the other Boost libraries. A specific usage I see for my bachelor thesis
project is in the definition of particle formats. Since Im developing a particle
framework I need a way to tell the framework what a Particle actually is.
From a programmers point of view a particle is a collection of data such as
position, velocity and charge. But it might also contain non physical data
such as a Id to identify particles globally or flags. So the obvious thing
would be to have the library user define the particle in terms of a struct.
The problem with that is, that the library actually doesnt know what is in
that struct. But if the particle is defined as a fusion sequence the framework
knows all the static types and can access the data in the particle. Luckily

12

Y U s W N R

N I

ot

[

Y o

we dont even have to choose between fusion sequences and structs because
we can adapt a struct as a fusion sequence. So we can do this:

typedef fusion::vector<
Vector3d, // position
Vector3d, // velocity
double, // charge
size_t // 1D

> particle_t;

or this:

struct particle_t {
Vector3d position;
Vector3d velocity;
double charge;
size_t Id;

};

// tell fusion about the struct

BOOST_FUSION_ADAPT_STRUCT (
particle_t,
(Vector3d, position)
(Vector3d, velocity)
(double, charge)
(size_t, Id)

)

An example where being able to query the properties of the particle type
would be useful is when we want to be able to decide the storage order of
the particles in the library. For graphics applications we may want the data
to be laid out as an array of structs, in other contexts a struct of arrays can
be preferable. Here is how this could look like:

struct vectorify {
template<class> struct result;

template<class F, class T>
struct result<F(T)> {
typedef std::vector<T> type;
3
}s

struct Array0fStructs { };
struct StructOfArrays { };

// generic "broken on purpose" version
template <class P, class storage_order, class Enable=void>
class ParticleContainer {
private:
ParticleContainer () { }

1
// StructOfArrays specialization

template<class P>
class ParticleContainer<

13

W oW NN NN N NN
VN P O © 0N O TR W

IS N

P, StructOfArrays,
typename boost::enable_if<
boost::fusion::traits::is_sequence<P>

>::type>
{
public:
typedef typename boost::fusion::result_of::as_vector<
typename boost::fusion::result_of::transform<
P, vectorify
>::type
>::type storage_type;
typedef P particle_type;
5 private:
storage_type data_;
1

// Array0fStructs specialization
template<class P>
class ParticleContainer<
P, Array0fStructs,
typename boost::enable_if<
boost::fusion::traits::is_sequence<P>
>::type>
{
public:
typedef std::vector<P> storage_type;
typedef P particle_type;

private:
storage_type data_;

The enable_if constructs on lines 22 and 41 make sure that the container
can only be instantiated with fusion sequences. Lines 27-31 and 46 are where
the storage types are defined. In the array of structs case we simply cre-
ate a std::vector of the particle type. In the struct of arrays we have
to do some template/fusion magic. The vectorify functor is a metafunc-
tion that we can use with the metafunction algorithm fusion: :transform
analogously to what std: :transform does. So it transforms a sequence like

fusion: :vector<int, float, char>into fusion::vector<std::vector<int>,
std: :vector<float>, std::vector<char> >, which is exactly what we wanted.

A.2 Making OpenCL slightly less awkward

One of the goals of my bachelor thesis is to design the simulation framework
in such a way that it can also use GPUs. I have used both OpenCL and
CUDA in the past and figured I would concentrate on OpenCL for now
since it allows to generate kernels at run time. Sadly OpenCLs API is very

14

N =

NN NN N
S G A W N

©

w NN

43

45

Cish (12 argument functions, void pointers etc.) and verbose. So naturally
the first thing to do is wrapping it in a more C++ way. Since I already
wrote wrappers around a lot of OpenGL functionality (see here on github)
and OpenCL resembles OpenGL in a lot of ways I am going to orient my self
after that. So far only the very bare bones functionality is implemented which
is context creation, buffers and kernels. The current version is available at
http://github.com/progschj/clp. And finally here is a code sample that
shows the usage:

#include <iostream>
#include <algorithm>

#include "include/CLUtility.h"
#include "include/CLEvent.h"

#include "include/CLContext.h"
#include "include/CLBuffer.h"
#include "include/CLProgram.h"

int main ()

{
// create a context for the second GPU
clp::Context context (CL_DEVICE_TYPE_GPU, 1, 1);

// create and build a program

clp::Program program(context);
program.setSource (

"kernel void saxpy (\n"

" global float *x, global float *y, float a\n"
n) \nll

n {\nu

" const uint index = get_global_id (0) ;\n"
" x[index] += axy[index];\n"

" \nu

)

program.build () ;

// obtain a kernel object
clp::Kernel<void(float#*,float*,float)> saxpy =
program.getKernel<void(float*,float*,float)>("saxpy");

// create device buffers
clp::Buffer<float> x(context, 1024);
clp::Buffer<float> y(context, 1024);

// map the buffers
clp::Event xevent = x.map();
clp::Event yevent y.map () ;

// £ill them with data and unmap
xevent.wait ();
std::fill(x.begin(), x.end (), 45);
x.unmap () ;

yevent.wait () ;

15

std::£fill(y.begin(), y.end(), 3);
y.unmap () ;

// execute kernel
saxpy (clp::Worksize (1024,256), x, y, 13);

return O;

A.3 Why I think pure MPI doesnt cut it anymore

The reason is simple: Because it doesnt represent the underlying hardware
very well.

MPI sees a cluster as a bunch of processors each with their own memory
and a big fat network connecting them. And even tough MPI itself doesnt
assume this, most programs are written under the assumption that all the

Nodes are equal in terms of computing power etc. What MPI thinks is
happening

Network
Node Node Node Node Node
[ceu ||| cru ||| cru ||[[cru |||[cPu |
| Memory| [Memoryl ‘ Memcry| | Memoryl | Memory‘

In reality modern clusters use multicore processors. They are often even
using multiple multicore processors on a node, all sharing the same memory.
We are looking at 12 to 48 cores per node for current systems and that
number is most likely going to rise further. What actually happens

Network

Node Node Node Node Node
B el || || [|| | |
| EEEE || EE || E || EE

| Memory| | Memory| ‘ Memory| I Memoryl | Memory‘

And what makes it even worse is that GPUs make their way into cluster
architectures. So we even end up with heterogenity inside a single node

16

(not to mention that GPUs themselves are again massively parallel systems
with hundreds or even thousands of cores and local memory). What actually
actually happens

Network

Node Node Node Node Node
B]]] ||]] (|] el ||l | | []
EEEENEEEENEEEEN EEEENEEEE!

| Memory | ‘ Memary | ‘ Memery | | Memory | | Memory ‘

So pure MPI clearly doesnt do a good job at representing the actual archi-
tecture. It still works as an abstraction. But an abstraction that encourages
inefficient use of the underlying hardware. For one thing we might up ending
up duplicating shared data across MPI-nodes even tough the actual processes
are sitting on the same physical node and could be using the same data. Also
the ownership of the GPUs isnt enteirly clear. If there are two GPUs but
sixteen cores which cores own the GPUs? can other cores execute code on
the GPUs? And if so, how? By sending the required data via MPI to the
core owning the CPU, from there down to the GPU and later all the way
back?

The most obvious solution is not spawn an MPI process per core. Instead
we spawn an MPI process per node and handle the concurrency inside the
node via threads. To account for heterogenity we can further use a threadpool
instead of locking specific tasks/work items to specific threads/cores inside
the node. This approach gives us additional wiggleroom for latency hiding
and load balancing. Also the memory consumption should be lower than in
a pure MPI configuration since data can be shared between work items and
MPI buffers etc. only have to be present once per node instead of once per
core.

We get all those benefits for the small cost of handling parallelism on
two levels (the MPI and the thread level). How hard that exactely is, is
something Im planning to find out in the coming weeks.

A.4 Boosts.MPI and Serialization

Since my project is going to involve MPI parallelization and there is a
Boost.MPI library Ill of course have a look at it and most likely also use

17

it (I really like Boost). One of the main advantages of using Boost.MPI over
MPIs C interface is that it is typesafe, more expressive and generally nice to
use. Instead of packaging data by hand into buffers before sending them we
can have Boost.Serialization handle this task for us.

Lets say we have the following structs that represent one and multidi-
mensional Ranges:

template<class T>
struct Range {
T begin, end;
1
template<class T, int Dim>
struct NRange {
Range<T>& operator [1(int i)
{ return ranges[il; }
const Range<T>& operator [](int i) const
{ return ranges[il]; }
private:
Range<T> ranges[Dim];

};

To make them serializable we could put a serialize function as required by
Boost.Serialization into their definitions. But since they are already in their
own headers etc. that dont depend on Boost serialization we might want to
make them serializable in a non intrusive way, which is luckily possible:

#include "Range.h"

namespace boost {
namespace serialization {

template<class Archive, class T>
void serialize(Archive & ar, Range<T> & r, const unsigned int version)
{

ar & r.begin;

ar & r.end;

}

template<class Archive, class T, int Dim>
void serialize(Archive & ar, NRange<T,Dim> & r, const unsigned int version)

{
for(int i = 0;i<Dim;++1i)
ar & rl[il;

}

} // namespace serialization
} // namespace boost

/7. ..

Notice how we dont even have to include any Boost headers since serialize
only takes template parameters, so we actually dont even introduce any Boost

18

[

16

SR
N = O © W

NN NN
AN

dependency here. So since the structs are now serializable we can just send
them off with MPI:

// ...

#include <iostream>
#include <boost/mpi.hpp>

int main(int argc, charx* argv[])

{
mpi::environment env(argc, argv);
mpi::communicator world;

if (world.rank() == 0)

{
NRange<int ,3> range;
range [0] . begin = 23;
range [0].end = 42;
world.send (1, 0, range);

}

else

{
NRange<int ,3> range;
world.recv(0, 0, range);
std::cout << range[0].begin << ’ ’ << range[0].end;

}

return O;

One of the core features of the framework Im working are distributed grids.
So naturally we probably want a way to send chunks of the grid to other
nodes via MPI. A very simple implementation of a chunk class could look
like this:

#include <vector>
#include <boost/serialization/vector.hpp>

/7.

template<class T>
class Chunk {
public:

Chunk () { 2}

Chunk (const NRange<size_t, 3> &b)
bounds_(b), data_(b.volume())

{
}

// subscript operators etc...

3 private:

friend class boost::serialization::access;

template<class Archive>

19

¥

[CEN RN RN
STV

NN NN
© o 9 O

w

19
20

[CEN SN RN CENN]
C W N =

void serialize(Archive & ar, const unsigned int version)
{

ar & bounds_;

ar & data_;

}

NRange<size_t, 3> bounds_;
std::vector<T> data_;

};

Here we see the intrusive version of putting the serialize function right into
class itself. The additional header we included along with vector provides
serialization for std::vector so we dont have to do that ourselves. There are
a few additional traits we can define which for example allow bitwise copy in
some cases or turn of the versioning of the serialization library, but essentially
we can now send around Chunks without worrying about their packaging etc.

A.5 A Thread Pool with Boost.Threads and Boost.Asio

After spending some time being frustrated with the C++11 async/future
stuff, I dug up some old code and found this nice way of doing a thread pool
with Boost.Threads (obviously) and Boost.Asio. Since the code is actually
pretty short for what it does Ill just dump it here:

#include <boost/thread/thread.hpp>
#include <boost/asio.hpp>

class ThreadPool;

// our worker thread objects

class Worker {

public:
Worker (ThreadPool &s) : pool(s) { }
void operator () ();

private:
ThreadPool &pool;

}

// the actual thread pool
class ThreadPool {
public:
ThreadPool (size_t);
template<class F>
void enqueue (F f);
“ThreadPool () ;
private:
// need to keep track of threads so we can join them
std::vector< std::unique_ptr<boost::thread> > workers;

// the io_service we are wrapping
boost::asio::io_service service;

20

28 boost::asio::io_service::work working;
29 friend class Worker;

30 };

32 // all the workers do is execute the io_service
33 void Worker::operator() () { pool.service.run(); }

35 // the constructor just launches some amount of workers

36 ThreadPool::ThreadPool(size_t threads) : working(service)
37 {

38 for(size_t i = 0;i<threads;++1i)

39 workers .push_back(

40 std::unique_ptr<boost::thread>(

11 new boost::thread(Worker (xthis))

42)

43)

44 %}

46 // add new work item to the pool
47 template<class F>
18 void ThreadPool::enqueue(F f)

49 {

50 service.post (£f);

51 }

52

53 // the destructor joins all threads
54 ThreadPool::~ThreadPool ()

55 {

56 service.stop();

57 for(size_t i = 0O;i<workers.size () ;++1i)
58 workers [i]->join () ;

59 }

Its essentially a wrapper around a io_service. The usage then looks
something like this:

// create a thread pool of 4 worker threads
ThreadPool pool(4);

// queue a bunch of "work items"

for(int i = 0;i<8;++1i)
6 {
7 pool.enqueue ([i]
8 {
9 std::cout << "hello " << i << std::endl;
10 boost::this_thread::sleep(
11 boost::posix_time::milliseconds (1000)
12)
13 std::cout << "world " << i << std::endl;
14 I
15 }

which produces a funny mixture of garbled output clearly showing that the
lambdas are executed in parallel.

21

N -

[CENCENN]
[STESVCR Rt

NN N NN
0w g O C

30

32
33
34

35

36

A.6 A Thread Pool with C++11

After showing a simple thread pool with Boost.Asio in the last post im
going to have a look at doing the same thing with the threading facilities
in C++11. The biggest difference is that we dont have the Asio library so
we have to reproduce the relevant functionality ourselves. The declarations
remain mostly the same except that the ThreadPool class doesnt have the
io_service members anymore but instead has a deque and synchronization
primitives that we will use instead:

#include <thread>
#include <mutex>
#include <condition_variable>

class ThreadPool;

// our worker thread objects

class Worker {

public:
Worker (ThreadPool &s) : pool(s) { }
void operator () ();

private:
ThreadPool &pool;

3

// the actual thread pool
class ThreadPool {

3 public:

ThreadPool(size_t);

template<class F>

void enqueue(F f);

“ThreadPool () ;
private:

friend class Worker;

// need to keep track of threads so we can join them
std::vector< std::thread > workers;

// the task queue
std::deque< std::function<void()> > tasks;

// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;

};

Previously the Worker threads simply ran the io_service. Now they
are where most of the magic happens. The most important part here is
the condition_variable which is used to make the thread sleep when there
are no jobs and wake it up when there are new jobs added to the queue.
When calling condition variable::wait with a lock the lock is released

22

15

NN NN
3 C

w0

L I

ot

and the thread is suspended. When condition variable: :notify_one or
condition_variable::notify_all is called one or all waiting threads are
woken up and reacquire the lock.

void Worker::operator () ()
{

std::function<void ()> task;

while (true)

{

{ // acquire lock
std::unique_lock<std::mutex>
lock (pool.queue_mutex) ;

// look for a work item

while (!pool.stop && pool.tasks.empty())

{ // if there are none wait for notification
pool.condition.wait (lock);

}

if (pool.stop) // exit if the pool is stopped
return;

// get the task from the queue
task = pool.tasks.front();
pool.tasks.pop_front();

} // release lock

// execute the task
task () ;

Constructor and destructor mostly remain the same. The destructor now
uses notify_all to make sure any suspended threads see that the stop flag
is set.

// the constructor just launches some amount of workers
ThreadPool::ThreadPool(size_t threads)
stop(false)
{
for(size_t i = 0;i<threads;++i)
workers.push_back(std::thread(Worker (xthis)));
}

// the destructor joins all threads
ThreadPool:: " ThreadPool ()
{
// stop all threads
stop = true;
condition.notify_all();

// join them

for(size_t i = 0;i<workers.size () ;++i)
workers [i]. join () ;

23

19 }

Finally the enqueue function just locks the queue, adds a task to it and
wakes up one thread in case any thread was suspended.

1 // add new work item to the pool
2 template<class F>

3 void ThreadPool::enqueue(F f)

4 A

{ // acquire lock
6 std::unique_lock<std::mutex> lock(queue_mutex) ;
7
8 // add the task
9 tasks.push_back(std::function<void () >(£));
10 } // release lock
11
12 // wake up one thread
13 condition.notify_one ();
14}

The interface of the ThreadPool is unchanged, so the usage example from the
last blog post still works. This version of the ThreadPool is slightly longer
than the version with Boost.Asio but actually still relatively short for what
it does and reduces the Boost dependencies since we now dont have to link
Boost libraries anymore.

24

	Introduction
	Data Parallelism
	Programming Techniques
	Template Meta programming
	Tag Dispatching

	Structure of a Particle-Mesh library
	Context
	Layout
	DistributedGrid and DistributedParticles
	Tasks

	Parallel Execution Models
	Conclusion
	Devlog Entries
	Fun with Fusion
	Making OpenCL slightly less awkward
	Why I think pure MPI doesnâ•Žt cut it anymore
	Boosts.MPI and Serialization
	A Thread Pool with Boost.Threads and Boost.Asio
	A Thread Pool with C++11

