
Approximation by harmonic polynomials

Term project

Andrey Petukhov

Advisors: Prof. Dr. Ralf Hiptmair
Andrea Moiola

Seminar für Angewandte Mathematik
Eidgenössische Techische Hohschule Zürich

February 2010

Abstract

In this work we studied the approximation of the fundamental solution
of the Laplace operator in two-dimensional space u = log(|x|) by harmonic
polynomials. We analyzed the best approximation in the semi-ring with fixed
outer radius and inner radius ? tending to zero. We observed exponential
convergence in the degree of polynomials used for approximation. However,
with inner radius tending to zero the rate of convergence gets worse. The
convergence still remains exponential but with some exponent for the degree
of polynomials.

Contents

Introduction 2

1 Preliminary derivations 4
1.1 Best approximation . 4
1.2 Analytic computations of coefficients 6

2 Numerical experiment and programming 9
2.1 Approaches to obtaining numerical solution 10
2.2 Algorithm implementation . 11

3 Computational results 14
3.1 Rates of convergence . 14
3.2 Distribution of coefficients . 18

4 Conclusion 21

Bibliography 22

Appendix 23
C++ codes for arbitrary precision arithmetic 23
MATLAB code for plotting the results computed within C++ im-

plementation . 30

1

Introduction
In most practical problems exact analytic computations are impossible

even if the input data is given analytically by some function. In this case one
has to think of numerical computations and various methods could be used
for it depending on the type of the problem. Numerical computations always
raise the problem of approximation as they are a-priori non-exact. The main
aim here is to determine how close the approximate solution will be to the
exact one (of course supposing it exists and is unique under some condi-
tions). Methods used for numerical computations often require substituting
the analytically given functions of the input data by their approximations
and one gets non-exactness even at this step. To know how well the function
is approximated is extremely important as it further determines one of the
limits for the accuracy of the final result. Thus the problem of function ap-
proximation itself turns out to be an important one and it should be treated
carefully.

Various classes of functions are used for the approximation. One of the
best ideas is to approximate the given function by a finite number of terms
of its Fourier series in some basis. But to do it properly one should choose
such basis with respect to a given domain where the function should be
approximated. Sometimes it is rather difficult to do taking into consideration
the fact that the basis should be analytically orthogonal. Not for every
domain it is trivial to do. But nevertheless it turns out that the convergence
can still be very good even if the basis is non-orthogonal (with respect to
the given domain). One of such examples is the set of harmonic polynomials
that are the system of solutions of the Laplace operator in two- or three-
dimensional space. Such system is orthogonal if we choose the appropriate
domain (such as a disk in 2D and a ball in 3D). But if we have a problem in
another domain, for example a half-disk or half-ball, the system is no more
orthogonal. But the convergence in this case still remains very good. How
good is it really? As far as we know, there is no full and complete proof for the
rate of convergence for such an approximation (especially in two-dimensional
case). However some numerical experiments show that the convergence is
very fast and is exponential in the degree of polynomial. To check it and
perhaps get some more ideas about the general case we do within this work
such an experiment. We consider here the following problem. We consider
the function u = log |x| in the two-dimensional domain Ω: semi-ring lying in
the right half-plane, with fixed outer radius R = 1 and inner radius ε (Fig.1).
We approximate this function by a finite number of elements of the series in
terms of harmonic polynomials. The set of harmonic polynomials with the
degree less than n in two-dimensional case is given by Hn =< rje±jϕ >n

j=0,

2

where (r, ϕ) are polar coordinates (the system of harmonic polynomials is of
course linearly independent and forms a basis of the space Hn).

The function is analytic in the given domain but has singularity at zero
(center of the semi-ring). This can somehow influence the rate of convergence
as we decrease the inner radius ε, getting closer and closer to the singularity
point. We will see how the rate of convergence really behaves for different
values of ε.

In the first chapter we will give some preliminary analytic derivations
and computations and finally come to the equivalent problem for the system
of linear equations that was solved numerically. In the second chapter we
discuss the numerical calculations taking into consideration the difficulties
that give us this problem. In the third chapter we analyze the results of the
numerical simulations and describe some problems that we had to cope with
during the simulations.

Fig.1. Computational domain.

3

Chapter 1

Preliminary derivations

1.1 Best approximation
We will look for the best approximation of the given function u = log |x|

by harmonic polynomials from the set Hn. To get some estimates how close
are really the original function and its approximation we should compute
some norm of the difference between them. In principle we are free to choose
the norm but it makes sense to choose the L2– norm. In the mean-square
sense (estimates in the L2– norm) there exists a unique best approximation,
so our problem is a-priori correct. Let pn be some function, belonging to the
approximation space Hn — the span of harmonic polynomials of all degrees
up to n. Then the problem of obtaining the best approximation of a given
function u in this space is formulated as a variational problem. We should
find such function pn in the approximation space that gives the minimum to
the norm (or its square) of deviation from the function u:

fn = ||u− pn||2L2(Ω) → min . (1)

In the space Hn we can consider the basis of harmonic polynomials xk =
rke±kϕ, k = −n, ..., n as was in the definition of the space Hn, but we can
also choose trigonometric form instead of exponentials: ai = ri sin iϕ, bj =
rj cos jϕ, i = 1, ..., n, j = 0, 1, ..., n. We can simplify our problem taking into
consideration the properties of the domain of approximation and the original
function. The entire domain lies in the right half-plane and the original
function is even (with respect to ϕ in polar coordinates). Therefore only
coefficients at the even basis functions will be non-zero in the function that
approximates the function u. Following this idea we choose the basis in the
trigonometric form and we can say a-priori that all the coefficients at the sine
functions will be zero and thus we can consider only cosine functions in the

4

basis of the approximation space. Since now we treat previously defined space
Hn as a span of only even (in ϕ) harmonic polynomials in the trigonometric
form. The best approximation of the function u of course belongs to this
space due to the reasons given above.

The function pn ∈ Hn can be expanded with respect to the basis:

pn =
n∑
i=0

βibi. (2)

Then we get from (1)

fn = ||u−
n∑
i=0

βibi||2L2(Ω) = (u, u)L2(Ω)−2
n∑
i=0

βi(u, bi)L2(Ω)+
n∑
i=0

n∑
j=0

βiβj(bi, bj)L2(Ω).

(3)
To find the minimum of this expression we differentiate it with respect to
the coefficients βi, i = 0, ..., n and set all the derivatives to zero. We obtain
the main system of equations for the coefficients that we will further solve
numerically:

n∑
k=0

βk(bj, bk)L2(Ω) = (u, bj)L2(Ω), j = 0, ..., n. (4)

It is a system of linear algebraic equations. We can also rewrite this system
as a matrix equation

A~β = ~µ (4a)

with unknown vector of coefficients ~β = (β0, β1, ..., βn)T and vector of the
right-hand side ~µ =

(
(u, b0)L2(Ω), (u, b1)L2(Ω), ..., (u, bn)L2(Ω)

)T
The matrix of

this system is the mass matrix of the basis, i.e. the matrix of scalar products
of the elements of the basis: (A)ij = (bi, bj)L2(Ω). We should note that this
matrix is symmetric and positive definite. These properties determine the
method that will be used to obtain the solution of this system. One of the
best ways to deal with the system with symmetric positive-definite matrix
is to apply Cholesky decomposition. This method will be used in our case.
Nevertheless there are still some difficulties with its implementation and we
will speak about it in the next chapters. It is also necessary to rewrite the
expression (3) for norm of the approximation error in the vector form

fn = ||u−
n∑
i=0

βibi||2L2(Ω) = ||u− ~β~b(r, ϕ)||2L2(Ω) = (u, u)L2(Ω) − 2~βT~µ+ ~βTA~β,

(5)
where ~b(r, ϕ) is a vector-function, the elements of which are the basis func-
tions. The matrix A and the vector ~µ are the matrix and the right-hand

5

side of the system and we will compute their elements in the next section.
The vector ~β is the vector of coefficients of the function that approximates
the original one, with respect to the basis of harmonic polynomials. Using
the system (3a) to compute the vector of coefficients we obtain the best ap-
proximation and the minimum possible approximation error. The only term
left here is the term (u, u)L2(Ω). We will compute it analytically in the next
section.

1.2 Analytic computations of coefficients
We must now compute all the coefficients of the system we obtained

above. All of them are scalar products of some functions in the space L2(Ω)
and to compute them we are to compute integrals over the domain Ω. In
general they can be computed numerically, but in our case it is possible
to provide here complete analytic calculations. The main technique to be
used here is integration by parts. We have to calculate integrals in the polar
coordinates of two main types. Integrals of the first type look like the integral

µj =
∫

Ω
rj cos(jϕ) log(r)rdrdϕ, j = 0, 1, ..., n. (6)

These integrals correspond to the L2–scalar products of the original function
u and the basis functions bj and stand for the elements of the vector ~µ of the
right-hand side of our equation. Integrals of the second type are L2–scalar
products of the elements of the basis and stand for the elements of the matrix
A of the equation:

(A)ij =
∫

Ω
rj cos(jϕ)rk cos(kϕ)rdrdϕ, j, k = 0, 1, ..., n. (7)

In both cases the integrals in r and ϕ can be taken separately as the func-
tion under the integral can be presented as multiplication of two functions
depending only on one of the two variables, and the domain of integration
has the boundaries, which can be described by equations with only one of
the two variables in polar coordinates. The equations of the boundaries are
(see Fig.1) r = ε, r = 1 and ϕ = −π/2, ϕ = π/2.

Compute first the integrals of the type (6). The integrals in ϕ is computed
easily:

π/2∫
−π/2

cos(jϕ)dϕ =


π, if j = 0;
2
j
(−1)j, if j is odd;

0, if j is even.

6

To compute the integrals in r we have to use integration by parts. Then the
calculations are also trivial:

1∫
ε

rj+1 log rdϕ = −ε
j+2 log ε
j + 2 − 1− εj+2

(j + 2)2 .

Combining these two integrals together and introducing a new index k instead
of j to take into consideration the fact that the integral vanishes when j is
odd, we can write a final formula for the integral of the first type (see (6)):

µj =

−π
(
ε2 log ε

2 − 1−ε2

4

)
, for j = 0;

2·(−1)k
2k−1

(
ε2k+1 log ε

2k+1 + 1−ε2k+1

(2k+1)2

)
, for k = 1, 2, ...,

[
n+1

2

]
, j = 2k − 1.

(8)

Now we compute the elements of the matrix A. Computing the integrals
in r is trivial and we can immediately write the result:

1∫
ε

ri+j+1dϕ = 1− εi+j+2

i+ j + 2 .

To compute the integrals in ϕ we use some trigonometric formulas to trans-
form the product of the cosine functions into the sum of cosine functions:

cos iϕ cos jϕ = 1
2 (cos(i+ j)ϕ+ cos(i− j)ϕ) .

Then everything becomes simple and we get (for i 6= j)
π/2∫

−π/2

cos(iϕ) cos(jϕ)dϕ = 1
i+ j

sin
[
(i+ j)π2

]
+ 1
i− j

sin
[
(i− j)π2

]
.

For i = j we get, using the formula for the cosine of the double argument
π/2∫

−π/2

cos2(iϕ)dϕ =

π, for i = 0;
π
2 , for i 6= 0.

Combining these results together we get the final formula for the elements of
the matrix A:

(A)ij =


π 1−ε2

2 , for i = j = 0;
π
2

1−ε2i+2

2i+2 , for i = j = 1, 2, ..., n;
1−εi+j+2

i+j+2

[
1
i+j sin

[
(i+ j)π2

]
+ 1

i−j sin
[
(i− j)π2

]]
, for i 6= j, i, j = 1, 2, ..., n.

(9)

7

We should notice here that the basis we use is not orthogonal and thus the
matrix A is not diagonal. This will give rise to some difficulties in numerical
simulations and we will give more detail in the next chapter. Here we will
only mention that non-orthogonality results from the particular choice of the
domain Ω, which is a semi-ring (but not a ring for example). The same basis
considered on the full ring becomes orthogonal. In the case of a semi-ring we
have to somehow cope with the non-orthogonality of the basis.

Now all the coefficients are computed and we are ready to proceed to
obtaining numerical solution of the system (4a). But before we do it we
will compute the term (u, u)L2(Ω) left in the expression for the norm of the
approximation error that we gave above. This term is represented by the
following integral:

(u, u)L2(Ω) =
π/2∫

−π/2

dϕ
1∫
ε

rdr log2 r.

It can be easily computed analytically by taking integration by parts in
r two times. We will finally get

(u, u)L2(Ω) = −πε
2

2 (log ε)2 + π
ε2

2 log ε(log ε) + π
1− ε2

4 . (10)

Now all preliminary computations are done and we can proceed to numerical
simulation. It should be mentioned that all the computations till now were
done analytically. This of course will help us to get rid of quadrature errors
for example and will involve only evaluation errors that have the order of
machine precision.

8

Chapter 2

Numerical experiment and
programming

Proceeding to numerical computations we should recall which quantita-
tive results are necessary for us. The main aim is to determine the rate of
convergence of the best approximation with respect to the degree of polyno-
mials (harmonic polynomials) used for approximation, for different values of
ε. This means that for a given ε we have, first, to compute the coefficients of
the best approximation with respect to the basis of harmonic polynomials,
for different degrees n, that means we have to solve the main system (4a)
with the matrix A and right-hand side vector ~µ (see (8-9)) and obtain the
vector of coefficients ~β. Second, we are to compute the approximation errors
using (5), (10) and also (8-9) for the matrix A and vector ~µ (for various
degrees of approximation polynomials). Thus we obtain, for a given ε, the
table of values - the dependence of the approximation error on the degree
of polynomial. Determining the character of this dependence we will deter-
mine the rate of convergence of approximation with respect to the degree of
polynomial. This process should be repeated for different values of ε so that
we could observe how the rate of convergence depends on that, how close we
get to the singularity of the function (recall that ε is the radius of the small
circle near the singularity of the original function).

The most difficult and important part here is to obtain the vector of
coefficients ~β. There are some problems that raise in these computations
that are rather difficult to overcome. We will now discuss it in more detail.

9

2.1 Approaches to obtaining numerical solu-
tion

Computing the vector of coefficients in our case is, from the mathematical
point of view, solving the system of linear algebraic equations (4) that has
a matrix representation (4a). There exist a great number of methods to be
applied for obtaining solution of a system of such a kind. The choice of the
method is determined by the properties of the system, in particular of the
matrix of the system.

We recall that in our case the matrix A in (4a) is the mass matrix of the
chosen basis of harmonic polynomials. This implies that A is a symmetric
positive-definite matrix (recall here, that the basis we have chosen is not
orthogonal and thus the matrix is not diagonal). There is a special way to
deal with such matrices that reduces the number of operations (in comparison
with standard Gauss method for general matrices) and increases the speed of
computations. This is a method of Cholesky decomposition. The matrix A is
presented in the form A = RTR, where R is an upper-triangular matrix and
RT is a lower-triangular matrix, respectively. The original problem (omitting
the vector arrows) Aβ = RTRβ = µ is reduced to solving sequentially two
systems: RT ξ = µ and then Rβ = ξ. Both systems have triangular matrices
and thus can be solved easily by obtaining the elements of the unknown
vector sequentially.

At the moment everything seems rather simple, but in fact the situation
is much more difficult. The problem we face when solving the system (4a)
numerically by means of Cholesky decomposition is that it turns out to be un-
stable. The reason for that is that the matrix A becomes ill-conditioned with
the increase of the degree of polynomial used for approximation. For exam-
ple, when implementing the described algorithm in MATLAB, we got great
instability as we approached the degree n = 20 ∼ 25, depending on the value
of ε. At this point the Cholesky decomposition could’t be computed as the
matrix (due to numerical effects) was not considered to be positive-definite
any more. This comes exactly from the ill-conditionality of the matrix of the
system. There are some ways to deal with this problem. The first possible
approach is to introduce some regularization term. This will definitely dive
us some solution but it is not the thing we are interested in. Regularization
gives us one more source of error. As the degree of approximation polynomial
increases, the matrix becomes more and more ill-conditioned and we have to
use greater regularization that gives us, of course, greater regularization er-
ror. Therefore in this case we cannot determine the real rate of convergence
of the approximation. This means that we should avoid regularization in our

10

computations.
To introduce the next approach we should understand what really hap-

pens when at some point the Cholesky decomposition cannot be computed.
In fact the reason for that is that we somehow reach the limit of precision,
the machine precision (double precision in MATLAB implementation). The
values that are computed have at this point the same order as the as the er-
rors of computations. This leads to the situation when at some point square
roots that should be computed within the Cholesky decomposition cannot
be calculated (in real numbers) as the program has to take a square root
of a negative number. The possible way to deal with such a problem is to
increase the precision of our computations considering a larger number of
decimal digits. This gives the idea of implementation of high-precision li-
brary. To realize this idea we came from MATLAB implementation to C++
implementation and we applied the ARPREC library (ARbitrary PRECision
Computation Package), designed by a group of scientists led by David H. Bai-
ley from Lawrence Berkeley National Laboratory (see [3]). This is a software
package for performing arbitrary precision arithmetic. Application of this
library gives us a possibility to perform computations with any preassigned
precision (up to thousand digits, instead of 16 digits in double precision com-
putations). At a first glance this will completely solve all our problems but
unfortunately we faced new problems with application of this library. We will
described them in more detail in the next section. We now give some general
results of our computations and and we will give more concrete results on
rates of convergence in different cases in the next chapter.

2.2 Algorithm implementation
We implemented the algorithm described above in this chapter in two

programming media - in MATLAB with double precision and then in C++
with double and multiple precision. All the codes are presented in the ap-
pendix. The program codes for double precision computations look exactly
the same for MATLAB and C++ implementation, the only difference is in
the algorithm used for computing Cholesky decomposition. In MATLAB
we use the "backslash" for solving linear system. This operation tests the
matrix for being positive-definite and if it is then the method of Cholesky
decomposition is applied. MATLAB uses the the algorithm from LAPACK
for computing the Cholesky decomposition. This algorithm includes a lot of
rescaling, so it is in some sense adapted for computing the decomposition of
the poorly-conditioned matrices. In C++ computations we used the com-
mon formulas for Cholesky decomposition without adaptivity and rescaling,

11

which can be found in any book on numerical methods (for example [1]).
At the same time in both MATLAB and C++ double precision computa-
tions we got exactly the same limit for the degree of polynomial, at which
Cholesky decomposition cannot be performed any more. This limit for dou-
ble precision calculations is, as mentioned above, n = 20 ∼ 25, depending
on the value of ε - the limit value n becomes larger as ε tends to zero. The
only difference is that in MATLAB the results look a bit smarter as we ap-
proach this limit. This means that if we construct an approximation function
from the computed vector of coefficients with respect to the chosen basis of
harmonic polynomials, we get some oscillations when approaching the limit
degree of polynomial if we use non-adapted simple algorithm (as in C++) for
Cholesky decomposition. The approximation error nevertheless remains the
same. If we replace the standard algorithm for Cholesky decomposition used
in MATLAB by the algorithm without adaptivity (but also implemented in
MATLAB), which we used in C++, we get exactly the same results. This
verifies the code in C++ and allows us to proceed to the next step - imple-
mentation of arbitrary precision arithmetic.

The ARPREC library is written in such a way that the previous code,
written for double precision arithmetic, remains the same with only change of
type of variables from "double" to a special type for variables with arbitrary
precision arithmetic. All the functions, such as sine, cosine or logarithm,
are defined for such variables. There are also special functions that compute
such constants as π, e and others with the required precision. This makes
the use of the library rather simple. The precision (notably the number of
decimal digits) is determined at the beginning of all computations and may
be chosen easily up to 1000. Due to this we expect that irrespective of the
algorithm used for computing Cholesky decomposition we will get fine re-
sults almost for any degree of polynomial (but not too large, so that the
computed values have the order of 101000 that is the order of the machine
precision in this case) used for approximation, even if the matrix becomes
very ill-conditioned. Unfortunately, for some reason we don’t obtain the re-
sults we expect. We managed to go to larger degrees of polynomials (in
comparison with double precision arithmetic), but at some point again got
the limit. The limit in this case has moved to n = 45 ∼ 60, depending on the
value of ε. The problem was the same as for double precision computations -
the Cholesky decomposition could not be computed due to the same problem
as we described earlier. It seems that at some point we lose the precision of
our calculations. Moreover, if we prescribe different number of digits (more
than that for double precision) the results remain the same. It seems that
something is computed with double precision instead of that, prescribed be-
forehand. Unfortunately we did not manage to find this very point, and this

12

problem remains unsolved. Nevertheless we managed to extend the limit at
least twice to greater degrees n and obtained the rate of convergence that
holds at greater range of degrees. We now leave the problem with implemen-
tation the arbitrary precision library unsolved and proceed to discussing the
quantitative results of our simulations.

13

Chapter 3

Computational results

3.1 Rates of convergence
The main results we are to present here are the rates of convergence of

approximation with respect to the degree of polynomial used for approxima-
tion. We present the computational results for various values of ε. We will
now refer to the results of C++ arbitrary precision implementation. In most
cases we preserve 100 decimal digits, but as we mentioned above the results
(for some reason) do not change if we consider 50 of 500 digits for example.

Speaking generally we got the results that justified our expectations in
terms of the rate of convergence. For all cases we got exponential convergence
in the degree of polynomial. But still the quantitative description of the
convergence varies, depending on the values of ε (recall that it determines
how close we get to the singularity of the function).

Consider first a sufficiently large value ε = 0.9. We are now very far away
from singularity.For this value of ε we clearly observe exponential convergence
of approximation to the original function in the degree of polynomial, with
respect to the L2–norm (Fig.2). The blue line contains the "experimental
curve" and the red one is a linear approximation for it. We clearly see that
all experimental (numerically computed) points almost lie on this line. At
n > 35, n = 36 ∼ 37 we get the numerical limit of computations for this
value of ε that we described above, but up to this limit we observe very good
convergence that is indeed exponential: ||u − un||L2(Ω) ∼ e−n. Here u is the
original function and un — its best approximation by harmonic polynomials
with highest degree n.

14

Fig.2. Norm of the approximation error (logarithmic scale); ε = 0.9.

Consider now a smaller value ε = 0.5. In this case we again observe very
good exponential convergence, but at the same time the results are slightly
different from the previous case. The experimental curve still can be very
good approximated by a line, but now it becomes more a "curve" than a
straight line (Fig.3).

Fig.3. Norm of the approximation error (logarithmic scale); ε = 0.5.

15

We now decrease ε further and consider the value ε = 0.1. Expecting
the same model convergence we obtain in this case the results, which are not
accurate any more. At the Fig.4 we plot the dependence of the logarithm of
the error norm on the degree of polynomial, but we notice that it is really not
a straight line any more. The experimental curve deviates from the model line
too far, so that we can not treat this model line as a right dependence. At the
same time we see that the experimental line only gets some curvature but in
principle the character of this dependence does not change drastically. This
means that the convergence still remains exponential and does not change
to algebraic for example. But now we get some additional exponent at the
degree of polynomial n. Therefore we consider the model that seems to give
a better description to the observed results: ||u − un||L2(Ω) ∼ e−nα with
some 0 < α < 1. The idea of exponential convergence with some exponent
parameter has been already mention is some papers (see for example [8]).
Considering in this case α = 1

2 we plot the square of the logarithm of the
error norm instead of the logarithm itself (Fig.5). After that we again observe
good correspondence between experimental curve and model line, but now
a new model is used, which is really a simple generalization of the notion of
exponential convergence.

Fig.4. Norm of the approximation error (logarithmic scale); ε = 0.1.

16

Fig.5. Norm of the approximation error ("squared" logarithmic scale);
ε = 0.1.

Further decrease of ε will also involve the decrease of the exponent pa-
rameter α. For ε = 0.05 the right choice of this parameter is α = 1

3 and thus
the dependence of the third power of the logarithm of the approximation
error is linear with respect to the degree of polynomial (Fig.6).

Fig.6. Norm of the approximation error ("cubed" logarithmic scale);
ε = 0.05.

17

If we decrease ε further we will get the right value α = 1
4 for ε = 10−4

(Fig.7).

Fig.7. Norm of the approximation error ("4th power" logarithmic scale);
ε = 10−4.

At the same time if get even close to singularity point, decreasing ε even
more, we will not get the values of parameter α less than 1

4 . Even for ε = 10−6

and ε = 10−10 the choice α = 1
4 appears to be exactly right. In this situation

the value α = 1
4 seems to be a kind of a limit value. It does not matter how

close we get to the singularity point the approximation will still exponentially
converge with the exponent parameter not less than 1

4 .

3.2 Distribution of coefficients
The next important result, which can be obtained from the approxima-

tion problem, is determination of the coefficient distribution. At this point
we should again recall that the basis of harmonic polynomials that we use
in our computations is non-orthogonal. If it were, there would be almost no
question about the distribution of coefficient. In case of an orthogonal (or-
thonormal, that is even better) the coefficients of the best approximation are
simply the Fourier coefficients and they decrease fast with the degree of ap-
proximating polynomial tending to infinity. But in our case the basis in not
orthogonal and this leads to completely different distribution of coefficients.

18

The shape of the distribution in essence does not depend on the degree of
polynomial, it in fact remains the same. There are two main properties of
this distribution. The first one is that the signs of coefficients alternates
(Fig.8).

Fig.8. Approximation coefficients, ε = 0.5, n = 30.

For example, all odd coefficients are negative and all even coefficients are
positive. At the same time the distribution of the modulus of coefficients (and
this is the second property) resembles the Gaussian distribution (Fig.9). The
red line corresponds to the experimentally obtained coefficient distribution
and the green one - to the Gaussian approximation.

The picture is almost symmetric within the range of degrees of poly-
nomials for a given maximum degree n. If the distribution were Gaussian
this could give an idea and a possibility to compute the coefficients without
solving the linear system (which has an ill-conditioned matrix and thus this
problem is rather difficult), but choosing the parameters of the Gaussian dis-
tribution for the coefficients instead. However the distribution is not exactly
Gaussian and the modulus of coefficients decreases faster than the Gaussian
curve, as we can see in the logarithmic scale (Fig.10). The question about
the coefficient distribution still remains open at the moment.

19

Fig.9. Modulus of approximation coefficients, ε = 0.5, n = 30.

Fig.10. Modulus of approximation coefficients, logarithmic scale
ε = 0.5, n = 30.

20

Chapter 4

Conclusion

Within this work we analyzed the convergence of an approximation of
a function, which has a singularity at some point, by harmonic polynomi-
als in two-dimensional case. The singularity point was not included it the
computational domain and therefore the original function remains analytic
in this domain. We analyzed the rate of convergence of such approximation
for different case depending on that, how close to the approximation domain
is the singularity point of the original function. In all the cases we observed
exponential convergence in the degree of polynomial used for approxima-
tion, but in some of them - with an additional exponent parameter. The
approximation error may be generally described by the formula

||u− un||L2(Ω) ∼ e−nα (11)

with some 0 < α < 1. The parameter tends to 1 if we are far from the
singularity point and it decreases as the domain get closer to the singularity
point. Nevertheless we observed a limit for α that clearly hold in our numer-
ical experiments. The exponent parameter α does not go below 1

4 even if get
very close to the singularity point (ε ∼ 10−10 and even smaller).

The question with the coefficient distribution however remains unsolved.
The distribution seems very much to be like Gaussian, but in the logarithmic
scale as we saw above the coefficients decrease even faster than the Gaussian
distribution. At the same time we faced some problems when applying the
ARPREC library for arbitrary precision computations. They may have also
influenced the coefficient distribution. We got the idea that at some point
we lose accuracy and some computations are performed with lower precision.
However this should be checked carefully and this is the problem for future
investigations.

21

Bibliography
1. Kalitkin N.N. Numerical methods. Moscow: Nauka, 1978, (in Russian).

2. A. Moiola, R. Hiptmair and I. Perugia. Approximation by plane waves.
Research report 2009-27, SAM, ETH Zürich. August 2009.

3. ARPREC: an arbitrary precision computational package. David H.
Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson. Lawrence
Berkeley National Laboratory. Berkeley. CA94720. 2002.

4. J. L. Walsh, The approximation of harmonic functions by harmonic
polynomials and by harmonic rational functions, Bull. Amer. Math.
Soc., 35 (1929), pp. 499–544.

5. Interpolation and approximation by rational functions in the complex
domain, Fifth edition. American Mathematical Society Colloquium
Publications, Vol. XX, American Mathematical Society, Providence,
R.I., 1969.

6. J. L. Walsh, W. E. Sewell, H. M. Elliott. On the Degree of Polynomial
Approximation to Harmonic and Analytic Functions. Transactions of
the American Mathematical Society, Vol. 67, No. 2 (Nov., 1949), pp.
381-420.

7. J. L. Walsh. An Interpolation Problem for Harmonic Functions. Amer-
ican Journal of Mathematics, Vol. 76, No. 1 (Jan., 1954), pp. 259-272.

8. V. Andrievskii, Uniform harmonic approximation on compact sets in
Rk, k ≥ 3, SIAM J. Math. Anal., 24 (1993), pp. 216–222.

22

Appendix

Here we present the codes that were elaborated for computer implemen-
tation of the described above algorithms.

C++ codes for arbitrary precision arithmetic
(See also [3] for information on ARPREC)

<header_ all.h>

include <arprec/mp_ real.h>
// Functions dealing with norms
mp_ real lognorm(mp_ real eps);
mp_ real error_ norm(mp_ real *beta, mp_ real *f_ right, mp_ real
**matr_ A,mp_ real eps, int n);
// Functions fou solving linear system
mp_ real* f_ right(int n, mp_ real eps);
mp_ real** matrix_ A(int n, mp_ real eps);
mp_ real **cholesky(mp_ real**matr,int n);
mp_ real *solve_ down(mp_ real**m_ down,mp_ real*y,int n);
mp_ real *solve_ up(mp_ real**m_ up,mp_ real*y,int n);

<compute_ norms.cpp>

//# include <math.h>
include <arprec/mp_ real.h>
include <iostream>
include "Poly_ arprec/header_ all.h"
using namespace std;

23

// Compute the norm of the function u(x) = ln(abs(x)), x is a 2D vector,
in L2(omega),
// eps - inner radius of the semi-ring, the outer radius equals 1.
mp_ real lognorm(mp_ real eps){
//mp::mp_ init(3);
mp_ real z;
mp_ real pi;
mp_ real::mppi(pi);
z = pi*pow(eps,2)/2*(-pow(log(eps),2) + log(eps)) + pi*(1-pow(eps,2))/4;
cout « "Lognorm = " « z « endl « endl;
return z;
};
mp_ real error_ norm(mp_ real *beta, mp_ real *f_ right, mp_ real
**matr_ A, mp_ real eps, int n){
//mp::mp_ init(3);
mp_ real I1("0.00");
mp_ real I2("0.00");
mp_ real I3("0.00");
I1 = lognorm(eps);
for(int i=0;i<n+1;i++){
I2 = I2 + beta[i]*f_ right[i];
};
cout « "I2 = " « I2 « endl;
mp_ real s("0");
for(int j=0;j<n+1;j++){
s = 0;
for(int k=0;k<n+1;k++){
s = s + matr_ A[j][k]*beta[k];
};
I3 = I3 + beta[j]*s;
};
cout « "I3 = " « I3 « endl;
cout « "I2-I3 = " « I2-I3 « endl;
if(I1 - 2*I2 + I3 >=0){
return sqrt(I1 - 2*I2 + I3);
}
else{
return sqrt(-(I1 - 2*I2 + I3));
};
};

24

<lin_ syst.cpp>

include <arprec/mp_ real.h>
include <iostream>
include "Poly_ arprec/header_ all.h"
using namespace std;
// Compute the vector of the right side: right(j) = (u, b(j))
mp_ real* f_ right(int n, mp_ real eps){
//mp::mp_ init(3);
mp_ real pi;
mp_ real::mppi(pi);
mp_ real *z = new mp_ real[n+1];
for(int k = 0; k<n+1; k++){
z[k] = 0; };
z[0] = -pi/2*pow(eps,2)*log(eps) - pi*(1-pow(eps,2))/4;
for (int k = 1;k<=(n+1)/2;k++){
z[2*k-1] = 2*pow(-1.0,k)/(2*k-1) * (pow(eps,2*k+1)*log(eps)/(2*k+1) +
(1-pow(eps,2*k+1))/(2*k+1)/(2*k+1));
};
return z;
};
// Compute the matrix of the main equation: A(i,j) = (b(i), b(j))
mp_ real **matrix_ A(int n, mp_ real eps){
mp_ real pi;
mp_ real::mppi(pi);
mp_ real **z = new mp_ real*[n+1];
for(int k=0;k<n+1;k++){
z[k] = new mp_ real [n+1];
};
z[0][0] = pi/2*(1-pow(eps,2));
for(int i = 0;i<n+1;i++){
for(int j = 0;j<n+1;j++){
if ((i == j) & & ((i!=0) || (j!=0))){
z[i][j] = pi/2*((1-pow(eps,(2*i+2)))/(2*i+2));
};
if (i != j){
z[i][j] = (1-pow(eps,(i+j+2)))/(i+j+2) * (((1/(mp_ real)(i+j))*sin(pi*(i+j)/2)
+ 1/(mp_ real)(i-j)*sin(pi*(i-j)/2)));

25

};
};
};
return z;
};
// Compute Cholesky decomposition of the matrix A
mp_ real **cholesky(mp_ real**matr,int n){
//mp::mp_ init(3);
mp_ real **z = new mp_ real*[n+1];
for(int k=0;k<n+1;k++){
z[k] = new mp_ real [n+1];
};
mp_ real alpha = pow(10.0,-15);
for(int i=0;i<n+1;i++){
for(int j=0;j<n+1;j++){
z[i][j] = 0;
};
};
mp_ real s1("0");
mp_ real s2("0");
for(int j=0;j<n+1;j++){
s1 = 0;
if(j!=0){
for(int l=0;l<j;l++){
s1 = s1 + z[j][l]*z[j][l];
};
};
z[j][j] = pow(matr[j][j] - s1, .5);
for(int i=j+1;i<n+1;i++){
s2 = 0;
if(j!=0){
for(int k=0;k<j;k++){
s2 = s2 + z[j][k]*z[i][k];
};
};
z[i][j] = (matr[i][j]-s2)/z[j][j];
};
};
return z;
}
// Compute solution of linear system Rx = y with lower triangular matrix

26

R
mp_ real *solve_ down(mp_ real**m_ down,mp_ real*y,int n){
//mp::mp_ init(3);
mp_ real *z = new mp_ real[n+1];
for(int k = 0; k<n+1; k++){
z[k] = 0;
};
z[0] = y[0]/m_ down[0][0];
mp_ real s("0");
for(int i=1;i<n+1;i++){
s = 0; for(int j=0;j<i;j++){
s = s + m_ down[i][j]*z[j];
};
z[i] = (y[i]-s)/m_ down[i][i];
};
return z;
};
// Compute solution of linear system R’z = x with lower triangular matrix
R
// !!! R is obtained through Cholesky decomposition
mp_ real *solve_ up(mp_ real**m_ down,mp_ real*y,int n){
mp_ real *z = new mp_ real[n+1];
for(int k = 0; k<n+1; k++){
z[k] = 0;
};
z[n] = y[n]/m_ down[n][n];
mp_ real s("0");
for(int i=n-1;i>=0;i–){
s = 0; for(int j=n;j>i;j–){
s = s + m_ down[j][i]*z[j];
};
z[i] = (y[i]-s)/m_ down[i][i];
};
return z;
};

<polyfit_ main.cpp>

include <iostream>

27

include <fstream>
include <arprec/mp_ real.h>
include <stdio.h>
include <math.h>
include "Poly_ arprec/header_ all.h"
using namespace std;
void main()
{
fstream fs_ e("Data/err_ norm.txt", ios::out);
fstream fs_ coeff("Data/coeff.txt", ios::out);
if (!fs_ e || !fs_ coeff){
cout « "Can’t open file.\ n"; return;
}
else{
mp::mp_ init(100);
int n_ max = 45;
// Initial data
mp_ real eps = .1;
cout « "Epsilon = " « eps « endl;
for(int n=0;n<=n_ max;n++){
// Compute and print L2-norm of log-function in Omega
// mp_ real a = lognorm(eps);
// cout « "Norm of log = " « a « endl « endl;
// Compute right hand-side vector f
mp_ real *y;
y = f_ right(n, eps);
/* cout « "Right hand-side vector f" « endl;
for(int j = 0;j<n+1;j++){
cout « y[j] « endl;
};
cout « endl;
*/
// Compute matrix A
mp_ real **r;
r = matrix_ A(n, eps);
/* cout « "Matrix A" « endl;
for(int i = 0;i<n+1;i++){
for(int j = 0;j<n+1;j++){
//cout « r[j+(n+1)*1] « "�";
cout « r[i][j] « "�";
};

28

cout « endl;
};
cout « endl;
cout « endl;
*/
// Compute matrix chol(A)
mp_ real **q;
q = cholesky(r,n);
/* cout « "Chol (A)" « endl;
for(int i = 0;i<n+1;i++){
for(int j = 0;j<n+1;j++){
//cout « q[j+(n+1)*1] « "�";
cout « q[i][j] « "�";
};
cout « endl;
};
*/
cout « endl;
// Compute vector ’beta’ of expansion coefficients
mp_ real *x = solve_ down(q,y,n);
mp_ real *beta = solve_ up(q,x,n);
for(int j = 0;j<n+1;j++){
//cout « beta[j] « endl;
fs_ coeff « beta[j] « endl; };
cout « endl;
// Compute approximation error in L2-norm mp_ real e_ norm = error_
norm(beta, y, r, eps, n);
cout « "Degree = " « n « endl;
cout « "Error norm = " « e_ norm « endl;
cout « endl;
cout « endl;
//FILE * ff = fopen("err_ norm.txt", "w");
//ff « e_ norm;
//fclose(ff);
fs_ e « n « " " « e_ norm « endl;
// Deallocate memory
if(x!=0)
{
delete[] x;
};
if(beta!=0)

29

{
delete[] beta;
};
if(y!=0)
{
delete[] y;
};
if(r!=0)
{
for(int k=0;k<n+1;k++){
delete[] r[k];
};
delete r;
};
if(q!=0)
{
for(int k=0;k<n+1;k++){
delete[] q[k];
};
delete q;
};
};
mp::mp_ finalize();
fs_ e.close();
fs_ coeff.close();
};
};

MATLAB codes for plotting the results com-
puted within C++ implementation
<function fread_ error>

[f_ name2open f_ path2open] = uigetfile(’Data\err_ norm.txt’,’MultiSelect’,’off’);
if isequal(f_ name2open,0) | isequal(f_ path2open,0)
errordlg(’No File’);
else
s_ name2open = strcat(f_ path2open, f_ name2open);

30

end;
ff = fopen(s_ name2open, ’r’); A = fscanf(ff, ’% i 10 ∧ % d x % g’, [3 inf]);
fclose(ff);
n = A(1,:);
err = A(3,:).*10.∧(A(2,:));
log_ err = log10(err);
% Exponent parameter
mm = 4;
figure;
plot(n,sign(log_ err).*log_ err.∧ mm);
r = polyfit(n,sign(log_ err).*log_ err.∧ mm,1);
approx_ line = r(1)*n + r(2);
hold on
plot(n,approx_ line,’r’);
xlabel(’n’);
ylabel(’-log∧4 (Error norm)’);
figure;
plot(n,log_ err); p = polyfit(n,log_ err,1);
approx_ line = p(1)*n + p(2);
hold on
plot(n,approx_ line,’r’);
xlabel(’n’);
ylabel(’log (Error norm)’);

<function fread_ coeff30>

[f_ name2open f_ path2open] = uigetfile(’Data\coeff30.txt’,’MultiSelect’,’off’);
if isequal(f_ name2open,0) | isequal(f_ path2open,0)
errordlg(’No File’);
else
s_ name2open = strcat(f_ path2open, f_ name2open);
ff = fopen(s_ name2open, ’r’);
A = fscanf(ff, ’10 ∧ % d x % g ’,[2 inf]);
fclose(ff);
n = 0:size(A,2)-1;
coeff = A(2,:).*10.∧(A(1,:));
figure;
eps = .1;
step = (1-eps)/100;

31

r = eps:step:1;
phi = -pi/2:pi/100:pi/2;
X = r’*cos(phi);
Y = r’*sin(phi);
Z = zeros(length(r),length(phi));
for i = 1:length(r)
for j = 1:length(phi)
for k = 1:length(coeff)
Z(i,j) = Z(i,j) + coeff(k) * b(k-1,r(i),phi(j));
end;
end;
end;
surf(X,Y,Z);
shading interp;
xlabel(’x’);
ylabel(’y’); zlabel(’C++ arprec approximation log(r)’);
n2 = length(coeff)-1;
A = matrix_ A (n2, .5);
f = right (n2, .5);
z = A\f;
delta = z - coeff’;
Z2 = zeros(length(r),length(phi));
for i = 1:length(r) for j = 1:length(phi)
for k = 1:length(coeff)
Z2(i,j) = Z2(i,j) + z(k) * b(k-1,r(i),phi(j));
end;
end;
end;
figure;
surf(X,Y,Z2);
shading interp;
xlabel(’x’);
ylabel(’y’);
zlabel(’MatLab approximation log(r)’);
Z3 = zeros(length(r),length(phi));
for i = 1:length(r)
for j = 1:length(phi)
for k = 1:length(coeff)
Z3(i,j) = Z3(i,j) + delta(k) * b(k-1,r(i),phi(j));
end;
end;

32

end;
figure;
surf(X,Y,Z3);
shading interp;
xlabel(’x’);
ylabel(’y’);
zlabel(’Error2 of approximation log(r)’);
end;

33

