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1 Introduction

In this thesis we analyse the primal and ultraweak Discontinuous Petrov-
Galerkin (DPG) formulations of the convection-diffusion problem. Both for-
mulations are implemented in the C++ library LehrFEM++. LehrFEM++
is a framwork for finite element methods currently developed at ETH Zurich
[1]. To achieve this goal, the remainder of this thesis is given as follows.

We start in section 2 by presenting definitions of mesh-related quantities,
infinite dimensional spaces and polynomial spaces, which will be used in the
derivation and discretization of the two analysed methods.

In section 3 we introduce the ideal and practical DPG method for an ab-
stract linear variational problem (LVP). We discuss assumptions that lead to
a computationally efficient method and present the main convergence results.
This abstract discussion allows us to derive formulas for the computation of
local quantities like element stiffness matrices and element load vectors for
general DPG methods. In particular these formulas are used in the imple-
mentation of the two analysed methods for the convection-diffusion problem.

Starting from a second order formulation we will derive the primal DPG
formulation for the convection-diffusion problem in section 4. We present
results that establish the convergence of the method and discuss the structure
of the resulting local quantities introduced in section 3.

In section 5 we derive the ultraweak DPG formulation starting from a first
order reformulation of the convection-diffusion problem. Again we discuss the
convergence of the method as well as the structure of local quantities .

In section 6 we provide details of our implementation in LehrFEM++.
In particular we discuss the construction of basis functions, the evaluation
of local quantities and describe our approach to enforce boundary condi-
tions. Some of the design choices of our implementations were inspired by
the interfaces of the general DPG framework Camellia discussed in [2].

Finally we present numerical experiments in section 7. These experiments
examine the convergence orders of both methods in the context of a convex
domain. We first numerically establish the optimal convergence orders of
our implementation and then analyse the convergence behaviour for an exact
solution that develops a boundary layer.
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2 Definitions and notation

We present basic definitions and specify the notation used throughout this
thesis. In section 2.1 we introduce various mesh-related notions. In sec-
tion 2.2 we recall the definitions of some standard Sobolev spaces, introduce
broken Sobolev spaces and specify spaces for interface variables. We finally
introduce polynomial spaces on triangular and quadrilateral meshes in sec-
tion 2.3.

2.1 Mesh

We consider a bounded, simply connected Lipshitz domain Ω ⊂ R2 with
polygonal boundary ∂Ω. We denote byM = {Ki}ni=1 a conforming mesh on
Ω with edge set E(M), vertex set V(M) and mesh skeleton S = ∪e∈E(M)e.
We denote by h = maxK∈M diam(K) the mesh width [3, Section 2.1 & 2.2].

For any domain Ω we denote by nnnΩ : ∂Ω→ R2 the unit outer normal vec-
tor on ∂Ω. We also introduce prescribed edge normals on the mesh skeleton
as a function nnne : S → R2. nnne is a unit vector field normal to the edges and
points outwards on ∂Ω [4, Section 2]. For each mesh element K ∈ M, the
outer and prescribed normals on ∂K have to either coincide or point in oppo-
site directions and can be distinguished by the function sgnK : ∂K → {−1, 1}
given as [5, Equation 3.22]

sgnK =

{
1 if nnnK = nnne

−1 if nnnK = −nnne
(1)

A useful identity which follows directly from this definition is

sgnKnnne = nnnK on ∂K (2)

This identity allows us to switch between outer normals and prescribed nor-
mals simply by introducing an additional sgnK factor.

2.2 Infinite dimensional spaces

We introduce several spaces V by specifying an inner product (·, ·)V .
If not stated otherwise, these spaces are normed by the induced norm
‖v‖V =

√
(v, v)V .

We denote by L2(Ω) the space of square integrable functions on Ω with
standard inner product

(u, v)L2(Ω) =

∫
Ω

uv dx
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and byLLL2(Ω) = L2(Ω)×L2(Ω) the space of vector valued functions with com-
ponents in L2(Ω). We also introduce the Sobolev spaces of square integrable
functions with square integrable gradient or divergence as

H1(Ω) = {u ∈ L2(Ω) :∇∇∇u ∈ LLL2(Ω)}

H(div,Ω) = {qqq ∈ LLL2(Ω) :∇∇∇ · qqq ∈ L2(Ω)}

with the corresponding inner products [11, Equation 4,67]

(u, v)H1(Ω) =

∫
Ω

uv +∇∇∇u · ∇∇∇v dx

(qqq,σσσ)H(div,Ω) =

∫
Ω

qqq · σσσ + (∇∇∇ · qqq) (∇∇∇ · σσσ) dx

We furthermore define the space

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}

and denote by |u|H1(Ω) = ‖∇∇∇u‖L2(Ω) the H1 semi norm.

We also introduce broken versions of the Sobolev spaces H1(Ω) and
H(div,Ω) as [6, Section 2],[5, Equation 3.1]

H1(M) = {u ∈ L2(Ω) : u|K ∈ H1(K) ,∀K ∈M} =
∏
K∈M

H1(K)

H(div,M) =
{
qqq ∈ LLL2(Ω) : qqq|K ∈ H(div, K) , ∀K ∈M

}
=
∏
K∈M

H(div, K)

These spaces drop inter element continuity constraints present in the corre-
sponding unbroken spaces. Functions in H1(M) are no longer continuous
across element boundaries and functions in H(div,M) have no longer a con-
tinuous normal component across element interfaces. The corresponding dif-
ferential operators can only be applied element-wise. Therefore the standard
inner products on these spaces are also defined element-wise by [5, Equation
3.2] [7, Section 3.1]

(u, v)H1(M) =
∑
K∈M

(u|K , v|K)H1(K)

(qqq,σσσ)H(div,M) =
∑
K∈M

(qqq|K ,σσσ|K)H(div,K)
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Furthermore, if we test a partial differential equation (PDE) with a func-
tion in H(div,M) or H1(M), this leads to the introduction of interface
variables that belong to the spaces [4, Section 2] [6, Section 2]

H1/2(S) =
{
û : ∃u ∈ H1(Ω) : û = u|S

}
H−1/2(S) = {η : ∃qqq ∈ H(div,Ω) : η = (qqq · nnne)|S}

We will commonly refer to variables in the above spaces as traces resp. fluxes.
Since functions in H1(Ω) are continuous across element boundaries and func-
tions in H(div,Ω) have a continuous normal component, the above spaces
consist of functions that are single valued on the mesh skeleton S. Fur-
thermore, H1/2(S) consists of functions that are continuous across the whole
skeleton, while functions in H−1/2(S) are generally discontinuous at vertices.
The norms on these spaces are specified as [6, Equation 1.a] [4, Equation 2]

‖û‖H1/2(S) = inf
u∈H1(Ω):u|S=û

‖u‖H1(Ω)

‖q̂n‖H−1/2(S) = inf
qqq∈H(div,Ω):(qqq·nnne)|S=q̂n

‖q‖H(div,Ω)

We will also require the space [4, Section 2]

H
1/2
0 (S) =

{
û : ∃u ∈ H1

0 (Ω) : û = u|S
}

consisting of traces of functions in H1
0 (Ω). Similarly to H1/2(S) this space is

normed by [4, Equation 2]

‖û‖
H

1/2
0 (S)

= inf
u∈H1

0 (Ω):u|S=û
‖u‖H1(Ω)

2.3 Polynomial spaces

We denote by Pp(K) the space of multivariate polynomials of degree up to
p on a triangle K and define the spaces [3, Section 2.3]

Pp(M) =
{
v ∈ L2(Ω) : v|K ∈ Pp(K),∀K ∈M

}
P0
p (M) = Pp(M) ∩ C0(Ω̄)

Pp(S) =
{
η ∈ L2(S) : η|e ∈ Pp(e),∀e ∈ E(M)

}
P0
p (S) = Pp(S) ∩ C0(S̄)

of discontinuous and continuous polynomials on the mesh resp. mesh-
skeleton. The first two definitions can be easily extended to meshes of
quadrilateral elements by considering the element-wise restrictions in the
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space Qp(K) of tensor-product polynomials of degree up to p in both com-
ponents.

Qp(M) =
{
v ∈ L2(Ω) : v|K ∈ Qp(K),∀K ∈M

}
Q0
p(M) = Qp(M) ∩ C0(Ω̄)

We furthermore consider the spaces P0
p,0(M), P0

p,0(S) and Q0
p,0(M) of

polynomials with zero traces on the boundary ∂Ω.
Clearly Pp(M) is a finite dimensional subspace of L2(Ω), H1(M) and

H(div,M). P0
p (M) is the space of p-th degree Lagrangian polynomials and

a well known subspace of H1(Ω). We will use the space Pp(S) for the dis-
cretization of flux variables and P0

p (S) for the discretization of trace variables
[3, Section 2.3].
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3 Abstract results

In this section we discuss the DPG method in an abstract setting. In section
3.1 we introduce the ideal and practical DPG method for a general linear
variational problem (LVP). We discuss assumptions on the test space that
allow an efficient implementation of the practical DPG method and intro-
duce the DPG error estimator. In section 3.2 we present a theorem, which
establishes the convergence of the practical DPG method in this abstract
setting. In section 3.3 we finally discuss an approach for the computation
of element matrices and vectors for the practical DPG method. These con-
siderations allow an implementation of DPG methods by means of standard
local assembly techniques.

3.1 Abstract DPG method

In an abstract setting the DPG method considers an LVP between two
Hilbert spaces U and V {

Find u ∈ U such that

b(u, v) = `(v) ∀v ∈ V
(3)

Here b : U × V → R is a continuous bilinear form and ` : V → R is a
continuous linear form. We denote by (·, ·)U , (·, ·)V , ‖·‖U and ‖·‖V the inner
products and norms on U and V . We will commonly refer to U as the trial
space and to V as the test space of the LVP [5, Equation 2.1][8, Equation
1.1].

We are interested in approximating the solution to (3) on a finite di-
mensional subspace Uh ⊂ U . The ideal DPG method introduces a trial-to-
test operator T which is used to compute a space of optimal test functions
Vh = T (Uh). The operator T : U → V is defined by the property [9, Equation
4], [7, Equation 4]

(Tu, v)V = b(u, v) ∀v ∈ V (4)

The ideal DPG method then solves [7, Equation 5], [5, Equation 2.15]{
Find uh ∈ Uh such that

b(uh, vh) = `(vh) ∀vh ∈ Vh
(5)

By the definition of T the computation of the optimal test space involves
solving another LVP. If we consider a basis {bju,N} ⊂ Uh, the computation of
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b̄jv,N = T (bju,N) requires solving [5, Equation 2.16] [10, Equation 1.12]{
Find b̄jv,N ∈ V such that

(b̄jv,N , v)V = b(bju,N , v) ∀v ∈ V
(6)

In general V is infinite dimensional and the solution to (6) can not be com-
puted in closed form. However one can approximate T by T r on a finite
dimensional subspace V r ⊂ V . To approximate the optimal test space, for
each basis function bju,N we now solve [8, Equation 1.2] [7, Equation 1.4]{

Find b̃jv,N ∈ V
r such that

(b̃jv,N , v)V = b(bju,N , v) ∀v ∈ V r
(7)

This leads to the practical DPG method, for which we replace the optimal
test space Vh = T (Uh) in (5) by the approximated test space V r

h = T r(Uh)
[7, Equation 1.5] {

Find uh ∈ Uh such that

b(uh, v) = `(v) ∀v ∈ V r
h

(8)

The practical DPG method is completely discrete. For each basis function
of Uh we have to solve (7). However this is computationally expensive for
standard test spaces. In the case of V = H1(Ω) computing one basis function
is as expensive as solving a full boundary value problem [7, Section 1]. To
get a computationally efficient method, we can choose V r as the subspace of
a broken energy space, as introduced in section 2.2. Since functions in these
spaces do not have to satisfy continuity constraints across element bound-
aries, LVP (7) decouples into element-wise problems, which can be solved
efficiently [5, Section 3]. More precisely we choose a variational formulation
so that V has the product structure

V =
∏
K∈M

V (K) (v, δv)V =
∑
K∈M

(v|K , δv|K)V (K) (9)

which is the case for H1(M) and H(div,M). The element-wise problems
are given as [5, Equation 3.5]{

Find b̃jv ∈ V r(K) such that

(b̃jv, v)V (K) = bK(bju, v) ∀v ∈ V r(K)
(10)

where bK denotes the contribution of element K to the bilinear form and bju
reps. b̃jv denote local shape functions on K of bju,N reps. b̃jv,N
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Furthermore, the method provides a posteriori error estimator. Given
any function ũh ∈ Uh we denote by ε̃h ∈ V r the solution to [6, Equation 26]{

Find ε̃h ∈ V r such that

(ε̃h, v)V = `(v)− b(ũh, v) ∀v ∈ V r (11)

If V r is a broken space as in (9), solving (11) again decouples into element-
wise problems{

Find ε̃h,K ∈ V r(K) such that

(ε̃h,K , v)V (K) = `K(v)− bK(ũh,K , v) ∀v ∈ V r(K)
(12)

where the quantities in (12) denote the restrictions of global quantities in
(11) to element K. Finally we denote by η̃ = ‖ε̃h‖V the DPG error estimator
associated to ũh [6, Section 4.1]

3.2 Convergence results

We now recall the main convergence results for the practical DPG method
in this abstract setting. Convergence of the method relies on the following
four assumptions. [8, Equation 1.3a-1.3c],[7, Equation 2.1-2.4], [11, Equation
2.2-2.4]

Assumption 1 (Continuity). There exists a constant M ≥ 0 such that ∀w ∈
U, v ∈ V

b(w, v) ≤M ‖w‖U ‖v‖V

Assumption 2 (Inf-Sup condition). There exists a constant γ such that

inf
‖u‖U=1

sup
‖v‖V =1

|b(u, v)| = γ > 0

Assumption 3 (Uniqueness). The following subspace is trivial

Z = {y ∈ Y : b(x, y) = 0 ∀x ∈ X} = {0}

Assumption 4. There exists a linear operator Π : V → V r and a constant
CΠ > 0 such that ∀wh ∈ Uh,∀v ∈ V

b(wh, v − Πv) = 0

‖Πv‖V ≤ CΠ ‖v‖V
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Assumptions 1-3 are required to establish the convergence of the ideal
DPG method (5) and do not include our choice of the space V r. The last as-
sumption finally asserts that we choose V r ⊂ V large enough to approximate
the optimal test space.

The following main theorem establishes the convergence of the practi-
cal DPG method and motivates the quantity η̃ as an error estimator. [6,
Theorem 4.1] [8, Theorem 1.1] [7, Theorem 2.1].

Theorem 3.1 (Quasi optimality). Let assumptions 1-4 hold. Then the prac-
tical DPG method (8) is uniquely solvable for uh. If u is the unique exact
solution of (3), then uh satisfies the error estimate

‖u− uh‖U ≤
MCΠ

γ
inf

wh∈Uh
‖u− wh‖U

Furthermore any ũh ∈ Uh and its corresponding DPG error estimator η̃
satisfy

γ ‖u− ũh‖U ≤ CΠη̃ + osc(l)

η̃ ≤M ‖u− ũh‖U
where osc(l) = ‖l ◦ (1− Π)‖V ′ denotes the data-approximation error.

3.3 Local computations

In this section we derive explicit formulas for the computation of the element
stiffness matrix and the element load vector for the practical DPG method
(8). We assume that V r is the subspace of a broken energy space such that
we can use (10) to approximate the optimal basis functions element-wise.

Let {b1
u, . . . , b

QU
u } be the local shape functions of Uh and {b1

v . . . , b
QV
v } be

the local shape functions of V r on an arbitrary element K. We denote the
approximated local optimal test shape functions by b̃iv = T r(biu) The entries
of the DPG element stiffness matrix AAAK ∈ RQU ,QU and the DPG element
load vector φφφK ∈ RQU are given by

AAAKl,j = bK(bju, b̃
l
v) l, j ∈ {1, . . . QU}

φφφKl = `K(b̃lv) l ∈ {1, . . . QU}

We start by solving (10) and compute the coefficient vectors µµµl ∈ RQV of
b̃lv in the local basis of V r(K)

GGGKµµµl = (BBBK):,l

9



Where GGGK ∈ RQV ,QV is the local Gram matrix on V r(K) [5, Equation 3.23]
[2, Section 3.2]

GGGK
i,j =

(
biv, b

j
v

)
V (K)

, i, j ∈ {1 . . . QV }

andBBBK ∈ RQV ,QU denotes the extended element stiffness matrix [5, Equation
3.23] [2, Section 3.2]

BBBK
i,j = bK(bju, b

i
v), i ∈ {1, . . . QV }, j ∈ {1, . . . QU}

Since the local Gram matrix GGGK is symmetric positive definite, its inverse(
GGGK
)−1

exists and we can compute the entries of µµµl as

µµµli =

QV∑
k=1

((
GGGK
)−1
)
i,k
BBBK
k,l

Our approximation of the optimal test function b̃lv is

b̃lv =

QV∑
i=1

µµµlib
i
v =

QV∑
i=1

QV∑
k=1

((
GGGK
)−1
)
i,k
BBBK
k,lb

i
v

Using the bi-linearity of bK(·, ·) and the definition of the extended element
stiffness matrix BBBK we can compute the entries of AAAK as

AAAKl,j = bK

(
bju, b̃

l
v

)
=

QV∑
i=1

QV∑
k=1

bK
(
bju, b

i
v

) ((
GGGK
)−1
)
i,k
BBBK
k,l

=

QV∑
i=1

QV∑
k=1

BBBK
i,j

((
GGGK
)−1
)
i,k
BBBK
k,l =

QV∑
i=1

QV∑
k=1

((
BBBK
)T)

l,k

((
GGGK
)−1
)
k,i
BBBK
i,j

Where we used the symmetry of the local Gramian GGGK . The DPG element
stiffness matrix is finally given by [5, Equation 3.24] [2, Section 3.2]

AAAK =
(
BBBK
)T (

GGGK
)−1

BBBK (13)

The structure of the above matrix product implies, that AAAK is positive semi
definite. One can show that the resulting global stiffness matrix AAA is sym-
metric positive definite [10, Equation 1.16] [2, section 3.1].

For the computation of the DPG element load vector φφφK , we define the
extended element load vector lllK ∈ RQV as [5, Equation 3.23]

lllKi = `K(biv), i ∈ {1, . . . , QV }

10



Using linearity of `K(·) and the formulas for b̃lv we find

φφφKj = `K(b̃jv) =

QV∑
i=1

QV∑
k=1

lllKi

((
GGGK
)−1
)
i,k
BBBK
k,j

=

QV∑
i=1

QV∑
k=1

((
BBBK
)T)

j,k

((
GGGK
)−1
)
k,i
lllKi

where the symmetry of GGGK was used in the last step. The DPG element load
vector can thus be computed as [5, Equation 3.24]

φφφK =
(
BBBK
)T (

GGGK
)−1

lllK (14)

We finally derive formulas for the computation of the local error repre-
sentation function ε̃h,K and the local DPG error estimator η̃2

K = ‖ε̃h‖2
V (K)

which are computed by solving LVP (12). We denote by µ̃µµK ∈ RQU the local
coefficient vector of the finite element function ũh. The entries of the residual
vector r̃rrK ∈ RQV corresponding to the right hand side of (12) are computed
by

r̃rrKi = `K(biv)− bK(ũh, b
i
v) = llli −

QU∑
j=1

BBBK
i,jµ̃µµ

K
j

such that the residual vector is given by

r̃rrK = lllK −BBBKµ̃µµK (15)

The local coefficient vector ẽeeK ∈ RQV of ε̃h,K in V r(K) then satisfies (12)

GGGKẽeeK = r̃rrK

Finally, we can compute η̃2
K by the definition of the local Gram matrix

GGGK as [2, Section 3.3]

η̃2
K = ‖ε̃h‖V (K) =

(
ẽeeK
)T
GGGKẽeeK =

((
GGGK
)−1

r̃rrK
)T
GGGK

((
GGGK
)−1

r̃rrK
)

=
(
r̃rrK
)T (

GGGK
)−1

r̃rrK
(16)

The global DPG error estimator η̃2 can be computed by summing up the
local estimators over the mesh.

η̃2 =
∑
K∈M

η̃2
K

11



4 Primal DPG formulation

In this section we derive the primal DPG formulation starting from a sec-
ond order formulation of the convection-diffusion problem. In section 4.1 we
introduce the model problem, fix the regularity assumptions on the coeffi-
cients and define the in- and outflow boundaries. In section 4.2 we provide
a detailed derivation of the primal formulation for the convection-diffusion
problem and specify the energy setting in the case of pure homogeneous
Dirichlet boundary conditions. In section 4.3 we present the main conver-
gence results for the primal formulation. Finally in section 4.4 we give an
overview of the structure of the resulting local quantities.

4.1 Model problem

We consider the convection-diffusion model problem. We seek u such that
−ε∆u+ βββ · ∇∇∇u = f in Ω

u = g on Γ1

nnnΩ · ∇∇∇u = h on Γ2

(17)

For the convergence analysis we consider the diffusion coefficient ε ∈ R>0

and the prescribed advection field βββ ∈ R2. The source function f : Ω → R
is assumed in L2(Ω) [6, Example 3.5]. We impose Dirichlet and Neumann
boundary conditions on two distinct parts of the boundary Γ1,Γ2 ⊂ ∂Ω. A
natural choice for Γ1 and Γ2 are the in- and outflow boundaries, which are
defined as [5, equation 5.2]

Γ1 = Γin = {x ∈ ∂Ω : βββ · nnnΩ < 0}

Γ2 = Γout = {x ∈ ∂Ω : βββ · nnnΩ ≥ 0}

4.2 Variational formulation

In order to apply the DPG method to this problem, we multiply the PDE with
a broken test function v ∈ H1(M) and integrate over an element K ∈ M.
Since v|K ∈ H1(K), we can apply integration by parts on the element K.
We then sum up the contributions from all elements K ∈ M. [5, Equation
3.11]
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−
∫
K

ε∆uvdx +

∫
K

βββ · ∇∇∇uvdx =

∫
K

fvdx∫
K

ε∇∇∇u · ∇∇∇vdx−
∫
∂K

ε∇∇∇u · nnnKvdS +

∫
K

βββ · ∇∇∇uvdx =

∫
K

fvdx∑
K∈M

∫
K

ε∇∇∇u · ∇∇∇vdx−
∫
∂K

ε∇∇∇u · nnnKvdS +

∫
K

βββ · ∇∇∇uvdx =
∑
K∈M

∫
K

fvdx

As described in section 2.2 a function v ∈ H1(M) is no longer continuous
across the element interfaces and the boundary integrals do not cancel each
other on the mesh skeleton S [5, Section 3].

Since we choose u ∈ H1(Ω), the value of the gradient ∇∇∇u ∈ LLL2(Ω) is
undefined on the element boundaries ∂K. We introduce a new unknown
q̂n ∈ H−1/2(S), which represents the fluxes on the mesh skeleton q̂n =∇∇∇u·nnne.
To achieve this, we have to replace the outer normals nnnK by prescribed edge
normals nnne. According to identity (2), this simply results in an additional
sgnK factor in the variational formulation [5, Equation 3.17-3.19] [6, Example
3.5].

∑
K∈M

∫
K

ε∇∇∇u · ∇∇∇vdx−
∫
∂K

ε∇∇∇u · nnnesgnKvdS +

∫
K

βββ · ∇∇∇uvdx =
∑
K∈M

∫
K

fvdx

∑
K∈M

∫
K

ε∇∇∇u · ∇∇∇vdx−
∫
∂K

εq̂nsgnKvdS +

∫
K

βββ · ∇∇∇uvdx =
∑
K∈M

∫
K

fvdx

To simplify further notation we define

b((u, q̂n), v) =
∑
K∈M

∫
K

ε∇∇∇u · ∇∇∇vdx−
∫
∂K

εq̂nsgnKvdS +

∫
K

βββ · ∇∇∇uvdx

`(v) =
∑
K∈M

∫
K

fvdx

Furthermore, we can transform the boundary condition on ∇∇∇u ·nnnΩ into a
boundary condition for the flux q̂n. By definition the prescribed edge normals
nnne point outwards on the boundary ∂Ω. We thus can transform the Neumann
boundary condition directly into an essential boundary condition on the flux
q̂n without any sign adjustments.

Our variational formulation finally reads as follows [8, Equation 2.2] [5,
Equation 3.19] [12, Equation 2.9]:

Seek u ∈ H1(Ω) and q̂n ∈ H−1/2(S) such that

13




b((u, q̂n), v) = `(v)∀v ∈ H1(M)

u = g, on Γ1

q̂n = h, on Γ2

For the following convergence analysis we consider homogenous Dirichlet
boundary conditions. The general boundary conditions in (17) can be en-
forced by using offset-function techniques which we describe in section 6.3.
We set the trial and test space to [8, Section 2]

U = H1
0 (Ω)×H−1/2(S)

V = H1(M)

The spaces are normed by

‖(w, r̂n)‖2
U = |w|H1(Ω) + ‖r̂n‖2

H−1/2(S)

‖v‖V = ‖v‖H1(M)

and the variational formulation we are interested to analyse reads as{
Find (u, q̂n) ∈ U such that

b((u, q̂n), v) = `(v) ∀v ∈ V
(18)

4.3 Convergence results

We now specify the finite dimensional polynomial subspaces Uh ⊂ U and
V r ⊂ V of the practical DPG method (8). For simplicity we consider a
triangular mesh. For k, r ∈ N we set [8, Equation 4.1]

Uh = {(w, r̂n) ∈ U : w|K ∈ Pk+1(K), r̂n|∂K ∈ Pk(∂K) ∀K ∈M}

V r = {v ∈ V : v|K ∈ Pr(K) ∀K ∈M}

In particular by our discussion of polynomial spaces in section 2.3 we have
Uh = P0

k+1,0(M)× Pk(S) and V r = Pr(M).
In this setting the following quasi-optimality result holds [8, Theorem

4.1].

Theorem 4.1 (Quasi optimality). Suppose that r ≥ k + 2 and βββ = 0. Let
(u, q̂n) denote the exact and (uh, q̂n,h) the discrete solution for the primal
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DPG method. Let the discretization error D and the approximation error A
be denoted by

D = ‖u− uh‖H1(Ω) + ‖q̂n − q̂n,h‖H−1/2(S)

A = inf
(w,r̂n,h)∈Uh

(
‖u− wh‖H1(Ω) + ‖q̂n − r̂n,h‖H−1/2(S)

)
Then there is a constant C > 0 independent of h such that

D ≤ CA

In the case βββ 6= 0, the variational formulation remains valid [6, Example
3.5]. We will perform numerical experiments to examine if an enrichment of
r = k + 2 is still sufficient in this case.

Furthermore, under the assumptions of theorem 4.1 and under additional
smoothness assumptions on the exact solution u, the following result regard-
ing convergence rates holds [8, Equation 5.1].

Corollary 4.2 (Convergence rates). Let the assumptions of theorem 4.1 hold.
Let the Discretization error D be denoted by

D = ‖u− uh‖H1(Ω) + ‖q̂n − q̂n,h‖H−1/2(Γh)

and let qqq = −∇∇∇u. Then for all s ≤ k + 1

D ≤ Chs
(
|u|Hs+1(Ω) + |∇∇∇ · qqq|Hs(Ω)

)
In particular, if the solution is smooth enough and if we use polynomials

of degree p to approximate the u-part of the solution, we expect algebraic
h-convergence of rate p.

4.4 Local quantities

We give explicit formulas for the computation of the local quantities intro-
duced section 3.3. We assume that on an element K for all components of the
trial and test space d ∈ {u, q̂n, v} a set of local shape functions {b1

d, . . . b
Qd
d }

is given.
The local Gram matrix GGGK ∈ RQv ,Qv corresponds to the inner product in

V (K) and its entries are given by(
GGGK
)
i,j

=
(
biv, b

j
v

)
V (K)

=

∫
K

bivb
j
v +∇∇∇biv · ∇∇∇bjvdx

The extended element stiffness matrix has the following structure
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BBBK =
[
BBBK,u BBBK,q̂n

]
∈ RQv ,Qu+Qq̂n

and the sub matrices are given by(
BBBK,u

)
i,j

= bK((bju, 0), biv) =

∫
K

ε∇∇∇bju · ∇∇∇biv + βββ · ∇∇∇bju bivdx(
BBBK,q̂n

)
i,j

= bK((0, bjq̂n), biv) =

∫
∂K

−sgnKb
j
q̂n
bivdS

Finally, the extended load vector lllK ∈ RQv is computed as(
lllK
)
i

= `K(biv) =

∫
K

fbivdx
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5 Ultraweak DPG formulation

In the previous section we derived the primal DPG formulation by choosing
a broken test function v ∈ H1(M), while leaving the trial space unbroken
by choosing u ∈ H1(Ω). To derive the ultraweak DPG formulation we ad-
ditionally break the trial space. To achieve this we start from a first order
reformulation of the model problem which we introduce in 5.1. We then
proceed in the same way as for the primal DPG method in section 4.

5.1 Model problem

We consider a first order reformulation of the model problem (17). We seek
u and σσσ satisfying 

1

ε
σσσ −∇∇∇u = 0 in Ω

−∇∇∇ · σσσ +∇∇∇ · (βββu) = f in Ω

nnnΩ · (σσσ − βββu) = g on Γ1

u = u0 on Γ2

(19)

Here σσσ represents the scaled gradient ε∇∇∇u. We consider the same conditions
on the coefficient functions as in section 4.1. The boundary conditions are
the ones proposed in [13, Section 2]

5.2 Variational formulation

We again multiply the equations in (19) with broken test functions v ∈
H1(M), τττ ∈ H(div,M) and integrate over a single element K.

∫
K

1

ε
σσσ · τττdx−

∫
K

∇∇∇u · τττdx = 0

−
∫
K

(∇∇∇ · σσσ)vdx +

∫
K

∇∇∇ · (βββu)vdx =

∫
K

fvdx

Our goal is to arrive at a variational formulation, where we can choose u ∈
L2(Ω) and σσσ ∈ LLL2(Ω). To achieve this we have to shift all derivatives from the
trial to the test functions. Since the test functions are locally in H(div, K)
and H1(K), we can perform integration by parts on K

∫
K

1

ε
σσσ · τττdx +

∫
K

u∇∇∇ · τdx−
∫
∂K

uτττ · nnnKdS = 0∫
K

σσσ · ∇∇∇vdx−
∫
∂K

σσσ · nnnKvdS−
∫
K

uβββ · ∇∇∇vdx +

∫
∂K

uβββ · nnnKvdS =

∫
K

fvdx
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Summing the two equations we arrive at

∫
K

σσσ · ∇∇∇v +
1

ε
σσσ · τττ + u∇∇∇ · τττ − uβββ · ∇∇∇vdx

−
∫
∂K

(σσσ − uβββ) · nnnKv + uτττ · nnnKdS =

∫
K

fvdx

Since we only assume u ∈ L2(Ω), its value on the element boundary is no
longer well defined and we represent it with the trace unknown û ∈ H1/2(S).
Similarly, since σσσ ∈ LLL2(Ω), the value of the flux (σσσ−uβββ) ·nnnK is no longer well
defined. We again introduce the prescribed normals nnne into the variational
formulation via identity (2) and introduce the flux variable σ̂n ∈ H−1/2(S)
representing the total flux across element boundaries σ̂n = nnne · (σσσ − βββu).
Finally summing up the contributions from all elements K ∈M, we arrive at
a variational formulation that reads as follows [13, Section 2.1] [10, Equation
4.58] [5, Equation 5.3]

∑
K∈M

∫
K

σσσ · ∇∇∇v +
1

ε
σσσ · τττ + u∇∇∇ · τ − uβββ · ∇∇∇vdx

−
∑
K∈M

∫
∂K

sgnK σ̂nv + ûτττ · nnnKdS =
∑
K∈M

∫
K

fvdx

To simplify notation we introduce the following bilinear and linear forms

b ((u,σσσ, û, σ̂n), (v, τττ)) =
∑
K∈M

∫
K

σσσ · ∇∇∇v +
1

ε
σσσ · τττ + u∇∇∇ · τ − uβββ · ∇∇∇vdx

−
∑
K∈M

∫
∂K

sgnK σ̂nv + ûτττ · nnnKdS

`((v, τττ)) =
∑
K∈M

∫
K

fvdx

As for the primal formulation, we can transform the boundary conditions
in (19) to essential boundary conditions on the flux σ̂n and the trace û. Our
variational formulation thus reads as follows:

Find u, σσσ,σ̂n and û such that
b ((u,σσσ, û, σ̂n), (v, τττ)) = l(v, τττ) ∀(v, τττ) ∈ H1(M)×H(div,M)

σ̂n = g on Γ1

û = u0 on Γ2
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To simplify the convergence analysis we again consider the case of a prob-
lem with pure homogenous Dirichlet boundary conditions. The correct en-
ergy setting in this case is given by [7, Section 3.1]

U = L2(Ω)×LLL2(Ω)×H1/2
0 (S)×H−1/2(S)

V = H1(M)×H(div,M)

The norms on U and V are specified as [7, Section 3.1] [13, Section 2.1-2.2]

‖(u,σσσ, û, σ̂n)‖2
U = ‖u‖2

L2(Ω) + ‖σσσ‖2
LLL2(Ω) + ‖û‖2

H
1/2
0 (S)

+ ‖σ̂n‖2
H−1/2(S)

‖(v, τττ)‖2
V = ‖v‖2

H1(M) + ‖τττ‖2
H(div,M)

A standard choice for the test-space inner product which induces the above
norm is [10, Equation 4.66]

((v, τττ), (δv, δτττ))V = (v, δv)H1(M) + (τττ , δτττ)H(div,M)

Finally, the variational formulation, we are interested to analyse, reads
as {

Find (u,σσσ, û, σ̂n) ∈ U such that

b ((u,σσσ, û, σ̂n), (v, τττ)) = l(v, τττ) ∀(v, τττ) ∈ V
(20)

5.3 Convergence results

We again specify the finite dimensional polynomial subspaces Uh ⊂ U and
V r ⊂ V needed in the practical DPG method (8). For p, r ∈ N we set [7,
Section 3.3]

Uh = {(u,σσσ, û, σ̂n) ∈ U :u|K ∈ Pp(K),

σσσ|K ∈ PPPp(K),

û|∂K ∈ P0
p+1(∂K),

σ̂n|∂K ∈ Pp(∂K) ∀K ∈M}

V r = {(v, τττ) ∈ V : v|K ∈ Pr(K)

τττ |K ∈ PPPr(K) ∀K ∈M}
By our discussion in section 2.2 the finite dimensional spaces can be directly
specified as Uh = Pp(M)×PPPp(M)×P0

p+1,0(S)×Pp(S) and V r = Pp(M)×
PPPp(M) [3, Section 2.5].

In this setting the following quasi-optimality result holds [7, Theorem 3.4]
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Theorem 5.1 (Quasi optimality). Suppose that r ≥ p + 2 and βββ = 0. Let
(u,σσσ, û, σ̂n) denote the exact and (uh,σσσh, ûh, σ̂n,h) the discrete solution for the
ultraweak DPG method. Let the discretization error D and approximation
error A be denoted by

D = ‖u− uh‖2
L2(Ω) + ‖σσσ − σσσh‖2

LLL2(Ω) + ‖û− ûh‖2

H
1/2
0 (S)

+ ‖σ̂n − σ̂n,h‖2
H−1/2(S)

A = inf
(wh,ρρρh,ω̂h,η̂h,n)∈Uh(
‖u− wh‖2

L2(Ω) + ‖σσσ − ρρρh‖2
LLL2(Ω) + ‖û− ω̂h‖2

H
1/2
0 (S)

+ ‖σ̂n − η̂h,n‖2
H−1/2(S)

)
Then there is a constant C ≥ 0 independent of h such that

D ≤ CA

In the case of βββ 6= 0, the variational formulation remains valid [6, Example
3.5]. We will again perform numerical experiments to examine the effect of
the additional convection term.

Regarding the expected convergence rates, the following result holds un-
der the assumption of theorem 5.1 and under additional smoothness assump-
tions on the exact solution u [7, Corollary 3.6].

Corollary 5.2 (Convergence rates). Let the assumptions of theorem 5.1 hold.
Let the discretization error D be denoted by

D = ‖u− uh‖2
L2(Ω) + ‖σσσ − σσσh‖2

LLL2(Ω) + ‖û− ûh‖2

H
1/2
0 (S)

+ ‖σ̂n − σ̂n,h‖2
H−1/2(S)

Then for all s ∈ (1/2, p+ 1]

D ≤ Chs
(
‖u‖Hs+1(Ω) + ‖σσσ‖Hs+1(Ω)

)
In particular, for smooth enough solutions, we expect algebraic h-

convergence of order p + 1, if we approximate the u and σσσ component of
our solution with polynomials of degree p.

5.4 Local quantities

We again present explicit formulas for the computation of the local quantities
introduced in section 3.3. By our choice of trial and test space in section 5.3,
it is clear that the components of the vector-valued functions σσσ and τττ can
be described by independent shape functions. So we assume, that for each

20



component of the trial and test space d ∈ {u, σx, σy, û, q̂n, v, τx, τy} on an

element K a set of local shape functions {b1
d, · · · b

Qd
d } is given.

The local Gram matrix has the following structure

GGGK =

 GGGK,v,v 0 0
0 GGGK,τx,τx GGGK,τx,τy

0 GGGK,τy ,τx GGGK,τy ,τy

 ∈ RQV ,QV

where the sub matrices are computed as

(
GGGK,v,v

)
i,j

=

∫
K

bivb
j
v +∇∇∇biv · ∇∇∇bjv dx

(
GGGK,τx,τx

)
i,j

=

∫
K

biτxb
j
τx +

∂biτx
∂x

∂bjτx
∂x

dx

(
GGGK,τy ,τy

)
i,j

=

∫
K

biτyb
j
τy +

∂biτy
∂y

∂bjτy
∂y

dx

(
GGGK,τx,τy

)
i,j

=

∫
K

∂biτx
∂x

∂bjτy
∂y

dx

(
GGGK,τy ,τx

)
i,j

=

∫
K

∂biτy
∂y

∂bjτx
∂x

dx

Similarly the extended element stiffness matrix will have the following
structure

BBBK =

 BBBK,v,u BBBK,v,σx BBBK,v,σy 0 BBBK,v,σ̂n

BBBK,τx,u BBBK,τx,σx 0 BBBK,τx,û 0
BBBK,τy ,u 0 BBBK,τy ,σy BBBK,τy ,û 0

 ∈ RQV ,QU

and the entries of the sub-matrices are given by

(
BBBK,v,u

)
i,j

= −
∫
K

bjuβββ · ∇∇∇bivdx

(
BBBK,v,σx

)
i,j

=

∫
K

bjσx
∂biv
∂x

dx

(
BBBK,v,σy

)
i,j

=

∫
K

bjσy
∂biv
∂y

dx(
BBBK,v,σ̂n

)
i,j

= −
∫
∂K

sgnKb
j
σ̂n
bivdS
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(
BBBK,τx,u

)
i,j

=

∫
K

bju
∂biτx
∂x

dx

(
BBBK,τy ,u

)
i,j

=

∫
K

bju
∂biτy
∂y

dx(
BBBK,τx,σx

)
i,j

=

∫
K

1

ε
bjσxb

i
τxdx(

BBBK,τy ,σy
)
i,j

=

∫
K

1

ε
bjσyb

i
τydx(

BBBK,τx,û
)
i,j

= −
∫
∂K

bjûb
i
τxnK,xdS(

BBBK,τy ,û
)
i,j

= −
∫
∂K

bjûb
i
τynK,ydS

Finally the structure of the extended element load vector is given as

lllK =

 lllK,v

0
0

 ∈ RQV

and the sub vector lllK,v is computed as(
lllK,v
)
i

=

∫
K

fbivdx
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6 Implementation

We present details of our implementation of the two DPG methods in the
context of the C++ library LehrFEM++. LehrFEM++ is an open source
finite element library currently developed at ETH Zurich [1]. Our implemen-
tation was partly inspired by the description of the general DPG framework
Camellia in [2].

6.1 Shape functions

We provide a detailed description of the implementation of basis functions
for the polynomial spaces introduced in section 2.3. Since LehrFEM++
relies heavily on parametric mapping techniques, this task is reduced to the
specification of local shape functions on a reference element. In particular we
have to provide evaluation methods and specify a set of local interpolation
nodes to which the shape functions are associated. These interpolation nodes
can either be associated to the reference element itself, one of its edges or
one of its vertices. This implicitly defines a set of global shape functions,
which result from ”glueing” together local shape functions associated to the
same global interpolation nodes.

6.1.1 Continuous polynomials (P0
p (M))

A first order implementation of Lagrangian finite elements is already provided
in LehrFEM++ in the class FeLagrangeO1Tria1. We provide an implemen-
tation of second and third order Lagrangian finite elements in the classes
FeLagrangeO2Tria and FeLagrangeO3Tria. We use the interpolation nodes
shown in figure 1. The shape functions are computed such that they satisfy
the cardinal basis property on these interpolation nodes. Explicit formulas
for the quadratic case can be found in [14, Section 2.6.1]. The formulas in
the third order case are similar. Furthermore, one can show, that by this
choice of local shape functions, the resulting global shape functions are in-
deed continuous [14, Section 2.6.1].

6.1.2 Discontinuous polynomials (Pp(M))

The continuity of the global shape functions of P0
p (M) is the result of an

implicit glueing of shape functions associated to the same global interpolation

1 We ommit the specification of namespaces and template arguments throughout this
thesis for readability. All LehrFEM++ classes are located in the default namespace lf.
The classes of our own implementation are located in the namespace projects::dpg
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Discon.Trace

(a) Quadratic interpolation nodes

Discon.Trace

(b) Cubic interpolation nodes

Figure 1: Interpolation nodes on the reference triangle. Red nodes are asso-
ciated to vertices, blue nodes to edges and black nodes to the triangle

node. Our approach with discontinuous polynomials is to avoid this glueing
and treat all local shape functions as independent global shape functions,
locally supported on exactly one element. This is achieved by the decorator
pattern implemented in the class DiscontinuousScalarReferenceFinite-

Element. This class decorates any ScalarReferenceFiniteElement and
associates all its interpolation nodes to the underlying reference element,
independent on where they lie. Figure 1 shows the effect of the decorator
to the interpolation nodes of the second and third order Lagrangian shape
functions. In the case of p = 0 we directly construct discontinuous shape
functions in the class FeDiscontinuousO0Tria.

6.1.3 Trace polynomials (P0
p (S))

In order to construct a basis for P0
p (S), we simply use the traces of the local

shape functions of P0
p (M) on the element boundary. By the cardinal basis

property, traces of functions associated to interior interpolation nodes are
zero. In order to arrive at a basis for P0

p (S), these shape functions have
to be dropped. This is achieved by the decorator pattern implemented in
the class TraceScalarReferenceFiniteElement. The class decorates any
ScalarReferenceFiniteElement and drops all its interior shape functions
and interpolation nodes. Figure 1 illustrates the effect of the decorator to the
interpolation nodes of the second and third order Lagrangian shape functions.
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Discon.

(a) Quadratic interpolation nodes

Discon.

(b) Cubic interpolation nodes

Figure 2: Interpolation nodes on the reference line segment. Red nodes are
associated to vertices, blue nodes to the segment

6.1.4 Flux polynomials (Pp(S))

To construct a basis for Pp(S) we use an edge based approach. We pro-
ceed similarly to the construction of a basis for Pp(M). We first construct
local shape functions for a basis of the space of continuous polynomials on
the mesh skeleton in the classes FeLagrangeO2Segment and FeLagrangeO3-

Segment. We then apply the discontinuous decorator to arrive at a basis for
Pp(S). Figure 2 shows the corresponding interpolation nodes and the effect
of applying the discontinuous decorator. In the case of p = 0 we directly
construct discontinuous shape functions in the class FeDiscontinuousO0-

Segment.

6.1.5 Quadrilateral meshes

The construction in the case of quadrilateral elements is similar. A first order
implementation of Lagrangian finite elements on quadrilaterals is provided
by LehrFEM++ in the class FeLagrangeQuadO1 and we provide an imple-
mentation for the second and third order bases in FeLagrangeQuadO2 and
FeLagrangeQuadO3. Figure 3 shows the interpolation nodes on the reference
quadrilateral as well as the effect of the two decorators.

6.2 Local computations

We give a description of the approach used to evaluate local quantities such
as the DPG element matrices and vectors.
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Discon.Trace

(a) Quadratic interpolation nodes

Discon.Trace

(b) Cubic interpolation nodes

Figure 3: Interpolation nodes on the reference quadrilateral. Red nodes are
associated to vertices, blue nodes to edges and black nodes to the quadrilat-
eral.

6.2.1 Sub element matrices

We provide a set of SubElementMatrixProviders that allow the evaluation
of the sub matrices, introduced in the discussion of the extended element
stiffness matrices BBBK and the local Gram matricesGGGK in section 4.4 and 5.4.
In particular they allow the evaluation of element matrices for the following
bilinear forms.

(u, v)→
∫
K

L1(u)ααα(x)L2(v)dx

(û, v)→
∫
∂K

ûv nnnK ·ααα(x)dS

(q̂n, v)→
∫
∂K

sgnK q̂nvα(x)dS

The first bilinear form deals with all sub matrices that involve integra-
tion over an element K. L1,2 are first order linear differential operators and
ααα(x) is a coefficient function of suitable dimensions. Our current implemen-
tation supports the operators L1,2(u) ∈ {u,∇∇∇u, ∂u

∂x
, ∂u
∂y
} by a suitable choice

of parameters in the classes DiffusionElementMatrixProvider, Reaction-
ElementMatrixProvider and ConvectionElementMatrixProvider.

The second bilinear form deals with sub matrices that are associated
to trace variables and is implemented in the class TraceElementMatrix-
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Provider. ααα(x) is a vector-valued coefficient function.
Finally the third bilinear form is used for the evaluation of sub matrices

associated to flux variables. Here the coefficient function α(x) is scalar val-
ued. The corresponding provider is implemented in the class FluxElement-

MatrixProvider.
We provide similar functionality for the evaluation of the sub vectors of

the extended element load vector lllK . Here the only linear form of interest is

v →
∫
K

vfdx

where f is the scalar valued source function. This functionality is imple-
mented in the class LoadElementVectorProvider.

In all implementations, the computation of the integrals is based on
quadrature-based parametric mapping techniques [14, Section 2.8.3].

6.2.2 Product element matrices

The class ProductElementMatrixProvider allows the construction of more
complex element matrices, using sub matrices provided by SubElement-

MatrixProviders.
For two spaces U and V with the following product structure

U = U1 × U2 × · · · × Un
V = V1 × V2 × · · · × Vm

the class allows the evaluation of element matrices for bilinear forms b :
U × V → R that are given as

b ((u1, u2, . . . un), (v1, v2, . . . vm)) =
N∑
k=1

bk(uik , vjk)

where ik ∈ {1, . . . , n}, jk ∈ {1, . . .m} and each bk : Uik×Vjk → R is a bilinear
form between two components of the spaces U and V . The class evaluates the
element matrices for the bilinear forms bk that are provided by SubElement-

MatrixProviders and stacks them together to the element matrix of the
bilinear form b. In particular the class can evaluate the extended element
stiffness matrices BBBK and the local Gramian matrices GGGK of the primal and
ultraweak DPG method.

We provide similar functionality to construct more complex element vec-
tors, based on SubElementVectorProviders in the class ProductElement-

VectorProvider. This class allows the evaluation of an element vector for a
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linear form ` : V → R that has the following structure

` ((v1, v2, . . . vm)) =
M∑
k=1

`k(vjk)

jk ∈ {1, . . .m} and each `k : Vjk → R is a linear form of a component of
the space V . In particular the class can evaluate the extended element load
vector lllK of the primal and ultraweak DPG method.

6.2.3 DPG element matrices

The classes DpgElementMatrixProvider and DpgElementVectorProvider

deal with the evaluation of the DPG element stiffness matrices and DPG
element load vectors. They require a specification of the extended element
stiffness matrix BBBK , local Gram matrix GGGK and the extended load vector
lllK . They then use the formulas derived in section 3.3 to evaluate the DPG
element stiffness matrix AAAK and DPG element load vector φφφK as

AAAK =
(
BBBK
)T (

GGGK
)−1

BBBK

φφφK =
(
BBBK
)T (

GGGK
)−1

lllK

Standard assembly techniques are then used to construct the full stiffness
matrix AAA and load vector φφφ [5, Remark 3.1]

6.3 Boundary conditions

In the ultraweak formulation the boundary conditions can be transformed
into essential conditions for two different variables: The flux variable σ̂n and
the trace variable û. We use the offset function technique to enforce the
essential boundary conditions. In particular we follow the approach in [14,
Section 2.7.6] and approximate the offset function as a linear combination of
relevant global shape functions. These consist of the global shape functions
of σ̂n associated to entities on Γ1 and of the global shape functions of û asso-
ciated to entities on Γ2. The boundary conditions can then be introduced by
a simple modification of the system matrix AAA and the load vector φφφ. We ex-
tend current LehrFEM++ functionality to deal with these essential boundary
conditions in the function InitEssentialConditionsFromFunctions.

For the primal DPG method we proceed similarly by considering u as the
trace-like variable and q̂n as the flux variable.
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6.4 DPG error estimator

Given a coefficient vector of a finite element function µ̃µµ, the function
ElementErrorEstimators evaluates the local DPG error estimators. First
the local coefficient vector µ̃µµK is extracted and then the formulas derived in
section 3.3 are used to compute the local error estimators η̃K

r̃rrK = lllK −BBBKµ̃µµK

η̃2
K =

(
r̃rrK
)T (

GGGK
)−1

r̃rrK

Finally the global DPG error estimate η̃ can be computed from the local
estimators by the function EvalPosteriorError.
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(a) Triangular mesh (b) Quadrilateral mesh

Figure 4: Initial tensor product meshes on the unit square

7 Numerical experiments

In this section we present some numerical experiments. All computations
were performed on the unit square domain Ω = (0, 1)2. The examples use
regular refinement on a tensor-product triangular or quadrilateral mesh. The
corresponding initial meshes are shown in figure 4. In all examples we plot
various error quantities with respect to N = dim(Uh), the number of degrees
of freedom of the trial space. Since we consider 2D examples and regular
refinement we have N = O(h−2). An algebraic convergence rate of order α
in h will correspond to a line of slope −α/2 in the corresponding log-log plot
[3, Section 6].

7.1 Smooth solution

We consider two Dirichlet problems on the unit square with smooth exact
solution u(x, y) = sin(πx) sin(πy). The first problem is a pure Poisson equa-
tion (BVP 1). The second problem contains an additional constant advection
field (BVP 2). The parameters of the two BVPs are set to

BVP 1


ε1 = 1

β1 = (0, 0)T

g1 = 0

BVP 2


ε2 = 1

β2 = (1, 1)T

g2 = 0
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7.1.1 Primal formulation

We recall the polynomial approximation spaces for the primal formulation
introduced in section 4. For given values of p and r we set

Uh = P0
p,0(M)× Pp−1(S)

V r = Pr(M)

We examine the effect of different choices for the enrichment degree ∆p
and the influence of the additional advection field on the convergence be-
haviour of the primal DPG method. We consider p = 1, 2 and examine the
two enrichment choices ∆p = 1, 2 by setting r = p+ ∆p.

The error in the U norm is hard to compute and we only report the error
in the H1(Ω) norm. For a given approximation (uh, q̂n,h) this is

eh = ‖u− uh‖H1(Ω)

Furthermore we report the DPG error estimator η of our approxima-
tion. Since the manufactured solution is smooth, we expect algebraic h-
convergence of rate p by corollary 4.2.

Figure 5 reports our results on a triangular mesh. In all configurations we
measured the predicted optimal convergence rates. As described in theorem
4.1, an enrichment degree of ∆p = 1 was sufficient for the pure Poisson equa-
tion. Increasing the enrichment degree to ∆p = 2, resulted in a qualitatively
and quantitatively equivalent convergence behaviour. The additional convec-
tion term also had no effect on the convergence behaviour of the method. In
particular an enrichment degree of ∆p = 1 was enough for this example. In
all cases the DPG error estimator provided an accurate estimate of the true
error.

We perform analogous convergence studies on quadrilateral meshes and
for given values of p and r consider the spaces [8, Section 5]

Uh = Q0
p,0(M)× Pp−1(S)

V r = Qr(M)

Figure 6 shows our results on quadrilateral meshes. Again we observed
the optimal convergence rates and the convergence behaviour remained qual-
itatively equivalent to the results on triangular meshes.
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Figure 5: Primal DPG method for BVP1 and BVP2 on a triangular mesh
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Figure 6: Primal DPG method for BVP 1 and BVP 2 on a quadrilateral
mesh.
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7.1.2 Ultraweak formulation

We recall the polynomial approximation spaces of the ultraweak formulation
introduced in section 5. For given values of p and r we set

Uh = Pp(M)×PPPp(M)× P0
p+1,0(S)× Pp(S)

V r = Pr(M)×PPPr(M)

We again study the effect of the additional convection term on the conver-
gence behaviour. By theorem 5.1 our standard enrichment choice is ∆p = 2
and we set r = p + 2. We consider the cases p = 0, 1. The error in the
U norm is hard to compute and we define the following error quantities [3,
Section 6].

err(uh) = ‖u− uh‖L2(Ω)

err(σσσh) = ‖σσσ − σσσh‖LLL2(Ω)

These are simply the L2-errors in the u and σσσ components. We furthermore
report η, the value of the DPG error estimator. Since our exact solution is
smooth, we expect h-convergence of rate p+ 1 by corollary 5.2.

Figure 7 reports our results on a triangular mesh. In all configurations we
observed the predicted optimal convergence rates. The plots indicate, that
the DPG error estimator is indeed accurate. The convergence behaviour be-
tween the two boundary value problems remained qualitatively comparable.

We perform analogous convergence studies on quadrilateral meshes. Fol-
lowing the recommendation in [10, Section 4] we approximate both compo-
nents of τττ ∈ H(div,M) by polynomials of equal degree. For given values of
p and r we consider the spaces

Uh = Qp(M)×QQQp(M)× P0
p+1,0(S)× Pp(S)

V r = Qr(M)×QQQr(M)

As expected, the convergence behaviour shown in figure 8 remained qual-
itatively similar to the triangular case, and we observed the optimal conver-
gence rates.
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Figure 7: Ultraweak DPG method for BVP1 and BVP2 on a triangular mesh.
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Figure 8: Ultraweak DPG method for BVP 1 and BVP 2 on a quadrilateral
mesh.
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Figure 9: Quantitative comparison between the primal and ultraweak DPG
method for BVP 2.

7.1.3 Quantitative comparison

We report some results, comparing the quantitative efficiency of the two
methods. In order to achieve comparable convergence rates, we consider
the primal DPG method of degree p and compare it to the ultraweak DPG
method of degree p− 1. For the primal formulation we report the H1 norm

err(uh) = ‖u− uh‖H1(Ω)

and for the ultraweak formulation we report a weak analogue given by

err(uh,σhσhσh) =
√
‖u− uh‖2

L2(Ω) + ‖σσσ − σσσh‖2
LLL2(Ω)

We limit our considerations to BVP 2 and chose p = 1, 2. Figure 9 shows
our results. If we consider the number of degrees of freedom as a measure
for the computational cost of our code, then this example shows:

1. The primal method performed generally better than the ultraweak
method.

2. Both methods were more efficient on quadrilateral meshes than on tri-
angular ones.

7.2 Boundary layer

For ε > 0 and β = (2, 1)T ∈ R2 we consider the exact solution [11, Section
5.1]
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Figure 10: Boundary layer of the exact 1D solution for different values of ε

u(x, y) =

(
x+

e
β1x
ε − 1

1− e
β1
ε

)(
y +

e
β2y
ε − 1

1− e
β2
ε

)

This function satisfies homogeneous Dirichlet boundary conditions on the
unit square. Figure 10 shows the 1D analogue of u. For small values of ε this
function develops a steep boundary layer along the top and right boundary
of the unit square.

We analyse the convergence behaviour for different choices of the diffusion
parameter ε. We restrict our analysis to a triangular tensor product mesh
and compare the cases ε ∈ {1, 0.5, 0.1, 0.05, 0.01}. For even smaller values of
ε, our approach of using regular refinement is infeasible, since an adequate
resolution of the boundary layer becomes computationally expensive. We
consider both the primal and ultraweak DPG method and report the same
error quantities as introduced in section 7.1.

Figure 11 shows our results in the case of the primal DPG method of
degree p = 2 and figure 12 shows our results in the case of the ultraweak
DPG formulation of degree p = 1.

In both cases for big values of ε, we observed optimal convergence rates
similar to the smooth solution analysed in section 7.1. For smaller values
of ε, we observed a region of pre-asymptotic noise, since the boundary layer
could not be adequately resolved on the coarser meshes. As soon as the
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mesh width was small enough, the boundary layer could be resolved and we
approached optimal convergence rates. The behaviour of the two methods
for a given value of ε was qualitatively similar.

Regarding the ultraweak formulation, the DPG error estimator was ac-
curate on fine meshes for all values of ε. For the primal DPG method the
estimator reported the true error scaled by a factor of around ε. We con-
sidered some different choices of test space inner products. In particular a
choice of

(v, δv)V =
∑
K∈M

∫
K

vδvdx + ε2
∫
K

∇∇∇v · ∇∇∇δvdx

resulted in the convergence behaviour shown in figure 13, where the DPG
error estimator remained more accurate for small values of ε on fine meshes.
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Figure 11: Primal DPG method for the BVP with boundary layer for different
values of ε
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Figure 12: Ultraweak DPG method for the BVP with boundary layer for
different values of ε
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Figure 13: Primal DPG method with adapted test space inner product for
the BVP with boundary layer for different values of ε
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8 Conclusion

We derived the variational formulations for both the primal and ultraweak
DPG method of the convection-diffsuion model probelm and presented the
main convergence results. Both formulations were successfully implemented
using the C++ library LehrFEM++. Our implementation was based on
the local computation of DPG element stiffness matrices and DPG element
load vectors. We performed numerical experiments and observed the optimal
convergence rates predicted by the theory.

We discussed the convergence behaviour of our implementation for a so-
lution that develops a steep boundary layer in section 7.2. In particular, we
managed to get decent results for values of ε ≥ 0.01, but for smaller values of
ε it became computationally very expensive to adequately resolve the bound-
ary layer. An adaptive approach, based on the DPG error estimator, would
be highly desirable in this case, to allow a fine resolution of the boundary
layer without refining the whole mesh [10].
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