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Abstract

In Electrostatics, it is often of interest to compute local/global forces on a body in electrostatic
equilibrium. The classical formula for computing this force is a surface/volume integral, obtained using
the Maxwell Stress Tensor. In the surface integral form it has some undesirable properties, affecting
the accuracy when used with Boundary Element Methods. In this work, we explore a new approach for
calculating the force using shape calculus, in an effort to find a stable formula on the boundary which
can be used with BEM. The properties of this new formula are discussed using numerical experiments.

1 Introduction

In Electrodynamics, it is of interest to compute the electromagnetic forces. The forces can be written in a
compact way by introduction of the Maxwell stress tensor. For a linear medium, the Maxwell stress tensor
is defined as follows [2, Ch. 8, eq. 8.17]:

Tij := ε0
(
EiEj −

1

2
δijE

2
)

+
1

µ0

(
BiBj −

1

2
δijB

2
)
, i, j ∈ {1, 2, 3}, (1.1)

B and E are the magnetic and electric fields respectively. Using the Maxwell stress tensor, the force density
f can be written as:

f = ∇ · T − ε0µ0
∂S

∂t
, (1.2)

Where S is the Poynting vector given as:

S :=
1

µ0
E×B . (1.3)

In this work, we deal with electrostatics only where the magnetic field B and all time derivatives are equal
to zero. The formulas reduce to:

Tij = ε0
(
EiEj −

1

2
δijE

2
)
, (1.4)

f = ∇ · T . (1.5)

The total electrostatic force on the charges contained within a volume Ω can be found by integrating the
force density over the volume:

F =

∫
Ω

f dx =

∫
Ω

∇ · T dx . (1.6)

Using Divergence theorem we find an equivalent surface integral form for the force:

F =

∫
∂Ω

T · n dS . (1.7)

We know that ∇u = −E where u is the electrostatic potential. Assuming ε0 = 1 :

F =

∫
∂Ω

∇u · n ∇u dS − 1

2

∫
∂Ω

||∇u||2n dS . (1.8)

For simplicity, we talk about the case of a perfect conductor where E is in the normal direction at the surface:

∇u = (∇u · n) n . (1.9)

The formula for the total force reduces to:

F =
1

2

∫
∂Ω

(∇u · n)2 n dS . (1.10)

We observe that ∇u · n is the Neumann Trace which is in the space H−
1
2 (∂Ω) but it must belong to

L2(∂Ω) for the above formula to be well defined. Since L2(∂Ω) ⊂ H−
1
2 (∂Ω), the integral for total force

is unbounded on the energy trace space H−
1
2 (∂Ω), as a consequence of which the superconvergence of the

Galerkin approximation for total force is not guaranteed anymore [4, Section 5.6]. For this reason the force
formula suffers numerically, even in some cases when the Neumann trace is in L2(∂Ω). This is the motivation
for this work where we try to find a numerically stable formula using shape calculus. The idea is that the
shape gradient of energy functional gives us the force in some sense.
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2 Energy shape gradient using BEM

The setting for this work is Electrostatics with a Dirichlet boundary value problem (BVP) posed on an open
bounded Lipschitz domain Ω ⊂ Rd with a piecewise smooth boundary ∂Ω. We are interested in computing
the electrostatic force on this domain. The electrostatic potential u solves :

∆u = 0 in Ω , u = g on Γ := ∂Ω .

We assume that the material is a linear and homogeneous dielectric. We solve the Dirichlet BVP with direct
first kind Boundary Element Method (BEM) using piecewise constant trial and test functions.

Note: For derivation of the shape gradient formula, g is required to be a defined in the volume, not just
the boundary. This is required for the Dirichlet BVP to be well defined when the domain is perturbed.

2.1 Direct first kind BIE

In the direct first kind BIE for Dirichlet BVP, we seek Ψ ∈ H− 1
2 (Γ) such that:

aV (Ψ,Φ) =
1

2
l(Φ) + aK(Φ) ∀Φ ∈ H− 1

2 (Γ). (2.1)

The equation above is the variational formulation for the direct first kind BIE, where aV and aK are the
variational forms for the Single Layer and Double Layer boundary integral operators (BIO) respectively, and
l is the variational form for the identity operator. The terms in the formulation are defined as:

aV (Ψ,Φ) :=

∫
Γ

∫
Γ

G(x, y) Ψ(y) Φ(x) dΓ(x)dΓ(y) , (2.2)

aK(Φ) :=

∫
Γ

∫
Γ

∇yG(x, y) · n(y) g(y) Φ(x) dΓ(x)dΓ(y) , (2.3)

l(Φ) :=

∫
Γ

g(x) Φ(x) dΓ(x̂) . (2.4)

G(x, y) is the fundamental solution for the Laplace operator, g is the Dirichlet data and Ψ := ∇u · n is the
Neumann trace of the potential u. We use the following energy functional:

=
1

2

∫
Ω

|∇u|2 dx =
1

2

∫
Γ

Ψ(x) g(x) dΓ for ∆u = 0,

J(Ψ) :=
1

2

∫
Γ

Ψ(x) g(x) dΓ .

(2.5)

Note: The electrostatic field energy is given as

ε0
2

∫
R3

|∇u|2 dx, (2.6)

which involves the integral over the whole space. The chosen energy functional in eq. (2.5) is artificial as it
represents the true electrostatic field energy only when the electric field E is zero in Ω′ (complement of Ω)
or in other words, when Ω′ is a conductor and Ω is a cavity in the conductor.

2.2 Shape Calculus

Let Ω ⊂ Rd, d = 2, 3 be an open bounded Lipschitz domain with a piecewise smooth boundary ∂Ω and
let J(Ω) ∈ R be a real-valued quantity associated to it. One is often interested in quantifying the shape
sensitivity of J i.e. how J(Ω) changes with respect to slight changes in Ω [8]. In this work, we use the
perturbation approach to model these changes in Ω. We define a perturbation map Tt:

Tt : Rd → Rd,
Tt(x) := x+ t ν(x), ν(x) ∈ C1(Rd;Rd), t ∈ R,

(2.7)
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where ν is a velocity field. Assuming ||ν||C1 is bounded, the perturbation map above can be proved to be a
diffeomorphism for small t. It is therefore natural to consider J(Ω) as the realization of a shape functional
[8]:

J : Uadm → R,

where U is the set of admissible domains, defined as the set of perturbations of a reference domain Ω0:

Uadm :=
{
Tt(Ω0) : |t| < 1, ||ν||C1 < 1

}
. (2.8)

The domains in this set are parametrized by the scalar t. The shape gradient at Ω can be defined as the
following directional Eulerian derivative:

dJ

dΩ
(Ω; ν) = lim

t→0

J(Tt(Ω))− J(Ω)

t
. (2.9)

It is desirable that (2.9) exists for all ν. It is then natural to say that J is shape differentiable if the mapping

dJ

dΩ
(Ω; .) : C1(Rd;Rd)→ R, ν 7→ dJ

dΩ
(Ω; ν) , (2.10)

is linear and bounded on C1(Rd;Rd). In literature, this mapping is called shape gradient of J at Ω [1, Ch.
9, Def. 2.2].

Remark 1. In literature, the perturbations defined in eq. (2.7) are called perturbations of the identity. This
approach is less general than the velocity method but leads to the same first order shape calculus [1, Ch. 9,
Thm 3.2].

Remark 2. The Hadamard structure theorem [1, Ch. 9, Thm 3.6] states that if ∂Ω is smooth, dJ
dΩ (Ω; ν)

admits a representative f(Ω) in the space of distributions Dk(∂Ω) such that

dJ

dΩ
(Ω; ν) = < f(Ω), ν · n|∂Ω >Dk(∂Ω) . (2.11)

Eq. (2.11) states that only the normal component of the velocity field on the boundary changes the value
of the shape functional, which makes sense as only the normal component of the velocity field changes the
shape.

2.3 Shape gradient with BIE constraint

Now, we want to find the shape gradient of the energy functional using the definition from eq. (2.9). But,
the energy functional in eq. (2.5) depends not only on the domain Ω, but also on the Neumann Trace Ψ
which in turn depends on the domain Ω :

J = J(Ω,Ψ(Ω)) = J (Ω) . (2.12)

So we have to compute the shape gradient of the energy functional, constrained by the direct first kind BIE.
To evaluate the shape gradient in this case, we use the Lagrangian approach. We think of the BIE being
defined on the set of admissible domains which is parametrized by the scalar t. So we admit the shape
parameter ’t’ into the BIE:

=⇒ aV (Ψ,Φ)→ aV (t; Ψ,Φ), aK(Φ)→ aK(t; Φ), l(Φ)→ l(t; Φ), J(Ψ)→ J(t; Ψ) .

The direct first kind BIE on the boundary Γt := Tt(Γ0) is given as:

Ψt ∈ H−
1
2 (Γt) : aV (t; Ψt,Φ) = aK(t; Φ) +

1

2
l(t; Φ), ∀Φ ∈ H− 1

2 (Γt) . (2.13)
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Ψt is the Neumann Trace solution of the BIE posed on the boundary Γt. Integrals appearing in the BIE can be
transformed to the reference boundary Γ0, using the perturbation map (2.7) and the following transformation
rule [1, Ch. 9, Sec. 4.2, eq. 4.9]:∫

Γt

f(x) dΓt(x) =

∫
Γ0

f(Tt(x̂)) ωt(x̂) dΓ0(x̂), ωt(x̂) = |M(DTt)(x̂) n̂(x̂)|, (2.14)

where M(A) is the cofactor matrix of A and n̂ is the unit normal field on Γ0. DTt is the Jacobian matrix

for the transformation Tt, given as DTt(i, j) = ∂Tt(i)
∂xj

. Using the identity above, the integrals in the BIE can

be transformed to the reference boundary Γ0:

J(t; Ψ) =
1

2

∫
Γ0

Ψ(Tt(x̂)) g(Tt(x̂)) ωt(x̂) dΓ0(x̂), (2.15)

aV (t; Ψ,Φ) =

∫
Γ0

∫
Γ0

G(Tt(x̂), Tt(ŷ)) Ψ(Tt(ŷ)) Φ(Tt(x̂)) ωt(x̂) ωt(ŷ) dΓ0(x̂)dΓ0(ŷ) . (2.16)

The unit normal transforms as follows [1, Ch. 9, Thm. 4.4 ]:

n(x) =
M(DTt)(x̂) n̂(x̂)

|M(DTt)(x̂) n̂(x̂)|
=
M(DTt)(x̂) n̂(x̂)

ωt(x̂)
, (2.17)

where n and n̂ are unit normal fields on Γt and Γ0 respectively. The remaining terms in BIE transform as:

aK(t; Φ) =

∫
Γ0

∫
Γ0

{
∇yG(Tt(x̂), Tt(ŷ)) ·M(DTt)(ŷ) n̂(ŷ)

}
g(Tt(ŷ)) Φ(Tt(x̂)) ωt(x̂) dΓ0(x̂)dΓ0(ŷ), (2.18)

l(t; Φ) =

∫
Γ0

g(Tt(x̂)) Φ(Tt(x̂)) ωt(x̂) dΓ0(x̂) . (2.19)

2.3.1 Pullback Approach

In the integrals transformed back to the reference boundary, both Φ and Ψ belong to the space H−
1
2 (Γt),

so we define the following pullback:

γ∗t Φ(x̂) := Φ(Tt(x̂)) = Φ̂(t; x̂), Φ ∈ H− 1
2 (Γt), Φ̂ ∈ H− 1

2 (Γ0) . (2.20)

We can find a function Φ̂ ∈ H− 1
2 (Γ0) for any Φ ∈ H− 1

2 (Γt). The idea is to get rid of the ’t’ dependence of
spaces using the pullback. Using that we get:

J(t; Ψ) = J̃(t; Ψ̂) =
1

2

∫
Γ0

Ψ̂(t; x̂) g(Tt(x̂)) ωt(x̂) dΓ0(x̂),

aV (t; Ψ,Φ) = ãV (t; Ψ̂, Φ̂) =

∫
Γ0

∫
Γ0

G(Tt(x̂), Tt(ŷ)) Ψ̂(t; ŷ) Φ̂(x̂) ωt(x̂) ωt(ŷ) dΓ0(x̂)dΓ0(ŷ),

aK(t; Φ) = ãK(Φ̂) =

∫
Γ0

∫
Γ0

(
∇yG(Tt(x̂), Tt(ŷ)) ·M(DTt)(ŷ) n̂(ŷ)

)
g(Tt(ŷ)) Φ̂(x̂) ωt(x̂) dΓ0(x̂)dΓ0(ŷ),

l(t; Φ) = l̃(t; Φ̂) =

∫
Γ0

g(Tt(x̂)) Φ̂(x̂) ωt(x̂) dΓ0(x̂) .

Note: We don’t use a pullback for the function g as it is a function defined in the volume, independent
of any domain transformations. Using the pullback on Φ, we write Φ̂(x̂) instead of Φ̂(t; x̂) because Φ is a test

function in the formulation and does not depend on t. Using all Φ ∈ H− 1
2 (Γt) means using all Φ̂ ∈ H− 1

2 (Γ0).

2.3.2 Lagrangian Approach

Using the pullback defined in the previous section, we get rid of the ’t’ dependence of spaces and can finally
use the Lagrangian approach. The Lagrangian is defined using the tilde quantities as:

L(t; Ψ̂, Φ̂) := J̃(t; Ψ̂) + ãV (t; Ψ̂, Φ̂)− 1

2
l̃(t; Φ̂)− ãK(t; Φ̂), Ψ̂ ∈ H− 1

2 (Γ0), Φ̂ ∈ H− 1
2 (Γ0) . (2.21)
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We plug in Ψ̂t in place of Ψ̂ in eq. (2.21), such that Ψ̂t is the pullback for the state solution on Γt:

Ψ̂t = Ψ̂t(t; x̂) = Ψt(Tt(x̂)) : aV (t; Ψt,Φ) =
1

2
l(t; Φ) + aK(t; Φ) ∀Φ ∈ H− 1

2 (Γt).

=⇒ L(t; Ψ̂t, Φ̂) = J(t; Ψ̂t) = J (t) ∀Φ̂ ∈ H− 1
2 (Γ0) .

(2.22)

Since t is the parameter representing some domain from the space of admissible domains, the equation above
can be equivalently written as:

L(Ω; Ψ̂Ω, Φ̂) = J(Ω; Ψ̂Ω) = J (Ω) . (2.23)

Differentiating the above equation using chain rule we get:

dJ
dΩ

(Ω; ν)|Ω=Ω0
=
∂L

∂Ω
(Ω; Ψ̂Ω, Φ̂)|Ω=Ω0

+
∂L

∂Ψ̂
(Ω, Ψ̂Ω, Φ̂;

dΨ̂Ω

dΩ
(Ω; ν) )|Ω=Ω0

. (2.24)

Shape gradient of the state solution highlighted above is difficult to compute. In the Lagrangian approach,
we fix Φ̂ = p such that the second term is always zero:

∂L

∂Ψ̂
(Ω, Ψ̂Ω, p; v)|Ω=Ω0

= 0 ∀v ∈ H− 1
2 (Γ0) . (2.25)

Using the definition of the Lagrangian in (2.21), the LHS in equation above can be written as:

∂L

∂Ψ̂
(Ω, Ψ̂Ω, p; v)|Ω=Ω0

=
∂J̃

∂Ψ̂
(Ω, Ψ̂Ω; v)|Ω=Ω0

+
∂ãV

∂Ψ̂
(Ω, Ψ̂Ω, p; v)|Ω=Ω0

≡ ∂J̃

∂Ψ̂
(t, Ψ̂t; v)|t=0 +

∂ãV

∂Ψ̂
(t, Ψ̂t, p; v)|t=0 .

(2.26)

In the last step, we replace Ω by the scalar t which parametrizes the domain. Since both ãV and J̃ are linear
in Ψ̂, we get:

J̃(t; v)|t=0 + ãV (t; v, p)|t=0 = 0 . (2.27)

Simplifying the above expression we get the adjoint equation:

p ∈ H− 1
2 (Γ0) : aV (p, v) = −J(v) ∀v ∈ H− 1

2 (Γ0) . (2.28)

p is called the adjoint solution using which, the shape gradient we require is given as:

dJ
dΩ

(Ω; ν)|Ω=Ω0
=
∂L

∂Ω
(Ω, Ψ̂Ω, p)|Ω=Ω0

≡ ∂L

∂t
(t, Ψ̂t, p)|t=0 . (2.29)

In the previous equation, we again use t and Ω interchangeably. To find the partial derivative with respect
to t (at t = 0), we expand the t dependent terms using Taylor expansion and collect the terms linear in t.

Note: Since the derivative is partial with respect to t, we ignore the dependence of Ψ̂t on t.
Taylor expansions and identities used to find the partial derivatives are summarized next. Using the pertur-
bation map from eq. (2.7) we know:

DTt = I + t Dν = I + t ∇νT , (2.30)

det(DTt) = 1 + t ∇ · ν +O(t2) . (2.31)

We know that for any invertible matrix K [10, Sec. 2.2]:

(K−1)′ = −K−1K ′K−1. (2.32)

Using the identities given above we find the Taylor expansion of DT−1
t about t = 0. First we calculate its

derivative:

d(DT−1
t )

dt
|t=0 = −DT−1

t

d(DTt)

dt
DT−1

t |t=0 = −I ∇νT I = −∇νT . (2.33)
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The Taylor expansion is given as:

DT−1
t = I − t ∇νT +O(t2) . (2.34)

Using the Taylor expansion above, we get the expansion for the cofactor matrix of DTt:

M(DTt) = Jt DT
−T
t = (1 + t∇ · ν +O(t2))(I − t ∇νT +O(t2))T , Jt := det(DTt) (2.35)

= I + tA+O(t2), A = ∇ · ν I −∇ν . (2.36)

Using the Taylor expansion for the cofactor matrix we get the Taylor expansion for the metric of transfor-
mation ωt:

ωt = |M(DTt)n| = |n+ tA n+O(t2)| (2.37)

= 1 + t n ·A n+O(t2), |n| = 1 . (2.38)

We also know

f ◦ Tt = f + t ∇f · ν +O(t2) . (2.39)

G(Tt(x̂), Tt(ŷ)) = G(x̂, ŷ) + t (∇yG(x̂, ŷ) · ν(ŷ) +∇xG(x̂, ŷ) · ν(x̂)) +O(t2) . (2.40)

The J term, using eq. (2.39) and (2.38)

=
1

2

∫
Γ0

Ψ̂t(t, x̂) g(Tt(x̂)) ωt(x̂) dΓ0(x̂)

=
1

2

∫
Γ0

Ψ̂t(t, x̂)
(
g(x̂) + t ∇g(x̂) · ν(x̂) +O(t2)

) (
1 + t n̂(x̂) ·A(x̂)n̂(x̂) +O(t2)

)
dΓ0(x̂) .

Collecting the terms linear in t, the partial derivative for the J term at t = 0

=
1

2

∫
Γ0

Ψ0(x̂)
(
g(x̂) n̂(x̂) ·A(x̂)n̂(x̂) +∇g(x̂) · ν(x̂)

)
dΓ0(x̂), (2.41)

where Ψ0 solves the state problem on Γ0. The aV term, using eq. (2.40) and (2.38)

=

∫
Γ0

∫
Γ0

Ψ̂t(t, ŷ)
(
G(x̂, ŷ) + t(∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)) +O(t2)

)
(
1 + t n̂(x̂)TA(x̂)n̂(x̂) +O(t2)

) (
1 + t n̂(ŷ)TA(ŷ)n̂(ŷ) +O(t2)

)
p(x̂) dΓ0(x̂)dΓ0(ŷ), (2.42)

and the partial derivative at t = 0 is given as

=

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

+G(x̂, ŷ)
(
n̂(ŷ)TA(ŷ)n̂(ŷ) + n̂(x̂)TA(x̂)n̂(x̂)

)}
p(x̂) dΓ0(x̂)dΓ0(ŷ) . (2.43)

For treating the aK term, the following Taylor expansion is used:

∇yG(Tt(x̂), Tt(ŷ)) = ∇yG(x̂, ŷ) + t κ(x̂, ŷ) +O(t2), (2.44)

κ(x̂, ŷ) :=
d
(
∇yG(Tt(x̂), Tt(ŷ))

)
dt

|t=0 . (2.45)

Plugging in the above expansion and using eq. (2.38) , (2.39) and (2.36) , we get:

=

∫
Γ0

∫
Γ0

p(x̂)
(
∇yG(x̂, ŷ) + t κ(x̂, ŷ) +O(t2)

)
·
(
n̂(ŷ) + t A(ŷ)n̂(ŷ) +O(t2)

)
(
g(ŷ) + t ∇g(ŷ) · ν(ŷ) +O(t2)

) (
1 + t n̂(x̂)TA(x̂)n̂(x̂) +O(t2)

)
dΓ0(x̂)dΓ0(ŷ) , (2.46)
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and the partial derivative at t = 0 is given as

=

∫
Γ0

∫
Γ0

p(x̂)
{
g(ŷ) κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)
+ g(ŷ)

(
∇yG(x̂, ŷ) · n̂(ŷ)

)
n̂(x̂)TA(x̂)n̂(x̂)

}
dΓ0(x̂)dΓ0(ŷ) . (2.47)

The l term, using eq. (2.39) and (2.38)

=

∫
Γ0

p(x̂)
(
g(x̂) + t ∇g(x̂) · ν(x̂) +O(t2 )

) (
1 + t n̂(x̂) ·A(x̂)n̂(x̂) +O(t2)

)
dΓ0(x̂) , (2.48)

and the partial derivative at t = 0 is given as

=

∫
Γ0

p(x̂)
(
g(x̂) n̂(x̂)TA(x̂)n̂(x̂) +∇g(x̂) · ν(x̂)

)
dΓ0(x̂) . (2.49)

We add up the individual terms to get the final shape gradient:

=
1

2

∫
Γ0

Ψ0(x̂)
(
g(x̂) n̂(x̂) ·A(x̂)n̂(x̂) +∇g(x̂) · ν(x̂)

)
dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

+G(x̂, ŷ)
(

n̂(ŷ)TA(ŷ)n̂(ŷ) + n̂(x̂)TA(x̂)n̂(x̂)
)}

p(x̂) dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ) κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)
+ g(ŷ)

(
∇yG(x̂, ŷ) · n̂(ŷ)

)
n̂(x̂)TA(x̂)n̂(x̂)

}
dΓ0(x̂)dΓ0(ŷ)

− 1

2

∫
Γ0

p(x̂) ( g(x̂) n̂(x̂)TA(x̂)n̂(x̂) +∇g(x̂) · ν(x̂)) dΓ0(x̂) .

The terms highlighted in the above equation can be rearranged to give

=
1

2

∫
Γ0

Ψ0(x̂) g(x̂) n̂(x̂) ·A(x̂)n̂(x̂) dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ) G(x̂, ŷ)
(

n̂(ŷ)TA(ŷ)n̂(ŷ)
)
p(x̂) dΓ0(x̂)dΓ0(ŷ)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ) G(x̂, ŷ)
(

n̂(x̂)TA(x̂)n̂(x̂)
)
p(x̂) dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂) g(ŷ)
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
n̂(x̂)TA(x̂)n̂(x̂) dΓ0(x̂)dΓ0(ŷ)

− 1

2

∫
Γ0

p(x̂) g(x̂) n̂(x̂)TA(x̂)n̂(x̂) dΓ0(x̂)

= aV (p, f1) + J(f1) + aV (Ψ0, f2) − aK(f2) − 1

2
l(f2) ,

f1(x) = Ψ0(x) n̂(x)TA(x)n̂(x), f2(x) = p(x) n̂(x)TA(x)n̂(x) .

Using the state and the adjoint equation on the boundary Γ0, the terms highlighted above give zero (assuming

f1, f2 ∈ H− 1
2 (Γ0)), using which get the shape gradient formula.
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Theorem 2.1. The shape gradient for the energy functional from eq. (2.5), constrained by the direct
first kind BIE for Dirichlet BVP is given as:

dJ
dΩ

(Ω; ν)|Ω=Ω0 =
1

2

∫
Γ0

Ψ0(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

}
p(x̂) dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ) κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

− 1

2

∫
Γ0

p(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)

(2.50)

2.3.3 Modified Pullback

In this subsection, we do the pullback approach with a modified pullback defined as:

γ∗t Ψ(x̂) := Ψ(Tt(x̂)) ωt(x̂) = Ψ̂(t; x̂) . (2.51)

The idea is again to get rid of ’t’ dependence of spaces but here we also include the metric factor ω in
the pullback to simplify things. Using this pullback on the BIE integrals transformed back to the reference
boundary (eq. (2.15) to (2.19)), we get slightly different tilde quantities:

J(t; Ψ) = J̃(t; Ψ̂) =
1

2

∫
Γ0

Ψ̂(t; x̂) g(Tt(x̂)) dΓ0(x̂),

aV (t; Ψ,Φ) = ãV (t; Ψ̂, Φ̂) =

∫
Γ0

∫
Γ0

G(Tt(x̂), Tt(ŷ)) Ψ̂(t; ŷ) Φ̂(x̂) dΓ0(x̂)dΓ0(ŷ),

aK(t; Φ) = ãK(t; Φ̂) =

∫
Γ0

∫
Γ0

(
∇yG(Tt(x̂), Tt(ŷ)) ·M(DTt)(ŷ) n̂(ŷ)

)
g(Tt(ŷ)) Φ̂(x̂) dΓ0(x̂)dΓ0(ŷ),

l(t; Φ) = l̃(t; Φ̂) =

∫
Γ0

g(Tt(x̂)) Φ̂(x̂) dΓ0(x̂) .

Using the Lagrangian approach described in section 2.3.2 and the Taylor expansions, we can find the shape
gradient for this modified pullback approach. The adjoint equation and its solution remain unchanged as
the new ãV and J̃ are still linear in Ψ̂. To find the shape gradient we again evaluate the partial derivatives
with respect to t. For the J term, using eq. (2.39):

=
1

2

∫
Γ0

Ψ̂t(t, x̂) g(Tt(x̂)) dΓ0(x̂)

=
1

2

∫
Γ0

Ψ̂t(t, x̂) (g(x̂) + t ∇g(x̂) · ν(x̂) +O(t2)) dΓ0(x̂) .

The partial derivative for the J term, at t = 0:

=
1

2

∫
Γ0

Ψ0(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂) . (2.52)

Ψ0 solves the state problem on Γ0. For the aV term using eq. (2.40):

=

∫
Γ0

∫
Γ0

(
G(x̂, ŷ) + t (∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)) +O(t2)

)
Ψ̂t(t, ŷ) p(x̂) dΓ0(x̂)dΓ0(ŷ), (2.53)
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and the partial derivative at t = 0 is given as:

=

∫
Γ0

∫
Γ0

(
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

)
Ψ0(ŷ) p(x̂) dΓ0(x̂)dΓ0(ŷ) . (2.54)

For treating the aK term, the Taylor expansion from equation (2.45) is used:

∇yG(Tt(x̂), Tt(ŷ)) = ∇yG(x̂, ŷ) + t κ(x̂, ŷ) +O(t2) . (2.55)

Plugging in the above expansion and using eq. (2.36) and (2.39) we get:

=

∫
Γ0

∫
Γ0

p(x̂)
(
∇yG(x̂, ŷ) + t κ(x̂, ŷ) +O(t2)

)
·
(
n̂(ŷ) + t A(ŷ)n̂(ŷ) +O(t2)

)
(
g(ŷ) + t ∇g(ŷ) · ν(ŷ) +O(t2)

)
dΓ0(x̂)dΓ0(ŷ), (2.56)

and the partial derivative at t = 0 is given as:

=

∫
Γ0

∫
Γ0

p(x̂)
{
g(ŷ) κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ) . (2.57)

For the l term using eq. (2.39) we have:

=

∫
Γ0

p(x̂)
(
g(x̂) + t∇g(x̂) · ν(x̂) +O(t2)

)
dΓ0(x̂), (2.58)

and the partial derivative at t = 0 is given as:

=

∫
Γ0

p(x̂) ∇g(x̂) · ν(x̂) dΓ0(x̂) . (2.59)

Adding up individual terms to get the final shape gradient:

=
1

2

∫
Γ0

Ψ0(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)︸ ︷︷ ︸
T1

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

}
p(x̂) dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸

T2

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ) κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)abcdmoomebe︸ ︷︷ ︸

T3

− 1

2

∫
Γ0

p(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)︸ ︷︷ ︸
T4

(2.60)

It is clear that the two pullback approaches presented yield the same formula for the shape gradient.

3 BEM shape gradient formula in 2D

3.1 Discussion about integrability

Assumptions: We assume that g is in H2(D) and ν is in C2(D). Assumptions on the velocity field ν are
required for continuous second-order derivatives, which we will encounter while discussing the implementa-
tion. Assumptions on g are required for the following integral to be well defined, which we see in the shape
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gradient formula from eq. (2.60) (In T1 and T4):∫
Γ

Ψ ∇g · ν dΓ, Ψ ∈ H− 1
2 (Γ) . (3.1)

With g being in H2(D), ∇g lies in H1(D) and its restriction to the boundary lies in H
1
2 (Γ). This ensures

the above integral to be well defined based on duality arguments [5, Ch. 1, Thm 1.3.37]. In T3 the ∇g · ν
term is present in the variational form for the Double Layer BIO, which is well defined too with g ∈ H2(D).
We focus on 2D where the fundamental solution is given as:

G(x, y) = − 1

2π
log ||x− y||, x, y ∈ R2,

∇yG(x, y) = −∇xG(x, y) =
1

2π

x− y
||x− y||2

,

κ(x, y) :=
d
(
∇yG(Tt(x), Tt(y))

)
dt

|t=0 =
1

2π

(ν(x)− ν(y)

||x− y||2
− 2

(x− y)(x− y) · (ν(x)− ν(y))

||x− y||4
)
.

(3.2)

T1 and T4 in eq. (2.60) have the same structure as both Ψ, p ∈ H− 1
2 (Γ0). Because of assumptions on g and

ν, both integrals are well defined even for piecewise smooth boundaries. T2 and T3 need to be treated in
some way as they contain singular functions in the integrand.

Using the fact ∇xG(x̂, ŷ) = −∇yG(x̂, ŷ), T2 in eq. (2.60) gives :

=

∫
Γ0

∫
Γ0

Ψ0(ŷ) p(x̂) ∇xG(x̂, ŷ) · (ν(x̂)− ν(ŷ)) dΓ0(x̂)dΓ0(ŷ)

=− 1

2π

∫
Γ0

∫
Γ0

Ψ0(ŷ) p(x̂)
x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂)dΓ0(ŷ) .

(3.3)

Using the following Taylor expansion:

ν(x̂) = ν(ŷ) +∇ν(ŷ)T (x̂− ŷ) +O(||x̂− ŷ||2), (3.4)

the highlighted singular part in equation (3.3) can be written as:

=
x̂− ŷ
||x̂− ŷ||2

· (∇ν(ŷ)T (x̂− ŷ) +O(||x̂− ŷ||2)) . (3.5)

From the Taylor expansion it is clear that the singular expression has a finite limit for x̂ → ŷ because
of assumptions on ν and thus the highlighted expression in eq. (3.3) can be replaced by a function in

C0(D). Thus the integral is well defined for all Ψ, p ∈ H− 1
2 (Γ0), even for piecewise smooth boundaries. If

ν ∈ C∞(D), the expression above is also C∞(D) away from the line x̂ = ŷ.
T3 in eq. (2.60) has 3 components. The first component, using the expression for κ in eq. (3.2):

=
1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− 2
(x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ) .

(3.6)

The expression within curly brackets highlighted above is singular for x̂ = ŷ. The second part of this
expression is:

=
(x̂− ŷ) · n̂(ŷ)

||x̂− ŷ||2
(x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

. (3.7)

The first part of the expression above, highlighted in yellow, is the double layer kernel which is known to be
well behaved even for piecewise smooth boundaries [5]. Using the result from equation (3.5), we see that the
expression in eq. (3.7) has a finite limit for x̂→ ŷ and similar arguments follow where it can be replaced by
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a function from C0(D). Thus the second part of the integral in eq. (3.6) is well defined for all p ∈ H− 1
2 (Γ0),

even for piecewise smooth boundaries.
First part of the integrand in equation (3.6) is given as:

= p(x̂) g(ŷ)
n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

= p(x̂) g(ŷ)
n̂(ŷ) ·

(
∇ν(ŷ)T (x̂− ŷ) +O(||x̂− ŷ||2)

)
||x̂− ŷ||2

. (3.8)

For x̂→ ŷ this behaves as O(||x̂− ŷ||−1) and is not integrable.
Second part of T3 in eq. (2.60):

=

∫
Γ0

∫
Γ0

p(x̂) g(ŷ) ∇yG(x̂, ŷ) ·
(
A(ŷ)n̂(ŷ)

)
dΓ0(x̂)dΓ0(ŷ) . (3.9)

Using the expression for the matrix A from eq. (2.36) we get:

=
1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ) ∇ · ν(ŷ)
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ) (3.10)

− 1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(x̂)dΓ0(ŷ) . (3.11)

We see that the second part of T3 in (2.60) splits into two parts, one of which is like a Double Layer integral

(3.10), which is well defined for all p ∈ H− 1
2 (Γ0), even for smooth boundaries. The other part (3.11) behaves

as O(||x̂− ŷ||−1) for x̂→ ŷ which is not integrable.

Third part of T3 in eq. (2.60) is again like double layer which is well behaved for all p ∈ H−
1
2 (Γ0).

As shown above in eq. (3.8) and (3.11), two terms appear with O(||x − y||−1) behaviour. They are both
obtained after simplifying the third term in eq. (2.60). These terms can be combined to get the following:

=
1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

dΓ0(x̂)dΓ0(ŷ)

− 1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(x̂)dΓ0(ŷ)

=
1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ) .

(3.12)

Using the Taylor expansion from eq. (3.4), the above integral becomes:

=
1

2π

∫
Γ0

∫
Γ0

{ n̂(ŷ) ·
(
∇ν(ŷ)T (x̂− ŷ) +O(||x̂− ŷ||2

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
p(x̂) g(ŷ) dΓ0(x̂)dΓ0(ŷ),

(3.13)

and the leading order term in the singular part of integrand is given as:

p(x̂)g(ŷ)
{ n̂(ŷ) ·

(
∇ν(ŷ)T (x̂− ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
= 0 . (3.14)

Thus the O(||x − y||−1) singularity cancels and we get an integrand which has a finite limit for x̂ → ŷ.
The singular expression can be replaced by a function in C0(D) and the integral is well defined for all

p ∈ H− 1
2 (Γ0), even for piecewise smooth boundaries.

Theorem 3.1. The shape gradient given in eq. (2.60) is a continuous quadratic functional for all Ψ, p ∈
H−

1
2 (Γ0) assuming g ∈ H2(D) and ν ∈ C2(D), even for piecewise smooth boundaries.
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The formula for shape gradient in 2D is given as:

=
1

2

∫
Γ0

Ψ0(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)︸ ︷︷ ︸
TI

− 1

2π

∫
Γ0

∫
Γ0

Ψ0(ŷ) p(x̂)
x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸
TII

− 1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸

TIII

1

2π

∫
Γ0

∫
Γ0

2p(x̂) g(ŷ)
{ (x̂− ŷ) · n̂(ŷ)(x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸

TIV

− 1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ) ∇ · ν(ŷ)
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸
TV

− 1

2π

∫
Γ0

∫
Γ0

( x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ)
) (
∇g(ŷ) · ν(ŷ)

)
p(x̂) dΓ0(x̂)dΓ0(ŷ)︸ ︷︷ ︸

TVI

−1

2

∫
Γ0

p(x̂) (∇g(x̂) · ν(x̂)) dΓ0(x̂)︸ ︷︷ ︸
TVII

(3.15)

3.2 Evaluation of Shape Gradient formula in a discrete setting

3.2.1 Evaluating state and adjoint solution

The state and adjoint problems are solved numerically using a finite dimensional subspace VN ⊂ H−
1
2 (Γ),

which is the idea of a Galerkin approximation. Thus, these functions can be written as linear combination
of the basis functions for the finite dimensional space VN :

Ψ0(x̂) =

N∑
i=1

aiβ
N
i (x̂), p(x̂) =

N∑
j=1

bjβ
N
j (x̂) . (3.16)

The set {β1, β2, ..., βN} is the set of ordered bases for the space VN .
Next ingredient is the mesh of the boundary. The definition follows the lecture notes [5, Ch. 1, Sec 1.4.2],

assuming that the boundary Γ0 is a curved polygon:

Γ0 = ∪Mj=1Γj , Γi ∩ Γj = φ . (3.17)

The curved edges of this curved polygon are given by Γj which can be pulled back to a reference interval of
[-1,1] using a C2 parametrization γj .

γj : [−1, 1]→ Γj . (3.18)

For creating the mesh, this reference interval is partitioned as follows:

− 1 := ζ0 < ζ1 < ... < ζL−1 < ζL := 1 . (3.19)

This gives us the vertices and panels:

Vertices: Xj
i = γj(ζi), i = 1, ..., L, j = 1, ...,M .

Panels: πji = γj(]ζi−1, ζi[), i = 1, ..., L, j = 1, ...,M .

M = {πji : πji = γj(]ζi−1, ζi[), i = 1, ..., L, j = 1, ...,M} .

(3.20)
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M denotes the mesh which is the set of all the panels. Using the definition of the panels above, we can also
define a parametrization of the panels on the reference interval [-1,1]:

γπji
: [−1, 1]→ πji ,

γπji
(s) = γj(

(ζi−1 + ζi)

2
+ s

(ζi − ζi−1)

2
) .

(3.21)

Now, we define the boundary element spaces following the definition in the lecture notes [5, Ch. 1, eq.

1.4.22]. Since we are just dealing with functions in H−
1
2 (Γ0), we only need the space S−1

p (M):

S−1
p (M) := {v ∈ C0(Γ0) : γ∗j (v|π) ∈ Pp,∀π ∈M} , p ≥ 0 . (3.22)

We also know that for the functions from this space which are associated with a panel π, the support is just
the panel π [5, Ch. 1, Sec. 1.4.27]. This will be useful when presenting the evaluation routines for the shape
gradient. Also, the pullback of the basis functions under the panel parametrization of its supporting panel
will give us a reference shape function. This mapping from the global shape function to the reference shape
function depends only on the global shape function index and the panel index. If the support for a basis
function βNi (x) is the panel π:

γ∗πβ
N
i (s) = β̂k(s), (3.23)

β̂k is the kth reference shape function. The mapping (k, π)→ i is unique [5, Ch. 1, Sec. 1.4.75]:

locglobmap(k, π) = i . (3.24)

Local integrals are evaluated and then mapped to a global position dictated by the local to global map
described above. The procedure for solving the state problem is laid out in the lecture notes [5, Ch. 1, Sec.
1.4.46] and is similar for the adjoint problem as the LHS in the variational equation is the same bilinear
form aV (Single Layer).

3.2.2 Evaluating TI and TVII in 2D shape gradient formula

It is assumed that g and ∇g are available in procedural form. For the velocity field, we assume that the first
order and second order derivatives are available in procedural form.

Evaluation of the single integrals in the shape gradient formula is straightforward. TI in eq. (3.15) is
given as:

=

∫
Γ0

Ψ0(x̂)(∇g(x̂) · ν(x̂)) dΓ0(x̂)

=

N∑
i=1

ai

∫
Γ0

βNi (x̂)(∇g(x̂) · ν(x̂)) dΓ0(x̂)

=

N∑
i=1

aiVi, Vi =

∫
Γ0

βNi (x̂)(∇g(x̂) · ν(x̂)) dΓ0(x̂) .

(3.25)

Let panel π be the support for the basis function βNi :

Vi =

∫
π

βNi (x̂)(∇g(x̂) · ν(x̂)) dΓ0(x̂) . (3.26)

Using the parametrization for the panel, we get a local integral

=

∫ 1

s=−1

β̂k(s) ∇g(γπ(s)) · ν(γπ(s)) ||γ̇π(s)|| ds . (3.27)

β̂k is a reference shape function such that locglobmap(k, π) = i. Evaluating these local integrals for all

combinations of π and β̂k, and using the local to global map, we can evaluate the vector V and hence the
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final integral. Similarly, we can evaluate TVII in eq. (3.15):

=

∫
Γ0

p(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

=

N∑
i=1

bi

∫
Γ0

βNi (x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

=

N∑
i=1

biVi, Vi =

∫
Γ0

βNi (x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂) .

(3.28)

The vector V is same as for TI. The final integral is evaluated by taking the dot product of the vector b
and V.

3.2.3 Evaluating TII in 2D shape gradient formula

Evaluation of the double integrals in the shape gradient formula is a little more involved due to the presence
of singular integrands. For the second term in eq. (3.15):

=

∫
Γ0

∫
Γ0

Ψ0(ŷ) p(x̂)
x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂) dΓ0(ŷ)

=

N∑
i=1

N∑
j=1

aibj

∫
Γ0

∫
Γ0

βNi (ŷ) βNj (x̂)
x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂) dΓ0(ŷ)

=

N∑
i=1

N∑
j=1

aibjRij , Rij =

∫
Γ0

∫
Γ0

βNi (ŷ) βNj (x̂)
x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂) dΓ0(ŷ) .

(3.29)

Let the support for the basis functions βNi and βNj be π and π′ respectively. Thus the term Rij above can
be written as:

=

∫
π

∫
π′
βNi (ŷ) βNj (x̂)

x̂− ŷ
||x̂− ŷ||2

· (ν(x̂)− ν(ŷ)) dΓ0(x̂) dΓ0(ŷ)

=

∫ 1

t=−1

∫ 1

s=−1

β̂k(t) β̂l(s)
γπ′(s)− γπ(t)

||γπ′(s)− γπ(t)||2
· (ν(γπ′(s))− ν(γπ(t))) ||γ̇π′(s)|| ||γ̇π(t)|| ds dt .

(3.30)

By evaluating the local integral above for all combinations of π ,π′, β̂k and β̂l, and using the local to global
mapping, we can find the matrix Rij . If π ∩ π′ = {Φ}, we are away from the singularity and the double
integral can be evaluated in a straightforward manner using tensor product quadrature rule.

Coinciding panels: If π = π′ or the panels coincide, we have:

Rij =

∫ 1

t=−1

∫ 1

s=−1

β̂k(t) β̂l(s)
γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
· (ν(γπ(s))− ν(γπ(t))) ||γ̇π(s)|| ||γ̇π(t)|| ds dt . (3.31)

The integrand above has a singularity for s = t but has a limit for s → t. We rewrite the integral as:∫ 1

t=−1

∫ 1

s=−1

β̂k(t) β̂l(s)f(s, t) ||γ̇π(s)|| ||γ̇π(t)|| ds dt . (3.32)

Where f(s, t) is a C0 function defined as:

f(s, t) =


γ̇π(t) · (∇ν(γπ(t))T γ̇π(t))

||γ̇π(t)||2
if s = t

γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
· (ν(γπ(s))− ν(γπ(t)) otherwise.

(3.33)
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The value of f(s, t) at s = t is the limit for s→ t found using Taylor expansions:

γπ(s) = γπ(t) + (s− t)γ̇π(t) +
(s− t)2

2
γ̈π(t) +O((s− t)3)

=⇒ γπ(s)− γπ(t) = (s− t)γ̇π(t) +
(s− t)2

2
γ̈π(t) +O((s− t)3)

=⇒ ||γπ(s)− γπ(t)||2 = (s− t)2(||γ̇π(t)||2 +O(s− t)) .

(3.34)

Taylor expansion for the velocity field:

ν(γπ(s)) = ν(γπ(t)) + (s− t)∇ν(γπ(t))T γ̇π(t) +O((s− t)2)

=⇒ ν(γπ(s))− ν(γπ(t)) = (s− t)∇ν(γπ(t))T γ̇π(t) +O((s− t)2) .
(3.35)

Using the Taylor expansions, the limit is calculated as:

lim
s→t

γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
· (ν(γπ(s))− ν(γπ(t)) (3.36)

= lim
s→t

(s− t)γ̇π(t) +O((s− t)2)

(s− t)2(||γ̇π(t)||2 +O((s− t)))
· ((s− t)∇ν(γπ(t))T γ̇π(t) +O((s− t)2)) (3.37)

=
γ̇π(t) · (∇ν(γπ(t))T γ̇π(t))

||γ̇π(t)||2
. (3.38)

f(s, t) is bounded. Thus for coinciding panels Rij can be evaluated by quadrature.
Adjacent panels: For the case π ∩ π′ = P , or adjacent panels, with P being the common point, we

evaluate Rij as follows: First we require a local arclength parametrization for the panels π and π′:

K(t′) : [0, |π|]→ π,

K ′(s′) : [o, |π′|]→ π′ .
(3.39)

The local arclength parametrizations satisfy K(0) = K ′(0) = P and ||K̇(0)|| = ||K̇ ′(0)|| = 1. Assuming
γπ(1) = γπ′(−1), the local arclength parametrization and the panel parametrizations are related to each
other as follows:

K(t′) = γπ(1− 2t′

|π|
), K ′(s′) = γπ′(

2s′

|π′|
− 1) . (3.40)

Note: Similar relation can be established if γπ(−1) = γπ′(1). In the implementation we check for the
assumption γπ(1) = γπ′(−1).

Thus we can transform the local integral in eq. (3.30) to arclength parametrizations by using the coor-
dinate transformation:

t = 1− 2t′

|π|
, s =

2s′

|π′|
− 1 . (3.41)

Using the coordinate transformation mentioned above and renaming s′ and t′ to s and t respectively, the
local integral becomes :

=
4

|π||π′|

∫ |π|
t=0

∫ |π′|

s=0

β̂k(1− 2t

|π|
) β̂l(

2s

|π′|
− 1) ||γ̇π(1− 2t

|π|
)|| || ˙γπ′(

2s

|π′|
− 1)||

K ′(s)−K(t)

||K ′(s)−K(t)||2
· (ν(K ′(s))− ν(K(t))) ds dt . (3.42)

To treat the singular term highlighted above, we use Taylor expansions about the point 0 as the singularity
occurs when s = t = 0:

K(t) = K(0) + tK̇(0) +O(t2),

K ′(s) = K ′(0) + sK̇ ′(0) +O(s2) .

=⇒ K ′(s)−K(t) = sK̇ ′(0)− tK̇(0) +O(s2 + t2)

=⇒ ||K ′(s)−K(t)||2 = s2 + t2 − 2stK̇(0) · K̇ ′(0) +O(s4 + t4) .

(3.43)
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Taylor expansion for the velocity field:

ν(K(t)) = ν(K(0)) + t∇ν(K(0))T K̇(0) +
t2

2
(∇ν(K(0))T K̈(0) +M(0)K̇(0)) +O(t3),

M(t) :=
d(∇ν(K(t))T )

dt
.

ν(K ′(s)) = ν(K ′(0)) + s∇ν(K ′(0))T K̇ ′(0) +
s2

2
(∇ν(K ′(0))T K̈ ′(0) +M ′(0)K̇ ′(0)) +O(s3),

M ′(s) :=
d(∇ν(K ′(s))T )

ds
.

ν(K ′(s))− ν(K(t)) = s∇ν(K ′(0))T K̇ ′(0)− t∇ν(K(0))T K̇(0) +O(s2 + t2) .
(3.44)

Due to the presence of s2 + t2, we use polar coordinates:

s = r cos(φ), t = r sin(φ) . (3.45)

Using Taylor expansions given above, the highlighted term in eq. (3.42):

=
K ′(s)−K(t)

||K ′(s)−K(t)||2
· (ν(K ′(s))− ν(K(t)))

=
sK̇ ′(0)− tK̇(0) +O(s2 + t2)

s2 + t2 − 2stK̇(0) · K̇ ′(0) +O(s4 + t4)
· (s∇ν(K ′(0))T K̇ ′(0)− t∇ν(K(0))T K̇(0) +O(s2 + t2))

=
r cos(φ)K̇ ′(0)− r sin(φ)K̇(0) +O(r2)

r2 − r2 sin(2φ)K̇(0) · K̇ ′(0) +O(r4)
· (r cos(φ)∇ν(K ′(0))T K̇ ′(0)− r sin(φ)∇ν(K(0))T K̇(0) +O(r2)) .

(3.46)
For r → 0:

=
cos(φ)K̇ ′(0)− sin(φ)K̇(0)

1− sin(2φ)K̇(0) · K̇ ′(0)
· (cos(φ)∇ν(K ′(0))T K̇ ′(0)− sin(φ)∇ν(K(0))T K̇(0)) . (3.47)

We replace the singular term highlighted in eq. (3.42) with the C0 function D(r, φ) defined as:

D(r, φ) =


K ′(r cos(φ))−K(r sin(φ))

||K ′(r cos(φ))−K(r sin(φ))||2
· (ν(K ′(r cos(φ)))− ν(K(r sin(φ)))) r > 0

cos(φ)K̇ ′(0)− sin(φ)K̇(0)

1− sin(2φ)K̇(0) · K̇ ′(0)
· (cos(φ)∇ν(K ′(0))T K̇ ′(0)− sin(φ)∇ν(K(0))T K̇(0)) r = 0

(3.48)
After the local arclength transformation followed by polar coordinate transformation, the local integral is in
the following form:

∫ arctan(
|π|)
|π′|

φ=0

∫ |π′|
cos(φ)

r=0

F(r, φ)D(r, φ) dr dφ+

∫ π
2

φ=arctan(
|π|)
|π′|

∫ |π|
sin(φ)

r=0

F(r, φ)D(r, φ) dr dφ . (3.49)

With both F(r, φ) and D(r, φ) being continuous, the local integral can be evaluated by tensor product
quadrature rule.
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3.2.4 Evaluating TIII in 2D shape gradient formula

The third term in eq. (3.15):

=
1

2π

∫
Γ0

∫
Γ0

p(x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

=

N∑
i=1

bi
2π

∫
Γ0

∫
Γ0

βNi (x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

=

N∑
i=1

biSi ,

Si =
1

2π

∫
Γ0

∫
Γ0

βNi (x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ) .

(3.50)

Let panel π be the support of the basis function βNi .

Si =
1

2π

∫
Γ0

∫
π

βNi (x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ) . (3.51)

The outer integral is over the whole boundary but it can be broken down into the sum of integrals over
individual panels:

Si =
∑
π′∈M

1

2π

( ∫
π′

∫
π

βNi (x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

)
. (3.52)

The local integral in this case is given as:

=

∫
π′

∫
π

βNi (x̂) g(ŷ)
{ n̂(ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||2

− x̂− ŷ
||x̂− ŷ||2

·
(
∇ν(ŷ)n̂(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

=

∫ 1

t=−1

∫ 1

s=−1

β̂k(s) g(γπ′(t))
{ n̂(γπ′(t)) ·

(
ν(γπ(s))− ν(γπ′(t))

)
||γπ(s)− γπ′(t)||2

− γπ(s)− γπ′(t)

||γπ(s)− γπ′(t)||2
·
(
∇ν(γπ′(t))n̂(γπ′(t))

)}
||γ̇π(s)|| ||γ̇π′(t)|| ds dt .

(3.53)

If π′ ∩ π = {φ}, we are away from the singularity and can use tensor product quadrature rule to evaluate
the integral.

Coinciding panels: If the panels coincide, that is π′ = π, the integral becomes:

=

∫ 1

t=−1

∫ 1

s=−1

β̂k(s) g(γπ(t))
{ n̂(γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||2

− γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
·
(
∇ν(γπ(t))n̂(γπ(t))

)}
||γ̇π(s)|| ||γ̇π(t)|| ds dt . (3.54)

The expression within curly brackets highlighted above is singular for s = t, but has a limit as shown in
eq. (3.14). Using Taylor expansions in eq. (3.35), we replace the function within curly brackets with the
following C0 function:

F (s, t) =


n̂(γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||2

− γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
·
(
∇ν(γπ(t))n̂(γπ(t))

)
s 6= t

1

2

n̂(γπ(t)) ·
(
χ(t)γ̇π(t)

)
||γ̇π(t)||2

s = t,

(3.55)
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where χ(t) is defined as:

χ(t) :=
d(Dν(γπ(t)))

dt
. (3.56)

The limit for the highlighted expression for s→ t is obtained using Taylor expansions as follows:

=
n̂(γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||2

− γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
·
(
∇ν(γπ(t))n̂(γπ(t))

)
=

n̂(γπ(t)) ·
(
(s− t)∇ν(γπ(t))T γ̇π(t) + (s−t)2

2 (∇ν(γπ(t))T γ̈π(t) + χ(t)γ̇π(t)) +O((s− t)3)
)

(s− t)2(||γ̇π(t)||2 +O((s− t)))

−
(s− t)γ̇π(t) + (s−t)2

2 γ̈π(t) +O((s− t)3)

(s− t)2(||γ̇π(t)||2 +O((s− t)))
·
(
∇ν(γπ(t))n̂(γπ(t))

)
=

n̂(γπ(t)) ·
( (s−t)2

2 (∇ν(γπ(t))T γ̈π(t) + χ(t)γ̇π(t)) +O((s− t)3)
)

(s− t)2(||γ̇π(t)||2 +O((s− t)))

−
(s−t)2

2 γ̈π(t) +O((s− t)3)

(s− t)2(||γ̇π(t)||2 +O((s− t)))
·
(
∇ν(γπ(t))n̂(γπ(t))

)
.

(3.57)

For s→ t:

=
1

2

n̂(γπ(t)) ·
(
∇ν(γπ(t))T γ̈π(t) + χ(t)γ̇π(t)

)
||γ̇π(t)||2

− 1

2

γ̈π(t)

||γ̇π(t)||2
·
(
∇ν(γπ(t))n̂(γπ(t))

)
=

1

2

n̂(γπ(t)) ·
(
χ(t)γ̇π(t)

)
||γ̇π(t)||2

.

(3.58)

Thus the integral can be evaluated using tensor product quadrature rule as the function F (s, t) and the rest
of the integrand is continuous.

Adjacent panels: For the case of adjacent panels or π ∩ π′ = {P}, we follow a similar procedure with
local arclength parametrization of the panels introduced in eq. (3.39):

K(s′) : [0, |π|]→ π,

K ′(t′) : [o, |π′|]→ π′ .
(3.59)

The parametrizations are such that K(0) = K ′(0) = P and ||K̇(0)|| = ||K̇ ′(0)|| = 1. Assuming γπ(1) =
γπ′(−1), we can transform the local integral in eq. (3.53) to arclength parametrizations by using the coor-
dinate transformations:

t =
2t′

|π′|
− 1, s = 1− 2s′

|π|
. (3.60)

After Renaming s′ and t′ to s and t respectively, we get:

=
4

|π||π′|

∫ |π′|

t=0

∫ |π|
s=0

β̂k(1− 2s

|π|
) g(K ′(t))

{ n̂(K ′(t)) ·
(
ν(K(s))− ν(K ′(t))

)
||K(s)−K ′(t)||2

− K(s)−K ′(t)
||K(s)−K ′(t)||2

·
(
∇ν(K ′(t))n̂(K ′(t))

)}
||γ̇π(1− 2s

|π|
)|| ||γ̇π′(

2t

|π′|
− 1)|| ds dt . (3.61)

The singular part of the integrand highlighted above within curly brackets:

=
n̂(K ′(t)) ·

(
ν(K(s))− ν(K ′(t))

)
||K(s)−K ′(t)||2

− K(s)−K ′(t)
||K(s)−K ′(t)||2

·
(
∇ν(K ′(t))n̂(K ′(t))

)
. (3.62)
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Using the Taylor expansions about s = 0 and t = 0, presented in eq. (3.44), we get:

=
{

n̂(K ′(t)) ·
(
s∇ν(K(0))T K̇(0) +

s2

2
(∇ν(K(0))T K̈(0) +M(0)K̇(0))

− t∇ν(K ′(0))T K̇ ′(0)− t2

2
(∇ν(K ′(0))T K̈ ′(0) +M ′(0)K̇ ′(0)) +O(s3 + t3)

)
− (sK̇(0)− tK̇ ′(0) +

s2

2
K̈(0)− t2

2
K̈ ′(0) +O(s3 + t3)) ·

(
(∇ν(K ′(0)) + tM ′(0)T +O(t2))n̂(K ′(t))

)}
/
(
s2 + t2 − 2stK̇(0) · K̇ ′(0) +O(s4 + t4)

)
=

n̂(K ′(t)) ·
(
s2

2 M(0)K̇(0) + t2

2 M
′(0)K̇ ′(0)− stM ′(0)K̇(0) + cubic terms

)
s2 + t2 − 2stK̇(0) · K̇ ′(0) +O(s4 + t4)

.

Due to the presence of s2 and t2, we use polar coordinates:

s = r cos(φ), t = r sin(φ) . (3.63)

Using polar coordinates, we get:

=
n̂(K ′(r sin(φ))) ·

(
r2

2 cos2(φ)M(0)K̇(0) + r2

2 sin2(φ)M ′(0)K̇ ′(0)− r2 sin(φ) cos(φ)M ′(0)K̇(0) +O(r3)
)

r2 − 2r2 sin(φ) cos(φ)K̇(0) · K̇ ′(0) +O(r4)
.

(3.64)

for r → 0, we get:

=
n̂(K ′(0)) ·

(
1
2 cos2(φ)M(0)K̇(0) + 1

2 sin2(φ)M ′(0)K̇ ′(0)− sin(φ) cos(φ)M ′(0)K̇(0)
)

1− sin(2φ)K̇(0) · K̇ ′(0)
. (3.65)

We treat the singular part highlighted above by switching to polar coordinates and replacing it with the
following C0 function:

Q(r, φ) =



n̂(K ′(r sin(φ))) ·
(
ν(K(r cos(φ)))− ν(K ′(r sin(φ)))

)
||K(r cos(φ))−K ′(r sin(φ))||2

− K(r cos(φ))−K ′(r sin(φ))

||K(r cos(φ))−K ′(r sin(φ))||2
·
(
∇ν(K ′(r sin(φ)))n̂(K ′(r sin(φ)))

)
r 6= 0

n̂(K ′(0)) ·
(

1
2 cos2(φ)M(0)K̇(0) + 1

2 sin2(φ)M ′(0)K̇ ′(0)− sin(φ) cos(φ)M ′(0)K̇(0)
)

1− sin(2φ)K̇(0) · K̇ ′(0)
r = 0 .

(3.66)
Local arclength transformation followed by the polar coordinate transformation gives us the local integral
from eq. (3.61) in the following form:

∫ arctan(
|π′|)
|π|

φ=0

∫ |π|
cos(φ)

r=0

F(r, φ) Q(r, φ) dr dφ+

∫ π
2

φ=arctan(
|π′|)
|π|

∫ |π′|
sin(φ)

r=0

F(r, φ) Q(r, φ) dr dφ . (3.67)

As both F(r, φ) and Q(r, φ) are continuous, we can evaluate the integral using tensor product quadrature
rule.

3.2.5 Evaluating TIV in the 2D shape gradient formula

The fourth term in eq. (3.15) is given as:

=
1

2π

∫
Γ0

∫
Γ0

2p(x̂) g(ŷ)
{ (x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ) . (3.68)
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Plugging in the formula for p(x̂) from eq. (3.16), we get:

=

N∑
i=1

bi
1

π

∫
Γ0

∫
Γ0

βNi (x̂) g(ŷ)
{ (x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ)

=
1

π

N∑
i=1

biTi,

Ti =

∫
Γ0

∫
Γ0

βNi (x̂)g(ŷ)
{ (x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ) .

(3.69)

Let panel π be the support for the basis function βNi :

Ti =

∫
Γ0

∫
π

βNi (x̂) g(ŷ)
{ (x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ)

=
∑
π′∈M

∫
π′

∫
π

βNi (x̂) g(ŷ)
{ (x̂− ŷ) · n̂(ŷ) (x̂− ŷ) ·

(
ν(x̂)− ν(ŷ)

)
||x̂− ŷ||4

}
dΓ0(x̂)dΓ0(ŷ) .

Integral inside the summation gives us the following local integral:

=

∫ 1

t=−1

∫ 1

s=−1

{ (γπ(s)− γπ′(t)) · n̂(γπ′(t)) (γπ(s)− γπ′(t)) ·
(
ν(γπ(s))− ν(γπ′(t))

)
||γπ(s)− γπ′(t)||4

}
β̂k(s) g(γπ′(t)) ||γ̇π(s)|| ||γ̇π′(t)|| ds dt . (3.70)

Evaluating the local integral above for all combinations of π, π′ and β̂k and using local to global mapping,
we can get the vector T . When π ∩ π′ = {φ}, we are away from the singularity and the integral can be
evaluated using tensor product quadrature rule.

Coinciding panels: When π = π′ or the panels coincide, the local integral becomes:

∫ 1

t=−1

∫ 1

s=−1

{ (γπ(s)− γπ(t)) · n̂(γπ(t)) (γπ(s)− γπ(t)) ·
(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||4

}
β̂k(s) g(γπ(t)) ||γ̇π(s)|| ||γ̇π(t)|| ds dt . (3.71)

The integrand outside the curly brackets is analytic but the part inside is singular for s = t. As shown
earlier there is a limit for the singular part which is evaluated using Taylor expansions from eq. (3.35). The
highlighted expression above is written as:

=
(γπ(s)− γπ(t)) · n̂(γπ(t)) (γπ(s)− γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||4

=
(γπ(s)− γπ(t)) · n̂(γπ(t))

||γπ(s)− γπ(t)||2
(γπ(s)− γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||2

.

(3.72)

Taylor expansion for the first part of the expression above:

=
(γπ(s)− γπ(t)) · n̂(γπ(t))

||γπ(s)− γπ(t)||2

=

(
(s− t)γ̇π(t) + (s−t)2

2 γ̈π(t) +O((s− t)3)
)
· n̂(γπ(t))

(s− t)2||γ̇π(t)||2 +O((s− t)3)

=
(s−t)2

2 γ̈π(t) +O((s− t)3)
)
· n̂(γπ(t))

(s− t)2||γ̇π(t)||2 +O((s− t)3)
, γ̇π(t) · n̂(γπ(t)) = 0 .

(3.73)

The limit for s→ t:

=
γ̈π(t) · n̂(γπ(t))

2||γ̇π(t)||2
. (3.74)
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For the second part of the expression in eq. (3.72):

=
(γπ(s)− γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||2

=

(
(s− t)γ̇π(t) + (s−t)2

2 γ̈π(t) +O((s− t)3)
)
·
(
(s− t)∇ν(γπ(t))T γ̇π(t) +O((s− t)2)

)
(s− t)2||γ̇π(t)||2 +O((s− t)3)

.

(3.75)

The limit for s→ t:

=
γ̇π(t) ·

(
∇ν(γπ(t))T γ̇π(t)

)
||γ̇π(t)||2

. (3.76)

Combining the results, we get the limit for the complete expression in eq. (3.72), for s→ t as:

=

(
γ̈π(t) · n̂(γπ(t))

)
γ̇π(t) ·

(
∇ν(γπ(t))T γ̇π(t)

)
2||γ̇π(t)||4

. (3.77)

Replacing the singular part of the integrand with the following C0 function:

C(s, t) =


(γπ(s)− γπ(t)) · n̂(γπ(t)) (γπ(s)− γπ(t)) ·

(
ν(γπ(s))− ν(γπ(t))

)
||γπ(s)− γπ(t)||4

s 6= t(
γ̈π(t) · n̂(γπ(t))

)
γ̇π(t) ·

(
∇ν(γπ(t))T γ̇π(t)

)
2||γ̇π(t)||4

s = t .

(3.78)

We can integrate eq. (3.71) as C(s, t) is continuous along with the rest of the integrand.
Adjacent panels: For the case of adjacent panels or π ∩ π′ = {P}, we use local arclength parametriza-

tions introduced in eq. (3.59):
K(s′) : [0, |π|]→ π,

K ′(t′) : [o, |π′|]→ π′ .
(3.79)

The parametrizations are such that K(0) = K ′(0) = P and ||K̇(0)|| = ||K̇ ′(0)|| = 1. Assuming γπ(1) =
γπ′(−1), we can transform the local integral in eq. (3.70) to arclength parametrizations by using the coor-
dinate transformations:

t =
2t′

|π′|
− 1, s = 1− 2s′

|π|
. (3.80)

After Renaming s′ and t′ to s and t respectively, the local integral becomes:

=
4

|π||π′|

∫ |π′|

t=0

∫ |π|
s=0

{ (K(s)−K ′(t)) · n̂(K ′(t)) (K(s)−K ′(t)) ·
(
ν(K(s))−K ′(t))

)
||K(s)−K ′(t)||4

}
β̂k(1− 2s

|π|
) g(K ′(t)) ||γ̇π(1− 2s

|π|
)|| ||γ̇π′(

2t

|π′|
− 1)|| ds dt . (3.81)

The singular part of the integrand highlighted above:

=
(K(s)−K ′(t)) · n̂(K ′(t))

||K(s)−K ′(t)||2
(K(s)−K ′(t)) ·

(
ν(K(s))− ν(K ′(t))

)
||K(s)−K ′(t)||2

. (3.82)

Using Taylor expansions from eq. (3.44), the expression above:

=
(
sK̇(0)− tK̇ ′(0) +O(s2 + t2)

)
· n̂(K ′(t))

×
((
sK̇(0)− tK̇ ′(0) +O(s2 + t2)

)
·
(
s∇ν(K(0))T K̇(0)− t∇ν(K ′(0))T K̇ ′(0) +O(s2 + t2))

))
/
(
s2 + t2 − 2stK̇(0) · K̇ ′(0) + cubic terms

)2
.

(3.83)
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Due to the presence of s2 + t2, we use polar coordinates s = r cos(φ), t = r sin(φ). The expression above
becomes:

=
(
r cos(φ)K̇(0)− r sin(φ)K̇ ′(0) +O(r2)

)
· n̂(K ′(r sin(φ)))

×
((
r cos(φ)K̇(0)− r sin(φ)K̇ ′(0) +O(r2)

)
·
(
r cos(φ)∇ν(K(0))T K̇(0)− r sin(φ)∇ν(K ′(0))T K̇ ′(0) +O(r2))

))
/
(
r2 − r2 sin(2φ)K̇(0) · K̇ ′(0) +O(r3)

)2
.

(3.84)
The expression above is still O( 1

r ) but when making the polar coordinate transformations, we get a Jacobian
equal to r. Thus multiplying the expression above by the Jacobian gets rid of the 1

r singularity. The limit
for the expression as r → 0, including the Jacobian r is:

=
(

cos(φ)K̇(0)− sin(φ)K̇ ′(0)
)
· n̂(K ′(0))

×
((

cos(φ)K̇(0)− sin(φ)K̇ ′(0))
)
·
(

cos(φ)∇ν(K(0))T K̇(0)− sin(φ)∇ν(K ′(0))T K̇ ′(0))
))

/
(
1− sin(2φ)K̇(0) · K̇ ′(0)

)2
.

(3.85)

We can treat the singular part of the integrand in eq. (3.81) by changing to polar coordinates and replacing
it with the following C0 function (which includes the Jacobian of transformation ’r’):

G(r, φ) =



r × (K(r cos(φ))−K ′(r sin(φ))) · n̂(K ′(r sin(φ)))

×
(K(r cos(φ))−K ′(r sin(φ))) ·

(
ν(K(r cos(φ)))− ν(K ′(r sin(φ)))

)
||K(r cos(φ))−K ′(r sin(φ))||4

r > 0

(
cos(φ)K̇(0)− sin(φ)K̇ ′(0)

)
· n̂(K ′(0))

×
((

cos(φ)K̇(0)− sin(φ)K̇ ′(0))
)
·
(

cos(φ)∇ν(K(0))T K̇(0)− sin(φ)∇ν(K ′(0))T K̇ ′(0))
))

/
(
1− sin(2φ)K̇(0) · K̇ ′(0)

)2
r = 0 .

(3.86)
After the transformations described above, we get the local integral in the following form:∫ arctan(

|π′|)
|π|

φ=0

∫ |π|
cos(φ)

r=0

Z(r, φ) G(r, φ) dr dφ+

∫ π
2

φ=arctan(
|π′|)
|π|

∫ |π′|
sin(φ)

r=0

Z(r, φ) G(r, φ) dr dφ . (3.87)

This can be integrated as both Z(r, φ) and G(r, φ) are continuous.

3.2.6 Evaluating TV and TVI in the 2D shape gradient formula

For evaluating the fifth and sixth terms in the eq. (3.15), we combine the two due to the similarities appearing
in the integrand. The combined expression is given as:

= − 1

2π

∫
Γ0

∫
Γ0

p(x̂)
(
g(ŷ)∇ · ν(ŷ) +∇g(ŷ) · ν(ŷ)

) x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ)

= − 1

2π

∫
Γ0

∫
Γ0

p(x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ) .

(3.88)

Plugging in the value of p(x̂), we get:

= − 1

2π

N∑
i=1

bi

∫
Γ0

∫
Γ0

βNi (x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ)

= − 1

2π

N∑
i=1

biUi,

Ui =

∫
Γ0

∫
Γ0

βNi (x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ) .

(3.89)
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Assuming the support for the basis function βNi is the panel π, we get:

Ui =

∫
Γ0

∫
π

βNi (x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ)

=
∑
π′∈M

∫
π′

∫
π

βNi (x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ) .
(3.90)

The integrals to be evaluated are:

=

∫
π′

∫
π

βNi (x̂) ∇ · (g(ŷ)ν(ŷ))
x̂− ŷ
||x̂− ŷ||2

· n̂(ŷ) dΓ0(x̂)dΓ0(ŷ)

=

∫ 1

t=−1

∫ 1

s=−1

β̂k(s) ∇ · (g(γπ′(t))ν(γπ′(t)))
γπ(s)− γπ′(t)

||γπ(s)− γπ′(t)||2
· n̂(γπ′(t)) ||γ̇π(s)|| ||γ̇π′(t)|| ds dt .

(3.91)

By evaluating the local integral above for all combinations of π, π′ and β̂k, and using the local to global
map, we can evaluate the vector U . If π ∩ π′ = {φ}, we are away from the singularity and can evaluate the
integral by simply using tensor product quadrature rule.

Coinciding panels: For π = π′, the local integral becomes:

=

∫ 1

t=−1

∫ 1

s=−1

β̂k(s) ∇ · (g(γπ(t))ν(γπ(t)))
γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
· n̂(γπ(t)) ||γ̇π(s)|| ||γ̇π(t)|| ds dt . (3.92)

The singular term in the integrand above is a Double Layer singularity. Thus it can be treated by replacing
the singular term with the following C0 function:

N(s, t) =


γπ(s)− γπ(t)

||γπ(s)− γπ(t)||2
· n̂(γπ(t)) s 6= t

γ̈π(t) · n̂(γπ(t))

2||γ̇π(t)||2
s = t .

(3.93)

Since the remaining integrand is also continuous, we can evaluate it by tensor product quadrature rule.
Adjacent panels: For the case of adjacent panels or π ∩ π′ = {P}, we transform the local integral into

arclength coordinates by using the coordinate transformations mentioned in eq. (3.59). Renaming s′ and t′

to s and t respectively, we get:

=
4

|π||π′|

∫ |π′|

t=0

∫ |π|
s=0

(K(s)−K ′(t)) · n̂(K ′(t))

||K(s)−K ′(t)||2
∇ · (g(K ′(t))ν(K ′(t)))

β̂k(1− 2s

|π|
) ||γ̇π(1− 2s

|π|
)|| ||γ̇π′(

2t

|π′|
− 1)|| ds dt . (3.94)

To treat the singular term, we use Taylor expansion and switch to polar coordinates. This is already done
in eq. (3.83). So we can simply replace the singular term by the following C0 function (which includes the
Jacobian of transformation r):

B(r, φ) =


r × (K(r cos(φ))−K ′(r sin(φ))) · n̂(K ′(r sin(φ)))

||K(r cos(φ))−K ′(r sin(φ))||2
r 6= 0(

cos(φ)K̇(0)− sin(φ)K̇ ′(0)
)
· n̂(K ′(0))

1− sin(2φ)K̇(0) · K̇ ′(0)
r = 0 .

(3.95)

Using the transformations, the local integral has the following form:∫ arctan(
|π′|)
|π|

φ=0

∫ |π|
cos(φ)

r=0

Z(r, φ) B(r, φ) dr dφ+

∫ π
2

φ=arctan(
|π′|)
|π|

∫ |π′|
sin(φ)

r=0

Z(r, φ) B(r, φ) dr dφ . (3.96)

With Z(r, φ) and B(r, φ) being continuous, we can evaluate the integral by tensor product quadrature
rule.
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3.3 Stable Evaluation

When numerically evaluating the expressions above which are singular but have a finite limit, we need to
take care of cancellation errors as mentioned in the notes [3, Ch. 1, Sec. 1.5.43]. The cancellation error
occurs when two almost same quantities are subtracted. The original numbers are already inexact when
stored on the machine. Subtracting two close numbers stored on the machine may lead to a large relative
error which is undesireable. This is demonstrated in the figure 1 where the white and red bars denote the
true values and absolute errors respectively. Notice that after subtraction, the size of the absolute error (red)
is comparable to the size of the true value (white) which means a very high relative error.

e1

e2

Figure 1: Cancellation error

For evaluating the derived expressions in the previous sub-section, we can simply look at two cases:
coinciding panels and adjacent panels. When we have coinciding panels, we encounter expressions of the
form:

f(s)− f(t)

s− t
. (3.97)

For s→ t, we have the limit ḟ(t) for the expression above. Question is when evaluating it numerically, when
to use the this limit and when to evaluate the difference quotient. As mentioned above, the numbers stored
on the machine are approximations of the true number. When storing a number whose true value is ′a′,
what’s stored on the machine is something like:

a(1 + δ), |δ| < εm . (3.98)

εm is the machine epsilon. Using this representation, the difference quotient becomes:

=
f(s)(1 + δ1)− f(t)(1 + δ2)

s− t
, |δ1|, |δ2| < εm

=
f(t+ h)(1 + δ1)− f(t)(1 + δ2)

h

=
f(t+ h)− f(t)

h
+
δ1f(t+ h)− δ2f(t)

h
.

(3.99)

The first term is the actual difference quotient, the second term is the error. For h→ 0, the error is:

|δ1f(t)− δ2f(t)

h
| ≤ |δ1f(t)|

h
+
|δ2f(t)|

h
≤ 2εm|f(t)|

h
= O(h−1) . (3.100)

When we use the Taylor series approximation:

f(s) = f(t) + (s− t)ḟ(t) +
(s− t)2

2
f̈(t) + ... , (3.101)
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The error that we incur from approximating the difference quotient by the first derivative:

f(s)− f(t)

s− t
− ḟ(t) =

(s− t)
2

f̈(t) +O((s− t)2) = O(h) . (3.102)

To choose the split point where we switch to the Taylor approximation can be calculated by simply equating
the two errors.

h

2
|f̈(t)| = 2εm|f(t)|

h

=⇒ h = 2
√
εm

√
|f(t)

f̈(t)
| = O(

√
εm) .

(3.103)

For evaluating the difference coefficient, we simply evaluate it when |s − t| ≥ √εm and use the Taylor
approximation otherwise:

f(s)− f(t)

s− t
≈ ḟ(

s+ t

2
), |s− t| <

√
εm . (3.104)

The same idea applies in the expressions emerging in the adjacent panels case. There instead of |s− t|, we
have r. For r >

√
εm we simply evaluate the expression, otherwise the Taylor approximation is used.

4 Energy shape gradient using variational formulation for the
Laplacian

In this section, we derive the shape gradient of the energy functional but using a variational formulation
for the Laplacian equation instead of the direct first kind BEM formulation. We do this because we cannot
directly compare the shape gradient formula and the total force formula obtained using the Maxwell stress
tensor. Instead we find another shape gradient formula which carries the same issues as in the total force
formula. Such a comparison of different shape gradient formulas is also done by Paganini and Hiptmair [7]
where they compare volume and boundary based shape gradient formulas, which although equivalent on a
smooth level, show differences in numerical evaluation.

4.1 Volume Formula using Lagrangian Pullback Approach

In this section, we derive a volume based shape gradient formula for the energy functional using the La-
grangian pullback approach, starting from the natural variational formulation for the Laplace equation.

∆u = 0 in Ω, u = g on ∂Ω (4.1)

Multiplying with a test function v and integrating over the domain,∫
Ω

∆u v dx = 0, u ∈ H1(Ω),∀v ∈ H1
0 (Ω) . (4.2)

Using Green’s identity we get: ∫
Ω

∇u · ∇v dx = 0 . (4.3)

The energy functional in volume representation, as given in eq. (2.5):

=
1

2

∫
Ω

|∇u|2 dx . (4.4)

Since u and v are in different spaces, we use the offset function technique

u = ũ+ f, ũ ∈ H1
0 (Ω), f ∈ H1(Ω), f |∂Ω = g . (4.5)
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Using the offset function technique, we get the variational formulation:

a(ũ, v) = l(v), a(ũ, v) :=

∫
Ω

∇ũ · ∇v dx, l(v) := −
∫

Ω

∇f · ∇v dx . (4.6)

For convenience, we use the symbol u instead of ũ

a(u, v) = l(v), a(u, v) =

∫
Ω

∇u · ∇v dx, l(v) = −
∫

Ω

∇f · ∇v dx . (4.7)

The energy functional, using eq. (4.5) and writing u instead of ũ:

J(Ω, u) =
1

2

∫
Ω

|∇u+∇f |2 dx . (4.8)

Using the same perturbation method as in derivation for direct first kind formulation, we get the ’t’ dependent
integrals:

J(t, u) =
1

2

∫
Ωt

|∇u(x) +∇f(x)|2 dx, u ∈ H1
0 (Ωt)

=
1

2

∫
Ω0

|DT−Tt ∇̂
(
u(Tt(x̂))

)
+G(Tt(x̂))|2 Jt(x̂) dx̂, G := ∇f .

a(t, u, v) =

∫
Ωt

∇u(x) · ∇v(x) dx, u ∈ H1
0 (Ωt), ∀v ∈ H1

0 (Ωt)

=

∫
Ω0

DT−Tt ∇̂u(Tt(x̂)) ·DT−Tt ∇̂v(Tt(x̂)) Jt(x̂) dx̂ .

l(t, v) = −
∫

Ωt

G(x) · ∇v(x) dx, ∀v ∈ H1
0 (Ωt)

= −
∫

Ω0

G(Tt(x̂)) ·DT−Tt ∇̂v(Tt(x̂)) Jt(x̂) dx̂ .

(4.9)

The above expressions are obtained using the following identities:∫
Ωt

f(x) dx =

∫
Ω0

f(Tt(x̂)) Jt(x̂) dx̂,

∇̂(F (Tt(x̂))) = D̂TTt (x̂)(∇F )(Tt(x̂)) .

(4.10)

In the transformations above, ∇g is not transformed using the gradient transformation formula as it is a
known function in volume which is independent of these shape transformations. Using the pullback from eq.
(2.20) we get:

J(t, u) = Ĵ(t, û) =
1

2

∫
Ω0

|DT−Tt (x̂)∇̂
(
û(x̂)

)
+G(Tt(x̂))|2 Jt(x̂) dx̂,

â(t, û, v̂) = a(t, u, v) =

∫
Ω0

DT−Tt (x̂)∇̂û(x̂) ·DT−Tt (x̂)∇̂v̂(x̂) Jt(x̂) dx̂, û, v̂ ∈ H1
0 (Ω0),

l̂(t, v̂) = l(t, v) = −
∫

Ω0

G(Tt(x̂)) ·DT−Tt (x̂)∇̂v̂(x̂) Jt(x̂) dx̂ .

(4.11)

The Lagrangian is defined as:

L(t, û, v̂) := Ĵ(t, û) + â(t, û, v̂)− l̂(t, v̂), û, v̂ ∈ H1
0 (Ω0) . (4.12)

Replacing û by ût, the state solution, such that:

â(t, ût, v̂) = l̂(t, v̂), ∀v̂ ∈ H1
0 (Ω0), (4.13)

the lagrangian becomes:

L(t, ût, v̂) = Ĵ(t, ût) = J (t) (4.14)
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The shape gradient is given as:

=
d(J (t))

dt
|t=0 =

∂L(t, ût, v̂)

∂t
|t=0 +

∂L(t, ût, v̂; dûtdt )

∂û
|t=0 . (4.15)

In the expression above, putting the second term equal to zero gives the adjoint equation.

=
∂L(t, ût, v̂; η)

∂û
|t=0 =

∂Ĵ(t, ût; η)

∂û
|t=0 +

∂â(t, ût, v̂; η)

∂û
|t=0, ∀η ∈ H1

0 (Ω0)

=
1

2

∫
Ω0

det(DTt(x̂)) 2
(
DT−Tt (x̂)∇̂(ût) +G(Tt(x̂))

)
· (DT−Tt (x̂)∇̂η(x̂)) dx̂

+

∫
Ω0

DT−Tt (x̂)∇̂η(x̂) ·DT−Tt (x̂)∇̂v̂(x̂) det(DTt(x̂)) dx̂ .

At t = 0 :

=

∫
Ω0

(
∇̂(u0(x̂) + f(x̂)

)
· ∇̂η(x̂)) dx̂+

∫
Ω0

∇̂η(x̂) · ∇̂v̂(x̂) dx̂ . (4.16)

The first term in the expression above is zero as it is the state equation for Ω0. This implies that the adjoint
solution v̂ is trivial. We get the shape gradient by partial derivative of the Lagrangian:

d(J (t))

dt
|t=0 =

∂L(t, ût, v̂)

∂t
|t=0 =

∂Ĵ(t, ût)

∂t
|t=0 +

∂â(t, ût, v̂)

∂t
|t=0 +

∂l̂(t, v̂)

∂t
|t=0

=
∂Ĵ(t, ût)

∂t
|t=0, v̂ = 0

=
1

2

∫
Ω0

{
|DT−Tt (x̂)∇̂

(
ût(x̂)

)
+G(Tt(x̂))|2∇̂ · ν(x̂) + 2 det(DTt(x̂))(

DT−Tt (x̂)∇̂ût(x̂) +G(Tt(x̂))
)
·
(
− ∇̂ν(x̂)∇̂ût(x̂) + (∇G)(Tt(x̂))T ν(x̂)

)}
dx̂ .

At t = 0:

=
1

2

∫
Ω0

(
|∇̂
(
u0(x̂) + f(x̂)

)
|2∇̂ · ν(x̂) + 2

(
∇̂
(
u0(x̂) + f(x̂)

))
·
(
− ∇̂ν(x̂)∇̂u0(x̂) + ∇̂∇̂f(x̂)T ν(x̂)

))
dx̂

=
1

2

∫
Ω0

(
|∇̂u(x̂)|2∇̂ · ν(x̂) + 2

(
∇̂u(x̂)

)
·
(
− ∇̂ν(x̂)∇̂u(x̂) + ∇̂ν(x̂)∇̂f(x̂) + ∇̂∇̂f(x̂)T ν(x̂)

))
dx̂ .

(4.17)

Theorem 4.1. The volume based shape gradient formula for the energy functional in eq. (2.5), with
the variational constraint in eq. (4.3) is given as:

=
1

2

∫
Ω0

(
|∇̂u(x̂)|2∇̂·ν(x̂)+2

(
∇̂u(x̂)

)
·
(
−∇̂ν(x̂)∇̂u(x̂)+∇̂ν(x̂)∇̂f(x̂)+∇̂∇̂f(x̂)T ν(x̂)

))
dx̂ . (4.18)

4.2 Boundary Formula Using variational formulation for the Laplacian

For this derivation, we will use a variational formulation where the spaces are independent of Ω [8, Ch1. 2,
eq. 2.14]. For the Dirichlet problem, we seek u ∈ H1(D), µ ∈ H(div 0, D):∫

Ω

∇u · ∇v dx+

∫
∂Ω

v µ · n dS = 0, ∀v ∈ H1(D),∫
∂Ω

u λ · n dS =

∫
∂Ω

g λ · n dS, ∀µ ∈ H(div 0, D) .
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The variational formulation above can be written as:

a(Ω, (u, µ), (v, λ)) = l(Ω, (v, λ)),

a(Ω, (u, µ), (v, λ)) :=

∫
Ω

∇u · ∇v dx+

∫
∂Ω

v µ · n dS +

∫
∂Ω

u λ · n dS,

l(Ω, (v, λ)) :=

∫
∂Ω

g λ · n dS .

(4.19)

The energy functional is given as:

J(Ω, u) =
1

2

∫
Ω

|∇u|2dx =
1

2
a(Ω, (u, 0), (u, 0)) . (4.20)

Now we define the Lagrangian as follows:

L(Ω, (u, µ), (v, λ)) := J(Ω, u) + a(Ω, (u, µ), (v, λ))− l(Ω, (v, λ))

= a(Ω, (u, 0), (u, 0) + a(Ω, (u, µ), (v, λ))− l(Ω, (v, λ)) .
(4.21)

When u = u(Ω) and µ = µ(Ω):

a(Ω, (u(Ω), µ(Ω)), (v, λ))− l(Ω, (v, λ)) = 0

=⇒ L(Ω, (u(Ω), µ(Ω)), (v, λ)) = J(Ω, u(Ω)) = J (Ω) .
(4.22)

The shape gradient is given as:

<
dJ (Ω)

dΩ
; ν >=<

∂L(Ω, (u(Ω), µ(Ω)), (p,Π))

∂Ω
; ν > . (4.23)

p and Π are the solutions of the adjoint problem which is given as:

<
∂L(Ω, X(Ω), (p,Π))

∂X
; η >= 0, ∀η ∈ H1(D)×H(div 0, D)

=⇒ <
∂J(Ω, u(Ω))

∂u
; v > + <

∂a(Ω, X(Ω), (p,Π))

∂X
; η >= 0 .

In the equations above X := (u, µ) and η := (v, λ). On simplifying we get:

a(Ω, (v, λ), (p,Π)) = −
∫

Ω

∇u(Ω) · ∇v dx∫
Ω

∇p · ∇v dx+

∫
∂Ω

v Π · n dS +

∫
∂Ω

p λ · n dS = −
∫

Ω

∇u(Ω) · ∇v dx

= −
∫
∂Ω

∇u(Ω) · n v dS .

The last step in the equation above uses the Green’s identity. We can solve for p and Π:∫
∂Ω

p λ · n dS = 0 ∀λ =⇒ p = 0,∫
∂Ω

v Π · n dS = −
∫
∂Ω

∇u(Ω) · n v dS =⇒ Π = − ∇u(Ω) .

Now we calculate the partial derivative of the Lagrangian with respect to Ω to get the shape gradient. For
that, we use this simple identity for shape gradient of an integral with the integrand independent of the
shape [1, Ch. 9, Thm 4.1]:

I(Ω) =

∫
Ω

f(x) dx,

<
dI(Ω)

dΩ
; ν > =

∫
∂Ω

f(x) ν(x) · n(x) dS .

(4.24)
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Using the definition of the Lagrangian we get:

<
∂L(Ω, (u(Ω), µ(Ω)), (p,Π))

∂Ω
; ν >=

<
∂J(Ω, u(Ω))

∂Ω
; ν > + <

∂a(Ω, (u(Ω), µ(Ω)), (p,Π))

∂Ω
; ν > − < ∂l(Ω, (p,Π))

∂Ω
; ν > .

(4.25)

Now we calculate the shape gradient for individual terms. For J , we directly get:

<
∂J(Ω, u(Ω))

∂Ω
; ν >=

1

2

∫
∂Ω

|∇u(Ω)|2ν · n dS . (4.26)

For a we calculate it as follows:

a(Ω, (u(Ω), µ(Ω)), (0,−∇u(Ω))) = −
∫
∂Ω

u(Ω)∇u(Ω) · n dS

= −
∫

Ω

∇ · (u(Ω)∇u(Ω))dx (Divergence Theorem)

= −
∫

Ω

|∇u(Ω)|2dx, ∇ · ∇u(Ω) = 0

=⇒ <
∂a(Ω, (u(Ω), µ(Ω)), (p,Π))

∂Ω
; ν > = −

∫
∂Ω

|∇u(Ω)|2ν · n dS .

(4.27)

For l we calculate it as follows:

l(Ω, (0,−∇u(Ω))) = −
∫
∂Ω

g ∇u(Ω) · n dS = −
∫

Ω

∇g · ∇u(Ω) dx

=⇒ <
∂l(Ω, (p,Π))

∂Ω
; ν > = −

∫
∂Ω

∇g · ∇u(Ω) ν · n dx .
(4.28)

Adding the individual terms, we get the final shape gradient:

=
1

2

∫
∂Ω

|∇u(Ω)|2ν · n dS −
∫
∂Ω

|∇u(Ω)|2ν · n dS +

∫
∂Ω

∇g · ∇u(Ω) ν · n dx

=
1

2

∫
∂Ω

(∇g −∇u(Ω)) · ∇u(Ω)ν · n dS +
1

2

∫
∂Ω

∇g · ∇u(Ω) ν · n dx .
(4.29)

Note that g = ∇u on the boundary ∂Ω so ∇g − ∇u is entirely in the normal direction. Thus the formula
above becomes:

Theorem 4.2. The boundary based shape gradient formula for the energy functional in eq. (2.5),
with the variational constraint in eq. (4.3) is given as:

=
1

2

∫
∂Ω

(
(∇g −∇u(Ω)) · n)

(
∇u(Ω) · n) ν · n dS +

1

2

∫
∂Ω

∇g · ∇u(Ω) ν · n dx .

4.3 Boundary Formula Using Mixed Variational Formulation

In this section we try to derive the boundary formula, as in the previous sub-section, but using the mixed
variational formulation for the Dirichlet BVP [6, Sec. 6]. We seek u ∈ L2(D) and ~q ∈ H(div;D) such that:∫

Ω

~q · ~p dx+

∫
Ω

u ∇ · ~p dx =

∫
∂Ω

g ~p · n dx, ∀~p ∈ H(div;D), ~q := ∇u,∫
Ω

∇ · ~q v dx = 0, ∀v ∈ L2(D) .

(4.30)
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The variational formulation above can be written as:

a(Ω, (u, ~q), (v, ~p)) = l(Ω, (v, ~p)),

a(Ω, (u, ~q), (v, ~p)) :=

∫
Ω

~q · ~p dx+

∫
Ω

u ∇ · ~p dx+

∫
Ω

∇ · ~q v dx .

l(Ω, (v, ~p)) :=

∫
∂Ω

g ~p · n dx .

(4.31)

The energy functional is given as:

J(Ω, ~q) =
1

2

∫
Ω

|~q|2dx . (4.32)

The Lagrangian is defined as:

L(Ω, (u, ~q), (v, ~p)) := J(Ω, ~q) + a(Ω, (u, ~q), (v, ~p))− l(Ω, (v, ~p)) . (4.33)

Putting in the state solution (u(Ω), ~q(Ω)), we get:

L(Ω, (u(Ω), ~q(Ω)), (v, ~p)) = J(Ω, ~q(Ω)) = J (Ω) . (4.34)

The shape gradient is given as:

<
dJ (Ω)

dΩ
; ν >=<

∂L(Ω, (u(Ω), ~q(Ω)), (w,~r))

∂Ω
; ν > . (4.35)

Where (w,~r) ∈ L2(D)×H(div;D) solve the adjoint problem:

<
∂L(Ω, X(Ω), (w,~r))

∂X
; η >= 0, ∀η ∈ L2(D)×H(div;D) .

=⇒ <
∂J(Ω, ~q(Ω))

∂~q
; ~p > + <

∂a(Ω, X(Ω), (w,~r))

∂X
; η >= 0,

(4.36)

where X := (u, ~q) and η := (v, ~p). Simplifying above expression we get:

a(Ω, (v, ~p), (w,~r)) = −
∫

Ω

~q(Ω) · ~p dx∫
Ω

~p · ~r dx+

∫
Ω

v ∇ · ~r dx+

∫
Ω

w ∇ · ~p dx = −
∫

Ω

~q(Ω) · ~p dx .
(4.37)

The adjoint solution (w,~r) can be found as:∫
Ω

v ∇ · ~r dx = 0 ∀v =⇒ ∇ · ~r = 0,∫
Ω

~p · ~r dx+

∫
Ω

w ∇ · ~p dx = −
∫

Ω

~q(Ω) · ~p dx =⇒ ~r = − ∇u(Ω), w = 0 .

(4.38)

We use the shape gradient formula for integrals from eq. (4.24). Using the definition of Lagrangian we get:

<
∂L(Ω, (u(Ω), ~q(Ω)), (w,~r))

∂Ω
; ν >=

<
∂J(Ω, ~q(Ω))

∂Ω
; ν > + <

∂a(Ω, (u(Ω), ~q(Ω)), (w,~r))

∂Ω
; ν > − < ∂l(Ω, (w,~r))

∂Ω
; ν > .

(4.39)

Now we calculate the shape gradients for individual terms. For J it is directly given as:

<
∂J(Ω, ~q(Ω))

∂Ω
; ν >=

1

2

∫
∂Ω

|~q(Ω)|2ν · n dS =
1

2

∫
∂Ω

|∇u(Ω)|2ν · n dS . (4.40)
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For a we calculate it as follows:

a(Ω, (u(Ω), ~q(Ω)), (0,− ∇u(Ω))) = −
∫

Ω

~q(Ω) · ∇u(Ω)dS

= −
∫

Ω

|∇u(Ω)|2dx

=⇒ <
∂a(Ω, (u(Ω), ~q(Ω)), (w,~r))

∂Ω
; ν > = −

∫
∂Ω

|∇u(Ω)|2ν · n dS .

(4.41)

For l we calculate it as follows:

l(Ω, (0,−∇u(Ω))) = −
∫
∂Ω

g ∇u(Ω) · n dS = −
∫

Ω

∇g · ∇u(Ω)dx

=⇒ <
∂l(Ω, (w,~r))

∂Ω
; ν > = −

∫
∂Ω

∇g · ∇u(Ω) ν · n dx .
(4.42)

Using the individual terms, we get the final shape gradient:

=
1

2

∫
∂Ω

|∇u(Ω)|2ν · n dS −
∫
∂Ω

|∇u(Ω)|2ν · n dS +

∫
∂Ω

∇g · ∇u(Ω) ν · n dx

=
1

2

∫
∂Ω

(∇g −∇u(Ω)) · ∇u(Ω) ν · n dS +
1

2

∫
∂Ω

∇g · ∇u(Ω) ν · n dx .
(4.43)

Note that the formula matches exactly with eq. (4.29)

4.4 Proof of equivalency of Volume and Boundary formulas

We start with the Volume formula :

1

2

∫
Ω

(
|∇u(x)|2∇ · ν(x) + 2

(
∇u(x)

)
·
(
−∇ν(x)∇u(x) +∇ν(x)∇f(x) +∇∇f(x)T ν(x)

))
dx .

This can be written as :

1

2

∫
Ω

(
∇ ·
(
|∇u(x)|2ν(x)

)
+ 2
(
∇u(x)

)
·
(
−∇ν(x)∇u(x) + ∇ν(x)∇f(x) +∇∇f(x)T ν(x) − ∇∇u(x)T ν(x)

))
dx . (4.44)

Since ∇∇u and ∇∇f are symmetric, the highlighted terms can be combined together to give:

1

2

∫
Ω

∇ ·
(
|∇u(x)|2ν(x)

)
+ 2
(
∇u(x)

)
·
(
−∇(ν(x) · ∇u(x)) + ∇(ν(x) · ∇f(x))

)
dx .

This can be further simplified by combining the two highlighted terms:

1

2

∫
Ω

∇ ·
(
|∇u(x)|2ν(x)

)
+ 2∇u(x) · ∇

(
ν(x) ·

(
∇f(x)−∇u(x)

))
dx .

Using the Divergence theorem for the first term and Green’s first formula for the second term, we get:

1

2

∫
∂Ω

|∇u(x)|2ν(x) · n(x) dS(x) +

∫
∂Ω

∇u(x) · n(x)
(
ν(x) ·

(
∇f(x)−∇u(x)

))
dS(x) .

On the boundary, we know that ∇f −∇u is in the normal direction. Using that we get:

1

2

∫
∂Ω

|∇u(x)|2ν(x) · n(x) dS(x) +

∫
∂Ω

∇u(x) · n(x)
(
∇f(x)−∇u(x)

)
· n(x) ν(x) · n(x)dS(x) .

Whis can be rewritten as:

1

2

∫
∂Ω

|∇u(x)|2ν(x) · n(x) dS(x) +

∫
∂Ω

∇u(x) ·
(
∇f(x)−∇u(x)

)
ν(x) · n(x)dS(x) .

This is the boundary formula from eq. (4.29) with f = g
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5 Numerical Experiments

The shape gradient formula was implemented using the 2D-ParametricBEM framework in C++ [9]. For
evaluating both the state and adjoint solutions, and the shape gradient formulas, lowest order BEM spaces
are used. Meshes used are parametric in nature (like the domains) and are uniformly spaced in the parameter
domain for the parametrization. In case of annular domains where we have two different parametrizations for
the two boundaries, mesh is generated by splitting the two boundaries independently with uniform spacing
in the parameter domain for both. 1

5.1 Validation of BEM shape gradient formula

For validation of the BEM shape gradient formula we restrict ourselves to smooth domains.

5.1.1 Model Problem 1

Figure 2: Annular domain with concentric circles

The first problem for validation is a simple annular domain with two circles as the boundaries as shown
in fig. 2. The potential u is known beforehand and equal to x + y and g = u. Two choices for the velocity
field ν are considered:

ν1([x, y]) := [x, y],

ν2([x, y]) := [x/
√
x2 + y2, y/

√
x2 + y2] .

(5.1)

For both these choices of velocity fields, we can analytically compute the boundary formula as follows:

u = x+ y =⇒ ∇u = [1, 1] =⇒ ||∇u||2 = 2 . (5.2)

Since we are dealing with circles, we can rewrite the velocity fields in polar coordinates:

ν1([r cos(θ), r sin(θ)]) = [r cos(θ), r sin(θ)],

ν2([r cos(θ), r sin(θ)]) = [cos(θ), sin(θ)] .
(5.3)

1Complete code can be found at https://gitlab.ethz.ch/ppanchal/fcsc.git
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Figure 3: Absolute error plots for model problem 1

The normal vector for the outer circle is [cos(θ), sin(θ)] and for the inner circle is [− cos(θ),− sin(θ)]. For
u = g, the boundary formula becomes:

=
1

2

∫
Γ0

||∇u||2 ν(x̂).n̂(x̂) dΓ0(x̂)

= ro

∫ 2π

θ=0

ro dθ − ri
∫ 2π

θ=0

ri dθ = 2π(r2
o − r2

i ); ν = ν1

= ro

∫ 2π

θ=0

dθ − ri
∫ 2π

θ=0

dθ = 2π(ro − ri); ν = ν2 .

(5.4)

The absolute errors are plotted in figures 3a and 3b for both the boundary and BEM formula. As seen for
both velocity fields, both BEM and boundary formulas show algebraic convergence with asymptotic slopes
given in the table below:

Velocity ν1 ν2

BEM -2.039 -2.039
Boundary -1.997 -1.997

5.1.2 Model Problem 2

We consider an annular domain with two circles as shown in figure 4
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Figure 4: Annular domain with non concentric circles

The potential is known beforehand and is equal to u([x, y]) = log(
√
x2 + y2). Two choices for the velocity

field ν are considered at the inner circle:

ν1([x, y]) := [x, 0],

ν2([x, y]) := [1, 0] .
(5.5)

At the outer circle, the velocity field is zero for both the choices and the choice of u makes the inner circle
an equipotential surface. We can use g = u = log(

√
x2 + y2) or we can use the following function g:

g =

{
log(R) Inner circle

log(
√
x2 + y2) Outer circle

It is easy to calculate the integrals in the boundary formula for both choices of g. We show it for the latter
case (u 6= g). Since the velocity field is zero on the outer circle and g is constant on the inner circle (∇g = 0),
we can simplify the boundary formula:

=
1

2

∫
∂Ω

(
(∇g −∇u(Ω)) · n)

(
∇u(Ω) · n) ν · n dS +

1

2

∫
∂Ω

∇g · ∇u(Ω) ν · n dx

=
1

2

∫
inner circle

(
(∇g −∇u(Ω)) · n)

(
∇u(Ω) · n) ν · n dS +

1

2

∫
inner circle

∇g · ∇u(Ω) ν · n dx

= −1

2

∫
inner circle

(∇u(x̂) · n̂(x̂))2 ν(x̂).n̂(x̂) dΓ0(x̂) .

(5.6)

For both these choices of velocity fields, we can analytically compute the formula above. Due to the presence
of x2 + y2 in the potential, we switch to polar coordinates:

∇u =
∂u

∂r
r̂ +

∂u

r∂θ
θ̂, u([r cos(θ), r sin(θ)]) = log(r)

=⇒ ∇u · n̂ = −1

r
, n̂ = −r̂ On the inner circle.

(5.7)
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The boundary formula gives:

= −1

2

∫
inner circle

||∇u(x̂) · n̂(x̂)||2 ν(x̂).n̂(x̂) dΓ0(x̂)

=
1

2

∫ 2π

θ=0

1

r2
i

ν([ri cos(θ), ri sin(θ)]).(cos(θ)̂i+ sin(θ)ĵ) ri dθ

=
1

2ri

∫ 2π

θ=0

ν([ri cos(θ), ri sin(θ)]).(cos(θ)̂i+ sin(θ)ĵ) dθ

=
1

2

∫ 2π

θ=0

cos(θ)2 dθ =
π

2
, ν = ν1,

=
1

2ri

∫ 2π

θ=0

cos(θ) dθ = 0, ν = ν2 .

(5.8)

Using the values calculated above, we plot the absolute errors for the BEM and boundary formulas. We
see the same asymptotic convergence rates as seen in fig. 5a and 5b.
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Figure 5: Absolute error plots for model problem 2 with u 6= g, ∇g = 0 on inner circle

The above computations can be done using u = g where for ν1 and ν2 we get −π2 and 0 respectively.
Figures 6a and 6b show the absolute error plots for both the velocity fields. In this case the boundary
formula shows a better convergence rate than the BEM formula which gives the same asymptotic rate of
convergence as the ∇u · n formula. This indicates some simplification that happens when u = g.

Note: We can compare with the ∇u · n formula in this example because as seen in the previous case
with u 6= g, we get the same absolute values for the shape gradient.
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Figure 6: Absolute error plots for model problem 2 with u = g

The asymptotic slopes for the plots are summarized in the following table:

Velocity, B.C. ν1, u 6= g ν2, u 6= g ν1, u = g ν2, u = g
BEM -1.970 -1.973 -1.949 -1.976

Boundary -1.974 -1.982 -3.918 -3.884
∇u · n N.A. N.A. -1.966 -1.954

5.1.3 Model Problem 3

Comparing the BEM and Boundary formula from eq. (2.60) and (4.29) respectively, we see that the deriva-
tives of the velocity field ν appear only in the BEM formula. If the formulas are equivalent, a change in
only the derivatives of the velocity field at the boundary should not change the shape gradient value. This
model problem is designed to specifically test that. We have the same annular domain shown in fig. 2. The
potential u is given as u = x+ y and we have g = u. We modify the velocity fields used in model problem 1
as follows:

ν1([x, y]) =

{
[x+ x2 + y2 − r2

i , y + x2 + y2 − r2
i ] Inner circle

[x+ x2 + y2 − r2
o, y + x2 + y2 − r2

o] Outer circle
(5.9)

ν2([x, y]) =

{
[x/
√
x2 + y2 + x2 + y2 − r2

i , y/
√
x2 + y2 + x2 + y2 − r2

i ] Inner circle

[x/
√
x2 + y2 + x2 + y2 − r2

o, y/
√
x2 + y2 + x2 + y2 − r2

o] Outer circle
(5.10)

Notice that the velocity fields give the same pointwise values at the boundary but have different gradients at
the boundary. Using these velocity fields does not change the value obtained using the Boundary formula,
calculated in model problem 1, using which we get the absolute error plots. We see in fig. 7a and 7b that
for both modified velocity fields, the BEM formula converges to the right value. This is numerical evidence
for the equivalence of the formulas, implying that the BEM formula can be converted to Hadamard form∫

Γ
...(ν · n)dS. The asymptotic slopes are summarized in the following table:

Velocity ν1 ν2

BEM -2.037 -2.042
Boundary -1.998 -1.997
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Figure 7: Convergence plots for model problem 3

5.2 Comparison of BEM and boundary formula

For testing the convergence rates, we look at the dual norm. Since the space C1(Rd;Rd) is infinite dimensional
and reflexive, we use two simplifications [8, Ch. 2, Sec. 2.3]:

First, we consider an operator norm over a finite dimensional space of vector fields of the form:

ν([x, y]) =
∑

1≤m1,m2,n1,n2≤M

λm1,n1

[
v(x, y,m1, n1)

0

]
+ λm2,n2

[
0

v(x, y,m2, n2)

]
. (5.11)

Second, we use H1(D) norm instead of C1(Rd;Rd) norm as it is more tractable computationally. The
basis for this finite dimensional space of vector fields is given as:

V = {v(x, y,m, n) ej : 1 ≤ m,n ≤M, j ∈ {1, 2}}, M ∈ N . (5.12)

We use two choices for the function v(x, y,m, n):

v(x, y,m, n) = sin(mx) sin(ny) or cos(mx) cos(ny) (Sine/Cosine), (5.13)

v(x, y,m, n) = xm−1yn−1 (Polynomial). (5.14)

For sinusoidal v(x, y,m, n) we can see that for M →∞ the basis defined in eq. (5.12) becomes a basis of the
space C1

0 (D;R2) and for a polynomial v(x, y,m, n), it becomes a basis of C1(R2;R2). The domain D is a
sufficiently large square such that its edges are integer multiples of 2π. D has to be large enough to contain
all domains Ω. The error is defined using dual norm:

errBEM = max
||ν||H1(D)=1

(dJ
dΩ

(Ω; ν)− dJ
dΩ

(Ω, h; ν)BEM
)
, (5.15)

errBdry = max
||ν||H1(D)=1

(dJ
dΩ

(Ω; ν)− dJ
dΩ

(Ω, h; ν)Bdry
)
. (5.16)

In the expression for error, the term on left is the exact shape gradient value and the one on the right is the
value computed at some refinement level h using the BEM formula or the Boundary formula (Bdry). On an
abstract level, we have the following maximization problem:

val = max
||ν||H1(D)=1

f(ν),
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which has an equivalent Lagrangian formulation given as:

val = max
ν∈C1(R2;R2)

min
α∈R

(
f(ν) + α (||ν||2H1(D) − 1)

)
.

α is the Lagrangian multiplier which appears along with the constraint term. We differentiate the Lagrangian
to find the stationary points. We assume that the functional f is linear in ν:

f(ν′) + 2 α < ν, ν′ >H1(D)= 0 ∀ν′ ∈ C1(R2;R2) .

Since we are only working with a finite dimensional space of vector fields V , we can write the above in
algebraic form:

f(ν′) + 2 α < ν, ν′ >H1(D) = 0 ∀ν′ ∈ V, ν ∈ V

=⇒ ~f + 2 α G~z = 0 .

In the algebraic form, ~f is the vector of the functional values for all basis elements from the space V , i.e.
~f = {f(νi) } where {νi} is the basis. G is the Gramian matrix for the finite dimensional set V with respect
to the H1(D) norm, given as Gi,j =< νi, νj >H1(D). ~z represents the coefficients of the solution ν of the
optimization problem with respect to the basis of V . Using the vector equation above we get ~z as:

~z = − 1

2α
G−1 ~f

Since ||ν||2 = 1 we get:

~zTG~z =
1

4α2
~fTG−1 ~f = 1

=⇒ α =
1

2

√
~fTG−1 ~f

=⇒ val = ~fT~z =

√
~fTG−1 ~f (5.17)

We define the column vectors ~f in our case as:

{dJ
dΩ

(Ω; νi)−
dJ
dΩ

(Ω, h; νi)
BEM}dim(V )

i=1

Knowing the Gramian Matrix G for the finite dimensional basis of velocity fields, with respect to the H1(D)
norm, we can compute the error at any refinement level using eq. (5.17). Here we do experiments on both
smooth (model problem 4 and 5) and non-smooth domains (model problem 6 onwards).

5.2.1 Model Problem 4

We have an annular domain made up of two squares as shown in the figure 8. The boundary conditions are
given as g = 0 on inner square and g = 1 on the outer square with ∇g = 0 on both boundaries. We plot the
dual norm error for both sinusoidal and polynomial velocity fields. Fig. 9 shows the results for a quadrature
order of 16 and fig. 10 shows them with order 32. Since analytical solution for this domain is not available,
the converged value is calculated using 8000 panels for order 16 and with 4000 panels for order 32. Since
the domain has piecewise linear boundary, the parametric mesh is equivalent to a linear mesh in this case.
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Figure 8: Annular domain with squares
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Figure 9: Dual norm error plots for annular square domain with quadrature order = 16

We see that for both choices of the velocity field and quadrature order, BEM formula shows a higher
convergence rate than the Boundary formula. This can be attributed in part to the presence of sharp
corners in the domain which introduce a singularity in the solution as discussed in the lecture document
for NUMPDE using harmonic corner singular functions [4, Ch. 5, Thm 5.4.6]. This is discussed further in
the next experiment. The asymptotic slopes (ignoring the initial transient behaviour) for all the plots are
summarized in the following table:

Velocity and order Poly. 16 Sin. 16 Poly. 32 Sin. 32
BEM -1.373 -1.188 -1.406 -1.231

Boundary -0.334 -0.335 -0.336 -0.347

It is also possible to find the total force on the body using shape gradient formulas when ∇g = 0. In
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Figure 10: Dual norm error plots for annular square domain with quadrature order = 32

such cases, the boundary shape gradient formula becomes:

−1

2

∫
∂Ω

(∇u · n)2 ν · n dS . (5.18)

By using constant velocity fields in the x and y directions, the shape gradient formula reduces to the x and
y force components:

ν = [1, 0] =⇒ −1

2

∫
∂Ω

(∇u · n)2 nx dS = Fx,

ν = [0, 1] =⇒ −1

2

∫
∂Ω

(∇u · n)2 ny dS = Fy,

(5.19)

where nx and ny are the x and y components of the unit normal field respectively. Information about the
convergence rates for the Fx and Fy is also contained in the dual norm error plots for the polynomial velocity
field as the polynomial velocity field basis contains the constant velocity fields used in eq. (5.19). Hence the
convergence rate for the total force is much better with the BEM formula in this example.

5.2.2 Model Problem 5

We have a simply connected domain with a re-entrant corner as shown in the figure 11. We know the
potential u beforehand:

u(r, φ) = r
2
3 sin(

2

3
φ)

The potential u is the harmonic corner singular function we talked about in the previous experiment,
plotted in fig. 12. For g, we use the same function as u in one case and g(r, φ) = r sin( 2

3φ) in the other.
The second choice of g gives the same boundary conditions and hence the same solution for the Neumann
Trace. But the two choices of g differ in one important aspect: smoothness. For g = u, we can verify that
||∇g|| → ∞ at the origin as seen in fig. 13, whereas it is well behaved for the other case. This singularity is
also present in the Neumann Trace but it can be verified that it is still in L2(∂Ω).
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Figure 11: Domain with re-entrant corner at the origin
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3φ)
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Figure 13: Surface plot for ||∇u||2 for u = r
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3 sin( 2

3φ)

Like in the previous experiment, we have a singularity in the Neumann Trace solution. In this experiment
we see that the smoothness of g is an important factor as well. The convergence rate for BEM formula is
better than the Boundary formula only when we have a smooth g, which is confirmed by both polynomial and
cosine velocity fields as seen in fig. 14. They have same asymptotic convergence rates when g is not smooth.
The same results are obtained for a higher quadrature order, shown in fig. 15. In contrast, performance of
the Boundary formula seems unaffected by the improvement in smoothness of g. This experiment reveals two
conditions where BEM formula is better than the Boundary formula: a singularity in the Neumann Trace
solution because of sharp corners in the domain and a smooth g. The experiment also provides evidence for
the problems with the Boundary formula or the total force formula obtained from Maxwell Stress Tensor:
It is doomed when we have a singularity in the Neumann Trace (even when it is in L2). Note that in the
previous experiment ∇g was zero and the BEM formula was much better, which agrees with the observations
in this experiment.

Note: The converged values for the shape gradient are computed in Mathematica using the ”Local-
Adaptive” quadrature method as the solution has a singularity.

43



101 102
Numpanels

10−5

10−4

10−3

10−2

Er
ro
r

Bdry, g= r23sin(23ϕ)
BEM, g= r23sin(23ϕ)
Bdry, g= rsin(23ϕ)
BEM, g= rsin(23ϕ)

(a) Polynomial field

101 102
Numpanels

10−4

10−3

10−2

Er
ro
r

Bdry, g= r23sin(23ϕ)
BEM, g= r23sin(23ϕ)
Bdry, g= rsin(23ϕ)
BEM, g= rsin(23ϕ)

(b) Cosine field

Figure 14: Dual norm error plots for pacman domain with quadrature order = 16
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Figure 15: Dual norm error plots for pacman domain with quadrature order = 32
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Figure 16: Dual norm error plots for pacman domain, sinusoidal velocity field and quadrature order = 16

The asymptotic slopes for fig. 14 and 15 (ignoring the initial transient behaviour) are summarized in the
following tables:

Velocity, g Poly., smooth Poly., non-smooth Cos., smooth Cos., non-smooth
BEM, 16 -1.655 -0.343 -2.179 -0.347

Boundary, 16 -0.355 -0.335 -0.351 -0.332
BEM, 32 -1.655 -0.344 -2.120 -0.346

Boundary, 32 -0.355 -0.335 -0.350 -0.332

Using a sinusoidal velocity field instead of cosine reveals something interesting. As seen in fig. 16, the
sinusoidal velocity field dramatically improves the convergence rate of the BEM formula for a non smooth g
and also improves the convergence rate of the Boundary formula for both smooth and non smooth g. This
is because a sinusoidal velocity field masks the singularity of the solution at the origin. This is evidence
for the claim that the singularity of the solution is in part responsible for the trends observed earlier. The
asymptotic slopes for fig. 16 (ignoring the initial transient behaviour) are summarized in the following table:

g smooth non-smooth
BEM -1.947 -1.981

Boundary -1.852 -1.980

We perform another experiment with g = r
3
4 sin( 2

3φ) which does not change the boundary conditions
or the Neumann trace. The idea is to make g 6= u while still keeping ||∇g|| → ∞ at the origin and the
same Neumann Trace solution. As seen with a non smooth g earlier, the BEM formula doesn’t offer a good
convergence rate, which is what we observe here as seen in fig. 17. But here we see that BEM formula is
the only one that converges with asymptotic slope equal to -0.427 and -0.451 for polynomial and cosine field
respectively. This again indicates towards some simplifications in the Boundary formula when u = g as it
was able to converge with a similar asymptotic rate in that case but fails to do so in this case where u 6= g.
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Figure 17: Convergence plots for pacman domain with g = r
3
4 sin( 2

3φ) and quadrature order = 16

5.2.3 Model Problem 6

We have an annular domain with two concentric circles as shown in figure 2. We have the following Dirichlet
boundary conditions:

g =

{
0 Outer boundary
1

2
(1 + cos(2φ) + 2 sin(φ)) Inner boundary

For the annular circle case we know the analytic solution whose general form is :

u(r, φ) = a0 + b0 log(r) +
∑
i=1

(ai r
i + bi r

−i) cos(iφ) + (ci r
i + di r

−i) sin(iφ) .

We can easily find the solution using the boundary conditions. It is very smooth as shown in fig. 18
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Figure 18: Solution for model problem 6
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We plot the dual norm errors for both sinusoidal and polynomial velocity fields, using a quadrature order
of 16 and 32. The results are shown in figures 19 and 20. The results indicate a similar asymptotic convergence
rate. This indicates that the two formulas are equivalent assuming sufficient smoothness everywhere. Also
notice u 6= g in this experiment and BEM formula stays ahead by a small factor in all the cases.
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Figure 19: Convergence plots for different velocity fields with quadrature order = 16 and parametric mesh
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Figure 20: Convergence plots for different velocity fields with quadrature order = 32 and parametric mesh

The asymptotic slopes (ignoring the initial transient behaviour) are summarized in the following tables:

Velocity Trigonomertic Polynomial
BEM, 16 -2.041 (Sin) -2.042

Boundary, 16 -2.005 (Sin) -1.976
BEM, 32 -2.042 (Cos) -2.047

Boundary, 32 -2.012 (Cos) -1.973
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5.2.4 Model Problem 7

We consider the domain from fig. 4. We have u = log(r) and two choices for g. One of them is simply g = u
and in the other one, we add artifical gradients to g at the boundary as follows:

g =

{
log(R) Inner circle
log(r) + (x− 2R)2 + y2 − 16R2 Outer circle

We are interested in seeing the effect of g = u on the convergence of the shape gradient formulas when
the Neumann Trace is smooth. We plot the dual norm errors for both cosine and polynomial velocity fields,
using quadrature order = 16. The results are shown in fig. 21.
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Figure 21: Convergence plots for different velocity fields

We see that u = g does offer some advantage to the boundary formula in the smooth case as seen in
another experiment earlier. But the advantage is just a small constant factor with the asymptotic convergence
rates being similar as seen in the table below:

Velocity, B.C. Poly., u = g Poly., u 6= g Sin., u = g Sin., u 6= g
BEM -1.998 -1.993 -1.992 -1.988

Boundary -2.009 -1.993 -2.007 -1.987

5.2.5 Model Problem 8

We consider the annular domain from fig. 22 with two fourier kites given as:

γi(t) = [0.5− 0.8 cos(φ)− 0.3 cos(2φ), 0.5 + sin(φ)]

γo(t) = [3.5 cos(φ) + 1.625 cos(2φ), 3.5 sin(φ)]

We have u = g = log(r). We plot the dual norm errors for quadrature order 16, considering both polynomial
and cosine velocity fields.

48



0

0

Figure 22: Annular domain with two Fourier kites
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Figure 23: Convergence plots for different velocity fields

We see very similar asymptotic slopes summarized in the following table:

Velocity Sin Polynomial
BEM -2.197 -2.172

Boundary -1.711 -1.969

6 Conclusion and Outlook

The numerical experiments suggest that the BEM and boundary formulas have similar asymptotic conver-
gence rates when the Neumann Trace of the Dirichlet BVP is smooth, although some slight differences of
constant factors are present which may depend on whether g and u are equal or not. When the Neumann
Trace is not smooth, as in domains with sharp corners, the regularity of the function g is the decisive factor:
If g is smooth, the BEM formula has a much better convergence rate. This superiority of the BEM formula
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disappears when regularity for g is lowered and its asymptotic rate of convergence matches the boundary
formula. These trends can be explained by looking at the formulas. The BEM formula is continuous on
the energy trace space H−

1
2 (Γ) in contrast to the boundary formula which is unbounded on H−

1
2 (Γ): If

the Neumann Trace Ψ contains a singularity, the Boundary formula is destined to suffer whereas the BEM
formula can still survive because of duality arguments, provided that g has sufficient regularity. With these
results we can conclude that the new BEM formula would undoubtedly be better in case of conductors with
sharp corners. The singularity in the solution because of sharp corners and ∇g = 0 provide the perfect
conditions for the BEM formula to shine. It could also prove be better in other physical cases where the
function g is usually smooth.

What remains to be done is finding a link between the shape gradient formula and the Maxwell stress
tensor force formula for a general case (∇g 6= 0). In the case of conductors (∇g = 0) the shape gradient
reduces to a very similar form but the link between them for a general case is obscure. The proof of
equivalency of the two formulas is still an open problem but the numerical experiments suggest that they are
equivalent, thus it should be possible. Other interesting directions include formulating the Dirichlet BVP
in different ways and finding the shape gradient formulas using those constraints, for example a floating
potential problem or Maxwell eddy current problem.
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A Incomplete proof of equivalency of BEM and Boundary formu-
las

Here I present some ideas which might be helpful while trying to prove the equivalency of the BEM and
Boundary formulas on a smooth level. I should warn the reader that there may be some mistakes in the
procedure. The general shape gradient formula from eq. (2.60), c here is just 1

2 :

c

∫
Γ0

Ψ0(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

}
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)κ(x̂, ŷ) · n̂(ŷ) + g(ŷ) ∇yG(x̂, ŷ) ·

(
A(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

(A.1)

Using the expression for matrix A from eq. (2.36) and the expression for κ(x̂, ŷ), given as:

κ(x̂, ŷ) = ∇x∇yG(x̂, ŷ)T ν(x̂) +∇y∇yG(x̂, ŷ)T ν(ŷ) (A.2)

We get the shape gradient as:

c

∫
Γ0

Ψ0(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) +∇yG(x̂, ŷ) · ν(ŷ)

}
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇x∇yG(x̂, ŷ)T ν(x̂) +∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

+g(ŷ) ∇yG(x̂, ŷ) ·
((
∇ · ν(ŷ) I −∇ν(ŷ)

)
n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)(
∇g(ŷ) · ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

(A.3)

Simplifying, we get:

c

∫
Γ0

Ψ0(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
{
∇xG(x̂, ŷ) · ν(x̂) + ∇yG(x̂, ŷ) · ν(ŷ)

}
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇x∇yG(x̂, ŷ)T ν(x̂) +∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

−g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)(∇g(x̂) · ν(x̂)) dΓ0(x̂)

(A.4)
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The terms highlighted in red above can be written as:

c

∫
Γ0

Ψ0(x̂)
(
∇ · (g(x̂)ν(x̂))− g(x̂)∇ · ν(x̂)

)
dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)
(
∇y · (G(x̂, ŷ)ν(ŷ))−G(x̂, ŷ)∇ · ν(ŷ)

)
p(x̂)dΓ0(x̂)dΓ0(ŷ)

= c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇y · (G(x̂, ŷ)ν(ŷ))p(x̂)dΓ0(x̂)dΓ0(ŷ)− aV (p,Ψ0∇ · ν)− J(Ψ0∇ · ν)

= c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇y · (G(x̂, ŷ)ν(ŷ))p(x̂)dΓ0(x̂)dΓ0(ŷ)

(A.5)

We have the following identity :(
∇x∇yG(x̂, ŷ)T ν(x̂)

)
· n̂(ŷ) = n̂(ŷ)T ∇x∇yG(x̂, ŷ)T ν(x̂) =

(
∇x∇yG(x̂, ŷ) n̂(ŷ)

)
· ν(x̂) (A.6)

∇x
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
= ∇x∇yG(x̂, ŷ) n̂(ŷ) +∇xn̂(ŷ) ∇yG(x̂, ŷ) = ∇x∇yG(x̂, ŷ) n̂(ŷ) (A.7)

=⇒ ∇x ·
(
∇yG(x̂, ŷ) · n̂(ŷ) ν(x̂)

)
= ∇x

(
∇yG(x̂, ŷ) · n̂(ŷ)

)
· ν(x̂) +∇yG(x̂, ŷ) · n̂(ŷ) ∇ · ν(x̂) (A.8)

=
(
∇x∇yG(x̂, ŷ) n̂(ŷ)

)
· ν(x̂) +∇yG(x̂, ŷ) · n̂(ŷ) ∇ · ν(x̂) (A.9)

The terms highlighted in yellow : ∫
Γ0

∫
Γ0

Ψ0(ŷ)∇xG(x̂, ŷ) · ν(x̂)p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)
(
∇x∇yG(x̂, ŷ)T ν(x̂)

)
· n̂(ŷ)dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)(∇g(x̂) · ν(x̂))dΓ0(x̂)

=

∫
Γ0

∫
Γ0

Ψ0(ŷ)
(
∇x ·

(
G(x̂, ŷ)ν(x̂)

)
−G(x̂, ŷ)∇ · ν(x̂)

)
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)
(
∇x ·

(
∇yG(x̂, ŷ) · n̂(ŷ)ν(x̂)

)
−∇yG(x̂, ŷ) · n̂(ŷ)∇ · ν(x̂)

)
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)
(
∇ ·
(
g(x̂)ν(x̂)

)
− g(x̂)∇ · ν(x̂)

)
dΓ0(x̂)

=

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇x ·
(
G(x̂, ŷ)ν(x̂)

)
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)∇x ·
(
∇yG(x̂, ŷ) · n̂(ŷ)ν(x̂)

)
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)− aV (Ψ0, p∇ · ν) + aK(p∇ · ν) +

1

2
l(p∇ · ν)

=

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇x ·
(
G(x̂, ŷ)ν(x̂)

)
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)∇x ·
(
∇yG(x̂, ŷ) · n̂(ŷ)ν(x̂)

)
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

(A.10)
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Using the simplifications above, the shape gradient formula becomes:

c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇y · (G(x̂, ŷ)ν(ŷ))p(x̂)dΓ0(x̂)dΓ0(ŷ)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇x ·
(
G(x̂, ŷ)ν(x̂)

)
p(x̂)dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)∇x ·
(
∇yG(x̂, ŷ) · n̂(ŷ)ν(x̂)

)
dΓ0(x̂)dΓ0(ŷ)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

−g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

(A.11)

The terms underlined in red above can be rearranged as follows:∫
Γ0

∇x ·
( ∫

Γ0

G(x̂, ŷ)Ψ0(ŷ)dΓ0(ŷ)ν(x̂)
)
p(x̂)dΓ0(x̂)

−
∫

Γ0

p(x̂)∇x ·
( ∫

Γ0

∇yG(x̂, ŷ) · n̂(ŷ)g(ŷ)dΓ0(ŷ)ν(x̂)
)
dΓ0(x̂)

=

∫
Γ0

∇x ·
(
ΨSL(Ψ0)(x̂)ν(x̂)

)
p(x̂)dΓ0(x̂)

−
∫

Γ0

p(x̂)∇x ·
(
ΨDL(g)(x̂)ν(x̂)

)
dΓ0(x̂)

=

∫
Γ0

∇ ·
((

ΨSL(Ψ0)(x̂)−ΨDL(g)(x̂)
)
ν(x̂)

)
p(x̂)dΓ0(x̂)

(A.12)

Thus the shape gradient formula reduces to:

c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇y · (G(x̂, ŷ)ν(ŷ))p(x̂)dΓ0(x̂)dΓ0(ŷ)

+

∫
Γ0

∇ ·
((

ΨSL(Ψ0)(x̂)−ΨDL(g)(x̂)
)
ν(x̂)

)
p(x̂)dΓ0(x̂)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

−g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

(A.13)
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We look closely at the adjoint equation:

aV (p, v) + J(v) = 0 ∀v ∈ H− 1
2 (Ω)

→
∫

Γ0

∫
Γ0

v(ŷ)G(x̂, ŷ)p(x̂)dΓ0(x̂)dΓ0(ŷ) = −c
∫

Γ0

v(x̂)g(x̂)dΓ0(x̂)

→
∫

Γ0

∫
Γ0

v(ŷ)G(x̂, ŷ)p(x̂)dΓ0(x̂)dΓ0(ŷ) =

∫
Γ0

v(x̂)g′(x̂)dΓ0(x̂), g′ = −c g

(A.14)

We look at the indirect first kind BEM formulation for the following Dirichlet problem:

∆u′ = 0 in Ω, u′ = g′ on ∂Ω

Trying u′ = ΨSL(f) =⇒ V (f) = g′

=⇒
∫

Γ0

∫
Γ0

v(ŷ)G(x̂, ŷ)f(x̂)dΓ0(x̂)dΓ0(ŷ) =

∫
Γ0

v(x̂)g′(x̂)dΓ0(x̂) ∀v ∈ H− 1
2 (Ω)

(A.15)

The adjoint equation is exactly same as the indirect first kind variational formulation with p = f . We
also know that u′(x) = −c u(x):

−c u(x̂) =

∫
Γ0

G(x̂, ŷ)p(ŷ)dΓ0(ŷ), x ∈ Ω

=⇒ u(x̂) = −1

c

∫
Γ0

G(x̂, ŷ)p(ŷ)dΓ0(ŷ)

(A.16)

Using these identities, we get:

c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂)) dΓ0(x̂)

+

∫
Γ0

∫
Γ0

Ψ0(ŷ)∇y · (G(x̂, ŷ)ν(ŷ))p(x̂)dΓ0(x̂)dΓ0(ŷ)

+

∫
Γ0

∇ ·
((

ΨSL(Ψ0)(x̂)−ΨDL(g)(x̂)
)
ν(x̂)

)
p(x̂)dΓ0(x̂)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

−g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)}
dΓ0(x̂)dΓ0(ŷ)

(A.17)

The terms in red can be written as:

c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

Ψ0(ŷ)∇y · (
∫

Γ0

G(x̂, ŷ)p(x̂)dΓ0(x̂)ν(ŷ))dΓ0(ŷ)

= c

∫
Γ0

Ψ0(x̂)∇ · (g(x̂)ν(x̂))dΓ0(x̂)

+

∫
Γ0

Ψ0(ŷ)∇y · (−c u(ŷ)ν(ŷ))dΓ0(ŷ)

= c

∫
Γ0

Ψ0(x̂)∇ ·
(
(g(x̂)− u(x̂))ν(x̂)

)
dΓ0(x̂)

(A.18)
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We get :

c

∫
Γ0

Ψ0(x̂)∇ ·
(
(g(x̂)− u(x̂))ν(x̂)

)
dΓ0(x̂)

+

∫
Γ0

∇ ·
((

ΨSL(Ψ0)(x̂)−ΨDL(g)(x̂)
)
ν(x̂)

)
p(x̂)dΓ0(x̂)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

−
∫

Γ0

∫
Γ0

p(x̂)
{
g(ŷ)

(
∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)

− g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
+
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)}
dΓ0(x̂) dΓ0(ŷ)

(A.19)

The terms highlighted above:

−
∫

Γ0

∫
Γ0

p(x̂)g(ŷ)
(
∇y∇yG(x̂, ŷ)T ν(ŷ)

)
· n̂(ŷ)dΓ0(x̂)dΓ0(ŷ)

+

∫
Γ0

∫
Γ0

p(x̂)g(ŷ) ∇yG(x̂, ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(x̂)dΓ0(ŷ)

−
∫

Γ0

∫
Γ0

p(x̂)
(
∇yG(x̂, ŷ) · n̂(ŷ)

)
∇ ·
(
g(ŷ) ν(ŷ)

)
dΓ0(x̂)dΓ0(ŷ)

= −
∫

Γ0

g(ŷ)
((
∇y∇y

∫
Γ0

G(x̂, ŷ)p(x̂)dΓ0(x̂)
)T
ν(ŷ)

)
· n̂(ŷ)dΓ0(ŷ)

+

∫
Γ0

g(ŷ) ∇y
∫

Γ0

p(x̂)G(x̂, ŷ)dΓ0(x̂) ·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(ŷ)

−
∫

Γ0

∇y
( ∫

Γ0

p(x̂)G(x̂, ŷ)dΓ0(x̂)
)
· n̂(ŷ)∇ ·

(
g(ŷ) ν(ŷ)

)
dΓ0(ŷ)

= c

∫
Γ0

g(ŷ)
(
∇∇u(ŷ)T ν(ŷ)

)
· n̂(ŷ)dΓ0(ŷ)

−c
∫

Γ0

g(ŷ) ∇u(ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(ŷ)

c

∫
Γ0

∇u(ŷ) · n̂(ŷ)∇ ·
(
g(ŷ) ν(ŷ)

)
dΓ0(ŷ)

(A.20)

The shape gradient formula becomes:

c

∫
Γ0

Ψ0(x̂)∇ ·
(
(g(x̂)− u(x̂))ν(x̂)

)
dΓ0(x̂)

+

∫
Γ0

∇ ·
((

ΨSL(Ψ0)(x̂)−ΨDL(g)(x̂)
)
ν(x̂)

)
p(x̂)dΓ0(x̂)

−1

2

∫
Γ0

p(x̂)∇ ·
(
g(x̂)ν(x̂)

)
dΓ0(x̂)

c

∫
Γ0

g(ŷ)
(
∇∇u(ŷ)T ν(ŷ)

)
· n̂(ŷ)dΓ0(ŷ)

−c
∫

Γ0

g(ŷ) ∇u(ŷ) ·
(
∇ν(ŷ)n̂(ŷ)

)
dΓ0(ŷ)

c

∫
Γ0

∇u(ŷ) · n̂(ŷ)∇ ·
(
g(ŷ) ν(ŷ)

)
dΓ0(ŷ)

(A.21)
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