ErFrFiCcIENT CONVOLUTION BASED
IMPEDANCE BOUNDARY CONDITIONS
MASTER’S THESIS

Author: Alberto David Maria Paganini
Supervisor: Prof. Dr. Ralf Hiptmair
ETHZ

August 17, 2011

Abstract

When formulating impedance boundary conditions in time domain,
the Dirichlet-to-Neumann map of the interior of a good conductor in-
volves convolutions. A. Schéidle, M. Lopéz-Fernandez and C. Lubich
have developed a fast and memory efficient algorithm based on Runge-
Kutta methods for computing convolutions when only the Laplace
transform of the kernel is known. In this work we discuss how to
couple the algorithm with BDF methods when the convolution is dif-
ferentiated and we study the coupling of fast convolution quadrature
with FEM for solving parabolic PDE with impedance boundary con-
ditions involving convolutions.

Contents

1

2

3

Introduction 4
Simple model problem 5
Runge-Kutta based convolution quadrature 9
3.1 Definitions 9
3.2 Derivation of the method 10
3.3 Summary ... 20
3.4 Numerical examples of a convolution 22
Fast and oblivious convolution quadrature (FCQ) 27
4.1 A contour integral representation for weight matrices 27
4.2 Approximation of the contour integral 28
4.3 Numerical example of the approximation of the contour integral 31
4.4 Fast convolution quadrature 32
4.5 Fast convolution quadrature for integral equation 35
4.6 Implementation of the FCQ 36
4.7 Numerical example of an integral equation 46
4.8 Fast convolution quadrature for integral equation with derivative 48
4.9 Numerical example of an integral equation with derivative . . 49
FEM - FCQ coupling 52
5.1 Discretization of exterior BVP 52
5.2 Implementation and complexity analysis 95
5.3 Numerical example of a parabolic PDE with Dirichlet and
impedance boundary conditions 58
Conclusion 67
Mathematical tools 68
A.1 The Laplace transform 68
A.2 The generating function 70
A.3 Matrix functional calculus 70
Codes 76
B.1 Convolution 76
B.2 Approximation of the contour integral 78
B.3 Integral equation 80
B.4 Integral equation with derivative. 86
B.5 Parabolic PDE with impedance boundary conditions 93

1 Introduction

Alternating electromagnetic fields decay exponentially when penetrating a
good conductor (skin effect). Therefore, a reasonable approximation of the
electromagnetic Dirichlet-to-Neumann map of the interior of a good conduc-
tor is provided by the impedance boundary conditions

1 ©
E,=-v2(1—1i),/—(H X 1
o= 5V2(=i [L (H xn), &
where w > 0 is a fixed angular frequency characterizing the temporal varia-
tion of all electromagnetic fields. The conductivity ¢ and permeability u are
known material parameters.

The relationship (1) is valid in the frequency domain only. However, of-
ten a sinusoidal temporal variation of the fields cannot be assumed, which
forces us to resort to time domain methods. When formulating impedance
boundary conditions in the time domain, we encounter temporal convolutions
of the form .
E,(x,t) = / k(p,o,7 —t)(H x n)(x,7)dr. (2)
to
In words, the boundary conditions become non-local in time. This renders
a straightforward discretization of (2) prohibitively expensive, if many time-
steps are to be carried out.

Instead of the eddy current problem we will consider a second-order parabolic
problem with a boundary condition involving convolution in time, in which
just the Laplace transform of the kernel is known. In order to approxi-
mate this kind of convolution we will discuss the algorithm developed by
A. Schédle, M. Lopéz-Ferndndez and C. Lubich [15] and see how it applies.
We will conclude with concrete numerical experiments based on the library
LehrFEM.

2 Simple model problem

The general Maxwell’s equation reads

V-D=p
VXH—%—?:Jf,
V.B=0,

0B __
VXE—FW—O,

where D is the electric displacement, H is the magnetic displacement, J¢ is
the free current density, B is the magnetic field and E is the electric field.
In our model we consider a good conductor with the form of an infinitely
long cylinder parallel to the z-axis, with a Lipschitz section parallel to the
xy-plane. The region inside the conductor is denoted as)y and the region
outside the conductor as §2 (see figure 1).

Figure 1: The regions €2 and €.

In order to derive the equations in €2y, it is assumed that the conductor is
isotropic and homogeneous. This implies that

B = uH,

where the positive constant p is the permeability and is a known material
parameter. As for the eddy current problem, a simplified version of the
Maxwell’s equation is considered by dropping the electric displacement D.
Furthermore the free current density in a conductor is given by Ohm’s law

J_f :UE,

where the positive constant ¢ is the conductivity of the conductor (and is,
in general, very large). Thus in ©y we reduce the Maxwell’s equations to

VX H-=0F, (3)
V><E+uaa—?:0

Substituting the first equation of (3) in the second one gives

H

The geometry of the region suggests the assumption of a z-symmetry of
the fields. It is also assumed that the electric field is transversal to the
conductor!, id est

E = (Ey(z,y,t), Ey(z,y,1),0)".
This implies that the magnetic displacement is of the form
H = (0,0, H,(z,y,1))".
Thus equation (4) becomes

H, .
uoaat —AH,=0 in Q. (5)

In order to derive the equation for H, in the outer region (which is assumed
to be empty), the electric displacement D is dropped from the Maxwell’s
equations and is added a source current density Js, which lies outside the
conductor, is parallel to the conductor section and constant in the z-direction.
Then we have

V X H=J,.

Taking the curl of the equation above gives

~AH,=f inQ, (6)

% — %i;. Setting ¢ = 1 and defining v = H, (in order to
simplify the notation) allows collecting equations (5) and (6) in the following

parabolic partial differential equation

where f :=

%(6u)—Au = f in QX]O;T],
{ uw = 0 inQx{t=0}, (7)

!This approach is similar to that of section 1 of [3]

6

with supp(f) C Q\ Qo and where

. Jo>>1 in €y CC €,
0 IHQ\QO

In general there’s an additional radiation condition on u at infinity, which
can be approximated by considering a large enough boundary of €2, denoted
0f), and by imposing a homogeneous Dirichlet boundary condition on it.

Our goal is to compute the solution u in Q\ €. This requires an addi-
tional boundary condition on 0€)y. Since o is assumed to be very large, an
impedance boundary condition provides a good approximation. In order to
derive it we consider a 1D-problem by restricting the dimension of equation
(7) and by moving to Laplace domain? (we assume that Re(s) > 0). By
adding a radiation condition (which approximates the skin effect), equation
(7) becomes

{ soL(u) — 0z L(u) = 0 for & >0, (8)

u() - 0 for & — oc.
A solution of (8) can be found with the Ansatz

L{u)(§) = ™.
With the decay condition at infinity we find
L(u)(§) = e V>
Differentiating £(u) one time gives
DL(u)(€) = —v/5TL(w)(€)
and thus, by taking the limit £ — 0, we obtain the relation
OcL(u)(0) = —/soL(u)(0). (9)

Due to its smoothness, the conductor boundary can be approximated as
locally flat. Applying relation (9) in each point with the ¢ direction given by
the normal motivates the following impedance boundary condition

VL(u) -n=—+/soL(u) on 0.

2£(u) denotes the Laplace transform of u, see definition 8 on page 68 for the definition
of the Laplace transform.

The square root is not Laplace invertible, thus in the time domain this bound-
ary condition is interpreted as
d t
Vu-n = — [k(t—r7)-u(r)dr,
dat J,
where L(k) = —\/g . Note that the inner integral is the convolution of the
kernel k£ and the function u. Then equation (7) becomes

—Au = f in Q\ Q0x]0;7T],
u = 0 in Q\ Q x {t =0},
u = 0 on 092x]0;T],

Vu-n = 4 fg k(t — 1) -u(T)dr on 094x]0;T].

The corresponding variational problem is
Vu-Vvda:—/ Vu-n-vdS = frvdx
2\ 9%

2\ Qo

for every v € H'(Q\ Q) with v = 0 on 99 and for every t €]0;T].

Substituting Vu - n in the variational form gives

Vu-Vvdx—/ d

o (a/o k(t—7)-u(r)dr)-vdS = f-vdx (10)

2\Qo 2\Qo

with v € H'(Q\ Qp),v =0 on 99 and for every ¢ €]0,T.

3 Runge-Kutta based convolution quadrature

In the variational formulation (10) we have to compute a convolution in which
only the Laplace transform of the kernel is known. In [12] C. Lubich and A.
Ostermann have developed a Runge-Kutta based convolution quadrature for
the approximation of this kind of convolution. In this chapter we recall the
derivation of the method and its convergence theorem.

3.1 Definitions

The following definitions set the frame of convolution quadrature. We follow
section 1 of [12].

Definition 1. Let h > 0 and

c| A
bT
be a Butcher tableau with A = (a;;)7_;, bT = (b1, -+ ,bm) andc = (cy, -+ ,)T

The related Runge-Kutta approximation yn41 at time t = (n+ 1) - h of the
solution y(t) of an initial value problem

y = f(t,y), y(0)=uyo,

is given by the following scheme

Y = yn+hZ;n:1 aijf(tn+cjhaynj> (Z: L. 7m)’
(11)
Ynt1 = yn+h23'n:1 bjf<tn+cjh’ynj)'

Definition 2 (Order p). We say that the Runge-Kutta method has order p
if the error of the method after one step satisfies

i —y(h) = O(h"*)
as h tend to 0 when f(t,y) is smooth enough.

Definition 3 (Stage order q). A Runge-Kutta method has stage order q if
the error of the internal stages is

Yoi — y(Cih) = O(hq+1) for i=1,---.m

as h tend to 0 (again f(t,y) must be smooth enough).

Lemma 1 (Formula 1.4 on page 107 of [12]). A Runge-Kutta method has
stage order q if and only if

m Ck
Zaijc;?’l:? fork=1,---q.
j=1

Definition 4 (Stability function). Let 1 := (1,--- ,1)T and I be the identity
matriz. The stability function of a Runge-Kutta scheme is defined by

R(z) := 1+ 2bT (I — 22)7'1. (12)
Definition 5 (A(f)-stability). A Runge-Kutta method is called A(6)— stable
if I — 22 is nonsingular in the sector |arg(—z)| < 0, and if

|IR(z)] <1 for|arg(—=z)| < 6.

Definition 6 (Strong A(6)-stability). A Runge-Kutta method is called strongly
A(0) — stable if: it is A(0) — stable, it has an invertible Runge-Kutta matrix
A and the limit of the stability function at infinity,

R(oo) = Regggm!R(zﬂ
= 1-bTA'1,

has absolute value strictly smaller then 1.

For the derivation of the method it is also convenient to assume that
bi = A fori=1,---,m, (13)
which implies R(cc0) = 0 because in this case
brA T =(0,---,0,)AA = (0,---,0, 1) = (0,---,0,1).

The most important example are the m-stage Radau ITA methods, which are

strong A(f) — stable with § = 7 and have order p = 2m — 1 and stage order

q = m (see page 72 in section IV.5 of [5]).

3.2 Derivation of the method

Now we can start working on convolutions. We want to approximate

u(t) = /0 k(t —7)g(T)dr t>0, (14)

only knowing ¢(¢) and the Laplace transform K (s) := L(k)(s) of the kernel
(instead of the kernel itself). First of all the Laplace transform K is assumed
to satisfy the following sectorial condition.

10

Assumption 1 (Sectorial Laplace transform).

o K(s) is analytic in a sector |arg(s — c)| < m — ¢ with p < 37 and real
c (see Figure 2),

o |K(s)| < M|s|™ for some real positive v and M.

A/

Figure 2: Domain of analyticity of K(s).
Assumption 1 allows us to apply the Laplace inversion formula?
1
k(t) = —,/K()\)e)‘td)\, (15)
211 T
where I' is a contour parallel to the boundary and inside the domain of

analiticity of K(s), oriented with increasing imaginary part (see figure 3).
By inserting (15) in (14) and applying Fubini’s theorem, we obtain

u(t) = % /F KO\ /0 g(t — 7)dr dA. (16)

3See theorem 5 on page 69.

11

\V/

N
/

Figure 3: Contour I' for the Laplace inversion formula (15).

Proposition 1. The inner integral is the solution at time t of the initial
value problem

y=X+g y(0)=0. (17)
Proof. The homogeneous solution of (17) is
yp(z) =C - e

The variation of constants Ansatz reads
(@) = Cla) - .
Inserting the Ansatz in the ODE (17) implies
C(x) - e+ XC(z) - e = \O(x) - e + g(2)
thus

Substituting a = x — ¢ gives

0 T
C(z) = / e Mgz —t) dt = e_’\r/ eMg(x —t) dt.
T 0

Thus N
y(x) = e)‘”e_’\"”/ eMg(x —t) dt + D - eM.
0

We now insert the initial condition and we conclude

y(zr) = /03? Mgz —t) dt.

12

The idea of the algorithm is to compute an approximation of (17), substitute
it in (16) and recover an approximation of the convolution (14) by applying
the Cauchy’s integral formula for functions of matrices?. The approximation
of the solution of (17) is performed by using the Runge-Kutta scheme (11)
for a strong A(6)-stable Runge-Kutta method with 6 > ¢ and which further
satisfies (13). In order to derive the algorithm we substitute f(t,y) = \y +
g(t) in (11) and define the vectors (in order to reduce the amount of indexes)

Yn = (Ynla T >Ynm>T7

Gn = (g(tn + Clh>a te :.g(tn + th>>T‘

Then the scheme (11) applied to the initial value problem (17) can be written

as
Y, = 1y, + h\AY, + hAG,,

Ynii = Yn + hABTY, + hbT G

We point out that the first equation is a vector one, while the second is a
scalar equation. Now we consider the generating functions of the sequences®

(yn)n€N7 (Yn>n€N7 (Gn)neN and we set

y(C) = g[yn nEN Z%C”
Y(C) = g[(n neN ZYnCn

G(C) = g[(n nGN ZGnCn

Then, since yy = 0, the scheme for (17) can be written as

Y(Q) = Ty(Q) +hAAY(¢) + hAG((),

(T =Dy(Q) = hATY(() + hbTG(Q).

Substituting y(¢) in the first equation from the second one gives

Y = 1 C_ll (RALTY (C) + hbTG(()) + hAAY (C) + hAG(Q)
- (hAanlfC+hA2t) (<)+h(anlfC+2()G(g)

4See definition 11 on page 75 for the definition of the Cauchy’s integral formula for
functions of matrices.
5See definition 9 on page 70 for the definition of the generating function of a sequence.

13

We notice that 157 is a matrix which has every row equal to bT. With the
definition

1-¢
and since
#(I - h)\]le% —nAA) = %(I —hA(2 + %Cﬂbr[))
G
we have o <& e "

h

Relation (13) implies that y, 11 = Y, and thus y(¢) is the last component
of Y (¢). Let U, be the approximated convolution vector

U, =~ (u(t, + c1h), - ,u(t, + cmh))T,

where u(t) is the exact convolution (14). Its generating function is

U(¢) = Gl(Un)nen](¢) =) Unl"™.
n=0
Substituting the numerical solution (18) in (16) implies

U - 5 [KOEEL -an 760 ar (19)

To allow the next steps, we recall lemma 2.4 of [12] and lemma 2.6 of [2].

Lemma 2 (Lemma 2.4 on page 112 of [12]). Under the foregoing assumptions
we have

(AQ) = 2I) " = AT — 227" + > R()" (I — 22)7' 167 (I — 2A)7'¢",

where R(z) is the stability function defined at (12).
Proof. By the definition of A(() we have

A -2 = (A+ S 17" 2

1-¢
_ <I — (At %ﬂbﬂ) (2A+ légan)‘l,

14

thus
¢

1

(AQ) —2) = (=&+

1-¢

——1b") (I —z(A+

< -1
q11bT)) :

Regarding the second bracket on the right hand side it holds that

I+ S 1b7) =

1-=¢

= (I—22)(I—=z(I—22)"

(I— 22[) —

S
1-¢

_ (Il__’z?[) (1= O — 2(I — 220)7'¢C1b7)
— (11—_,222() (I—¢(I+(I-z2)"21b")).

By defining E := I + (I — 22A)~*

¢

21bT we have

<I — (A + TC%T))_I = (1= —¢B) " (1—=21)"

and thus
(AQ -2 = (s 5

For ¢ small enough it holds that

= (A+

-1

(1-¢)(I—-CE)

167)(1

-1

~ (I CB) (I - 22)

1= E("
n=0

ZE”C
I+Z

n __ i En<n+1

Enl

therefore
(A(Q)—2)" = (A+ ﬁ]le) (I + i(E" — B¢ (I - 22A)"
n=1
Now we show per induction that
E"=1+(I—- le)_lz]le(n_1 R(2)™) for n > 2. (20)

15

0

3
]

For n = 2 we have

E2

(I + (I —22A)"2167)?

I+2(I—22)'216% + (I — 22) " 217 (I — 22A) 216"
I+2(I—2)' 2167 + (I — 22) ' 21(R(2) — 1)b"
I+ (I— 22217 (R(2) + 1).

The induction hypothesis reads

k‘

B~ I+ (I— 220 167(3 " R(2)")

3
Il

and consequently the induction step is

Ek+1

E .- E*F

(I + (I — 22" 21T)(I + (I —22)"2107() R(2)™))

I+ (122" z]le(R(2)™) + (I — 22) ' 21b"

16

which shows (20). Moreover we compute

n—1

1TE" = 167 (I + (I — =)~ z]leZR

n—1

= 167 + 167 (I — 22) "' 2167 (> R(2)™)
— 16T + 1(R(z)—l)bT(n R(z)™)

= R(z)”]le
and

AE" - E"') = WR()"HI - 22)"21b")
= R(2)" 2T — 22)7'1bT.

17

Collecting all the results gives the equality of the lemma.
1 ¢

(AQ) —2) = (A+ q]1bT) (I+> (E"—E"")¢") (I - =)

-1
n=1
= (22(+AY (B"— B+ L

n=1

ST i(E” — E"‘I)C”> (I —z2)7"

n=1

= (2(+ i R(2)"L2U(I — 22) 1167 C" + &MT

1

(R(2)" — R(z)”_l)ﬂbTC”) (I —=2)
= (2(+ i R(2)" 21 — z2)~'1bT¢"

(3 A -3 R e) (-

n=0 n=1

A + i R(2)" NI — 22)" (I — 22A) + le)]leC”)) (1—2207"

(
(
_ (m DR+ 2T zm)‘l)ﬂbTC”)) (- =21)"
(
(

[]

18

Lemma 3 (Lemma 2.6 on page 5 of [2]). For strong A(8)-stable Runge-
Kutta methods, and for |(| < 1, 0(A(C)) is contained in the open right sector
{z € C| |arg(z)| < m — 0}, in particular

c(A(Q)=cAHU{zeC: R(2)¢ =1} (21)
Proof. With lemma 2 we have

-1

(A(C) — 2I) =2A(I — 22A)~ +ZR)N — 22)THbT (I — 22) 71"

= AT — 22)" + (T — 22) 16" (1 Z R(z

s
1= R(2)¢
Thus for ¢ fixed this implies (21). Definition 5 provides the geometric de-
scription of o(A(()). O

= AT —)"+ (I —22)717 (I — 2207

Recall that we have chosen a Runge-Kutta method with 8 > . Thus, for h
small enough, o((C)) is in the sector of analyticity of K. Then definition 11
on page 75 can be applied, giving

K(#) = %/ﬁ(@)(# —)7 dn, (22)

By inserting (22) in (19) we obtain
By defining W,, by

we finally find
U =3 W sG;. 23
j=0
The approximated convolution u,1 is the last component of U,,. The next
theorem states the error bound for this kind of convolution quadrature.

Theorem 1 (Theorem 2.2 on page 109 of [12]). Let u,, be computed as above,
h be sufficiently small and u be sufficiently smooth, then

[up — u(t,)] = O(RP 4 RITHHY), (24)

where v is the same as in Assumption 1

19

Regarding the complexity of the algorithm, a naive implementation requires
O(n) evaluations of the Laplace transform K, O(n?) multiplications and
O(n) active memory for the values of the function ¢ and for the convolution
weights W,,. Similarly as described in [11], the multiplications can be re-
duced to O(nlog(n)) by using the fast Fourier transform. Unfortunately this
technique doesn’t reduce the amount of evaluations of K and the memory
requirement.

3.3 Summary
Here is a brief summary of how the algorithm applies.

1. The goal is to solve

u(t) = /0 k(t —1)g(T)dT t>0,

for t = (n + 1)h and only knowing K(s) and g(t).

2. Choose a strong A(6)-stable Runge-Kutta method with 6 > ¢ and
which further satisfies (13) and compute

AQ) = (A+ 1%Cnb’f)‘l.

3. The weight matrices W, are computed from the Taylor expansion of

A o0
K(#) =YW

4. The approximated solution w,,; is the last component of
> W._,G;.
=0

Remark 1. If R(co) =0, on page 5 of [2] is given a simpler representation

AL A =22""—¢ca'1pTA

Proof. The Sherman-Morrison formula states that for an invertible square
matrix A and for two vectors u and v, for which 1 + vTA 'y # 0, it holds

_ -1
. A'uwTA

A T A -
(A +uv™) oA

20

Then, since

To(— _ T 1
1+b2[1_<,]l_1+1_chlJI
_ ¢
= 1+1—C(1 R(0))
_ ¢
= 1+1_C
B 1
= =5
we have
AQ) = (%+—1f 1)
A S npTA!
- —C
— A - ¢
1-¢

O

Remark 2. If it is too complicated to compute point 3 analytically, on page
11 of [12] it is suggested to compute the weight matrices by approximating
the Cauchy integral

_ L K(AQ/h),
W = 211 [¢|=p Cn+1 C

With the substitution (= pe'®, this is equal to
1 o A(pe'®)

w, = K —nid g
oo (Y)e o
L—1 ;
1 /(l+1)h A(pel¢) .
= K e "0do,
2mp" = Jin (h)

where L-h = 21, Applying the trapezoidal rule to each integral we obtain the
following approrimation

o n L—1
— K(
L

1=0

A 27rzl/L
W, ~)

>672m’nl/L‘

If we assume, that we can compute the values of K with precision ¢, the

first N W, s will have an error of O(y/€) choosing L = N and pVN = /z.

21

Moreover, choosing L > N|log(e)| and p = e="" with v > ¢ of assumption 1,
the error becomes O(e). The weight matrices can be computed in O(Llog L)
operations using fast Fourier transform.

Remark 3. Computing the convolution weights W, is much simpler if the
matriz A(C) is diagonalizable. In his work [1], L. Banjai investigates the
diagonalizability of this matrix for the 2-stage and for the 3-stage RadaullA
methods. In proposition 3.4 on page 2971 of [1] he states that in the 2-stage
RadaullA method case, A(C) is diagonalizable for all |(| < 1, except for
¢ = 3v3 — 5. In the following remark 3.5 on the same page he considers
the 3-stage RadaullA method case and finds that the matriz is diagonalizable
for all |¢| < 1, with an exception for |¢| = 0.069366077.... He concludes
the remark by saying that in practice it is highly unlikely that during the
computations A((C) is evaluated in a ¢ for which it is not diagonalizable and
therefore its diagonalizability has not to be verified.

Remark 4. If we have an integral equation instead of a convolution in point
1 (let’s say that g = g(t,u)), we can still apply the algorithm above. The
only difference is that, instead of computing directly u, 1, we have to solve
n implicit system

k
Uk:ZWk_]’G; forkzl,---,n,

J=0

where G = (g(tj +crh,uig), -+ g(tj + cmh,)T and wi; = u(t; +c;h). In
this case the number of multiplications required is O(n?) for a naive imple-
mentation and O(n(logn)?) by using the fast Fourier transform technique, as
described in [4]. Again the amount of evaluations of the Laplace transform K
as well as the memory requirement are not reduced by using FFT and remain

O(n).
3.4 Numerical examples of a convolution

Here are some numerical examples of the application of the Runge-Kutta
convolution quadrature to the the continuous convolution

/02 \/ﬁﬁdr

22

The following analytic computations provide the reference solution

Fh =

e2 2 e—(2—7)

— —d
ﬁ o vV 2 — T T
2 0 —z?
= 67 f ea: (—2x)dx

= / e dx

= eerf

A e

where erf(t) is the error function. In order to apply the convolution quadra-
ture we choose k(t) = \/LE’ whose Laplace transform is K (s) = —=, as the ker-
nel of this convolution. As Runge-Kutta method, we consider the RadaullA
methods with one and two stages. The codes can be found in the appendix

B.1.

Example 1 (1-stage RadaullA). Well known as implicit Euler’s method, it
15 the most simple case and its weights can be computed analytically without
too much effort. We start by its Butcher tableau, which is

1)1
1
Then we compute
A(Q) = (2l+1<C]1bT)
= (H%C)_l
= 1-C
From
AQ)y _ 1-¢
K(—=>) = K(—=)
B h
= Tg
° _1
= \/E;(—l)“(n2>g

we can immediately read

where

The convolution quadrature is now computed as in point 4 of the summary
on page 20. The results can be read in table 1. The algebraic convergence

time step | Absolute error
2-1 1.6953
272 0.8416
273 0.4186
24 0.2086
275 0.1041

Table 1: Absolute error of implicit euler method at time T = 2 versus time
step h.

of order one (see theorem 1) is confirmed by the numerical experiment (the
approximate order of convergence is 1.006185, see figure 4 on page 26 for a
plot of the absolute error versus the time step).

Example 2 (2-stage RadaullA). The Butcher tableau of the 2-stage Radau
ITA method is

115 _1
3| 12 12
3 1
Ly 4
3 1
1 4

24

Similarly to example 1 we compute

A() = (A+-——1p7)"

NN TSV
W [s |
_/
‘ v
|
—_

The analytic computation of the convolution weights is more complicated than
in example 1 because the function K acts on the matriz %. The latter
has to be considered as an operator and therefore the function K acts on the

ergenvalues of # and not on its components. Thus it is more convenient to

compute the convolution weights as in remark 2, where, in order to compute
27r'il/L)

the term K (2=

, D
of w. The results can be read in table 2 (and seen in figure 4). The

), we must first compute the eigenvalue decomposition

time step | Absolute error
2-1 0.0448
272 0.0070
273 9.8455 - 1074
2-4 1.3388 - 10~*
275 1.7772-107°

Table 2: Absolute error of 2-stage RadaullA method at time T = 2 versus
time step h.

experiment shows an approximated convergence order of 2.829789, while its
theoretic rate is 3. The difference is mainly due to a rough choice of the
parameters for the approximation of the convolution weights.

25

- -
—+— implicit Euler —+— 2-stages RadaullA

logarithm of absolute error
logarithm of absolute error
3

logarithm of timestep h logarithm of timestep h

(a) Implicit Euler (b) 2-stage RadaullA

Figure 4: Absolute error of convolution quadrature at time 7" = 2 versus
time step h in double-logarithmic scale. We observe algebraic convergence.

26

4 Fast and oblivious convolution quadrature
(FCQ)

In paper [15] A. Schidle, M. Lopéz-Ferndndez and C. Lubich apply the idea
of paper [13] to the algorithm described in chapter 3 in order to make it
faster and more memory efficient. They reduce the number of multiplications
to O(nlogn), to O(logn) the evaluations of the Laplace transform K and
to O(logn) the active memory requirement. These values hold both for
computing a convolution and for solving an integral equation. Here we repeat
the derivation of this method.

4.1 A contour integral representation for weight ma-
trices

The fast algorithm is based on a different representation of the weight ma-
trices. So far we know

A [e.9]
K(#) =W

On the other hand, by the Cauchy’s integral formula it holds that

K(#) = %AK(A)(# —)

A new representation for the weight matrices can be derived in terms of a
new sequence of matrices E,(z) defined by

(AQ) —2D) " = En(2)C"

Since

Y P A0V

27

it follows that

Swae = k(5

h
A .

_ %ﬁK(A)(#—AI) dA

_ QLM FK()\)hiEn(h)\)C” i

n=0
- h
— Z (_,/K(A)En(m) d)\)C”.
—~ 2T Jp
Thus the new representation reads

W, — [KOEL(h) dr. (25)

27
4.2 Approximation of the contour integral

The task now is to find an optimal way to compute (25). In paper [9] M.
Lopéz-Fernandez, C. Palencia and A. Schadle have found that an effective
approximation is obtained by applying the trapezoidal rule to a parametriza-
tion of a hyperbola, which plays the role of I' and depends on n. We discuss
now their procedure.

For a fixed integer value B a sequence of overlapping intervals is defined
by
I, :=[B"',2BY) for £ >1.

Each weight matrice W,, with n € I, is computed as in (25) by choosing the
contour I' = —I'y, where I'; is the left branch of a hyperbola associated to
the interval I,. This hyperbola is parametrized by

R — I

0 = v(0) := p(1 —sin(ag +10)) + o (26)

for a suitable choice of the parameter u, > 0, ay and o, so that the singular-
ities of K lie to the left of it while the singularities of E,,(h\) lie to the right
of it®. Regarding the parametrisation (26), we notice that the asymptotes
have slope +cotan(ay), the hyperbola center is p; + o and for p, > 0 the
hyperbola is oriented with decreasing imaginary part (see figure 5).

6The precise discussion about the parameters is done on page 31.

28

Figure 5: Left branch of a hyperbola with yu, =1, 0 =0 and ay = 7.

The contour integral is finally discretized with the trapezoidal rule (with
2N + 1 points). This gives

h

W, = — | K(NE,(h\) d\
s | KB
hi
= — KN E,(h\) dA (27)
21 T,
N
~ b Y W KO ER(hAY), (28)
k=—N
where, for a step 7,
1T
w,(f) = %’yé(ek),)\,(f) =v(0;) and 6 = kT

Theorem 3.17 on page 426 of [15] provides an error bound for the approxi-
mation (28). Here we repeat the statement.

"This theorem is proven similarly to theorem 3 on page 289 of [8].

29

Theorem 2 (Theorem 3.1 on page 426 of [15]). There are positive constants
C,d,cy, - ,cq, and ¢ such that at t = nh < T the quadrature error in (28)
for a hyperbola with 1 < cut < n is bounded by

emut
627rd/7' -1

Cy COSh(NT)/Uf) —n/2
n/2 ’

+ 6(61 —cg cosh(NT))ut

|E(T, N, h,n)|| < C’ht”_l(ut)l_”(
+e (1 +

where v is the exponent of assumption 1 on page 11.

The most important thing is that this theorem shows an exponential conver-
gence. Moreover, assuming an error tolerance €, and with an exception for
the first few weights, an accurate choice of the parameters leads to theorem
3.2 on page 427 of [15], which we repeat.

Theorem 3 (Theorem 3.2 on page 427 of [15]). In (28), a quadrature error
bounded in norm by eht*~1 for nh € I, is obtained with N = O(log %) This
holds for n > clog% (with some constant ¢ > 0) with N independent of £ and
of n and h with nh <T.

When choosing the parameters of the hyperbola, is important to note that
each term of E,,(h)) is an approximation to e"™. By exchanging them, equa-
tion (27) becomes the inverse Laplace transform of K at time t = nh. In
paper [9] M. Lépez-Fernandez, C. Palencia and A. Schédle developed a spec-
tral order method for computing the inverse Laplace transform of a sectorial
function along the hyperbola contour. In that paper the error constants are
given explicitly and it contains also a section entirely dedicated to the op-
timal choice of the parameters of the method. Moreover the error bound of
theorem 2 for large n and small A becomes similar to the error bound given
in [9] for inverting the Laplace transform. Therefore the authors of [15] have
decided to follow this strategy used in [9] for the choice of the parameters,
which reads

30

1. choose two fixed integer values N and B (for the latter, in the literature
is many times said that B = 10 is a good choice),

2. fixo=c,a=d= (/2 —p)/2, with ¢ and ¢ of assumption 1 on page
11,

3. set

2B 2md

m) and ey(p) :=exp (— MN)

a(p) := acosh(
and find p €]0,1[so that

e en(p)’™ +en(p)’
takes its minimum, where ¢ is the machine precision,

4. set

Remark 5. Since theorem 3 doesn’t hold for the first few weights, these are
computed as in remark 2 on page 21.

4.3 Numerical example of the approximation of the
contour integral

Here we give a numerical example for the approximation of the convolution
weights through the contour approximation (28). The code can be found in

the appendix B.2. As a complex function, we choose K(s) = \/Lg, which is

the Laplace transform of f(t) = \/L;t As the fixed contour parameters we

choose B = 10, N = 15, a = 1 while 7 and p are computed by following
the strategy discussed at the end of section 4.2. The reference solution is
computed just by raising the number of quadrature points N to 50. Figure 6
contains the absolute errors of the approximation of the convolution weights
versus ther indexes for the 1-stage, 2-stage and 3-stage RadaullA methods
(for the 2-stage and 3-stage RadaullA methods we consider only the last
entry of the weight matrices). We observe that, except for the first few
weights, the absolute error is about 1075,

31

10
Weabiy i TR
\(\“/‘\(\y\Vy [(\ g \‘Hw\‘,‘\\ 0
. 107" v J \
107
w v e r 7 "
inexctwein

10
index of weight

(a) Implicit Euler (b) 2-stage RadaullA

Tt

1o ; : 5
10" 10 10° 10
index of weight

(c) 3-stage RadaullA

Figure 6: Absolute error of the approximation of the convolution weights
versus their indexes.

4.4 Fast convolution quadrature

As in section 3.2, we want to solve

u(t) = /0 k(t —1)g(T)dT t>0,

for t = (n+ 1)h and only knowing K (s) and g(t). The classic approximated
solution u, is the last component of

> W._,;G;. (29)
=0

Let L be the smallest integer such that n < 2B%. The idea of FCQ is to
reorganize the summation (29) in L + 1 terms

U = WoG,,
bp_1—1

Ul = Y W, ;G forl=1-- L (30)
J=be

where the bys are chosen so that:

32

e by >byyfort=0,---,L—1and
en—j€E [B€_1,23£—2] fOl“j c [bg,bg_l — 1]

A pseudo-code for their computation is given on page 430 of [15] . Since the
implementation of the fast convolution quadrature is not trivial, the section
4.6 is entirely dedicated to the implementation aspects of the algorithm.
Since

[n— (b1 — 1),n — b C [B“,2B" — 2]

is equivalent to
[(n+1) = b1, (n+1) = b] C [B"', 2B — 1],

the splitting allows using the integral representation (27) to compute

bp—1—1

Uée) = Z Wn_jGj
J=be
be—1—1

=) i K\ E,_;(h)\) d\G,
27 Jr,

J=be

where /¢ indicates the index of the countour. Note that L is the number of
contours involved. Lemma 2 on page 14 provides an explicit representation

E,(2) = R(z)" (I — 22) "1™ (I — 224)7! for n > 1.
By defining the row vector
en(2) = R(2)"bT (I — 22)~* (31)

it is found that

33

be_1—-1 _ .
h
U® = S [K\E._j(h)) dAG;
= 2T
hi "L
= — | KO\) En._;(h\)G; dx
27T Iy ary
hi "L
= o [KO > RN THI = hA2) en_;(hA)Gy dA
"I i=be
hi "L
= o [KRNI —ha) 1 > enj(hN)G; dA
T Ty Jj=be
hi "
= o K(NR(A) (I = hAA) LR 7D N " ey, _1)—(hA)G; dA
T FZ ijg
/i bé,l—l
- 5/ KEM\RMAN)"™ (I = hAA) 'L > hew,_y—1)—;(hA)Gj dA.
‘ J=be

The inner summation is nothing else than the Runge-Kutta approximation
at time t = b,_1h of the initial value problem

y=Xy+g. y(beh)=0. (32)
Defining
bp_1—1
y(beah,beh, M) = > heg, —1y-3(hNGy;,
J=be
we have

U = = [KOORMA)™" (L = hAR) " Tybe1h,beh, AL) A,
s Iy

Discretizing this integral by applying the trapezoidal rule as in (28) gives

N
U ~ 37w KO RON)" (L= WA 20 Ly (beah, beh, AL).
k=—N

(33)
Thus the approximated convolution w, is the last component of
L N
WoGn+Y > Wl K)R(N) =1 (I —hAS) Ly (be_1h, beh, X))

(=1 k=—N

34

We see that the computation time for computing the convolution is propor-
tional to the one necessary for computing the solutions of the L ODE’s (32)
at the time nh by using the Runge-Kutta method. Since L is proportional
to logg(n), we conclude that the computation time is O(nlogn). Moreover
the Laplace transform K is computed only (2N + 1) - L times. In the section
4.6 we see how to rearrange the computations in order to use only O(logn)
active memory. Since the fast convolution quadrature is nothing else than a
reorganisation of the computations of the classic convolution quadrature, it
inherits the convergence property of theorem 1 on page 19.

4.5 Fast convolution quadrature for integral equation

The FCQ algorithm can also be applied to integral equations. It is only
necessary to note the fact that the Runge-Kutta solver requires the values of
the solution at intermediate times. Consider

u(t) = alt) + /0 k(t —1)g(r,u(t)) t>0 (34)

for given functions a(t), g(¢,u) and a kernel k(t) of which only the Laplace
transform is known. Because of the above mentioned problem, it is dis-
cretized as

Un = apn + i Wn—jGj7

j=0

where

o U, = (Un1, + ,Upm)T =~ (u(ty, +c1h), - u(t, + cnh))T,
e a, = (a(t, +cih), -, a(t, + ¢,h))T and

o Gj = (g(tj +crhuj), -+, g(t; + cmh, Ujm))T-
The summation can be split as before, then
L
Up = an+WoGn+ > UD. (35)
=1

The terms U 7(15) can be computed as in (33) and require only the solution of
the initial value problem (32) at previous time. The resulting scheme (35)
is implicit in U,, (which in the right hand side appears only in G,). The

35

complexity of the algorithm, as well as the memory requirement (which is in-
dependent of m because y(by_1h, beh,)\,(f)) are scalar values) and the number
of evaluations of the Laplace transform K stay the same as for computing a
convolution for a given function g. This means that for an integral equation
this algorithm reduces the number of required multiplication by a factor logn
(with respect to the previous algorithm, which needs O(n(logn)?) multipli-
cations).

4.6 Implementation of the FCQ

The implementation of the fast convolution quadrature algorithm is another
challenge and requires some attention. Here we give a guideline for an im-
plementation of the algorithm for solving integral equations like (34) (the
algorithm for computing convolutions is very similar and therefore we omit
its description).

Suppose that t = (7 + 1)h, then we have to solve the implicit equation (35)
iteratively for n = 0,--- , 7% Once the sum on the right hand side has been
computed, the implicit equation can be solved with Newton’s method (for
n = 0 no sum appears in (35) and Newton’s method can be directly applied).
Thus the basic pseudo-code of the algorithm is

solve Ug = ag + WGy
forn=1:ndo
compute S5 | U®
solve U,, = a,, + WoG,, + Zle Ug)
end for
read the solution at time ¢t = (72 + 1)h in the last component of U,,.

The difficulties lie in the computation of the U®s. Equation (33) shows
that each of these involves the solutions y(bs_1h, beh,)\g)) of the initial value
problem (32) at several quadrature points /\,(f). Thus we have to find an
economical way of computing and storing them.

First we examine the bys because they indicates the initial and the final time
of the solution y(b,—_1h, beh,)\,(f)) which is required for computing U®). Their
definition on page 32 indicates that the b,’s depend on n (therefore we write
be(n), even if it complicates the notation) and are chosen so that

[(n+1) —bi1(n), (n+1) —be(n)] C [B"*,2B" — 1] = I,. (36)

8Note that at the nth step we are the computing the solution at the time t = (n+ 1)h.

36

Moreover L too depends on n because it is defined to be the smallest integer
such that n < 2B% (thus we write L(n) instead of L). Let’s consider an
example: we choose B = 10 and we examine the first twenty b,(n)s (which

are given in table 3). Forn = 1,--- | 18 we see that a contour (recall that L(n)
n L(n) by(n) bi(n) be(n)
1 1 1 0
2 1 2 0
3 1 3 0
4 1 4 0
) 1) 0
6 1 6 0
7 1 7 0
8 1 8 0
9 1 9 0
10 1 10 0
11 1 11 0
12 1 12 0
13 1 13 0
14 1 14 0
15 1 15 0
16 1 16 0
17 1 17 0
18 1 18 0
19 2 19 10 0
20 2 20 10 0

Table 3: First 20 values of L(n) and by(n) for B=10.

is the number of contours involved) is enough for the accurate computation
of the first n weights. Indeed the first interval (for B = 10) is I, = [1,19].
For n = 19 one contour is not enough anymore? and thus the second interval
I, = [10,199] is taken into account. This is done by introducing a new value
b2(19) = 0 and by choosing b;(19) so that

(19 + 1) — by(19) = 10,

where the value 10 on the right hand side is the smallest value of I5. The
values byp(n) = n, by(n) = 10 and by(n) = 0 satisfy the interval condition (36)

9In the 19th step we are computing the solution at time ¢ = 20h.

37

for n = 19,---28. On the other hand for n = 29 b;(n) has to be updated
because otherwise we would have an interval

[(n 4+ 1) — bo(n), (n+1) — by(n)] = [(29 + 1) — 29, (20 + 1) — 10] = [1, 20]

which clearly is not contained in I;. b;(29) is chosen with the same strategy
as above, id est so that

(29 +1) — b1(29) = 10.
The strategy of augmenting by (n) by 10 every ten n works until
[(n+1) =bi(n), (n+1) = bo(n)] = [(n+ 1) = bi(n), (n +1)]

is contained in I, id est until (n + 1) < 199. For n = 199 a third value
b3(199) = 0 and a new interval I3 = [100, 1999] have to be introduced. The
strategy for b;(n) remain the same as before while similarly b9(199) is chosen
so that

(199 + 1) — by(199) = 100,

where 100 is the smallest value of I3. The values b;(299) = 290 and b2(299) =
200 are chosen in the same way. This strategy works until n = 1999, when
a new value b,(1999) = 0 and a new interval I, = [1000, 19999] have to be
introduced and when, for the first time, b3(n) is not equal zero (b3(1999) =
1000). It should now be clear that each by(n) is augmented by B* every B*
steps, as we can see in the table 4 (and as pointed out on page 431 of [15]).

38

n

1 1 1 0

18 1 18 0

19 2 19 10 0
28 2 28 10 0
29 2 29 20 0

198 2 198 180 0
199 3 199 190 100 0

208 190 100 0

(S

208

209 3 209 200 100 0
298 3 298 280 100 0
299 3 299 290 200 0
1998 3 1998 1980 1800 0
1999 4 1999 1990 1900 1000 0

Table 4: Some values of L(n) and by(n) for B=10, note that each b,(n) is
augmented by B’ every B’ steps.

39

In algorithm 1 we repeat the pseudo-code given on page 430 of [15] for com-
puting the by(n)s.

Algorithm 1 Computation of the by(n)
L=1
q=20
form=1:ndo
if 2. B == m + 1 then
L=L+1
end if
k=1
while mod(m + 1, B¥) == 0 && k < L do
q(k) = q(k) +1
k=k+1
end while
fork=1:L—1do
b(k) = q(k) - B
end for
end for

Now we can concentrate on the values y(b,_1h, beh,)\,(f)). These are necessary
for the computation of U?(f). A first idea could be to create a struct ob-
ject odesol so that odesol{n} contains all y(by_1(n)h,bs(n)h,)\g)) that are
necessary for computing Ur(f). In fact it is more convenient to require that
odesol{n} contains all y(by(n)h, by(n)h,)\g)) for all the contours which are
and will be involved and to compute U®) with odesol{by—1(n)}. In order
to do this we set by(n) = 0 for all the ns for which they are not defined!®.
Now we show why and how to construct and update such a struct object.

Let’s start with n = 1. Even if a contour would be enough for computing
UM, we compute and store in odesol{1} the values y(bo(1)h,bs(1)h,)\,(f))

for ¢ = 1,---,L(n)". These values can be computed just by using U, ,
because
bo(1)—1
y(bo(Dh,be(hA) = > hewoy-1)—3(hN)Gj
J=be(1)
= heo(h\)Gy.

OFor example we set by(1) = 0.
HNote that L(71) is the highest number of contours involved for computing (34) at the
end time t = (7 + 1)h.

40

The next proposition shows that, except for some particular n, , the values
of the ¢*" contour contained in odesol{n} can be computed only involving
odesol{n — 1} and U,,_;.

Proposition 2. Whenever by(n) = by(n — 1) for an £ > 1, the values of
odesol{n} related to the (' contour can be computed with only odesol{n — 1}
and Uy, _1.

Proof. For all n we have by(n) = by(n — 1) + 1, which with formula (31)
implies

€(bo(n)—1)—j = €((bo(n—1)—1)—j)+1 = R(hA)€(bo(n—1)—1)—;-

Thus

bo(n)—1
y(o(n)h,be(n)h,) = > hewom)—1)—i(hA)Gy

J=be(n)
(bo(n—1)+1)—1

= > hewom-1-i(hN)G;
j=bg(n—1)
bo(n—1)—1

= Z he (bo(n)—1)—i (hA)Gj + heo(hA) Gy (n)—1
j=be(n—1)

= R(hA\)y(bo(n — 1), be(n — 1), A) + heo(hA) Gy m)—1-
0

For example the values y(bo(n)h, be(n)h,)\S)) can be computed as in propo-
sition 2 for n = 2,--- ,18 or for n = 20,---,28 or n = 30,---,38 and
so on, while for y(by(n)h, be(n)h, /\,532)) proposition 2 can be applied for n =
2,-++,198 and for n = 200, ---,298 and so on. Therefore proposition 2 is
the main tool to update odesol.

Now we explain why, when computing odesol{1}, we don’t compute just the
values of y(bo(1)h, be(1)h,)\](:))_ Suppose we have done so. Forn =2,--- 18,
L(n) = 1 and thus we have to compute only U"), which requires only the
values of the first contour. But for n = 19 we have L(19) = 2, and thus,

to compute Ul(f;)s we need the values y(by(19)h, bo(19)h,)\,(f)) too (which are
used to compute Ul(;)). Computing them at this time would require the
employment of U,, for n = 0,--- ,10 and thus, in general, the storage of
all values of U,s. Instead, computing and storing them for every step from

41

the beginnig solves this problem. We also notice that for every ¢ the values
necessary for computing U(®) are almost always stored in odesol{by_1(n)}
(we will discuss this on page 43 and provide a solution).

The last thing to consider is how to compute odesol{n} when proposition
2 don’t apply. For example when n = 19 b;(19) = 10 and thus odesol{19}
must contain the values y(19h, 10A,)\,(:)). So far, these can’t be obtained di-
rectly from the ones contained in odesol{18}. The problem can be solved
by making of odesol{n} a nested cell, which contains odesol{n}{1} (in
which we store and update y(bo(n)h,be(n)h,)\g)) for all the contours and
which will be used for computing the U®s) and odesol{n}{2} (in which
we pre-compute and store the solution of the initial value problem with
the new initial time'?). Then, when computing odesol{19}, we first over-
write the values related to the first contour in odesol{18}{1} with those
contained in odesol{18}{2} and then we compute odesol{19}{1} with
odesol{18}{1} and U;s. At this point the values related to the first con-
tour contained in odesol{18}{2} can be canceled. When n = 21 we start
computing and storing in odesol{21}{2} the ones with initial time 20h.
Table 5 shows the contents of odesol{n} which are related to the first con-
tour.

n 1 10
odesol{n}{1} [y(h,0.\{") -~ y(10h,0,A")
odesol{n}{2} empty e empty

n 11 18
odesol{n}{1} | y(11h,0,A") - y(18%,0,A")
odesol{n}{2} | y(11h, 100, A") -+ y(18h,10h,A)

n 19 20 21
odesol{n}{1} | y(19h,10, A1) y(20n,10, A7) y(21h,10,A)
odesol{n}{2} empty empty y(21h, 20h,)\S))

Table 5: Contents of odesol{n} related to the first contour for n =
1,---,21.

12For example from n = 11 we compute and store the values y(bo(n)h, 10h,)\S)).

42

The second contour is handled in a similar fashion when n = 199. In-
deed b2(199) = 100, which implies that odesol{199} must contain the
values y(199h, 100h,)\,(f)). Therefore when n = 101 we start storing them
in odesol{n}{2}. Table 6 shows the contents of odesol{n} which are
related to the first three contours forn =1,--- ,299.

In general the values of the ¢** contour are being computed and stored in
odesol{n}{2} since n € {N- B®+ 1} and overwritten in odesol{n}{1}
when n € {(2+N) - B —1}.

In order to compute U only with the values stored in odesol{b,_1(n)},
we also have to overwrite odesol{by(n)}{1} with odesol{b,(n)}{2} for

¢ > 1 because, to compute U we need the values y(be_1(n)h, by(n)h,)\ff))
while odesol{b,(n)}{1} contains y(bs_1(n)h,be(be(n))h,)\ff)). If we con-
sider for example n = 199, to compute Ul(f;?, we need y(190h, 100A,)\g))
because b1(199) = 190 and b,(199) = 100, while, if we don’t overwrite
odesol{199}{1}, it would contain y(lQOh,O,A,&lz)) because by(b1(199)) =
b2(190) = 0 (see table 6).

43

{z}H{(u)?q}10s9po yym {1}{(w)?’q}j0s839p0O JO
SUILIMIDAO BT} PRIIIWO DA\ 66 « -+ ‘T = U I0J SINOJUOD 9911} ISIY o1} 03 pajelal {u}josapo jo sjueuo)) :9 a[qr],

()X 400G Y86T) -+ (X Y00 Y102)A
Syduo ()Y Y06z ‘ys6e)i -+ (¥ ‘woog ‘y10e)f | {g}{u}rosapo
(e 0ueee)i (A oygee)i - (Y 0YT0g)
(X 002 U4662)E (Y ‘001 ‘4862)i -+ (J\ 001 410z)A
()Y 4062 y662) ()X 408z 4862)fi -+ ()} 4061 "y100)f | {1}{u}1089p0
662 862 102 u
(X H00Ty86T)A -+ (X "40OT *YTOT)A
£yduro £ydud (X 06T 486T)A -+ (4001 ‘y10T)A -+ (¥ ‘4oz ‘yse)fi | {g}{u}rosapo
(¢ ‘0 4002)fi (¢ 0Y661)f (@0 U86T)A -+ (X 0YT10T)f (¢ 048T)A
(X 00T 4002) (X 00T 466T)A (Y 0us6n)fi -+ (Y010 -+ ()} '0y8e)i
(X 406T 4002) (X “YO6T Y661)A (X 08T Y86T)A -+ ()Y 406 4T0T)A -+ (X 401 y8e)i | {1}{u}posapo
002 661 861 - 101 - 82 u
(oY ‘uog Y1) - Ayduo (Y uoryr)i -+ (Jxyoryrpf --- Sdwe | {g}{u}josapo
(e 0ute)i (oD (g oug)A - (JYoytDA e (Y0
(Y oute)i - (Joyen)i - (Jvougn)i - (Yot o (o)l
(Y yoryrg)fi - (xoryer)i (xoysn)fi - (pxoytnh - (o) | {1}{u}posapo
12 02 61 81 11 1 u

44

Now we can finally write a complete pseudo-code of the FCQ (k; and ks are
used for finding when n € {N- B* + 1} and when n € {(2+N) - B — 1}).

Algorithm 2 FCQ

1: precompute all the by(n)s with algorithm 1
2: solve Ug = ag + WGy
3: compute odesol{1}
4: /{71 - O

5 ky =1

6: forn=1:ndo
7. compute Y, U® with odesol{b,(n)}{1}
8 solve U,, = a,, + WoG,, + Zle u®
9: update odesol and ky, ky with algorithm 3
10: end for

—_
—_

: read the solution at time ¢t = (7 + 1)h in the last component of U,,.

Algorithm 3 update odesol
for {=1:L(n) do
ifn+1=(2+k(¢) B*—1 then
if /> 1 then
overwrite odesol{by(n)}{1} with odesol{b,(n)}{2}
end if
overwrite odesol{n}{1} with odesol{n}{2}
end if
compute odesol{n + 1} with odesol{n} and U,
if n+1=ky({)- B*+1 then
restart odesol{n + 1}{2}
end if
end for

Remark 6. The active memory requirement of the algorithm is only O(logn)
because odesol{n} can be computed iteratively with just odesol{n — 1}
and U,,_1.

45

4.7 Numerical example of an integral equation

We construct an integral equation of the form

t
) = H(6) = [kit = r)y(r)ar
0
by assuming that the analytic solution is

y(t) ==/t

and that the convolution kernel is

1
k(t) == =
whose Laplace transform is
1

By defining the function

H(t) = /0 k(t — m)y(T)dT + y(t)
we find!'?

H(t) = L7 (LK)L(y))(@) + vVt

1, 1 1057
= L i) O+ VAT

1057

-1 1 7/2
= 5 £ (;)(t)Jr\/%t/

35T 4 7/2
= 220 £7/2.
128 VT

Thus y(t) := /7t7/? is the analytic solution of the linear Volterra integral
equation of second kind

o) = o+ i - [N e

13We use the convolution property for the Laplace transform, see appendix A.1.

46

This integral equation is used to test the fast algorithm described above for
the implicit Euler method and the 2-stage RadaullA method. We perform
five time step refinements starting with the time step A = 0.5 and we com-
pute the relative error between the approximated and the analytic solutions
at time t = 4, by choosing as fixed parameters B = 10 and K = 15. The
results can be found in table 7 and in table 8.

time step | Relative error
2-1 0.0566
272 0.0288
273 0.0145
2-4 0.0073
275 0.0037

Table 7: Relative error of implicit Euler method at time ¢ = 4 versus time
step h.

time step | Relative error
2-1 0.4471-1073
272 0.0638 - 1073
273 0.0088 - 103
2-4 0.0012-10°
275 0.0002 - 1073

Table 8: Relative error of the 2-stage RadaullA method at time ¢ = 4 versus
time step h.

As expected,the FCQ based on the implicit Euler method has an algebraic
convergence of (approximated) order 0.988555, as we can see in figure 7.
Regarding the 2-stage RadaullA method an approximated algebraic conver-
gence of order 2.875043 is obtained (we expect an algebraic convergence of
order 3, see figure 7 for a plot of the absolute error versus the time step).
The MATLAB implementation can be found in the appendix B.3.

47

3
—— implicit Euler —#— 2-stages RadaullA

rror

logarithm of relative ef
logarithm of relative error

107° 107 10° 107 107 10°
logarithm of timestep h logarithm of timestep h

(a) Implicit Euler (b) 2-stage RadaullA

Figure 7: Relative error of fast convolution quadrature for integral equations
at time T' = 4 versus time step h in double-logarithmic scale. We observe
algebraic convergence.

4.8 Fast convolution quadrature for integral equation
with derivative

Since the convolution is differentiated in the variational formulation (10), it
is useful to discuss how to approach an integral equation of the form

d

y(t) = H(t) - =

t
/ k(t — 7)y(7)dr. (37)
0
The idea is to approximate the derivative with a backward difference method
with the same order of convergence as the convolution quadrature. Backward
difference methods approximate the derivative of a function u at time t using
a liner combination of the values of u at previous times. By denoting the
derivative of the function u as u' := %u the general formula for backward
difference methods reads

p

hu'(t) ~ Zozju(t — jh), (38)

J=0

48

for some p > 0, h > 0 and o; € R. By choosing the «;’s as the solutions of
the following linear system

1 1 1 S 1 ap 0
0 —-h —2h --- —ph ay 1
—h)2 (—2h)? —ph)?
h « 0 % (5) ... % Q9 _ 0 (39)
0 (—pf?)p (—ifl)p . (—gIh)P , 0

and if u is smooth enough, formula (38) leads to an algebraic order of con-
vergence p — 1. Thus our strategy to approach an integral equations like (37)
is to:

e choose a Runge-Kutta based fast convolution quadrature of order ¢
(where in general g € Q),

e choose a backward differentiation method of integer order p > ¢,

e discretize the equation (37) as
p

s t—jh
vy =HO -3 Y [k- h- g ()
j=0 70
Then, by setting
~ P . [tIR
H(t):= H(t) - ; - /O k(t — jh — 7)y(r)dr,
equation (40) can be written as
~ ao t
) = () = 5 | k(e = ru(ryar (41)
0

Equation (41) can be solved with the fast convolution quadrature algorithm
explained in section 4.5, because H (t) contains only values of the convolution
in the past.

4.9 Numerical example of an integral equation with
derivative

We construct an integral equation like (37) assuming that its analytic solution

1S
y(t) = /mt"?.

49

The convolution kernel is chosen as

1
k(t) = —,
(t) T
whose Laplace transform is
1
K(s)=—.

H(t) is computed similarly as in section 4.7.

d t
H(t) = % k(t — m)y(T)dr + y(t)
~d (35T 7/2
B dt(128t) A/t
357

= = ¢7/2,
32 VT

Thus y(t) is the analytic solution of

357

)= S+ v [t

As a first numerical example, we choose the implicit Euler based fast convolu-
tion quadrature. Its order of convergence is 1 and thus, a backward difference
method with p = 2 should be good enough in order to preserve the rate of
convergence. This is confirmed by the experiment, where an approximate
order of convergence equal 0.990007 is found. The relative errors can be read
in the table 9 while a plot can be found in figure 8.

time step | Relative error
21 0.0493
272 0.0250
273 0.0126
24 0.0063
275 0.0032

Table 9: Relative error of implicit Euler method at time ¢ = 4 versus time
step h.

For a second numerical example, we choose the 2-stage RadaullA based fast
convolution quadrature. Its order of convergence is 3 and thus, in order to

50

preserve the convergence rate, a backward difference method with p = 4
should be chosen. This is confirmed by the actual convergence of 2.998812.
The values of the relative error can be found in table 10 while a plot is con-
tained in figure 8. The code of both examples are contained in the appendix

B.4.
time step | Relative error
271 1.9271-1073
272 0.2438 - 1073
273 0.0306 - 10~
24 0.0038 - 1073
27° 0.0004 - 1073

Table 10: Relative error of the 2-stage RadaullA method at time ¢ = 4 versus

time step h.

—+— implicit euler

error) at t=4
3

log(relative

—— 2-stages RadaullA

107% 107" 10° 107
log(h)

(a) Implicit Euler

107 10°
log(h)

(b) 2-stage RadaullA

Figure 8: Relative error of fast convolution quadrature for integral equations
with derivative at time T = 4 versus time step h in double-logarithmic scale.

We observe algebraic convergence.

o1

5 FEM - FCQ coupling

5.1 Discretization of exterior BVP

The goal is to discretize the variational form (10). We start with a spatial
semi-discretization over a simplicial mesh. Let N be the number of nodes
of the mesh and {b)y|j = 1,--- N} be the set of hat functions. The solution
is approximated through a linear time-dependent combination of the hat
functions

u(z,t) ~ Z ()b

Then the semi-discrete evolution problem reads to find the (time-dependent)
coefficients p;(t) such that

>_H()

N
=1

Vbl - Vb dz = i/ k(t —) -;ﬂ(T)dT/ bl - b dS
i=1 dt Jo Lelon)

= / foby do
O\ Qo

Q\Q

(42)
holds for every j =1,--- ;N and for every t €]0,T]. By defining
T
A= (Vbl - Vb dz), (43)
O\ Qo el
B .= (/ by - by dS). ., (44)
290 wI=
o) = ([febyde- [[N dx)"
2\ Qo 2\Qo
equation (42) becomes
¢
A ut)—B- %/ k(t —7) - p(r)dr = (1) for ¢ €]0, 7. (45)
0

The derivative is approximated by using a backward difference method!*.
Let h; be the time step (so that t = hy(n + 1)), then

d t

1 p t—lh
i), kE(t —7) - p(r)dr =~ i lz_; al/o k(t —lhy — 1) - p(T)dr. (46)

MBDF methods were introduced on page 48.

52

The next step is to compute the summands with the convolution quadrature
algorithm (23). In order to do this let us introduce some notation. We
define f1(t) to be an (N - m)-vector (where m is the number of stages of the
Runge-Kutta scheme)

A(t) = (p(t+crhy), - p(t+ emhi))

In order to apply the convolution quadrature, we recall the definition of the
Kronecker product.

Definition 7 (Kronecker product). Let A be an m X n-matriz and B be a
q X p-matrix, then the Kronecker product between A and B is defined as

ayp - Qi big - blp
A®B = : : ®

Ami *°° Qmn bql Cen bqp

(IHB cee alnB

amB - anun,B

allbll T allblp oo alnbll T alnblp
allbql “. allbqp el e alanl ce alanp
amlbll e amlblp oot amnbll e amnblp
amlbql .. amlbqp el e amanl .. amanp

With g and the Kronecker product, equation (45) can be rewritten as

(Lm)®A) ()~ (1(m)oB) /0 tk(t—r)-;l(T)dT —@(t) forte[0,T—h

dt
(47)
where 1(m) is the m x m identity matrix and

B(t) = (p(t+crhy), - p(t+cmhi)) "

Remark 7. There is an abuse of notation in equation (47). With the con-
volution

/0 k(t—7)- p(r)dr (48)

33

we mean that the convolution is computed on each component of the vector
(1) and for an adjusted time t. To be more precise, instead of (48) we shoud
write the vector

T

t+cihg t+cemht
(/ k(t+ cihy — 1) - p(T)dT, - - - ,/ k(t+ cmhe — 7) - ;J,(T)d7> :
0 0

where

t+ciht
/ k(t+ cihy — 1) - p(7)dr
0

t4ciht t+ciht T
= (/ k(t + cihy — 1) - ! (T)dr, - - 7/ k(t + cihy —) ',UN<T>dT)
0 0

fori=1,--- ,m.

Now we can apply the convolution quadrature to (46); by substituting p
with @ and with the time discretization

frj = f1(jhy)

we have

d]i](t—T) : /:L(T)dT ~ iZal (W(n—l)—j ®]1(N>)/:LJ

dt Jo he =5 =0
By setting
@i = p(ihy),
equation (47) becomes the fully discrete problem
1 P i—l
(L(m) ® A) - fis — (L(m) © B) (h? S (Waey—s @ 1(V) ;,,j) &
=0 j=0

(49)
for i = 0,..,n, where n satisfies (n + 1)hy = T.
Equation (49) can be rewritten as

DY (Wieeos ©100)) + (50)

for i = 0,--- ,n. The sums on the right hand side only involve values of p;
with j < 4. Thus they can be rearranged as in (30) and computed separately
in the fast way described in (33).

Remark 8. In the variational formulation (10) the convolution is taken only
on the boundary of the conductor. This is inherited in the full-discrete prob-
lem (49) by the multiplication of the convolution quadrature with (1(m)®B),
which sets to zero the convolutions computed on the nodes which don’t belong
to the boundary of the conductor. Therefore there is no need to compute them
in the two sums of (50).

5.2 Implementation and complexity analysis

The algorithm can be implemented in a direct way. First of all we must
parametrize the domain €2 and create a mesh. Then we have to precom-
pute the matrices A, B'5, the matrix Wy'¢ and the backward differentiation
weights (which are chosen in order to preserve the order of convergence of the
convolution quadrature and can be computed by solving the linear system
(39)). Lastly we have to create the structure odesol which will contain the
approximation of the convolutions on the impedance nodes. At this point
we only have to choose a time step h; and solve the linear system (50) for
increasing ¢ until we reach the end time T (we assume that (n+ 1)h, =T) .

When i = 0 there are no sums on the right hand side of (50). For i > 1

we have to compute
i—1

S (Wi @ 1)) fy. (51)

Jj=0

This is done by splitting the sum as in (30) and by computing each summand
as in (33), with an exception for the term UV for which the convolution
weights are computed as in remark 2 on page 21 because the hyperbola ap-
proximation is not effective (see remark 5 on page 31).

For ¢ > 1 the sum

o> (Wiatys @ 1(V)) g (52)

=1 j=0

bS]

15Those matrices were defined respectively in the equations (43) and (44).
16The matrix Wy can be computed, for a chosen Runge-Kutta method, as explained in
remark 2 on page 21.

95

appears as well, where the exterior sum is taken only until min(p,7). The
interior sum of (52) is computed by storing the values (51) and by adding to
them the term (Wo ® 1(N)) fa;—i.

The algorithm is summarized in the pseudo-code 4.

Algorithm 4 FEM-FCQ coupling algorithm
1: create a spatial mesh

2: compute A, B, Wy, ---, Wap_; and (ozj)jzo

3: initialize odesol

4: solve (1(m) ® A — $2(1(m) ® B) (Wo @ 1(N))) - fio = @0
5: update odesol
6
7
8
9

: convpast =0

: convpartial =0

:fori=1:ndo
for j=p:2do

10: if j <i then
11: convpast(j)=convpast(j — 1)
12: end if

13: end for
14: convpast(1l)=(Wy ®]I(N))ﬁi—l + convpartial
i1

15: convpartial =} (Wi_; ® 1(N))
16: solve

(]l(m) ®A - —(1(m) @ B)(Wo ®]l(N))> 15
= (]1() ® B) <h—convpartzal + Z —con'vpast(l)) + P

11t

17: update odesol
18: end for

Proposition 3. Let N be the number of spatial degrees of freedom, Ny the
number of nodes on the impedance boundary, m the number of stages of the
Runge-Kutta method and n the number of time steps. Then the algorithm 4
ends after O(Co(N, m) + C1(N,m) - n+ Ny -nlogn)) computations for two
constants Co(N,m) and Cy(N,m).

56

Proof. First we analyze the first 7 steps of the algorithm, which are an initial-
ization of the problem. The creation of the mesh, as well as the computation
of the two matrices A and B requires a constant time Cy g aresn (V) which
depends only on N. In fact the mesh and these two matrices can be provided
by an external code. Therefore we omit this constant in our analysis.

The matrices Wy, ---, Wap_1 are computed as described in remark 2 on
page 21. The Laplace transform has to be evaluated on the matrix A(() for
several values of (. This requires the computation of the Jordan decomposi-
tion of the matrix A(() for each value of { and thus its computation time is
a not so small constant C;.

The time for the computation of the backward difference weights as well
as the time for initialising odesol are negligible.

In the 4th step we have to compute the solution of an N - m linear sys-
tem. Its computation time is O(Crs(N, m)) for a constant Cpg(N, m) which
depends on N and m. The matrix of this linear system can be computed
and stored for later computations in time O(CKpl(N, m) + Cgpa(N,m) +
Cus(N,m) + Cyp(N, m)), where C'kp1 (N, m) is the time necessary for the
Kronecker product between an m x m sparse identity matrix and an N x N
sparse matrix, Cyrs(IN,m) is the time necessary for the sum of two sparse
N -m x N -m matrices, Cpsp(N, m) is the time necessary for the product of
two sparse N -m x N -m matrices and Cxps(N, m) is the time necessary for
the Kronecker product between an m x m full matrix and a N x N sparse
identity matrix.

So far, the computation effort is (’)(C’O(N, m)), where Cy(N, m) := max (CJ,
OLS(N7 m)7 CKPI(Na m)7 OKP2<N7 m)a OMS(Na m)7 C1MP(]\/Y7 m)) .

Now we analyse the FOR-cycle. The lines 9-13 concern the computation
of the variable convpast. The main computational effort is the one due to
the multiplication of an N - m x N - m sparse matrix times an N - m vector.
Since the convolution is to be taken only on the impedance nodes, this re-
quires only O(N; - m?) computations.

In line 15 we compute the variable convpartial, which is nothing else
than a truncated convolution on the impedance nodes. This requires at most
O(Nr-(log(i) +2B-m?)) multiplications at the i-th step (the term N;-2B-m?
is due to the computation of UT(LI)).

o7

In the 16th line we have to solve again a linear system. Regarding the
right hand side, the sum in the brackets requires O(N; - p) computations,
the product with the matrix can be performed with O(N; - m?) compu-
tations and the sum of the resulting vector with the load vector can be
perfomed in O(N;) additions. Thus the linear system can be solved in
O(CLS(N,m)+N1p—|—NIm2+N1)

It follows that for the whole FOR-cycle the computational effort is O(n -
(Crs(N,m) + Ny - (p + 2B - m? + log(n)))). Thus setting C,(N,m) :=
Crs(N,m) + Nr - (p+ 2B - m?) shows the claimed computational effort. [J

5.3 Numerical example of a parabolic PDE with Dirich-
let and impedance boundary conditions

In order to test the algorithm we have to construct a PDE which should be
of the form

—Au = 0 in Qx]0;T],
u = g on 0Qx]0;T],
Vu-n = 4 fot k(t —7)-u(r)dr on 09Qx]0;T],

where L(k) = —\/ig and for a g € H/*(9Q) N C(]0;T]) (in order to find a
reference solution, it is simpler to consider a general function g than impose
g =0). We choose Q\ £ to be an annulus around zero with radii 0.5 and 2
(see figure 9).

o)

Figure 9: Domain of the PDE.

38

In the Laplace domain the PDE reads

—AL(u) = 0 in €,
L(u) = L(g) on 02,
VL(u)-n = —/s-L(u) on Q.

Because of the domain geometry we move to polar coordinates, in which case
the Laplace operator reads

1 0 1 0?
A= () g

Moreover we assume that
L(g)(s) := ™ (s),

where k is an integer and ®(s) is a complex function (which is introduced in
order to allow the inverse Laplace transform of £(u)). With the Ansatz of
separation of variables

L(u) = ur(r) - ug(p)
and by imposing A
Uplp) = e0(s),

the Laplace equation becomes
10 (0) k? 0
—| -=(r=—u,) — =u, Ju, =0,
ror® Or r? ?
which is equivalent to

RSN S
37’2% T@TUT r2

If & # 0, its solution is

u, = 0.

u,(r) = Ar® + Br*,

where A and B are two constants. On the other hand, if £ = 0, its solution
is

u-(r) = Alog(r) + B, (53)

where A and B are once again two constants. For the sake of simplicity, we
assume that k = 0. The values of the two constants A and B are determined
from the boundary conditions of the PDE. Those read (in the Laplace domain
and in polar coordinates)

ur(2) = 1,
{_%Mro.s = —/su.(0.5). (54)

39

The minus sign on the left hand side of the second boundary condition is
due to the opposite orientation of the vector n and the axes r. Inserting the
Ansatz (53) in the system (54) gives

{Alog(2)+B = 1, (55)

24 = /s(Alog(0.5) + B).
From the first equation of (55) we read
B =1- Alog(2).
Imposing it to the second equation of (55) gives
0 = 24— +/s(Alog(0.5) + B)
= 24— /s(Alog(0.5) + 1 — Alog(2))
= 2A—/s(1— Alog(4))
= A2+ Vslog(4)) — Vs
and thus

Vs Vs
A_2+\/§10g(4)’ B=1 2+ /slog(4)

Before moving back to time domain we still have to choose the function ®(s).
This function should have a relatively simple inverse Laplace transform and
must decay strong enough in order to make L(u) Laplace invertible. We
choose

log(2).

because

and

60

Moving back to the time domain it holds that

uw = L7t (uru@)
= [((Alog(r) + B)@(s))
= E‘l((Alog(r) — Alog(2) + 1)@(5))

— (log(r) —log(2)) £~ l)+£‘1(<I>(s>)

e
t3 /9 t3
= (log(r) —log(2)) & 105\/—1?/ +log(4) &
32 o,
= = 477421 log (2
st + G (1oB(r) + log(2).
which is the solution of
—Au = 0 in Qx]0;T],
u = mizft”? e log(4) on 92x]0;T], (56)
Vu-n = [k u(T)dr on 9 x]0;T].

Now we can test how well the coupling of FEM and FC(Q works for this PDE.
We perform a first test using the hat functions for the spatial approximation
of FEM and we approximate the convolution by using the FC(Q based on
the implicit Euler method (the derivative of the convolution is approximated
with a first order backward differentiation).

We consider six different spatial grids and twelve different time steps and
we compute the error at the end time 7" = 4 with respect to the analytic
solution in the L2-norm. This error is the sum of two main sources: the FEM-
error and the convolution error. In the L? norm the FEM-error should have
an algebraic decay of order 2. Regarding the convolution error, we should
have a uniform algebraic convergence of order 1 (for FCQ based on implicit
Euler) on each point of the inner boundary 0€)y. Since we are using linear
functions for the spatial approximation, we expect that the convolution error
has an algebraic contribution of the same rate of convergence to the coupling
error in the L?-norm.

61

These remarks are confirmed by the experiment (see figure 10). Considering
the smallest time step h; and approximating the rate of algebraic convergence
in the L?>-norm versus the spacestep h gives the value 1.9470. On the other
side, considering the finest meshgrid and approximating the rate of algebraic
convergence in the L?-norm versus the first nine time-steps h; (when the er-
ror is dominated by the convolution quadrature error, as we can see in the
image 10) gives a rate of convergence equal 0.9672.

log(L2-error)

Figure 10: Error in the L?-norm for the coupling of FEM and FCQ base on
the implicit Euler method.

The values of the error can be read in table 11. Figure 11 contains the com-
putation time of the coupling algorithm for a fixed spatial mesh (we have
chosen the first mesh, whose step is h = 0.8468) after subtracting the time
necessary for solving the linear system. We see that the growth of the com-
putation time is steeper than a linear growth but definitely less so than a
square one and almost coincides with the theoretical growth O(nlog(n)) that
we have found in proposition 3

62

W\ Iy | 20 272 93 o1 25 90
0.8468 | 2.3530 | 1.8337 | 1.5807 | 1.4583 | 1.3986 | 1.3693
0.4234 | 1.3996 | 0.8473 | 0.5699 | 0.4348 | 0.3700 | 0.3388
0.2117 | 1.1968 | 0.6396 | 0.3542 | 0.2109 | 0.1404 | 0.1063
0.1059 | 1.1498 | 0.5927 | 0.3064 | 0.1615 | 0.0887 | 0.0526
0.0529 | 1.1384 | 0.5814 | 0.2952 | 0.1501 | 0.0771 | 0.0405
0.0265 | 1.1356 | 0.5786 | 0.2924 | 0.1473 | 0.0743 | 0.0376

h \ ht 2—7 2—8 2—9 2—10 2—11 2—12

0.8468 | 1.3547 | 1.3475 | 1.3439 | 1.3421 | 1.3411 | 1.3407
0.4234 | 0.3236 | 0.3162 | 0.3125 | 0.3106 | 0.3097 | 0.3092
0.2117 | 0.0901 | 0.0823 | 0.0785 | 0.0766 | 0.0757 | 0.0753
0.1059 | 0.0349 | 0.0264 | 0.0223 | 0.0204 | 0.0194 | 0.0190
0.0529 | 0.0222 | 0.0131 | 0.0087 | 0.0066 | 0.0056 | 0.0051
0.0265 | 0.0193 | 0.0101 | 0.0055 | 0.0033 | 0.0022 | 0.0016

Table 11: Values of the error in the L?-norm for the coupling of FEM and
FCQ base on the implicit Euler method.

* FEM-FCQ coupling
O(n)
om?)

— — — O(nlog(n))

cputime (s)
>

. .
10 10° 10° 10 10
Number of timesteps

Figure 11: Cpu time in seconds (after subtracting the time necessary for
solving the linear system) versus the number of time steps.

63

We perform a second test and this time the convolution is approximated by
using the FCQ based on the 2-stage RadaullA method (the derivative of the
convolution is approximated with a third order backward differentiation).
Regarding the FEM, we again choose the hat functions as elements. We con-
sider six spatial grids and six different time steps and we compute the error
at the end time T' = 4 with respect to the analytic solution in the L?-norm.

This time it is expected that the convolution quadrature error contributes to
the coupling error with an algebraic rate equal to 3. This is only partially
confirmed by the experiment because in this case the coupling error is almost
always dominated by the FEM error, as we can see in figure 12. Considering
the finest meshgrid and computing the rate of convergence of the convolution
quadrature for the first two time steps gives the value 2.7842 which indicates
that the order of convergence 3 should be correct. The values of the error in
the L?-norm can be found in the table 12.

log(spacestep)

Figure 12: Error in the L?-norm for the coupling of FEM and FCQ base on
the 2-stage RadaullA method.

64

W\ Iy | 20 272 93 o1 25 90
0.8468 | 1.3736 | 1.3444 | 1.3408 | 1.3403 | 1.3403 | 1.3402
0.4234 | 0.3437 | 0.3131 | 0.3093 | 0.3089 | 0.3088 | 0.3088
0.2117 | 0.1118 | 0.0791 | 0.0753 | 0.0749 | 0.0748 | 0.0748
0.1059 | 0.0585 | 0.0230 | 0.0190 | 0.0186 | 0.0185 | 0.0185
0.0529 | 0.0465 | 0.0095 | 0.0052 | 0.0047 | 0.0046 | 0.0046
0.0265 | 0.0437 | 0.0063 | 0.0017 | 0.0012 | 0.0012 | 0.0012

Table 12: Values of the error in the L?-norm for the coupling of FEM and
FCQ base on the 2-stage RadaullA method.

The domination of the coupling error by the FEM approximation is confirmed
by the following experiment. The parabolic PDE system (56) is converted
into an elliptic PDE system by fixing the time 7" = 4. The impedance bound-
ary condition is converted into a Neumann one by inserting the reference
solution with » = 0.5. Since

d [d [32
— [k(t—7)-u(r)dr = — [k(t—71)- 2
g J, K= ulndr = | k(=) g T T
d [+ -1
= — . 32 2dr
dt Jo /Tt —1 1051
_ da-t
Codt 12
t3
= —g)
we obtain the following elliptic PDE system
—Au = 0 in €2,
u = 102?7747/2+%10g(4) on 012, (57)
Vu-n = —% on 0€).

Performing six space refinements and computing the error in the L2-norm
gives the values of table 13. These values have the same order of magnitude
as those in the last column on the righthand of table 12, which confirms the
domination by the FEM approximation.

65

time step | Relative error
0.8468 1.7115
0.4234 0.4006
0.2117 0.0977
0.1059 0.0242
0.0529 0.0060
0.0265 0.0015

Table 13: Relative error of FEM applied to an elliptic PDE with Dirichlet
and Neumann boundary conditions.

66

6 Conclusion

In his work [10] C. Lubich introduced the convolution quadrature based
on strong A(a)-stable linear multistep methods for computing convolutions
when the Laplace transform of the convolution kernel satisfies the sectorial
condition on page 11. The algorithm has excellent stability properties and
inherits the order of convergence of the multistep method. Unfortunately the
error constants of strong A(a)-stable linear multistep methods are huge for o
close to 7/2 (see chapter V.2 of [5]). This drawback has been obviated by C.
Lubich and A. Ostermann with their work [12], where they have developed
the convolution quadrature based on Runge-Kutta methods, as explained in
chapter 3.

In their work [15] A. Schédle, M. Lopéz-Fernédndez and C. Lubich have devel-
oped a fast implementation of the convolution quadrature based on Runge-
Kutta methods. The new algorithm implementation reduces the number of
evaluations of the Laplace transform of the convolution kernel to O(logn),
the active memory requirement to O(logn) and the number of multiplica-
tions to O(nlogn) (both for computing a convolution and solving an integral
equation).

In the subsection 4.8 we discussed how to approach an integral equation
which involves the derivative of a convolution. The experiments indicate
that approximating the derivative with a backward difference method of a
suitable order should preserve the order of convergence of the convolution
quadrature.

Finally in chapter 5 we have developed an algorithm for solving the vari-
ational problem (10) by coupling the finite element method and the fast
convolution quadrature. The experiments show that the resulting scheme
inherits the spatial order of convergence of FEM and the time order of con-
vergence of FCQ. Proposition 3 on page 56 shows that the computation time
is O(C(N,m)-n+ Ny -nlogn)) where N indicates the number of elements,
N is the number of elements on the boundary 0€2y and n are the timesteps.
This proposition is confirmed by the experiments as we can see in figure 11.

67

A Mathematical tools

This appendix is a brief review of some mathematical concepts which are
used in the previous chapters.

A.1 The Laplace transform

Definition 8 (Laplace transform). Let u : [0,00[— R be a piecewise contin-
uwous function which further satisfies

e there exist two constants c1, co € R so that

lim |u(t)] < c1e, (58)
t—o0

e for every finite T > 0

T
/ lu(t)|dt < co. (59)
0
Then the Laplace transform of u is a function L(u) : C — C defined by
L(u)(s) := / e *u(t)dt. (60)
0
This integral converges absolutely and uniformely for every s € C with Re(s) >
Co.
The next theorem recalls some properties of the Laplace transform.

Theorem 4 (Properties of the Laplace transform). Let u,v : [0, 00— R be
two piecewise continuous functions which further satisfy the conditions (58)

and (59).
e the Laplace transform is a linear transform: let A € C, then
L(Au+v) = AL(u) + L(v),
e the Laplace transform is unique up to a null function (see Lerch’s the-
orem,),
e consider the function f :t+— t-u(t), then

d

£(f) = —=L(w),

68

e consider the function f :t+— @, then
£t = [£l
0

o consider the function f : 1 +— fot u(t)dt, then

L(u
s
o letu = %u and consider the function f .t — u'(t), then
L(f)=s"-L(u),
o let u™ = jt—?lu and consider the function f : t — u™(t), then
L(f) =" L(u) — s"u(0) — s" 2/ (0) — - - - — u™D(0),

e let u and v have the exponential order of (58) equal o and consider the
convolution u xv : t — fJU(T)’U(t — 1)dT, then for every s € C with
Re(s) > a it holds

L(u*xv) = L(u)L(v).
The inverse of the Laplace transform is given by the Bromwich integral for-
mula (also known as Fourier-Mellin integral or Mellin’s inverse formula).

Theorem 5 (Bromwich integral formula). Let F' be a complex function which
satisfies

o there’s a oy € R so that the function F is analytic in the region {s €

C|Re(s) > oo},

e there’s a constant ¢ € C so that for every real b > oy

& 1
lim F(b+it) = .
Jim F(b+it) b—i—it+0<|b—|—z’t|2)

Then the function f : [0, 00— R defined by
o+iT

f(t) = L lim e F(s)ds

2mi T—o0 Jo 7

for a real number o > og satisfies
L(f)=F.

Thusthe inverse Laplace transform can be defined as
1 o+iT
L(F):=— lim e F(s)ds.

271 T—o0 o—iT

69

A.2 The generating function

Definition 9 (Generating function). Let (u,)nen be a sequence of values.
The generating function of (un)nen 1S the formal power series

Gl(n)aerl(©) = 3 unc™.

In general, the generating function has to be considered just as a formal sum.
In some cases, however, the generating function is equal to the Taylor series
of an analytic function. For example, the generating function of the constant
sequence (uyn)nen defined by

u, =1 for every n € N

satisfies
1

G[(un)nen](€) = T—¢ for every ¢ € {z € C||z| < 1}.

A.3 DMatrix functional calculus

The goal of this section is to make sense of the expression

f(M) (61)

for a complex function f and a matrix M. The literature contains a gen-
eralized version of (61) for general Banach algebras (see for example [14]).
Nevertheless, in order to give a more practical idea, we limit ourselves to the
matrix case by following chapter one of [6].

Let f : D — C be an analytic function on the open set D C C. For ev-
ery fixed a € D, it holds

%) (g
f(z) = Z LA)(z —a)" for every z € D. (62)

Let M be a square complex matrix, whose spectrum o(M) lies entirely in
D. The idea is to evaluate f(M) by using the formula (62). We recall that
any square complex matrix can be expressed with its canonical Jordan form
J, id est: there exists an invertible matrix Z so that

M=2ZJZ "

70

where

Ji
J = T2
JIp
and
Ai
Ji = A)
1
i

where the \;’s are the eigenvalues of M and J; € C™*™i If in (62) we
substitute z with M and we multiply the value « (in the subtraction) with
the identity matrix I, we have

2 4n)(g,
sy = Sy

— n!
_ f: / (n;fo‘> (ZTZ~' —aZIZ)"
1=0 ’
_ f: f(tifo‘) (Z(J —al)Z~1)"
1=0 ’
_ i f(n;@ Z(J —al)"Z™
=0 ’
_— z (2 fm;fo‘) (J — aI)”) z

For the inner bracket on the right hand side we have (by adapting the size
of I)

(J —al)" =

(Jp —al)"

71

Now we consider

n

> £ (o

for a general Jordan block J;. Since f is analyitc in D and o(M) C D, we
can choose a = \;. Then J; — \; I is a superdiagonal matrix with all the
non-zero entries equal 1. Powering of this matrix brings the superdiagonal
towards the top right-hand corner, as the following example shows.

2

0100 0010
010 00 1
01| ~ 00

0 0

0100)\° 000 1
010 00 0
01| ~ 00

0 0

Thus J; — AT is nilpotent with index m;, which implies
00 m;—1
A I A) n
i=0 i=0

By considering the movement of the superdiagonal we conclude that

fa) () - %

Zf(n)'(a>(Ji—aI)":) :

=0 n: f/()\z)
f(x)

This motivates the following definitions (which is definition 1.2 on page 3
of [6]).

Definition 10 (Matrix function via Jordan canonical form). Let f : D — C
be an analytic function on the open set D C C and M be a square complex
matriz with o(M) C D. Let J be its canonical Jordan form and Z be an
wnvertible matriz so that

M=2ZJZ 1.

We define
f(M) = Zdiag(f(J;))Z,

72

where

iy 00 I
f(J;) = f) :
J' ()
f()

Remark 9. Let’s assume that M is also diagonalizable, id est: there exists
a reqular matriz T and a diagonal matrix D so that

M =TDT™,

where

d?’LTL

Then computing f(M) with the definition 10 is simple because no derivatives
of f have to be computed. In fact we have

f(M) = Tf(D)T!
f(dun)
- T J(dz2) . 1.

S (dnn)

With Cauchy’s integral formula we can construct an equivalent definition,
which in fact can be generalized to operators (see for example definition
10.26 on page 243 of [14]). Bevore giving its formal definition, we perform
some motivating computations. We start by recalling the Cauchy’s integral
formula for analytic functions.

Theorem 6 (Cauchy’s integral formula). Let f : D — C be an analytic
function on the open set D C C, let zo € D and let v be a closed contour in
D with counterclockwise direction and enclosing zy. Then

f(20) = Mdz.

2mi J, 2z — 20

Let’s assume that M is diagonalizable, then for a complex number z ¢ o (M)
we have

(21 — M)t = (Tz2IT'—TDT)™}
(T(zI - D)T)™
— T(z2I - D)'T}

73

Since D is a diagonal matrix, we have

1
z—d11

(:I - D) = e

1

z—dnn

Choosing 7 so that it encloses (M) and considering a general entry d;; on
the main diagonal of the matrix D gives

1
(dii) - —% (Z) dz
211) 2 —dy

On the other side, with the definition 10, we have

f(dy)
f(d2)

f(D) =
Thus, by considering the integral componentwise we have

F(D) = %]{f(z)(zl _ D) ld=.

Moreover, the linearity of the integral allows writing

(27”7{]”)(zI — D)~ 1dz>T_ ij{f T(zI — D)'T 'dz.

Therefore, by collecting all the results and starting with definition 10 (with
T = Z), we have

f(M) = TfD)T™
_ T(ﬁff(z)(zI—D)%z)T‘l
= o= %f T(:2I -D) 'T 'dz

_ 1
= %Z]{f)(zI — M) 'dz.

This motivates the following definition (which is definition 1.11 on page 8
of [6]).

74

Definition 11 (Matrix function via Cauchy’s integral formula). Let f : D —
C be an analytic function on the open set D C C and M be a square complex
matriz with o(M) C D. We define

FM) = o f ()T - M) dz,

where v 1s a closed contour contained in D, with counterclockwise direction
and enclosing o(M).

The theorem 1.12 on page 8 of [6] states that definition 11 is equivalent to
the definition 10. Its proofs refers to the theorem 6.2.28 of [7].

75

B Codes

B.1 Convolution

Y%compute int_0"t f(t—tau)g(tau) dtau, where the Laplace transform of the
%kernel is F(s)=1/sqrt(s). The function g(t) can be choosen between
%four possibilities. The weights Matrices are computed with the

%Cauchy integral on a circle and can be computed for the first three
%RadaullA methods. The code plots the absolute error at the

%endtime Tend versus the timestep h in double logarithmic scale and
Y%approximate the algebraic order of convergence.

function simple_classic_convolution

%final time
Tend=4;

%Laplace transform of f=1/sqrt(pix*t)
F=0(t) 1./sqrt(t);

P%function g(t)

%g=0(t) exp(t);

%g = Q(t) sqrt(pi)*t;
g = @(t) sqrt(pi)*t."2;
%g=Q(t) sqrt(pixt);

%analytic solution

Y%osol=A(t) exp(t).xerf(sqrt(t));
%osol=Q(t) 4/3xt."(3/2);
sol=0(t) 16/15xt."(5/2);
%sol=Q(t) pixt/2;

%choose the Runge—Kutta method
%[c,D]=impliciteuler;
[c,D]=Radau2stages;
%[c,D]=Radau3stages;

%plot the error
for i=1:4
h(i)=0.5"(i—1);
err(i)=error (Tend,h(i),g,sol,F,c,D);

end

figure;

loglog (h,err, s—);

xlabel (’logarithm of timestep h’);
ylabel(’logarithm of absolute error’);
legend (’absolute error at final time’);

%compute the algebraic order of convergence
p=polyfit (log(h),log(err) 1);

fprintf(’algebraic order of convergence %f\n’,p(1l));
end

function err=error (Tend,h,g,sol,F,c,D)
Y%number of iterations

Nite=ceil (Tend/h);
N=Nite —1;

76

%define a function G so that G(t)=g(t+c_1,...,t+c.m) where m is the number
%of stages of the Runge—Kutta method and (c¢_1,...,c.m) is the time vector
%of the Runge—Kutta Method

6=0(3) g(j*htcrh);

Y%compute the approximated solution

u=W_0_cerchio (F,D,h)*G(N);

for i=1:N
u=u+tW_cerchio(F,D,h,i)*G(N—i);

end

%compute the absolute error at final time
err=abs(sol(Tend)—real (u(end)));

end
function [c,D]=impliciteuler
c=1;

D=0(z) 1—z;
end

function [c,D]=Radau2stages

c=[1/3; 1];
D=@(z) 0.5%[3 1—4%z;—9 4%z+5];
end

function [c,D]=Radau3stages

c=[(4—sqrt (6))/10; (4+sqrt(6))/10; 1];

RKA=[(88—T#sqrt (6)) /360 (296—169%sqrt (6)
(2964+169xsqrt (6)) /1800 (88+T7xsqrt (6)
(16—sqrt (6))/36 (164+sqrt(6))/36 1/9]

b=[(16—sqrt (6))/36 (16+sqrt(6))/36 1/9]

invRKA=inv (RKA);

D=0(z) invRKA —z*invRKA*[1;1;1]+bxinvRKA;

end

) /1800 (—24+3%sqrt (6))/225;
) /360 (—2—3xsqrt (6))/225;

)

%compute the first weight W.0 over the circle. F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep
function W_O_cerchio_test=W_O_cerchio(F,D,h)
W_O_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%mumber of quadrature points on the circle
L=500;
for 1=0:L—-1
A=D(rhoxexp(2ixpi*1/L))/h;
[V.Diag] = eig(A);
W_O_cerchio_test=W_O_cerchio_test+1/L*Vxdiag(F(diag(Diag)))*inv(V);
end
end

%compute the n—th weight Wm over the circle .F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep, n is the index of the n—th weight.

function W_cerchio_test=W_cerchio(F,D,h,n)

7

W_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%number of quadrature points on the circle
L=500;
for 1=1:L
A=D(rhoxexp(2ixpi*1/L))/h;
[V,Diag] = eig(A);
W_cerchio_test=W_cerchio_test+Vxdiag (F(diag(Diag)))*inv (V) *...
exp(—2i*pi*nx1/L);
end
W_cerchio_test=rho"(—n)/L*W_cerchio_test;
end

B.2 Approximation of the contour integral

%Test the hyperbola approximation of the convolution weights when the
%Laplace transform of the convolution kernel is F(s)=1/sqrt(s). The code
%plots the error of the hyperbola approximation of the convolution weights
%versus the weight index with respect to reference weights compute on the
%hyperbola with a large number of quadrature points.

function testweights_hyperbola

%timestep
h=0.25;

%partitioning constant
B=10;

%quadrature point number (the quadrature points are 2xK+1)
K=10;

%Laplace transform di f=1/sqrt(pixt)
F=e(t) 1./sqrt(t);

%choose the Runge—Kutta method
[e]=impliciteuler;
%[e]=Radau2stages;
%[e]=Radau3stages;

rho = rho_optimal(B,K);

%first contour

1=1;

err=zeros (3,1999);

for i=B"0:2%B"1—-1
Y%compute reference solution
a=real (W_hyperbola(i,h,50,F,e,1,rho,B));
%compute approximation of the hyperbola
b=real (W_hyperbola(i,h,10,F,e,1,rho,B));
err(1,i)=abs(a(end)—b(end));

end

%second contour
1=2;
for i=B"1:2%xB"2—1
Y%compute reference solution

78

a=real (W_hyperbola(i,h,50,F,e,1,rho,B));
Y%compute approximation of the hyperbola
b=real (W_hyperbola(i,h,10,F,e,1,rho,B));
err(2,i)=abs(a(end)—b(end));

end

%third contour

1=3;

for i=B"2:2%xB"3—1
Y%compute reference solution
a=real (W_hyperbola(i,h,50,F,e,1,rho,B));
Y%compute approximation of the hyperbola
b=real (W_hyperbola(i,h,10,F,e,1,rho,B));
err (3,i)=abs(a(end)—b(end));

end

%plot the errors

figure;

loglog (1:19,err(1,1:19) ,10:199,err(2,10:199) ,100:1999,err(3,100:1999));
axis ([1 2500 10°(—12) 1]);

xlabel (index of weight’);

ylabel (7absolute error’);

legend (’1st contour’,’2nd contour’,’3rd contour’);

end

function [e]=impliciteuler

b=1;

RKA=1;

e=0(n,z) (1+z*bx((eye(l)—z+*RKA)\ones(1,1))) nxb*xinv(eye(1l)—z+RKA);
end

function [e]=Radau2stages

b=[3/4 1/4];

RKA=[5/12 —1/12;3/4 1/4];

e=0(n,z) (1+z*bx((eye(2)—z+*RKA)\ones(2,1))) nxbxinv (eye(2)—z+RKA);
end

function [e]=Radau3stages

RKA=[(88—Txsqrt (6)) /360 (296—169+sqrt (6))/1800 (—2+3+sqrt (6))/225;
(296+169%sqrt (6)) /1800 (88+T7xsqrt(6))/360 (—2—3xsqrt(6))/225;
(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

b=[(16—sqrt (6))/36 (164+sqrt(6))/36 1/9];

invRKA=inv (RKA);

ezg(n,z) (14z*b*((eye (3)—z+*RKA)\ones (3,1))) "nxb*inv (eye (3)—z*RKA) ;

%compute the optimal rho with the strategy described in section 4.2. B is
%the partitioning constant and K is the quadrature point number
function rho =rho_optimal (B,K)
alpha=1;
d=alpha;
sigma=0;
a=0(rho) acosh(2*B/(l—rho)/sin(alpha));
eps_K=@(rho) exp(—2«pixd/a(rho)*K);
valorevecchio = 100;
for 1i=1:9999
rho=1i/10000;
valoremuovo=eps*eps_K(rho) " (rho—1)+eps_K(rho) rho;
if valoremuovo < valorevecchio

79

J=1;
valorevecchio=valoremuovo;
end
end
rho=j/10000;
end

%compute the convolution weight by approximating it on the hyperbola. n is
%the index of the convolution weight, h is the timestep, K is the number
%of quadrature points on the hyperbola, F is the Laplace transform of the
%convolution kernel, e is related to the Runge—Kutta method, 1 indicates
%which contour is taken into account, rho is a parameter of the
%hyperbola and B is the partitioning constant

function W_hyperbola_test=W_hyperbola(n,h,K,F,e,1,rho,B)

alpha=1;
d=alpha;
sigma=0;

a=@(rho) acosh(2xB/(l1—rho)/sin (alpha));
tau=1/K*a(rho);
mu=2%pixd*Kx(l—rho)/(2«B"1—2)/h/a(rho);

%hyperbola function
hyperbola=@(x) mu*(l—sin(alphatx*li));

%hyperbola derivative function
dhyperbola=@(x) —li*muxcos(alphatx*1i);

%quadrature weights
w=0(k) lixtau/2/pixdhyperbola(k*tau);

%quadrature points
lambda=0 (k) hyperbola(kx*tau);

Y%compute the weight
W_hyperbola_test=0;
for k=K:K
a=w (k) ;
b=e(n,hxlambda(k));
c=F(lambda(k));
W_hyperbola_test=W_hyperbola_testt+h*axbx*c;
end

end

B.3 Integral equation

% Solve the integral equation y(t) = H(t) — int_.0"t f(t—tau)y(tau)dtau,
% y(0) = 0, where f(t)=1/sqrt(pixt), F(s)=1/sqrt(s),

% H(t)=4/3%t"(3/2)+t*sqrt (pi). The analytic solution is y(t)=txsqrt(pi).
% The Runge—Kutta method is choosen between the first three RadaullA

% methods. The code plots the absolute error at final time versus the

% timestep h and approximates the algebraic order of convergence.

function integral_equation_fast

%final time
Tend=4;

80

%partitioning number
B=10;

%quadrature point number (the quadrature points are 2xK+1)
K=15;

Y%number of time refinements
NoRef =35;

%function H(t)
H=@(t) 4/3%t."(3/2)+t*sqrt(pi);

%Laplace transform of the kernel f=1/sqrt(pixt)
F=e(t) 1./sqrt(t);

%analytic solution of the integral equation
sol=0(t) txsqrt(pi);

%Runge—Kutta method
%[r,e,c,RKA,D]=impliciteuler ;
[r,e,c,RKA ,D]=Radau2stages;
%[r,e,c,RKA,D|J=Radau3stages;

%preallocation
h=zeros (1,NoRef);
err=zeros (1,NoRef);
time=zeros (1,NoRef);

%compute the error
for i=1:NoRef
h(i)=0.5"(i);
tic;
err(i)=error (Tend ,h(i),sol ,F,r,e,c,D,RKA,H,B,K);
time (i)=toc;
end

%plot the absolute error at final time versus the timestep h

)

figure;

loglog (h,err, s—");

xlabel (’logarithm of timestep h’);

ylabel(’logarithm of absolute error’)
()

)

)
%compute the algebraic order of convergence
p=polyfit (log(h),log(err) ,1);

fprintf(’algebraic order of convergence after %u refinements: %f\n’ ,...
NoRef ,p(1));

legend (’absolute error at final time

end

%compute the absolute error at final time Tend. h is the timestep, sol is
%the analytic solution, F is the Laplace transform of the kernel,

Y%r ,e,c,D,RKA are related to the Runge—Kutta method, H is the function H(t),
%B is the partitioning number and K is the quadrature point number.
function err=error (Tend,h,sol ,F,r,e,c,D,RKA ,H,B,K)

Ymnumber of iterations
Nite=ceil (Tend/h);

%the first 2«B weights are computed with the Cauchy integral on the circle

81

W_0=W_O_cerchio(F,D,h);

W=cell (2xB,1);

for i=1:2%B
W{i}=W_cerchio(F,D,h,i);

end

%inizialize contour
[w,lambda ,Lmax|=contour (B,Nite ,K,h);

%precompute the partitions
[b,L]=tinte(Nite,B);

Y%approximated solution vector: y(i) = y((i—I+c)=xh)
y=cell (1,Nite);
y{l}=real ((eye(size (W_0))+W_0)\H(cxh));

%struct odesol

%odesol{a,b} contains 2xK+1 solutions of the contour l=a at time t=bxh
%mnecessary only until time (Nite—1)xh

odesol=cell (Lmax ,Nite—1);

odesol{Lmax,Nite —1}=[];

Y%compute the first values of odesol and store some values which are used
Y%many times
rr=zeros (Lmax ,2+xK+1);
e0=cell (Lmax ,2xK+1);
a2=cell (Lmax,2xK+1);
for 1=1:Lmax
for j=K:K
rr(1l,j+K+1)=r(h+lambda(1l,j+K+1));
e0{1, j+K+1}=e (0 ,h*xlambda(l, j+K+1));
odesol{1l,1}{1}(j+K+1)=hxe0{1,j+K+1}xy{1};
a2{1, j+K+1}=(eye(size (RKA))—h*lambda(1l,j+K+1)«RKA)\ones(size(c)) ...
*xF(lambda (1, j+K+1));
end
end

%vector used for updating odesol
ki=zeros (Lmax,1);
k2=ones (Lmax,1) ;

for i=1:Nite—1
ypast=0;

Y%weights approximated on the hyperbola only from the second contour
if L(i)>1

for 1=2:L(i)
for j=K:K
%those terms are computed separately otherwise Matlab makes an
%error (smallnumberssmallnumber=hugenumber)
al=w(1,j+K+1)*rr (1, j+K+1)"(i—b(1,i));
a3=odesol{l,b(1,i) }{1}(1,j+K+1);
ypast=ypasttal*a2{l, j+K+1}*a3;
end
end

%classic (non—fast) convolution for the first contour (weights
Y%approximated with Cauchy integral on the circle)
for m=b(2,i):i—1

82

ypast=ypast+W{i—m}xy{m+1};
end
else
for m=0:i—1
ypast=ypast+W{i-m}xy{m+1};
end
end

Y%compute the new value of the solution
y{i+1l}= real ((eye(size (W_0))4+W_0)\(H((i+c)*h)—ypast));

Y%update odesol
if i+l<Nite
for 1=1:Lmax
if i4+1==(2+k1(1))*B"1-1
%cancel old values and compute the new ones
if 1>1
Y%store a value in the past
odesol{l,b(1l,i41)}{l}=o0desol{l,b(1,i+1)}{2};
end
for j=K:K
odesol{l,i+1}{1}(j+K+1)=rr(1,j+K+1).%xodesol{1,i}{2}(j+K
+1)4+h%e0{1, j+K+1}xy{i+1};
end
k1(1)=k1(1)+1;
else
Y%compute new values
for j=K:K
odesol{l,i+1}{1}(j+K+1)=rr(1,j+K+1).%xodesol{1,i}{1}(j+K
+1)4+h*e0{1, j+K+1}xy{i+1};
end
if size(odesol{l,i},2)==2
for j=K:K
odesol{l,i+1}{2}(j+K+1)=rr(1,j+K+1).%xodesol{1l,i}{2}(
jHK+1)+h%e0 {1, j4K+1} sy {i+1};
end
end
end
if i+l==k2(1)#B"1+1
%initialize values for the future
for j=K:K
odesol{l,i+1}{2}(j+K+1)=h*e0{1, j+K+1}xy{i+1};
end
k2 (1)=k2(1)+1;
end
end
end

end

%compute the absolute error
err=abs(sol(Tend)—y{end}(end));

end

function [r,e,c,RKA,D|]=impliciteuler

c=1;

RKA=1;

=0 (z) 1/(1-2);
e=@(n,z) (1-2z)"(—n—-1);
D=0(z) 1-z;

83

end

function [r,e,c,RKA,D|]=Radau2stages

b=[3/4 1/4];

c=[1/3; 1];

RKA=[5/12 —1/12;3/4 1/4];

r=Q@(z) l+zx*bx((eye(2)—z*RKA)\ones(2,1));

e=0(n,z) (1+z*bx((eye(2)—z+*RKA)\ones(2,1))) nxbxinv (eye(2)—z+RKA);
D=@(z) 0.5%[3 1—4%z;—9 4xz+5];

end

function [r,e,c,RKA,D|]=Radau3stages

b=[(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

c=[(4—sqrt (6))/10; (4+sqrt(6))/10; 1];

RKA=[(88—Txsqrt (6)) /360 (296—169xsqrt (6))/1800 (—2+3xsqrt(6))/225;
(296+169*sqrt (6)) /1800 (88+T7xsqrt (6))/360 (—2—3xsqrt(6))/225;
(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

r=Q@(z) l+z*bx((eye(3)—z*RKA)\ones(3,1));

e=Q(n,z) (l+z*b*((eye(3)—z*RKA)\ones(3,1))) n*bxinv(eye(3)—z+RKA);

invRKA=inv (RKA);

D=@(z) invRKA —z+(RKA\[1;1;1])*bxinvRKA;

end

%compute the first weight W.0 over the circle. F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep
function W_O_cerchio_test=W_O_cerchio(F,D,h)
W_O_cerchio_test=0;
%radius of the circle
rho=0.6;
Ymumber of quadrature points on the circle
L=100;
for 1=0:L-1
A=D(rhoxexp(2ixpi*1/L))/h;
[V.Diag] = eig(A);
W_O_cerchio_test=W_O_cerchio_test+1/L*Vxdiag(F(diag(Diag)))*inv(V);
end
end

%compute the n—th weight Wn over the circle .F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep, n is the index of the n—th weight.
function W_cerchio_test=W_cerchio(F,D,h,n)
W_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%mumber of quadrature points on the circle
L=100;
for 1=1:L
A=D(rhoxexp(2ixpi*1/L))/h;
[V.Diag] = eig(A);
W_cerchio_test=W_cerchio_test+Vxdiag (F(diag(Diag)))*inv (V)*exp(—2ixpi*nx
1/L);
end

W_cerchio_test=rho"(—n)/LxW_cerchio_test;
end

%compute all the hyperbola quadrature weights, the hyperbola quadrature

%points and the number of contours involved. B is the partitioning number,
%Nite is the number of iterations, K is the quadrature point number, h is

84

%the timestep
function [w,lambda,Lmax]=contour(B,Nite,K,h)

%compute the biggest number of contour involved

if ceil(log((Nite)/2)/log(B))==log ((Nite)/2)/log(B);
Lmax =log ((Nite)/2)/log(B)+1;

else
Lmax=ceil (log ((Nite)/2)/log(B));

end

%set the hyperbola parameters

alpha=1;
d=alpha;
sigma=0;

rho=rho_optimal (B,K,alpha,d);

a=0(rho) acosh(2*B/(l—rho)/sin(alpha));
tau=1/K*a(rho);

w=zeros (Lmax ,2*K+1);

lambda=zeros (Lmax ,2*%K+1);

for 1=1:Lmax
mu=2%pi*xd*K+(l—rho)/(2¥B"1—2)/h/a(rho);

Y%hyperbola function

hyperbola=@(x) mu*(l—sin(alphat+x*1i))+signma;
Y%hyperbola derivative function
dhyperbola=@(x) —lixmuxcos(alphatx*1i);

Y%compute the hyperbola quadrature weights and the hyperbola quadrature
%point
for k=K:K
w(l,k+K+1)=1lixtau/2/pixdhyperbola(k*tau);
lambda(1l,k+K+1)=hyperbola(kxtau);
end
end
end

%compute the optimal value of rho with the strategy described in section
%4.2. B is the partitioning number, K is the quadrature number, alpha and d
%are parameters of the hyperbola
function rho =rho_optimal(B,K,alpha,d)
a=0(rho) acosh(2xB/(1—rho)/sin (alpha));
eps_K=@(rho) exp(—2xpixd/a(rho)*K);
valorevecchio = 100;
for i=1:99

rho=i /100;

valoremuovo=eps*eps_K(rho) " (rho—1)+eps_K(rho) rho;

if valoremuovo < valorevecchio
j=i;

valorevecchio=valoremuovo;

end
end
rho=j /100;
end

% compute all the partition times. Nite is the number of iterations. For
% N=2:Nite store in b(:,N—1) the times (N—1)=b(1,N—1)-b(2,N—1), bl-b2,...
% b(L(N—1)—1,N—1))—0=b(L(N) ,N—1)

function [b,L]=tinte(Nite ,B)

if ceil(log((Nite)/2)/log(B))=log ((Nite)/2)/log(B);

85

Lmax =log ((Nite)/2)/log(B)+1;
else

Lmax=ceil (log ((Nite)/2)/log(B));
end
g=zeros (Lmax+1,Nite—1);
b=zeros (Lmax+1,Nite—1);
L=ones (1,Nite—1);
for N=2:Nite

N=N-—-1;
b(1,N)=N;
for n =1:N
if 2%B°L(N) == n+1
L(N)=L(N)+1;
end
k = 1;

while mod(n+1,B"k)==0 && k < L(N)
q(k,N) = q(k,N)+1;

k=k+1;
end
for kx = 1:L(N)-1
b(k+1,N) = q(k,N)*B"k;
end
end
end
end

B.4 Integral equation with derivative

% Solve the integral equation y(t) = H(t) — d/dt int_-0"t f(t—tau)y(tau)dtau,
% , y(0) = 0, where f(t)=1/sqrt(pi*t), F(s)=1/sqrt(s). Many functions

% H(t) are listed and depend on the chosen analytic solution y(t). The

% latter should have a fast enough decay at zero in order to make the

% convolution smooth enough so that the theoretic convolution quadrature

% order of convergence is obtained. y(t)=sqrt(pi)*t." (7/2) turned out to be
% a good choice. The Runge—Kutta method is choosen between the first three
% RadaullA methods. The derivative can be approximated with the first

% 4—stage BDF. The code plots the relative error at final time versus the

% timestep h and approximates the algebraic order of convergence.

function integral_equation_with_derivative_fast

%final time
Tend=4;

%partitioning number
B=10;

%quadrature point number (the quadrature points are 2xK+1)
K=15;

%Runge—Kutta method

[r,e,c,RKA,D]=impliciteuler;
%[r,e,c,RKA,D]=Radau2stages;
%[r,e,c,RKA,D]=Radau3stages;

%Laplace transform of the kernel f=1/sqrt(pixt)
F=0(t) 1./sqrt(t);

86

%analytic solution the integral equation
%sol=Q(t) sqrt(t*pi);

%sol=Q(t) t*sqrt(pi);

%sol = @Q(t) sqrt(pi)*t."2;

%sol = @(t) sqrt(pi)*t. 5;

%sol = @Q(t) sqrt(pi)*t."10;

%sol = @Q(t) sqrt(pi)*t."20;

sol = @(t) sqrt(pi)*t."(7/2);

%function H(t)

JH=Q(t) pi/2+ sqrt(txpi);

JH=Q(t) 2+sqrt(t)+t*xsqrt(pi);

TH=Q(t) 8/3xt."(3/2)+sqrt(pi)*t." 2;

YH=Q(t) 256/63xt.7(9/2)+sqrt(pi)*t. 5;

H=Q(t) 262144/46189%t."(19/2) +sqrt (pi)+t. 10;

GH=Q(t) 274877906944/34461632205%t." (39/2) +sqrt (pi)*t. 20;
H=0(t) 35%pi*t."3/324+sqrt(pi)*t." (7/2);

%analytic convolution (just to know)

Y%conv=Q(t) pixt/2;

Yoconv=A(t) 4/3%t.7(3/2);

Yoconv=@(t) 16/15xt."(5/2);

Joconv=Q(t) 512/693%t.7(11/2);

Yconv=a(t) 524288/969969%t." (21/2);

Yconv=Q(t) 549755813888/1412926920405%t." (41/2) ;
%conv=Q(t) 35xpixt. 4/128;

%compute the absolute error at final time

time=zeros (1,5);

for i=1:5
tic;
[err{i},h(i)]=errore(i,Tend,B,r,e,c,RKA,D,K,H,F,so0l);
time (i)=toc;

end

%plot the relative error at final time versus the timestep h

figure;

loglog (h,[err{1}(end) err{2}(end) err{3}(end) err{4}(end) err{5}(end)],...
b

xlabel ('log(h)’);

ylabel(’log(relative error) at t=4’);

hold on;

legend (’'relative error at final time’);

%compute the algebraic order of convergence

p=polyfit (log(h),log ([err{1}(end) err{2}(end) err{3}(end) err{4}(end)
err {5}(end)]) ,1);

fprintf(’algebraic order of convergence: %f\n’,p(1));

end

Y%compute the relative error at final time Tend. the timestep is 0.5 p, B is
%the partitioning number, r,e,c,RKA,D are related to the Runge—Kutta
%method, H is the function H(t), K is the quadrature number, F is the
%Laplace transform of the kernel and sol is the reference solution

function [err,h]=errore(p,Tend,B,r,e,c,RKA,D,K,H,F, sol)

%timestep

87

h=0.5"(p)

Y%number of iterations
Nite=ceil (Tend/h);

%coefficients of the BDF method of

%order 1

a=[1 1;0 —h]\[0;1];

%order 2

Z%a=[1 1 1; 0 =h —2%h; 0 h"2/2 2xh~2]\[0;1;0];
%order 3

OM=[1 1 1 1;...

% 0 —h —2%h —3xh;...

% 0 h"2/2 2«xh"2 9/2xh "~ 2;...

% 0 —-h"3/6 —8/6xh"3 —27/6xh"3];

%a=M\ [0;1;0;0];

Y%order 4

OM=[1 1 11 1;...

% 0 —h —2%h —3%h —4xh;...

% 0 h"2/2 2«h"2 9/2%h"2 16/2xh"2;...

% 0 —h°3/6 —8/6%h°3 —27/6xh"3 —4°3/6+h"3;...
% 0 —h"4/24 —(2%h)"4/24 —(3xh) 4/24 —(4xh) 4/24];
%a=M\ [0;1;0;0;0];

%the first 2xB weights are computed with the Cauchy integral on the circle
W_0=W_O_cerchio(F,D,h);
W=cell (2xB,1);
for i=1:2%B
W{i}=W_cerchio(F,D,h,i);
end

%inizialize contour
[w,lambda ,Lmax|=contour (B,Nite ,K,h);

Y%precompute the artitions
P P P
[b,L]=tinte(Nite,B);

Y%approximated solution vector: y(i) = y((i—I+c)=xh)
y=cell (1,Nite)
e

y{l}=real ((ey &Size (W_0))+a(1l)*W_0)\H(cxh));

%struct odesol

%odesol{a,b} contains 2«K+1 solutions of the contour l=a at time t=bxh
Y%mnecessary only until time (Nite—1)xh

odesol=cell (Lmax ,Nite—1);

odesol{Lmax,Nite—1}=[];

%compute the first values of odesol and store some values which are used
Y%many times
rr=zeros (Lmax ,2xK+1);
e0=cell (Lmax,2xK+1);
a2=cell (Lmax,2xK+1);
for 1=1:Lmax
for j=K:K
rr (1, j+K+1)=r(hxlambda (1, j+K+1));
e0{1, j+K+1}=e (0 ,hxlambda (1, j+K+1));
odesol{1l,1}{1}(j+K+1)=hxe0{1l,j+K+1}xy{1};
a2{1l, j+K+1}=(eye(size (RKA))—hxlambda (1, j+K+1)*xRKA)\ones(size (c))x*F(
lambda (1, 3j+K+1));
end
end

88

%vector used for updating odesol
ki=zeros (Lmax,1);
k2=ones (Lmax,1);

%vectors of partial convolution and past values of the convolution
ypast=0;

convpastpast=0;

convpastpastpast=0;

convpastpastpastpast=0;

for i=1:Nite—1

%store old values of the convolution

if i>3
convpastpastpastpast=convpastpastpast;
end
if i>2
convpastpastpast=convpastpast;
end
if i>1
convpastpast=convpast,
end

convpast=W_Oxy{i}+ypast;

Y%compute the partial convolution
ypast=0;

%weights approximated on the hyperbola only from the second contour
if L(i)>1

for 1=2:L(1i)
for j=XK:K
%those terms are computed separately otherwise Matlab makes an
%error (smallnumberssmallnumber=hugenumber)
al=w(1l,j+K+1)*rr(1,j+K+1) " (i—-b(1,1i));
a3=odesol{l,b(1,i) }{1}(1,j+K+1);
ypast=ypast+al*a2{l,j+K+1}*a3;
end
end

%classic (non—fast) convolution for the first contour (weights
Y%approximated with Cauchy integral on the circle)
for m=b(2,i):i-1
ypast=ypast+real (W{i-m}*xy{m+1});
end
else
for m=0:i—1
ypast=ypast+real (W{i-m}xy{m+1});
end
end

YBDF order 1
y{i+1}=real ((eye(size (W_0))+W_0xa(1l))\(H((i+c)*h)—a(l)*ypast —...
a(2)xconvpast));

YBDF order 2
?y{i—&-l}: real ((eye(size (W.0))+W.0xa(1))\(H((i+c)*h)—a(1l)*ypast—a(2) ...

% xconvpast—a(3)*convpastpast));

9BDF order 3
%y{i+1}= real ((eye(size (WO0))+WOO*a(1l))\(H((i+c)*h)—a(l)*ypast —...

89

% a(2)*convpast—a(3)*convpastpast—a(4)*convpastpastpast));

9BDF order 4

Yy{i+1}= real ((eye(size (WL0))+WO0*a(1))\(H((it+c)*h)—a(l)*ypast ...
% —a(2)*convpast—a(3)*convpastpast—a(4)*convpastpastpast ...

% —a(b)*convpastpastpastpast));

Y%update odesol
if i+l<Nite

for 1=1:Lmax
if i41==(2+k1(1))*B 1-1
%cancel old values and compute the new ones
if 1>1
%store a value in the past
odesol{l,b(1l,i+1)}{1}=o0desol{1l,b(1,i+1)}{2};
end
for j=K:K
odesol{l,i+1}{1}(j+K+1)=rr(1,j+K+1).xo0desol{1l,i}{2}(j+K
+1)+h*e0{1, j+K+1}xy{i+1};
end
k1 (1)=k1(1)+1;
else
Y%compute new values
for j=K:K
odesol{l,i+1}{1}(j+K+1)=rr(1,j+K+1).*xodesol{1l,i}{1}(j+K
+1)+h*e0{1, j+K+1}xy{i+1};
end
if size(odesol{l,i},2)==2
for j=K:K
odesol{l,i+1}{2}(j+K+1)=rr(1l,j+K+1).%xodesol{l,i}{2}(
jHK+1)+h*e0 {1, j4K+1}xy{i+1};
end
end
end
if itl==k2(1)*B 1+1
%initialize values for the future
for j=K:K
odesol{l,i+1}{2}(j+K+1)=hxe0{1, j+K+1}xy{i+1};
end
k2 (1)=k2(1)+1;
end
end
end
end

%compute the absolute error

for i=1l:length (y)

err (i)=abs ((y{i}(end)—sol(h*i))/sol(h*i));
end

end

function [r,e,c,RKA,D|]=impliciteuler
c=1;

RKA=1;
r=0(z) z);
—z) (—n—1);

90

function [r,e,c,RKA,D|]=Radau2stages

b=[3/4 1/4];

c=[1/3; 1];

RKA=[5/12 —1/12;3/4 1/4];

r=Q@(z) l+z*bx((eye(2)—z*RKA)\ones(2,1));

e=0(n,z) (1+z*bx((eye(2)—z+*RKA)\ones(2,1))) nxbxinv (eye(2)—z+RKA);
D=Q@(z) 0.5%[3 1—4%z;—9 4%xz+5];

end

function [r,e,c,RKA,D|]=Radau3stages

b=[(16—sqrt (6))/36 (164+sqrt(6))/36 1/9];

c=[(4—sqrt(6))/10; (44+sqrt(6))/10; 1];

RKA=[(88—T7+sqrt (6)) /360 (296—169*sqrt (6)) /1800 (—2+43xsqrt(6))/225;
(296+169*sqrt (6)) /1800 (88+T7xsqrt(6))/360 (—2—3xsqrt(6))/225;
(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

r=Q(z) l+z*bx((eye(3)—z*RKA)\ones(3,1));

e=0(n,z) (l4+z*bx((eye(3)—z*RKA)\ones(3,1))) nxbxinv(eye(3)—z+RKA);

invRKA=inv (RKA);

D=Q(z) invRKA —z*(RKA\[1;1;1])*bxinvRKA;

end

%compute the first weight W.0 over the circle. F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
Y%timestep
function W_O_cerchio_test=W_O_cerchio(F,D,h)
W_O_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%number of quadrature points on the circle
L=100;
for 1=0:L-1
A=D(rhoxexp(2ixpix1/L))/h;
[V,Diag] = cig(h);
W_O_cerchio_test=W_O_cerchio_test+1/L*xVxdiag(F(diag(Diag)))*inv(V);
end
end

%compute the n—th weight Wmn over the circle .F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep, n is the index of the n—th weight.
function W_cerchio_test=W_cerchio(F,D,h,n)
W_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%number of quadrature points on the circle
L=100;
for 1=1:L
A=D(rhoxexp(2ixpi*1/L))/h;
[V,Diag] = eig(A);
W_cerchio_test=W_cerchio_test+Vxdiag (F(diag(Diag)))*inv (V)*exp(—2ixpi*nx
1/L);
end
W_cerchio_test=rho (—n)/L*W_cerchio_test;

end

%compute all the hyperbola quadrature weights, the hyperbola quadrature
%points and the number of contours involved. B is the partitioning number,
%Nite is the number of iterations, K is the quadrature point number, h is

91

%the timestep
function [w,lambda,Lmax]=contour(B,Nite,K,h)

%compute the biggest number of contour involved

if ceil(log((Nite)/2)/log(B))==log ((Nite)/2)/log(B);
Lmax =log ((Nite)/2)/log(B)+1;

else
Lmax=ceil (log ((Nite)/2)/log(B));

end

%set the hyperbola parameters

alpha=1;
d=alpha;
sigma=0;

rho=rho_optimal (B,K,alpha,d);

a=0(rho) acosh(2*B/(l—rho)/sin(alpha));
tau=1/K*a(rho);

w=zeros (Lmax ,2*K+1);

lambda=zeros (Lmax ,2*%K+1);

for 1=1:Lmax
mu=2%pi*xd*K+(l—rho)/(2¥B"1—2)/h/a(rho);

Y%hyperbola function

hyperbola=@(x) mu*(l—sin(alphat+x*1i))+signma;
Y%hyperbola derivative function
dhyperbola=@(x) —lixmuxcos(alphatx*1i);

Y%compute the hyperbola quadrature weights and the hyperbola quadrature
%point
for k=K:K
w(l,k+K+1)=1lixtau/2/pixdhyperbola(k*tau);
lambda(1l,k+K+1)=hyperbola(kxtau);
end
end
end

%compute the optimal value of rho with the strategy described in section
%4.2. B is the partitioning number, K is the quadrature number, alpha and d
%are parameters of the hyperbola
function rho =rho_optimal(B,K,alpha,d)
a=0@(rho) acosh(2xB/(l1—rho)/sin (alpha));
eps_K=@(rho) exp(—2«pixd/a(rho)=*K);
valorevecchio = 100;
for i=1:99
rho=i/100;
valoremuovo=eps*eps_K(rho) " (rho—1)+eps_K(rho) rho;
if valoremuovo < valorevecchio
j=i;
valorevecchio=valoremuovo;
end
end
rho=j /100;
end

% compute all the partition times. Nite is the number of iterations. For
% N=2:Nite store in b(:,N—1) the times (N—1)=b(1,N—1)-b(2,N—1), bl-b2,...
% b(L(N-1)—1,N—1))—0=b(L(N) ,N—1)

92

function [b,L]=tinte(Nite,B)

if ceil(log((Nite)/2)/log(B))=log ((Nite)/2)/log(B);
Lmax =log ((Nite)/2)/log(B)+1;

else
Lmax=ceil (log ((Nite)/2)/log(B));

end

g=zeros (Lmax+1,Nite—1);

b=zeros (Lmax+1,Nite—1);

L=ones (1,Nite—1);

for N=2:Nite

N=N-—-1;
b(1,N)=N;
for n =1:N
if 2%«B L(N) == n+1
L(N)=L(N)+1;
end
k = 1;

while mod(n+1,B"k)==0 && k < L(N)
q(k,N) = q(k,N)+1;

k=k+1;
end
for kx = 1:L(N)-1
b(k+1,N) = q(k,N)*B k;
end
end
end
end

B.5 Parabolic PDE with impedance boundary condi-
tions

function [y,h]=main

%timestep
h_t=0.25;

%choose the meshgrid (6 is the finest)
nMesh=2;

%radius of the intermal circle
radius =0.5;

%final time
Tend=4;

Y%partitioning number
B=10;

%quadrature point number (the quadrature points are 2xK+1)
K=15;

%coefficients of the BDF method of

Y%order 1

Y%da=[1 1;0 —h_t]|\[0;1];

Y%order 2

%da=[1 1 1; 0 —h_t —2+«h_t; 0 h_t"2/2 2xh_t "2]\[0;1;0];

Y%order 3

da=[1 1 1 1;0 —h_t —2xh_t —3xh_t;0 h_t"2/2 2xh_t"2 9/2xh_t "2;...

93

0 —h_t"3/6 —8/6xh_t"3 —27/6xh_t " 3]\[0;1;0;0];
%order 4
%dM=[1 1 1 1 1;...
% 0 —h_t —2xh_t —3sxh_t —4xh_t ;...
% 0 hot"2/2 2xh_t"2 9/2xh_t"2 16/2xh_t "2;...
% 0 —h_t"3/6 —8/6xh_t 3 —27/6xh_t 3 —4°3/6xh_t "3;...
% 0 —h_t"4/24 —(2xh_t)"4/24 —(3xh_t)"4/24 —(4xh_t) " 4/24];
%da=dM\ [0;1;0;0;0];

Y%number of iterations
Nite=ceil (Tend/h_t);

%Laplace transform of the kernel f=1/sqrt(pixt)
F=e(t) —1./sqrt(t);

%Runge—Kutta method
%[r,e,c,RKA,D,mj=impliciteuler;
[r,e,c,RKA,D ,m]=Radau2stages;
%[r,e,c,RKA,D,m=Radau3stages

%the first 2xB weights are computed with the Cauchy integral on the circle
W_0=W_O_cerchio(F,D,h_t);
W=cell (2xB,1);
for i=1:2%B
W{i}=W_cerchio(F,D,h_t ,i);
end

%inizialize contour
[w,lambda ,Lmax]|=contour (B,Nite ,K,h_t);

%precompute the partitions
[b,L]=tinte(Nite,B,Lmax);

%set the quadrature rule (for LehrFEM)
QuadRule = P706();

%load the mesh and compute the stiffnes matrix,the mass matrix on the
%boundary , the degrees of freedom FreeDofs, the Dirichlet nodes
%DirichletNodes , the Robin nodes RobinNodes, the number of coordinates
%nCoordinates , and the mesh Mesh

[A,M,FreeDofs ,DNodes ,RNodes ,nCoordinates ,Mesh|=caricamesh(nMesh,radius);

%extend node vectors
extDNodes=zeros (length (DNodes)x*m,1) ;
extFreeDofs=zeros (length (FreeDofs)x*m,1) ;
extRNodes=zeros (length (RNodes)x*m,1) ;
for i=1:m
extDNodes ((1:length (DNodes))+(i—1)*length (DNodes))=DNodes+(i—1)...
*nCoordinates;
extRNodes ((1:length (RNodes))+(i—1)*length (RNodes))=RNodes+(i—1)...
*nCoordinates;
extFreeDofs ((1l:length (FreeDofs))+(i—1)*length (FreeDofs))=FreeDofs+...
(i—1)*nCoordinates;
end

%solution vector:u((l:nCoordinates)+(j?1)?nCoordinates ,i)=u((i?1+c(j))?h t)
u=zeros (nCoordinatess*m,Nite);

%solution at time t=c(:)7h

%first compute Dirichlet nodes

94

for i=1m
u(DNodes+(i—1)*nCoordinates ,1)=32/105/sqrt (pi)*(c(i)*h_t) " (7/2)...
+log (4)*(c(i)xh_t) "3/6;
end
Fmod=kron (speye(m) ,A)*u(:,1);

%then compute solution of FreeDofs

mtemp=kron (speye(m) ,M)xkron(W_0,speye(nCoordinates));

Z=sparse (kron(speye(m) ,A(FreeDofs ,FreeDofs)) —...
mtemp (extFreeDofs ,extFreeDofs)xda(l));

u(extFreeDofs ,1)=Z\Fmod(extFreeDofs);

%initialize odesol and set the values at time t=h %odesol{a,b} contains the

%27K+1 solutions for the contour l=a %at time t=b?h; is necessary only

%until time (Nite?1)7h

[odesol ,k1,k2,rr,e0,a2]=0DEsol (Lmax,RNodes,lambda,u,h_t,Nite,e,m,
nCoordinates ,r ,K,RKA,c,F);

%vectors of partial convolution and past values of the convolution
ypast=zeros (m«nCoordinates ,1);

convpast=zeros (m*nCoordinates ,1);

convpastpast=zeros (m*nCoordinates ,1);

convpastpastpast=zeros (m#*nCoordinates 1) ;
convpastpastpastpast=zeros (m*nCoordinates ,1);

for i = 1:Nite—1
%store old values of the convolution

if i>3
convpastpastpastpast=convpastpastpast;
end
if i>2
convpastpastpast=convpastpast;
end
if i>1
convpastpast=convpast;
end

convpast (extRNodes)=kron (W_0,speye(length (RNodes)))*u(extRNodes ,i) ...
+ypast (extRNodes) ;

Y%compute the partial convolution
[ypast]=calcolaypast(L,i,RNodes,extRNodes ,nCoordinates ,K,odesol ,b,w,
m,W,u,a2,rr);

%impose Dirichlet nodes
for ii=1:m
u(DNodes+(ii—1)*nCoordinates ,i+1)=32/105/sqrt (pi)*((c(ii)4i) *...
h_t) " (7/2)+log (4)*((c(ii)+i)*h_t) "3/6;
end

Fmod=—kron (speye (m) ,A)*u(:,i+1);
%solve the linear system

% BDF order 1

Y%u(extFreeDofs ,i+1)=Z\(Fmod(extFreeDofs)+kron(speye (m) ,

% M(FreeDofs ,FreeDofs))*(da(1)+ypast (extFreeDofs)+d(1(2)
% convpast(extFIeeDofs)));

% BDF order 2

Y%u(extFreeDofs ,i+1)=Z\(Fmod(extFreeDofs)+kron(speye(m) ,...

% M(FreeDofs ,FreeDofs)) *(da(1)*ypast (extFreeDofs)+da(2) x*
% convpast (extFreeDofs)+da(3)+xconvpastpast (extFreeDofs)));

95

% BDF order 3

u(extFreeDofs ,i+1)=Z\(Fmod(extFreeDofs)+kron(speye(m) ,...
M(FreeDofs ,FreeDofs))«*(da(l)+ypast (extFreeDofs)+da(2) *...
convpast (extFreeDofs)4da(3)*convpastpast (extFreeDofs)+da(4) *...
convpastpastpast (extFreeDofs)));

% BDF order 4
Y%u(extFreeDofs ,i+1)=Z\(Fmod(extFreeDofs)+kron(speye(m) ,...
% M(FreeDofs ,FreeDofs)) x(da(1l)x*ypast (extFreeDofs)+da(2) *...

% convpast (extFreeDofs)+da(3)+convpastpast (extFreeDofs)+da(4) ...
% convpastpastpast (extFreeDofs)4+da(5) *...
% convpastpastpastpast (extFreeDofs)));

Y%update odesol
if i+1<Nite
[odesol ,k1,k2]=aggiornaodesol(odesol,i,Lmax,kl1,k2,B,b,RNodes,...
h_t,u,m,nCoordinates ,e0,rr ,K);
end
end

%compute the error in the L2 norm

ErrHandle =@(x) solution(x,Tend);

y = L2Err_LFE(Mesh,real (u((m—1)*nCoordinates+1:end,Nite)),6QuadRule ,...
ErrHandle);

h = get_MeshWidth(Mesh);

%plot the approximated solution

plot_LFE(real (u((m—1)*nCoordinates+1:end,Nite)) , Mesh);
colorbar;

title (’approximation’);

%plot the reference solution
plot_LFE(solution(Mesh.Coordinates ,Tend) ,Mesh);
colorbar;

title (’exact solution’);

end

%reference solution

function y=solution(x,t)
R=sqrt(x(:,1)."24x(:,2).72);
y=32/105/sqrt (pi)*t " (7/2)+t"3/6*(log (R)+log(2));
end

%compute all the hyperbola quadrature weights, the hyperbola quadrature
%points and the number of contours involved. B is the partitioning number,
%Nite is the number of iterations, K is the quadrature point number, h is
%the timestep

function [w,lambda,Lmax]=contour(B,Nite,K,h)

%compute the biggest number of contour involved

if ceil(log((Nite)/2)/log(B))=log ((Nite)/2)/log(B);
Lmax =log ((Nite)/2)/log(B)+1;

else
Lmax=ceil (log ((Nite)/2)/log(B));

end

%set the hyperbola parameters

alpha=1;
d=alpha;

96

sigma=0;
rho=rho_optimal (B,K,alpha,d);

a=@(rho) acosh(2xB/(l1—rho)/sin (alpha));
tau=1/K*a(rho);

w=zeros (Lmax ,2*K+1);

lambda=zeros (Lmax ,2*xK+1);

for 1=1:Lmax
mu=2xpi*d*K«(l—rho)/(2%xB"1—2)/h/a(rho);

%hyperbola function

hyperbola=@(x) mu*(l—sin(alphatx*1li))+signma;
Y%hyperbola derivative function
dhyperbola=@(x) —li*muxcos(alphatx*1i);

Y%compute the hyperbola quadrature weights and the hyperbola quadrature
Y%point
for k=K:K
w(l,k+K+1)=1lixtau/2/pixdhyperbola(k*tau);
lambda(1l,k+K+1)=hyperbola(kxtau);
end
end
end

%compute the optimal value of rho with the strategy described in section
%4.2. B is the partitioning number, K is the quadrature number, alpha and d
Y%are parameters of the hyperbola
function rho =rho_optimal(B,K,alpha,d)
a=@(rho) acosh(2xB/(l1—rho)/sin (alpha));
eps_K=0@(rho) exp(—2+pixd/a(rho)*K);
valorevecchio = 100;
for i=1:99

rho=i/100;

valoremuovo=eps*eps_K(rho) " (rho—1)+eps_K(rho) rho;

if valoremuovo < valorevecchio
J=i;

valorevecchio=valoremuovo;

end
end
rho=j /100;
end

% compute all the partition times. Nite is the number of iterations. For
% N=2:Nite store in b(:,N—1) the times (N—1)=b(1,N—1)-b(2,N—1), bl-b2,...
% b(L(N—1)—1,N—1))—0=b(L(N) ,N—1)

function [b,L]=tinte(Nite,B,Lmax)

g=zeros (Lmax+1,Nite—1);

b=zeros (Lmax+1,Nite—1);

L=ones (1,Nite—1);

for N=2:Nite

N=N-—-1;
b(1,N)=N;
for n =1:N
if 2%B°L(N) == n+1
L(N)=L(N)+1;
end
k = 1;

while mod(n+1,B"k)==0 && k < L(N)

97

q(k7N) = q(ka)+1;

k=k+1;
end
for kx = 1:L(N)-1
b(k+1,N) = q(k,N)*B"k;
end
end
end
end

function [r,e,c,RKA,D,m|=impliciteuler

m=1;

c=1;

RKA=1;

=0 (z) 1/(1-2);
e=@(n,z) (1-z)"(—n—-1);
D=0(z) 1-z;

end

function [r,e,c,RKA,D,m]=Radau2stages

m=2;
b=[3/4 1/4];
c=[1/3; 1];

RKA=[5/12 —1/12;3/4 1/4];

r=0(z) l+z*bx*((eye(2)—z+RKA)\ones(2,1));

e=Q(n,z) (l4+z*b*((eye(2)—z*RKA)\ones(2,1))) n*bxinv(eye(2)—z+RKA);
D=@(z) 0.5%[3 1—4%z;—9 4%z+5];

end

function [r,e,c,RKA,D,m]=Radau3stages

m=3;

b=[(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

c=[(4—sqrt (6))/10; (4+sqrt(6))/10; 1];

RKA=[(88—Txsqrt (6)) /360 (296—169xsqrt (6))/1800 (—2+3xsqrt(6))/225;
(2964+169xsqrt (6)) /1800 (88+T7xsqrt (6))/360 (—2—3xsqrt(6))/225;
(16—sqrt (6))/36 (16+sqrt(6))/36 1/9];

r=0(z) l4z*bx((eye(3)—z+RKA)\ones(3,1));

e=Q(n,z) (l1+z*bx*((eye(3)—z*RKA)\ones(3,1))) nxbxinv(eye(3)—z+RKA);

invRKA=inv (RKA);

D=0@(z) invRKA —z#+(RKA\[1;1;1])*bxinvRKA;

end

%for a given mesh number compute the stiffness matrix, the mass matrix on

%the boundary, the degrees of freedom vector, the Dirichlet nodes vector,

%the Robin nodes vector, the number of coordinates nCoordinates. nMesh is

%the mesh number (must be between 1 and 6) and radius is the internal

%radius of the annulus

function [A7M,FreeDofs ,DNodes ,RNodes ,nCoordinates ,Mesh}:caricamesh .
(nMesh ,radius)

Coordinates=sprintf(’ Coordinates%u.dat’ ,nMesh);
Elements=sprintf(’ Elements%u.dat’ ,nMesh);

Mesh = load_Mesh(Coordinates ,Elements);

Mesh = add_Edges (Mesh);

%set the flags of points on the exterior boundary to —1 and on the interior
%to —2, and collects the degree of freedoms

nCoordinates = size (Mesh.Coordinates, 1) ;

Loc = get_BdEdges(Mesh);

98

BE = Mesh.Edges(Loc,:);
Mesh.BdFlags = zeros(size (Mesh.Edges, 1) ,1);

for i=1l:size(Loc,1)
if (Mesh.Coordinates(BE(i,1),1)"2 +Mesh.Coordinates(BE(i,1) ,2)"2 >
(radius "240.5))
Mesh.BdFlags (Loc(i))=—1;
else
Mesh.BdFlags (Loc(i))=—2;
end
end

%Extract Dirichlet nodes
for j = -1

DEdges = Loc(Mesh.BdFlags(Loc) =— j);

DNodes = unique ([Mesh.Edges (DEdges ,1); Mesh.Edges(DEdges,2)]);
end

%Ectract Robin nodes
for j = =2

REdges = Loc(Mesh.BdFlags(Loc) =— j);

RNodes = unique ([Mesh.Edges (REdges ,1); Mesh.Edges(REdges,2)]);
end

%compute the degrees of freedom vector
FreeDofs = setdiff (l:nCoordinates ,DNodes);

%assemble the stiffness matrix
A = assemMat_LFE(Mesh,@STIMA_Lapl_LFE);

%compute the mass matrix but just integrating on the inner boundary
M=zeros (size (Mesh.Coordinates ,1) ,size (Mesh.Coordinates,1));
nEdges = size (Mesh.Edges,l);
for i = 1:nEdges
if (Mesh.BdFlags(i) =— —2)
dist=norm(Mesh.Coordinates (Mesh.Edges(i,1) ,:)—Mesh.Coordinates...
(Mesh.Edges (i,2) ,:));
M(Mesh.Edges(i,1l), Mesh.Edges(i,2))= dist/6;

% the matrix is symmetric
M(Mesh.Edges(i,2), Mesh.Edges(i,1)) = M(Mesh.Edges(i,1) ,...
Mesh.Edges (i,2));
M(Mesh.Edges(i,1) ,Mesh.Edges(i,1))=M(Mesh.Edges(i,1) ,...
Mesh.Edges(i,1l))+ dist/3;
M(Mesh.Edges(i,2) ,Mesh.Edges(i,2))=M(Mesh.Edges(i,2) ,...
Mesh.Edges(i,2))+ dist/3;
end
end
M=sparse (M) ;
end

%create the struct odesol and compute the first values for t=cxh_t.
%odesol{a,b} contains 2+K+1 solutions of the contour l=a at time t=bxh for
%every Robin node

%kl and k2 are the vectors used for updating odesol, rr,e0,a2 are values
%which are used many times in the code. Lmax is the number of contours
%involved in the whole algorithm , RNodes is a vector which indicates the
%Robin nodes ,lambda are the quadrature point on the hyperbola, u is the
Y%approximate solution, h_t is the timestep, Nite is the number of
%iterations , nCoordinates is the number of coordinates of FEM, e,m,r RKA, c
%are related to the Runge—Kutta method, F is the Laplace transform of the

99

Y%kernel
function [odesol ,kl,k2,rr,e0,a2]=0DEsol(Lmax,RNodes,lambda,u,h_t 6 Nite,e,...

m,nCoordinates ,r ,K,RKA,c,F)

odesol=cell (Lmax ,Nite—1);
odesol{Lmax ,Nite —1}=[];

rr=zeros (Lmax ,2%K+1);
e0=cell (Lmax,2xK+1);
a2=cell (Lmax ,2xK+1);

%compute the first values of odesol and store some values which are used
Y%many times
for 1=1:Lmax
for ii=1:size (RNodes, k1)
for j=K:K
rr(1l,j+K+1)=r(h_t*lambda(l, j+K+1));
e0{1l,j+K+1}=e(0,h_t*lambda(l, j+K+1));
odesol{1l,1}{1}(ii,j+K+1)=h_t*e0{1l,j+K+1}*u(RNodes(ii)+...
(0:m—1)’*nCoordinates ,1);
a2{1l, j+K+1}=(eye(size (RKA))—h_t*lambda(l, j+K+1)*RKA)\ones (...
size (c¢))*F(lambda (1, j+K+1));

end
end
end
%vector used for updating odesol
ki=zeros (Lmax,1);
k2=ones (Lmax,1);
end

%update the structure odesol. i is the iteration number, Lmax is the number
%of all the contours involved in the whole algorithm , k1 and k2 are used
%for updating odesol, B is the partitioning number, b,m ar related to
%the Runge—Kutta method, RNodes is the vector which indicates the Robin
%nodes, h_t is the time step, u is the approximated solution, nCoordinates
%is the number of coordinates of FEM, e0,rr are given by the function
%0DEsol ,K is the quadrature point number
function [odesol , kl,k2]=aggiornaodesol(odesol,i,Lmax,kl,k2,B,b,RNodes,...
h_t,u,m,nCoordinates ,e0,rr, K)
for 1=1:Lmax
if i41==(2+k1(1))*B 1-1
Y%cancel old values and compute the new ones

if 1>1
odesol{l,b(1l,i+1)}{1}=o0desol{l,b(1,i+1)}{2};
end
for ii=1:size (RNodes, k1)
for j=K:K
odesol{l,i-+1}{1}(ii, j+K+1)=rr(1,j+K+1)....
odesol{l,i}{2}(ii, j+K+1)+h_t*e0{l,j+K+1}x...
u(RNodes (ii)+(0:m—1) *nCoordinates ,i+1);
end
end
k1(1)=k1(1)+1;

else
%compute new values
for ii=1:size (RNodes,k1)
for j=K:K
odesol{l,i+1}{1}(ii,j+K+1)=rr(1,j+K+1).%...
odesol{1l,i}{1}(ii,j+K+1)+h_t*e0{l,j+K+1}x*...
u(RNodes (ii)+(0:m—1)’«nCoordinates ,i+1);
end

100

if size(odesol{l,i},2)==2
for j=K:K
odesol{l,i+1}{2}(ii,j+K+1)=rr (1, j+K+1) .%...
odesol{l,i}{2}(ii,j+K+1)+h_t+e0{l,j+K+1}x*...
u(RNodes(ii)+(0:m—1)’+«nCoordinates ,i+1);
end
end
end
end
if i+l==k2(1)*B"1+1
%initialize values for the future
for ii=1l:size (RNodes, 1)
for j=K:K
odesol{l,i+1}{2}(ii, j+K+1)=h_txe0{l,j+K+1}x*...
u(RNodes (ii)+(0:m—1) ’«nCoordinates ,i+1);
end
end
k2 (1)=k2(1)+1;
end
end
end

%compute the partial (truncated) convolution.

%L is the vector containing the informations about which contours are used,

%i is the iteration number, RNodes is the vector which indicates the Robin

Y%nodes , extRNodes is RNodes extended with respect to the number of stages

%of the Runge—Kutta method, nCoordinates is the number of coordinates of

Y%FEM, K is the quadrature point number, odesol contains the solution of the

Y0DE’s, b,m are related to the Runge—Kutta method, w contains the

%quadrature wheights of the hyperbola, W are the convolution wheights

Y%computed on the circle, u is the approximated solution, a2,rr have been

Y%computed in the function ODEsol

function [ypast]=calcolaypast(L,i,RNodes,6extRNodes ,nCoordinates ,K,odesol...
,b,w,m,W,u,a2,rr)

ypast=zeros (nCoordinates*m,1) ;

Y%weights approximated on the hyperbola only from the second contour
if L(i)>1
for 1=2:L(i)
for ii=1:size (RNodes,1)
for j=-K:K
Y%those terms are computed separately otherwise Matlab makes
Y%an error (smallnumberssmallnumber=hugenumber)
al=w(l, j+K+1)*rr(1,j+K+1) " (i—b(1,1i));
a3=odesol{l,b(1,i)}{1}(ii, j+K+1);
ypast (RNodes (ii)+(0:m—1)’ ’*nCoordinates)=ypast (RNodes (ii) ...
+(0:m—1) ’+«nCoordinates)tal*a2{1l, j+K+1}*a3;
end
end
end

%classic (non—fast) convolution for the first contour (weights
Y%approximated with Cauchy integral on the circle)o
for mm=b(2,i):i-1
ypast (extRNodes)=ypast (extRNodes)+kron (W{i—mm},speye(length (...
RNodes)))*u(extRNodes ,mm+1);
end
else
for mm=0:i-1
ypast (extRNodes)=ypast (extRNodes)+kron (W{i—mm},speye (length (...
RNodes)))*u(extRNodes ,mm+1);

101

end
end

end

%compute the first weight W.0 over the circle. F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep
function W_O_cerchio_test=W_O_cerchio(F,D,h)
W_O_cerchio_test=0;
%radius of the circle
rho=0.6;
Y%mnumber of quadrature points on the circle
L=100;
for 1=0:L-1
A=D(rhoxexp(2ixpi*1/L))/h;
[V,Diag] = eig(A);
W_O_cerchio_test=W_O_cerchio_test+1/L*xVxdiag(F(diag(Diag)))*inv(V);
end
end

Y%compute the n—th weight Wmn over the circle .F is the Laplace transform
%of the kernel, D is the delta matrix of the Runge—Kutta method, h is the
%timestep, n is the index of the n—th weight.

function W_cerchio_test=W_cerchio(F,D,h,n)

W_cerchio_test=0;

%radius of the circle

rho=0.6;
Y%number of quadrature points on the circle
L=100;
for 1=1:L
A=D(rhoxexp(2ixpix1/L))/h;
[V,Diag] = eig(A);

W_cerchio_test=W_cerchio_test+Vxdiag (F(diag(Diag)))*inv(V)*exp(—2ixpi*nx
1/L);
end

W_cerchio_test=rho (—n)/L*W_cerchio_test;
end

102

References

1]

[10]

[11]

Lehel Banjai. Multistep and multistage convolution quadrature for the
wave equation: algorithms and experiments. SIAM J. Sci. Comput.,
32(5):2964-2994, 2010.

Lehel Banjai, Christian Lubich, and Jens Melenk. Runge—kutta convolu-
tion quadrature for operators arising in wave propagation. Numerische
Mathematik, pages 1-20, 2011. 10.1007/s00211-011-0378-z.

Annalisa Buffa, Yvon Maday, and Francesca Rapetti. A sliding mesh-
mortar method for a two dimensional eddy currents model of electric
engines. M2AN Math. Model. Numer. Anal., 35(2):191-228, 2001.

E. Hairer, Ch. Lubich, and M. Schlichte. Fast numerical solution of non-
linear Volterra convolution equations. SIAM J. Sci. Statist. Comput.,
6(3):532-541, 1985.

E. Hairer and G. Wanner. Solving ordinary differential equations. II,
volume 14 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 1996. Stiff and differential-algebraic prob-
lems.

Nicholas J. Higham. Functions of matrices. Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA, 2008. Theory and com-
putation.

Roger A. Horn and Charles R. Johnson. Topics in matriz analysis.
Cambridge University Press, Cambridge, 1991.

Maria Lépez-Fernandez, Christian Lubich, Cesar Palencia, and Achim
Schadle. Fast Runge-Kutta approximation of inhomogeneous parabolic
equations. Numer. Math., 102(2):277-291, 2005.

Maria Loépez-Ferndndez, César Palencia, and Achim Schéadle. A spec-
tral order method for inverting sectorial Laplace transforms. SIAM J.
Numer. Anal., 44(3):1332-1350 (electronic), 2006.

C. Lubich. Convolution quadrature and discretized operational calculus.
I. Numer. Math., 52(2):129-145, 1988.

C. Lubich. Convolution quadrature and discretized operational calculus.
II. Numer. Math., 52(4):413-425, 1988.

103

[12]

[13]

Ch. Lubich and A. Ostermann. Runge-Kutta methods for parabolic
equations and convolution quadrature. Math. Comp., 60(201):105-131,
1993.

Christian Lubich and Achim Schédle. Fast convolution for nonreflecting
boundary conditions. SIAM J. Sci. Comput., 24(1):161-182 (electronic),
2002.

Walter Rudin. Functional analysis. Higher mathematics series. McGraw-
Hill Inc., 1973.

Achim Schédle, Maria Lépez-Fernandez, and Christian Lubich. Fast and
oblivious convolution quadrature. SIAM J. Sci. Comput., 28(2):421-438
(electronic), 2006.

104

