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Abstract

In the present work an optimization procedure for the fully coupled eddy current

problem using the boundary element method is presented. The computational problem is

modelling a conductive coil with prescribed current that surrounds a conducting sphere

where eddy currents are inducted as described in [2].The coil is represented by a torus.

In the setting of the current work the accessible shape configurations of the torus are

generated by deformation along the surface normal of the torus. Explicit expressions for

the shape sensitivities with respect to the chosen control function of the bilinear forms

used to discretize the boundary layer operators are derived computed and validated. The

solution of the optimization problem consists of retrieving the geometry that produces a

prescribed magnetic field. All computations were conducted by implementing the necessary

extensions to BETL2, a boundary element template library [6].
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Chapter 1

Introduction and Summary

Chapter 1: Introduction

The ultimate objective of engineering is undeniably to estimate the best possible

solution to a real world design problem. In order to take steps towards that goal physicists,

along with mathematicians and engineers develop progressively more accurate (and compli-

cated) models that make it possible to simulate physical phenomena that arise in real world

design problems. More often than not, the models at hand even after realistic simplifica-

tions, cannot be solved, or it is very impractical to be solved, with analytical mathematical

expressions but they require numerical approximation techniques to be solved. The devel-

opment of accurate numerical techniques that simulate phenomena that are of interest in

engineering design is of course a broad field of research by itself, and it is of great impor-

tance to technological progress. In the present work we assume that we have at hand a

realistic model together with a sufficiently accurate numerical technique.

The next natural step in the engineering design procedure, that is after acquiring

a reasonably realistic and calibrated model and a reasonably accurate estimation technique

for the solution of the problem, is the selection of a configuration (that could mean shape,

1



Chapter 1: Introduction and Summary 2

position, material parameters) through comparison of the model solutions, that produces

the optimal solution according to our engineering design objectives. The selection of the

actual configurations that are tested depends on the engineers intuition and experience for

the problem at hand.

The valuable contribution of shape optimization to engineering design is the

potential to circumvent the, sometimes flawed, engineering intuition with respect to the

choice of design configurations. This can be very helpful when the optimal configuration,

that satisfies the engineering requirements, or even the underlying physical phenomenon, is

too complicated to be tractable using the engineering intuition alone.

The purpose of numerical shape optimization is to develop techniques that consis-

tently approximate design configurations approaching the optimal, that is, the configuration

that best satisfies the design objectives.

In the present thesis the physical model at hand is the so-called eddy current

model . The eddy current model is used to estimate the induced electric currents due to

the effect of slowly varying harmonic electromagnetic field. A numerical approximation to

the solution of the eddy current problem is estimated through use of a numerical technique,

the Boundary Element Method (BEM). A short presentation of the method is given

in chapter 2. Parts of the technical report [3] and [2] are presented in order to make the

exposition of the method complete and accessible in term of implementation. In BEM the

numerical solution of the physical problem is only computed on a discretized boundary. The

main advantage of this technique when applied in electromagnetics problems is that it more

realistic in the sense that as the physical problem requires, the solution extends (but decays)

to infinity whereas in other widely used numerical methods such as finite volume method

or finite element method this is treated using special techniques (for example absorbing

boundaries). Moreover, in boundary element methods it is necessary to integrate only
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along the surface that represents the geometry.

Some of the technological applications where the eddy current model is of interest

are the description of inductive heating, used also for inductive hardening of mechanical

components, and the computation of inductances in power electronics. Eddy currents are

also the main physical phenomenon behind regenerative and dissipative electric braking

systems and of interest on the design of induction motors.

As a prototypical example in the present work the optimization method is validated

in the form of an inverse problem where the reconstruction of a shape that produces a specific

configuration of Neumann traces is attempted.

Structure of this thesis

The present thesis is organized as such:

• chapter 1 Introduction chapter,

• chapter 2 Boundary element method for eddy currents,

• chapter 3 Adjoint formulation and shape optimization,

• chapter 4 Computation on periodic surface and analytical shape derivatives,

• chapter 5 Numerical results from optimization runs,

• chapter 6 Implementation details,

• chapter 7 Conclusion and future work,

• Appendix A Validation of shape derivatives of operators,

In chapter 2 the computational method used is shortly described. The subtleties

of the integration for boundary element operators were not considered in the present work.
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In chapter 3 the derivation of the adjoint equations and the shape derivative of

the objective function is derived for the BEM-BEM coupled eddy current problem with the

so-called A-field formulation.

In chapter 4 a parametrization was chosen for the 3D surface we seek to optimize.

The numerical integration of the problem is performed on a parameter domain that maps

to the surface of a torus. In this part the boundary integral operators and the explicit

expressions for their shape derivatives are presented.

In chapter 5 the numerical results of some representative optimization runs are

presented. To the best of the knowledge of the author these results are original since there

is a limited number of works on three dimensional shape optimization with the BEM and

shape optimization for the fully coupled eddy current model has not been treated before.

In chapter 6 the most important implementation details are presented along with

some propositions for future development. The thesis closes with a short chapter of con-

clusions and propositions for future work and a short chapter where the validation of the

implementation of the analytical shape derivatives is discussed.



Chapter 2

Boundary Element Method - Eddy

Current Computation

2.1 The Eddy Current Model

The eddy current model is used to describe the effect of harmonic electromagnetic

field excitation in a conductor Ωc and the non-conducting surrounding region Ωe. The

model is derived by assuming slow variation of the magnetic field H (the magnetoquasistatic

approximation) that leads to neglecting the displacement current. In the following we denote

the electric field by E. The model equations then read,

curl E = −iωµH, in R3, curl H =


σE in Ωc

js in Ωe

. (2.1)

In the above µ is the permeability, constant and equal to µc in the conductor Ωc and constant

and equal to µ0 in the surrounding non-conducting region Ωe, σ is the constant conductivity

in Ωc and jS an exciting current. The first equation is the Faraday’s law of induction and

5
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the second is Ampere’s law. These equations are supplemented by the conditions

H = O(|x|−1), E = O(|x|−1) uniformly for |x| → ∞ (2.2)

In the following a trimmed-down presentation of the derivation of the bilinear form for the

eddy current problem will be given presenting parts from [2] in order to establish notation

and arrive at the variational problem.

We define the tangential components trace (γtU) := n(x) × (U × n(x)) for U ∈

C∞(Ω̄) and the twisted tangential tangential trace (γ×) := U(x)×n(x). We assume that the

boundaries are piecewise smooth and we introduce the spaces H
1/2
⊥ (Γ) and H

1/2
‖ (Γ). The

tangential traces become then continuous surjective operators γt : H1(Ω) 7→ H
1/2
‖ (Γ), γ× :

H1(Ω) 7→ H
1/2
⊥ (Γ). The space H

1/2
‖ (Γ) can be seen as the space containing functions that are

tangentially continuous across the edges and the space H
1/2
⊥ (Γ) functions that are continuous

along the normals of Γ. Due to the preceding, the integration by parts formula 2.3 holds.

The associated dual spaces will be denoted by H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ).

∫
Ω

curl V ·U−V · curl Udx =

∫
∂Ω
γ×U · γtVdS (2.3)

Using the integration by parts formula 2.3 we define for vector fields U ∈ H(div; Ω) :=

{V ∈ L2(Ω), divV ∈ L2(Ω)} the weak normal trace by

〈γnU, γΦ〉1/2,Γ =

∫
Ω

divUΦ̄ + U · grad Φ̄dx ∀ Φ ∈ H1(Ω), (2.4)

with 〈·, ·〉1/2,Γ as duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). In the context of

boundary value problems for the Laplacian −∆ the trace operator γ : H1(Ω) 7→ H1/2(Γ)

can be called the ”Dirichlet trace” whereas ∂n := γn ◦grad provides the ”Neumann trace”.

They are linked by

〈∂nΨ, γΦ〉1/2,Γ =

∫
Ω

∆ΨΦ̄ + grad Ψ · grad Φ̄dx ∀ Φ ∈ H1(Ω). (2.5)
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However, in the eddy current problem we need corresponding Dirichlet and Neumann traces

that can be used to represent the curl curl operator. Towards that goal, γN is defined for

U ∈W(curl2,Ω) := {V ∈W(curl,Ω), curl curl V ∈ L2(Ω)} (2.6)

by demanding that for all V ∈ H(curl; Ω)

〈γNU, γtV〉τ =

∫
Ω

curl U curl V̄ − curl curl U · V̄dx (2.7)

where 〈·, ·〉τ is the sesquilinear duality pairing. Through the defined Neumann trace we

have

γN : W(curl2,Ω) 7→ H
−1/2
‖ (divΓ,Γ). (2.8)

In the above W(curl,Ω) = { V(x)√
1+|x|2

∈ L2(Ω), curl V ∈ L2} is a weighted Beppo Levi

space.

This short exposition closes with the essential transmission conditions that should

hold across Γ := ∂Ωc

[γtE]Γ = 0 and [γtH]Γ = 0 (2.9)

where [·]Γ defines the jump on a trace from the exterior (Ωe) to the interior (Ωc) domain.

The exterior traces are denoted as (·)+ and the interior traces are denoted by (·)−.

2.2 Variational Formulation

Again in the following parts of [2] are presented. There are two different approaches

to a variational formulation of Equation 2.1. We are going to follow the so-called E based

approach where the unknown is the (fictitious) electric field. We proceed by substituting

the expression for the magnetic field from Faraday’s law to Ampere’s law and testing with

a function on V ∈W(curl,R3) . Then we have

( 1

µ
curl E, curl V

)
L2(R3)

+ iω
(
σE,V

)
L2(Ωc)

= −iω
(
js,V

)
L2(R3)

(2.10)
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The ”offset fields” Es and Hs are defined as

curl curl Es = −iωµ0js, curl Hs = js,

divEs = 0, divHs = 0,

in Ωe. (2.11)

The offset fields can be used in order to apply current excitation to the eddy

current model. The total fields are then the sum of the offset and reaction currents

E = Er + Es, H = Hr + Hs

curl curl Er = 0 , curl Hr = 0

(2.12)

where E and H are the total fields and Er and Hr are the reaction fields. Taking into

account Equation 2.12 we can formulate the variational problem as a transmission problem

in the form of

curl curl E + κ2E = 0 in Ωc

div Er = 0 , curl curl Er = 0 in Ωe

γ+
t Er − γ−t E = −γ+

t Es ,

1
µ0
γ+
NEr − 1

µc
γ−NE = − 1

µ0
γ+
NEs on Γ

(2.13)

with κ2 := iωσµc with i the imaginary unit, ω the angular frequency of the excitation, σ

the conductivity and µc the permeability of the conductor. It is noted that there is an

alternative approach for the derivation of a variational formulation for the eddy current

problem where H is the unknown [2]. In the following the boundary operators and their

Galerkin discretization will be elaborated.
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2.3 Galerkin Boundary Element Method for Eddy Current

Computation

A valuable resource for the present part of the thesis was [3] where the Galerkin

discretization of the BEM operators is elaborated in practical terms. When a distribution

U solves the homogeneous equation curl curl U + κ2U = 0 in Ωc ∪ Ωe then according to

theorem 6 of [2] for κ 6= 0

U = −Ψκ
A([γNU]Γ)−Ψκ

M ([γtU]Γ)− grad Ψκ
V ([γnU]Γ) (2.14)

where

Ψκ
A(λ)(x) :=

∫
Γ
Gκ(x,y)λ(y) dsy (2.15)

is the Vectorial Single Layer Potential,

Ψκ
M (v)(x) := curlψκA(Rv) , Ru := n× u (2.16)

is the Maxwell Double Layer Potential,

Ψκ
V (ϕ)(x) :=

∫
Γ
Gκ(x,y)ϕ(y) dsy (2.17)

is the Scalar Single Layer Potential and

Gκ(x,y) :=
1

4π

exp(−κ|x− y|)
|x− y|

(2.18)

the Helmholtz Kernel. It also holds that

γ±n U = − 1

κ2
divΓ(γ±NU). (2.19)

and defining the Maxwell Single Layer Potential as

Ψκ
S(λ)(x) := Ψκ

A(λ)− 1
κ2

grad Ψκ
V (divΓ λ) (2.20)
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we can rewrite Equation 2.14 as

U = −Ψκ
S([γNU])−Ψκ

M ([γtU]). (2.21)

The expression 2.14 and its simplification for k 6= 0 , 2.21 is the Straton - Chu represen-

tation formula. When k = 0 we have to use Equation 2.14 as a representation formula.

For future reference we also need to define the scalar double layer potential

Ψκ
K(u)(x) :=

∫
Γ

∂

∂n
Gκ(x,y)u(y)dy (2.22)

2.3.1 Bilinear forms, E - Based Model

We proceed to present the bilinear forms needed for the solution of Equation 2.13.

According to [2] theorem 9, for κ 6= 0 the following operators on Γ are well defined and

continuous

Aκ := γtΨ
κ
S

Bκ :=
1

2
(γ−N + γ+

N )Ψκ
S

Cκ :=
1

2
(γ−t + γ+

t )Ψκ
M

Nκ := γNΨκ
M .

A0 := γtΨ
0
A

B0 :=
1

2
(γ−N + γ+

N )Ψ0
A

Kκ :=
1

2
(γ− + γ+)Ψκ

K

Vκ := γΨκ
V

(2.23)

For u,v ∈ H
−1/2
‖ (divΓ,Γ), and µ,λ ∈ H

−1/2
⊥ (curlΓ,Γ).

After applying trace operators to the representation formulas 2.14 and 2.21 we

acquire the Calderon identities.

γ−t E = Aκ(γ−NE) +
(1

2
Id+ Cκ

)
(γ−t E),

γ−NE =
(1

2
Id+ Bκ

)
(γ−NE) + Nκ(γ−t E)

(2.24)

where κ = 1
2

√
2(1 + i)

√
ωσµc for the conductor (interior) domain Ωc and
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γ+
t Er = −A0(γ+

NEr) + (
1

2
Id− C0)(γ+

t Er)− gradΓ V0(γ+
NEr),

γ+
NEr = (

1

2
Id− B0)(γ+

NEr)− N0(γ+
NEr),

γ+
n Er = −γ+

n Ψ0
A(γ+

NEr)− γ+
n Ψ0

M (γ+
t Er)− (

1

2
Id− K0)(γ+

n Er)

(2.25)

for the exterior domain Ωe. In order to couple the equations it is necessary to use the

transmission conditions from Equation 2.13. The dependence on γ+
n is disappearing on the

weak form when seeking solutions on H
−1/2
‖ (divΓ0,Γ). For more details again the reader is

referred to [2]. By using the transmission conditions we arrive at the following variational

problem: Seek u ∈ H
−1/2
⊥ (curlΓ,Γ), ϕ ∈ H

1/2
‖ (divΓ0,Γ) such that

〈Ñu,v〉+ 〈B̃ curlΓ ϕ,v〉 = 〈γNEs,v〉

〈C̃u, curlΓ ψ〉+ 〈Ã curlΓ ϕ, curlΓ ψ〉 = 〈γtEs, curlΓ ψ〉
(2.26)

for all v ∈ H
−1/2
⊥ (curlΓ,Γ), ψ ∈ H

1/2
‖ (divΓ0,Γ). The boundary integral operators (̃·) are

Ñ := N0 + 1
µr
Nκ

B̃ := B0 + Bκ

C̃ := C0 + Cκ

Ã := A0 + µrA
κ

(2.27)

with µr = µc
µ0

the relative permeability. The unknowns u = γ−t E and curlΓ ϕ = 1
µr
γ−NE are

the interior traces of the electric and magnetic fields. According to [3] the bilinear forms

for the interior domain are

〈Aκu,v〉 = 〈Ψκ
su,v〉 = 〈Ψκ

Au,v〉+ 1
κ2
〈Ψκ

V divΓ u,divΓ v〉

〈Cκµ,v〉 = 〈Ψκ
Mµ,v〉 = −〈Bκv,µ〉

〈Nκµ,λ〉 = κ2〈Ψκ
A(Rµ),Rλ〉+ 〈Ψκ

V curlΓµ, curlΓ λ〉 = κ2〈Aκu,v〉 .

(2.28)
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In addition, for the exterior domain we have

〈A0u,v〉 = 〈ψ0
Au,v〉

〈N0µ,λ〉 = 〈ψ0
V curlΓµ, curlΓ λ〉

(2.29)

This was used as the starting point for the computational work of the present thesis1.

2.3.2 Galerkin Discretization of Bilinear Forms

Basis functions - transformations

In the following we turn our attention on the discretization of the required bound-

ary operators. Coordinates on the the reference element are denoted by x̂i, the a point

on the reference element by x̂ = {x̂1, x̂2}. The basis functions for the ”left-facing” unit

reference triangle for the discretization of tangential functions in H−1/2(curlΓ,Γ) we use

the 1st order Raviart-Thomas basis functions. More explicitly they read

û12 =

1− x̂2

x̂1 − 1

 , û23 =

−x̂2

x̂1

 , û31 =

 −x̂2

x̂1 − 1

 (2.30)

where ûij denotes the basis function on the edge between nodes i and j. The local to global

mapping for these basis functions reads

uij(x) = JG−1ûij(x̂) (2.31)

where J is the jacobian of the local to global transformation and G := JTJ is the Gram

matrix. The divΓ conforming basis functions are constructed by considering the rotation of

the curlΓ conforming basis functions. We have for v ∈ H−1/2(divΓ,Γ) that v = Ru where

u ∈ H
−1/2
⊥ (curlΓ,Γ). The divΓ conforming elements transform according to

vij(x) = − 1√
|G|

Jv̂ij(x̂) (2.32)

1Between [5] and [2] there are different definitions of the ”Maxwell double-layer potential” but also the
transmission problem is posed differently. BETL2 developers should be aware that the fundamental solution
used in the code is the same as in [2] with a sign change on κ.
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where |·| signifies the determinant. Equation 2.32 will also be useful in the following chapters

when we transform the bilinear forms discretized with div-conforming elements from the

parametric square to the torus. The rotation R of the curlΓ conforming elements in the

reference coordinate system, to divΓ conforming elements is done internally on BETL2 using

the rotation matrix

H =

 0 1

−1 0

 (2.33)

In order to construct the space H
−1/2
‖ (divΓ0,Γ) we make use of a scalar basis φ ∈ H1/2(Γ)

since it holds that

curlΓ φ ∈ H
−1/2
‖ (divΓ0,Γ) (2.34)

The surface curl, necessary for the above technique is defined as curlΓ φ := gradφ× n. In

local coordinates the surface curl is computed by

curlΓ φ(x) =
1√
|G|

J Hĝradφ̂((̂x)). (2.35)

The divΓ = 0 constraint is realized by assembling the element-wise matrices Te for the

gradient to a global sparse matrix T and applying the constraint to the relevant block of

the matrix. In the same spirit, we need a combinatorial operator for the divergence on the

computational surface. This is realized by assembling the element-wise matrices De

d̂ivv̂ij = Deψ̂ ⇔


d̂ivv̂12

d̂ivv̂23

d̂ivv̂31

 =


2

2

2


[
ψ̂

]
(2.36)

where ψ is piecewise constant Lagrangian function, with i = {1, 2, 3}, j = (i+ 1)mod3.

The global assembly ofDe is denotedD. The edge-element relation that realizes the gradient
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of the scalar field is

ĝradϕ̂i = Teûij ⇔


ĝradϕ̂1

ĝradϕ̂2

ĝradϕ̂3

 =


−1 0 +1

+1 −1 0

0 +1 −1




û12

û23

û31

 . (2.37)

2.3.3 Linear System

This section continues to present parts of [3]. For convenience in the notation we

define

Qκ,1h [i, j] := 〈Aκuj ,ui〉 , u ∈ H
−1/2
‖ (divΓ,Γ)

Qκ,2h [i, j] :=

∫
T̂

∫
T̂
Gκ(x(x̂),y(ŷ))ψj(ŷ)ψi(x̂)

√
|G(x̂)|

√
|G(ŷ)| d̂yd̂x , ψ ∈ H−1/2(Γ).

(2.38)

Single Layer Operator

The bilinear form 1
κ2
〈Ψκ

V divΓu, divΓv〉 can be discretized with lagrangian constant

basis functions. The surface divergence is realized through the use of the D operator.

The bilinear form 〈Ψκ
Au,v〉 is discretized with div conforming elements. The divΓ = 0

constraint is realized separately through the use of the sparse gradient operator. Finally

the unconstrained operator as it enters the computation reads,

Ãh := A0
h +Aκh

A0
h := Q0,1

h

Aκh := Qκ,1h + 1
κ2
DQκ,2h D>

(2.39)

The interior part of Ñh as also seen in 2.28 is simply

Nκ
h := κ2Aκh. (2.40)
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The exterior trace is discretized again with constant lagrangian elements and the combina-

torial divergence is taken. The exterior domain term reads

N0
h := DQ0,2

h DT . (2.41)

Double Layer Operator

The discretization of the double layer operator can be performed using functions

belonging only to H
−1/2
‖ (curlΓ,Γ) by using an appropriate form of the integral. The oper-

ator is discretized as

Bk
h := 〈Bκui,vj〉

=

∫
Γ

ui

∫
Γ

curlΓG
κ(x,y)Rvidxdy

with vi ∈ H
−1/2
⊥ (curlΓ,Γ) ui ∈ H

−1/2
‖ (divΓ,Γ).

(2.42)

Using the definition curlΓ ϕ := gradϕ × n the local representation can be shown to be

computable as

Bk
h[i, j] =

∫
Γ

∫
Γ
(gradxG

κ(x,y)× Jyui · Jxuj)dxdy

with ui ∈ H
−1/2
‖ (divΓ,Γ).

(2.43)

Excitation - Boundary Conditions

In non-simply connected domains, as it is the case for the torus that we are consid-

ering in the present work, it is necessary to define a cut along a circle of the torus bounding

relative to the non-conducting domain Ωe. In this cut the scalar field ϕ ∈ H1/2(Γ) should

have a prescribed fixed jump in order to take into account non-local inductive excitation.

The computational mesh of the torus comprises of a rolled-up square mesh. Thus

it was also necessary to impose periodicity along the edges of the domain for the vectorial

degrees of freedom , and periodicity for the scalar degrees of freedom along the ”small” circle
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of the torus (non-bounding w.r.t. the exterior domain) and the aforementioned constant

”jump” on the scalar field. All constraints were implemented with a penalty method.

We denote the constraint matrices that correspond to circles non-bounding with

respect to the external domain as P ·c and P ·e the circle bounding with respect to the external

domain. The penalty matrices that are used to constrain the scalar degrees of freedom are

written as P sc and P se while the vectorial constraints are noted P vc and P ve . Finally we

denote the right hand side needed for the non-homogeneous jump boundary condition as

fse . The linear system then reads,Ñh + P vc + P ve −B̃>h T>

TB̃h TÃhT
> + P sc + P se + αα>


u

ϕ

 =

 0

fse

 . (2.44)

The term α is a vector included in order to constrain the average of ϕ to zero making the

solution for ϕ unique. More precisely ai = 〈ϕi, 1〉. Since the geometry changes this term

has a dependence on the control and should be taken into account on the shape derivative.

However, the scalar field ϕ enters the computation only through its curl thus enforcing this

constraint is not critical for calculating the shape derivative in our case. An alternative

approach to constrain the ϕ space in order for the solution to be unique would simply be

constraining the value of one degree of freedom. Both approaches were tested and they

produced almost identical results at all the levels of computations including the critical

step of calculating the shape derivative.

The structure of the linear system calls for taking advantage of the Schur comple-

ment method.



Chapter 3

The Shape Optimization Problem

We seek to optimize the geometry according to an objective function jobj that

depends on the solution of the eddy current boundary value problem 2.26.

Jobj =

∫
jobj(u, φ)dS (3.1)

A straightforward approach in order to calculate shape sensitivities would be to vary the

configuration according to a set of directions and calculate the effect of the variation to the

solution of the problem. That, of course, requires the solution of a linear system for each

possible direction and this approach is computationally intractable.

A technique that circumvents that issue is based on the solution of only two full

computational problems, the adjoint and the forward problem, and requires only a numerical

integration for each possible direction1. This technique seems to date back to 1974 [4] [1]

and has been applied to a large variety of inverse problems. A presentation of this method

for the eddy current problem is given in the following pages. The computation of the shape

gradient of the objective function is performed through the minimization of a lagrangian

1In the case of BEM this integration is not particularly cheap if approximation methods such as panel
clustering are not used.

17
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functional L where the forward problem (2.26) also referred to as the state problem enters

as a constraint

3.1 Adjoint Computation of Shape Derivatives

3.1.1 The adjoint approach for general PDEs

We define Q the control space and V the state space. The optimization problem

is defined,

find q ∈ Q such that : J(u; q)→ min subject to a(q;u, v) = l(v),

u ∈ V, ∀v ∈ V.
(3.2)

Where q is the control function. The lagrangian for this problem is defined as

L(u, q, w) = J(u; q) + (a(u, q, w)− l(w)) (3.3)

where w is called the adjoint state variable. Here, intuitively, one can argue that the PDE

has entered as a constraint to the Lagrangian and the adjoint state variable is acting as

a Lagrange multiplier enforcing the constraint. Differentiating the above w.r.t. the state

variable u we have

〈∂L
∂u

(u, q, w), u′〉 = 0

⇔ a(q;u′, w) = −〈DuJ(u; q), u′〉 ∀u′ ∈ V
(3.4)

where Du· denotes the sensitivity w.r.t. u. This is called the adjoint state equation of the

problem. Now we consider the derivative of the Lagrangian w.r.t. the control q as

〈∂L
∂q

(u, q, w), q′〉 = 〈DqJ(u, q), q′〉+ 〈∂a
∂q

(q;u,w), q′〉︸ ︷︷ ︸
= Gradient 〈DqJ̃(q), q′〉

with J̃(q) = J(u(q); q)

(3.5)
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for u solving the state equation and w solving the adjoint state equation. The final equation

depends only on the solution of the adjoint and the state equation and it is the shape gradient

of the objective function.

3.1.2 Adjoint formulation for the coupled eddy current problem

For u ∈ H
−1/2
⊥ (curlΓ,Γ), ϕ ∈ H1/2(Γ) and q a scalar control function, we define

the lagrangian of the optimization problem as

L(q; u, ϕ,v, ψ) = 〈Ñu,v〉+ 〈B̃ curlΓ ϕ,v〉

+〈C̃u, curlΓ ψ〉+ 〈Ã curlΓ ϕ, curlΓ ψ〉

+

∫
Γq

jobj(u, φ)dS.

(3.6)

The loading terms were neglected since we consider non local excitation that enters as

a constraint on ϕ. along the loop and this is implemented by constraining the solution

space. We focus on the effect of the variations of 3.6 with respect to its dependencies. The

variation with respect to v and ψ should not affect the lagrangian functional when u and

ϕ are solutions of the eddy current problem (2.26). Indeed, by considering their variations

due to the linearity of all the involved operators we get 3.7 and 3.8 that are zero for any

ω ∈ H1/2 or ~ω ∈ H−1/2 respectively.

〈∂L(q; u,v, ϕ, ψ)

∂ψ
, ω〉 =

= lim
h→0

L(q; u,v, ϕ, ψ + hω)− L(q; u,v, ϕ, ψ)

h

= lim
h→0

1

h

{
〈C̃u, curlΓ(ψ + hω)〉+ 〈Ã curlΓ ϕ, curlΓ(ψ + hω)〉

− 〈C̃u, curlΓ ψ〉 − 〈Ã curlΓ ϕ, curlΓ ψ〉
}

= lim
h→0

1

h

{
〈C̃u, curlΓ hω〉+ 〈Ã curlΓ ϕ, curlΓ hω〉

}
=〈C̃u, curlΓ ω〉+ 〈Ã curlΓ ϕ, curlΓ ω〉 = 0

(3.7)
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〈∂L(q; u,v, φ, ψ)

∂v
, ~ω〉 =

= lim
h→0

L(q; u,v + h~ω, φ, ψ)− L(q; u,v, φ, ψ)

h

= lim
h→0

1

h

{
〈B̃ curlΓ(ϕ),v + h~ω〉+ 〈Ñu,v + h~ω〉

− 〈B̃ curlΓ(ϕ),v〉+ 〈Ñu,v〉
}

=〈B̃ curlΓ ϕ, ~ω〉+ 〈Ñu, ~ω〉 = 0

(3.8)

Since we have established that the lagrangian is independent from variations of the test

functions of the underlying PDE when we have the solution of 2.26 we remove them from

the notation for the rest of the text. The functional derivatives (sensitivities) with respect

to the unknowns of the variational problem are

〈∂L(q; u, φ)

∂φ
, ω〉 = lim

h→0

L(q; u, φ+ hω)− L(q; u, φ)

h

〈∂L(q; u, φ)

∂u
, ~ω〉 = lim

h→0

L(q; u + h~ω, φ)− L(q; u, φ)

h
.

(3.9)

By considering again the linearity of the involved operators, this translates to

〈∂L(q; u, ϕ)

∂u
, ~ω〉 =

= lim
h→0

1

h

{
〈Ñ(u + h~ω),v〉+ 〈C̃(u + h~ω), curlΓ ψ〉+

∫
S
jobj(u + h~ω, ϕ)ds

− 〈Ñu,v〉 − 〈C̃u, curlΓ ψ〉 −
∫
S
jobj(u, ϕ)ds

}
= lim

h→0

1

h
h
{
〈Ñ~ω,v〉+ 〈C̃~ω, curlΓ ψ〉

}
+

∫
S
∂u(jobj(u, ϕ))~ωds

= 〈Ñ~ω,v〉+ 〈C̃~ω, curlΓ ψ〉+

∫
S
∂u(jobj(u, ϕ))~ωds

= 〈Ñv, ~ω〉 − 〈B̃ curlΓ ψ, ~ω〉+

∫
S
∂u(jobj(u, ϕ))~ωds

(3.10)
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for the vectorial unknowns and

〈∂L(q; u, ϕ)

∂ϕ
, ω〉 =

= lim
h→0

1

h

{
〈Ã curlΓ(ϕ+ hω), curlΓ ψ〉+ 〈B̃ curlΓ(ϕ+ hω),v〉+

− 〈Ã curlΓ(ϕ), curlΓ ψ〉 − 〈B̃ curlΓ(ϕ),v〉
}

+

∫
S
∂ϕ(jobj(u, ϕ))ωds

= 〈Ã curlΓ ω, curlΓ ψ〉+ 〈B̃ curlΓ ω,v〉+

∫
S
∂ϕ(jobj(u, ϕ))ωds

= 〈Ã curlΓ ψ, curlΓ ω〉 − 〈C̃v, curlΓ ω〉+

∫
S
∂ϕ(jobj(u, ϕ))ωds

(3.11)

for the scalar unknowns.

These are the adjoint equations of the eddy current problem. For ease of imple-

mentation the L2 norm of the difference of the A - field traces on the computational surface

with respect to numerically computed values from a known shape were used as an objective

function.

This amounts to a simple loading condition for the adjoint problem. Namely we

have ∫
S
jobjds =

1

2

∫
S
||Aopt −Ah||2ds (3.12)

Through the solution of the adjoint problem 3.10, 3.11 and the forward problem 2.26 the

shape sensitivity of the objective function can be calculated for multiple directions without

having to solve a linear system for each direction. Note that due to 2.28 there is a sign

change on 〈B̃ curlΓ ω,v〉. It turns out that in the case of the adjoint equations the total

system matrix is simply the transpose of that of the forward problem.

Assuming the geometry has a continuous dependence on the control q and the

lagrangian has a continuous dependence on the geometry of our problem, assumptions that

are quite general, we can proceed by taking the first derivative of L with respect to the

control function q along direction δq.



Chapter 3: The Shape Optimization Problem 22

〈∂L
∂q
, δq〉 = 〈〈∂Ã

∂q
curlΓ ψ, curlΓ ϕ〉, δq〉+ 〈〈∂C̃

∂q
v, curlΓ ϕ〉, δq〉

+ 〈〈∂Ñ
∂q

v,u〉, δq〉+ 〈〈∂B̃
∂q

curlΓ ψ,u〉, δq〉

+ 〈〈Ã curlΓ ψ, curlΓ ω〉, δq〉 − 〈〈C̃v, curlΓ ω〉, δq〉

+ 〈〈Ñv, ~ω〉, δq〉 − 〈〈B̃ curlΓ ψ, ~ω〉, δq〉

+ 〈
∫
S
∂u(jobj(u, ϕ))~ωds, δq〉+ 〈

∫
S
∂ϕ(jobj(u, ϕ))ωds, δq〉+ 〈

∫
S
∂q(jobj(u, ϕ))~ωds, δq〉 (3.13)

For u and ϕ solutions of the forward problem and v and ψ solutions of the adjoint

problem, all terms except the shape derivatives of the operators cancel giving Equation 3.14.

The shape derivatives of the involved operators will be discussed in the following chapter.

The physical meaning of the operator shape derivatives is the effect of a change in the

problem configuration that is quantified by δq on the operators. For a specific direction

δq the shape derivative of an operator is represented by a matrix the same size as the

operator. In the case of local shape functions this matrix is sparse (but not banded). In the

general case of non-local base functions, as the ones considered in this work, this matrix is

dense. For all possible directions the shape derivative becomes a three-way tensor. For any

discretization of δq by choosing a finite set of N basis functions the shape derivatives of

the operators is a set of N matrices. Following the common nomenclature, we change the

notation for the solution of adjoint problem from v to u∗ and from ψ to φ∗.

〈∂L
∂q
, δq〉 = 〈〈∂Ã

∂q
curlΓ ϕ

∗, curlΓ ϕ〉, δq〉+ 〈〈∂C̃
∂q

u∗, curlΓ ϕ〉, δq〉

+ 〈〈∂Ñ
∂q

u∗,u〉, δq〉+ 〈〈∂B̃
∂q

curlΓ ϕ
∗,u〉, δq〉 (3.14)
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3.2 Linear system for the adjoint equation

We are using the same discretization for the adjoint problem as for the forward

problem. The system matrix used for the adjoint problem turns out to be simply the trans-

pose of the system matrix of the forward problem. The loading due to the inhomogeneous

term does not exist. By simply omitting the penalty term for the scalar unknowns ϕ along

the ”cut” direction the unknowns are left to vary.

The loading as commented earlier is simply the difference between the tangential

trace of the solution uopt and the tangential trace from the solution of the state equation

uh. The adjoint linear system then reads,

Ñh + P vc + P ve B̃>h T
>

−TB̃h TÃhT
> + P sc + αα>


u∗

ϕ∗

 =

uopt − uh

0

 . (3.15)

The schur complement method is employed again for the solution of the system

above.



Chapter 4

Computation on the Periodic

Surface

4.1 Analytical Shape Derivative Formulas

4.1.1 Parametrization of the Torus

The undeformed configuration and the parametric plane

The surface of the torus Γ, can be seen as a rolled-up 2π periodic plane on R2. We

chose a parametrization for the surface of the torus. The transformation from the parameter

domain to the torus is

Γ0 :=
{

x : Φ(α,ϕ) =


cosα(r cosϕ+R)

r sinϕ

sinα(r cosϕ+R)

 ϕ, α ∈ [0, 2π[
}
. (4.1)

24
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where R is the large radius of the torus and r the small radius. The normal of the unde-

formed torus is

n(α,ϕ) =
∂ϕΦ× ∂αΦ

||∂ϕΦ× ∂αΦ||
=


cosα cosϕ

sinϕ

sinα cosϕ

 (4.2)

Control Function

We define a scalar control function q(x̄) where x̄ = [α,ϕ]> is a point on the periodic

parameter plane P . We denote with (̄·) coordinates on P . The control function quantifies

a displacement along the normal of Γ0.

q ∈ H1(Γ0) : Γ0 7→ Γ (4.3)

where Γ0 is the reference torus and Γ is the deformed configuration such that

Γ :=
{

x = x̂ + q(x̂) n(x̂) , x̂ ∈ Γ0

}
=

{
x = χ(q; x̄) , x̄ ∈ P

}
,

with χ(q; x̄) := Φ(x̄) + q(x̄)n(x̄).

(4.4)
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P
Γ

We also define the jacobian of the transformation from the parametric domain to

the torus

Dχ(x̄; q(x̄))ij =
∂χ(x̄; q(x̄))i

∂x̄j
(4.5)

. given explicitly at Equation 4.29.

4.1.2 Single Layer Scalar Potential

The general scalar BEM integral operator reads 〈Ku, v〉. In what follows we denote

that simply as K. The directional derivative of the operator K along the direction δq is

〈∂K
∂q

, δq〉 = lim
h→0

K(q+hδq) −K(q)

h
(4.6)

where h is a scalar and δq is a direction of deformation. A Galerkin discretization of the

operator K, is a double integral over the surface of the domain of integration (4.7).
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K :=

∫
Γ

∫
Γ
Gκ(x,y)ϕ(y)ψ(x)dsydsx

=

∫
Γ

∫
Γ
Gκ(r(x,y))ϕ(y)ψ(x)dsydsx

(4.7)

with r = |y − x|.

We seek to perform the integration of 4.7 which is defined on surface Γ on P . In

order to achieve that we employ the jacobian of the mapping χq denoted as Dχ(·; q·) and

the square root of the Gram determinant which is

√
|Dχ(·; q·)TDχ(·; q·)|. The transformed

integral for the single layer scalar potential is

K =

∫
P

∫
P
Gκ(r(x̄, ȳ))

√
|Dχ(x̄; qx̄)TDχ(x̄; qx̄)|√

|Dχ(ȳ; qȳ)TDχ(ȳ; qȳ)|ϕ(x̄)ψ(ȳ)dsx̄dsȳ.

(4.8)

In the following, for brevity we define

√
|Dχ(·; q·)TDχ(·; q·)| =

√
g(·). Then as-

suming the control function q affects the mapping χ continuously, and the mapping affects

the value of the integral continuously as well, the chain rule can be applied to the total

derivative of K with respect to control q. The control affects the value of the integral also

through its derivatives (the gradient of the control function)

dK
dq

=
∂K
∂q(x̄)

dq(x̄) +
∂K
∂q(ȳ)

dq(ȳ) +
∂K

∂(∂φq(x̄))
d(∂φq(x̄)) +

∂K
∂(∂αq(ȳ))

d(∂αq(ȳ)) (4.9)

We are considering a specific δq function, such that q′ = q + εδq with ε small

dK
dq

=
∂K
∂q(x̄)

δq(x̄) +
∂K
∂q(ȳ)

δq(ȳ) +
∂K

∂(∂φq(x̄))
δ(∂φq(x̄)) +

∂K
∂(∂αq(ȳ))

δ(∂αq(ȳ)). (4.10)

Since the kernel functionGκ(r) depends directly only on the distance r = |χ(ȳ; qȳ)−

χ(x̄; qx̄)| we can apply the chain rule differentiating first with respect to r. The derivative

of a kernel function w.r.t. the control function reads
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∂Gκ(r(χ(x̄; qx̄),χ(ȳ; qȳ)))

∂q(ȳ)
=

=
∂Gκ(r)

∂r

∂r

∂χ(ȳ; qȳ)

∂χ(ȳ; qȳ)

∂q(ȳ)

=
∂Gκ(r)

∂r

(χ(ȳ; qȳ)− χ(x̄; qx̄))

r
· ∂χ(ȳ; qȳ)

∂q(ȳ)
.

(4.11)

It also holds that
∂r

∂χ(ȳ; qȳ)
=
∂||χ(x̄; qx̄)− χ(ȳ; qȳ)||

∂χ(ȳ; qȳ)

=
1

r

(
χ(ȳ; qȳ)− χ(x̄; qx̄)

)
= − ∂r

∂χ(x̄; qx̄)
.

(4.12)

The expression of the directional derivative for the kernel then reads

〈∂G
κ(q; x,y)

∂q
, δq〉 :=

∂Gκ(r)

∂r

χ(x̄; qx̄)− χ(ȳ; qȳ)

r
· 〈∂χ
∂q

(x̄; qx̄)− ∂χ

∂q
(ȳ; qȳ), δq〉. (4.13)

For the case of the torus we have

〈∂χ
∂q

(ȳ; qȳ)− ∂χ

∂q
(x̄; qx̄), δq〉 = n(ȳ)δq(ȳ)− n(x̄)δq(x̄) (4.14)

Which is of order O(|x̄ − ȳ|). Hence taking the derivative of the bilinear form we do not

see the singularity of the kernel get stronger due to that term and the (χ(ȳ; qȳ)−χ(x̄; qx̄))

term which is also O(r). Taking the partial derivative of the product of the gramians we

obtain

∂K
∂q(x̄)

=

∫
P

∫
P

((∂Gκ(r)

∂r

1

r
(χ(x̄; qx̄)− χ(ȳ; qȳ))

∂χ(x̄; qx̄)

∂qx̄

√
g(ȳ; q(ȳ))

√
g(x̄; q(x̄))

)
+Gκ(r)

(∂√g(x̄; qx̄)

∂qx̄

√
g(ȳ; qȳ)

))
ϕ(x̄)ϕ(ȳ)dsx̄dsȳ. (4.15)

The derivative of the bilinear form with respect to the gradients of q reads
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∂K
∂(∂αq(x̄))

δ∂αq(x̄) +
∂K

∂(∂ϕq(x̄))
δ∂ϕq(x̄) =∫

P

∫
P
Gκ(r)

((∂√g(x̄; qx̄)

∂(∂αqx̄)
δ(∂αq(x̄)) +

∂
√
g(x̄; qx̄)

∂(∂ϕqx̄)
δ(∂ϕq(x̄))

)√
g(ȳ; qȳ)

)
ϕ(x̄)ϕ(ȳ)dsx̄dsȳ. (4.16)

The directional derivative then is

〈∂K
∂q

, δq〉 =

∫
P

∫
P

((∂Gκ(r)

∂r

1

r
(χ(ȳ) − χ(x̄)) ·

(∂χ(ȳ)

∂q(ȳ)
δq(ȳ) −

∂χ(x̄)

∂q(x̄)
δq(x̄)

)√
g(ȳ)

√
g(x̄)

)
+Gκ(r)

((∂√g(x̄)

∂q(x̄)
δq(x̄) +

∂
√
g(x̄)

∂(∂αq(x̄))
δ(∂αq(x̄)) +

∂
√
g(x̄)

∂(∂ϕqx̄)
δ(∂ϕq(x̄))

)√
g(ȳ)

+
(∂√g(ȳ)

∂q(ȳ)
δq(ȳ) +

∂
√
g(ȳ)

∂(∂αq(ȳ))
δ(∂αq(ȳ)) +

∂
√
g(ȳ)

∂(∂ϕq(ȳ))
δ(∂ϕq(ȳ))

)√
g(x̄)

))
ϕ(x̄)ϕ(ȳ)dsx̄dsȳ.

(4.17)

For readability the term χ(̄·; q̄·) was replaced with χ(·) and
√
g(·; q(·)) with

√
g(·). Since the

basis functions ϕ(·) are already on the parameter domain there is no need to take derivatives

over them. It is noted that since there is an analytical scalar expression for
√
g(·)and we

can straightforwardly derive the partial derivatives that appear in the previous expressions.

This is given in Equation 4.36

4.1.3 Single Layer Vector Potential

Now we turn our attention to the Vector Single potential 2.15 and its Galerkin

discretization 4.19. The basis functions used for the Galerkin discretization of the operator

(the bilinear form) are vector fields tangential to the surface of integration. That means

that they will transform according to

λ(x) =
Dχ(x̄)
√
g(x̄)

λ̂(x̄) (4.18)
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which in some texts is refered to as the ”Contravariant Piola Mapping”. In the following

we denote again for brevity 〈Wλ,µ〉 as W.

〈Wλ,µ〉 :=

∫
Γ

∫
Γ
Gκ(x,y)λ(x)µ(y)dsydsx (4.19)

The transformed bilinear form to the parameter domain is

W =

∫
P

∫
P
Gκ(x̄, ȳ)

Dχ(x̄)

���√
g(x̄)

λ(x̄)
Dχ(ȳ)

�
��√
g(ȳ)

µ(ȳ)
��

��√
g(x̄)��

��√
g(ȳ)dsx̄dsȳ

=

∫
P

∫
P
Gκ(x̄, ȳ)Dχ(x̄)λ(x̄)Dχ(ȳ)µ(ȳ)dsx̄dsȳ

(4.20)

The derivative of the jacobian is

〈
∂Dχ(q;x̄)

∂q
, δq〉 = n(x̄)∇δq(x̄)> +Dn(x̄)δq(x̄) (4.21)

Where Dn(x̄) denotes the jacobian of the transformation for the normal and

∇δq(x̄) =

δ(∂αq(x̄))

δ(∂ϕq(x̄))

 (4.22)

is the gradient of the deformation. It should be noted that with consistent use of Equa-

tion 4.10 we arive at the same result as with Equation 4.21. In order to keep this section

compact, the analytical expression is given at Equation 4.35. The total formula reads

〈dW
dq

, δq〉 =∫
P

∫
P
Gκ(r)

(
Dχ(x̄)λ(x̄) · 〈

∂Dχ(ȳ)

∂q(ȳ)
, δq〉µ(ȳ) + 〈

∂Dχ(x̄)

∂q(x̄)
, δq〉λ(x̄) ·Dχ(ȳ)µ(ȳ)

)
∂Gκ

∂r

1

r
(χ(ȳ) − χ(x̄)) ·

(∂χ(ȳ)

∂q(ȳ)
δq(ȳ) −

∂χ(x̄)

∂q(x̄)
δq(x̄)

)
Dχ(x̄)λ(x̄)Dχ(ȳ)µ(ȳ)dsx̄dsȳ

(4.23)

At this point, it is worth to be noted that in the single-layer vectorial operator the

basis functions cannot be factored out from the first part of the integral. Due to that fact

implementation difficulties arise (see subsection 6.5.2).
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4.1.4 Double Layer Potential

In the case of the double layer potential, 〈Mλ,µ〉 or M for brevity, the bilinear

form is 4.24.

〈Mλ,µ〉 =

=

∫
P

∫
P

grady G
κ ·
( 1

����√
g(x̄)

Dχ(x̄)λ(x̄)× 1

��
��√

g(ȳ)
Dχ(ȳ)µ(ȳ)

)
�

���√
g(ȳ)��

��√
g(x̄)dx̄dȳ

=

∫
P

∫
P

grady G
κ ·
(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)
dx̄dȳ

=

∫
P

∫
P

∂Gκ

∂r

1

r
(χ(ȳ) − χ(x̄)) ·

(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)
dx̄dȳ

(4.24)

The directional derivative of the first part reads

〈 ∂
∂q

(1

r

∂Gκ(r)

∂r
(χ(ȳ) − χ(x̄))

)
, δq〉 =

〈 ∂
∂q

(1

r

∂Gκ(r)

∂r

)
, δq〉(χ(ȳ) − χ(x̄)) +

1

r

∂Gκ

∂r
〈 ∂
∂q

(χ(ȳ) − χ(x̄)), δq〉 =

∂

∂r

(1

r

∂Gκ(r)

∂r

)
(χ(ȳ) − χ(x̄))〈

∂χ

∂q
(q; ȳ)− ∂χ

∂q
(q; x̄), δq〉 · (χ(ȳ) − χ(x̄)) (4.25)

∂M
∂q(ȳ)

=∫
P

∫
P

∂

∂r

(∂Gκ
∂r

1

r

)1

r

{
(χ(ȳ) − χ(x̄)) ·

(∂χ(ȳ)

∂q(ȳ)
δq(ȳ)

)
(χ(ȳ) − χ(x̄)) ·

(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)}
+

1

r

∂Gκ

∂r

{(∂χ(ȳ)

∂q(ȳ)
δq(ȳ)

)
·
(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)
+
(
χ(ȳ) − χ(x̄)

)
·
(
Dχ(x̄)λ(x̄)×

∂Dχ(ȳ)

∂q(ȳ)
µ(ȳ)δq(ȳ)

)}
dsx̄dsȳ.

(4.26)

Again we take note of 4.12 so the final expression for the shape derivative of the double

layer operator is
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〈∂M
∂q

, δq〉 =∫
P

∫
P

∂

∂r

(∂Gκ
∂r

1

r

)1

r

{
(χ(ȳ) − χ(x̄)) ·

(∂χ(ȳ)

∂q(ȳ)
δq(ȳ) −

∂χ(x̄)

∂q(x̄)
δq(x̄)

)
(χ(ȳ) − χ(x̄)) ·

(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)}
+

1

r

∂Gκ

∂r

{(∂χ(ȳ)

∂q(ȳ)
δq(ȳ) −

∂χ(x̄)

∂q(x̄)
δq(x̄)

)
·
(
Dχ(x̄)λ(x̄)×Dχ(ȳ)µ(ȳ)

)
+
(
χ(ȳ) − χ(x̄)

)
·
(
〈
∂Dχ(x̄)

∂q(x̄)
, δq〉λ(x̄)×Dχ(ȳ)µ(ȳ)

−Dχ(x̄)λ(x̄)× 〈
∂Dχ(ȳ)

∂q(ȳ)
, δq〉µ(ȳ)

)}
dsx̄dsȳ

(4.27)

Where the shape derivatives 〈∂Dχ(·)
∂q(·) , δq〉 are given by Equation 4.21. It should be noted

that the order of the singularity of the kernel of the first term of 4.27 is reduced by two due

to the χ(ȳ)−χ(x̄) terms, therefore no special integration issues arise due to the singularity.

4.2 Explicit expressions for Pullbacks, Gramians and their

derivatives

In order for the derivation of the shape derivatives of the boundary integral op-

erators to be more straightforward it was deemed beneficial to define the computational

problem on a periodic parameter domain in R2 .

4.2.1 Details on pull-back, transformation and Gram determinant

We defined a transformation for the undeformed torus at Equation 4.1 and the

parametrization of a deformed torus as deformation along the normal in Equation 4.4. The

function q(x̄) , for x = {α,ϕ} coordinates on the parametric plane, is a scalar valued

function that parametrizes a deformation along the the small radius of the torus which

coincides with the normal of the torus. From now on q will be referred to as the control
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function. The analytical expression for the jacobian of the transformation for a torus with

small radius r is

DΦ


r

φ

α

 =


cosα cosϕ −r cosα sinϕ − sinα(r cosϕ+R)

sinϕ r cosϕ 0

sinα cosϕ −r sinα cosϕ cosα(r cosϕ+R)

 . (4.28)

The jacobian of the transformation Dχ(α, φ) is

Dχ(ϕ, α) = DΦ


q(α,ϕ)

ϕ

α




∂q
∂α

∂q
∂ϕ

0 1

1 0

 (4.29)

The previous expression is straightforward to calculate explicitly. It is noted the control

function q and the partial derivatives ∂αq, ∂ϕq exist and are known. The analytical expres-

sion for the gram matrix of the transformation with arbitrary function q(α,ϕ) reads

Dχ(ϕ, α)TDχ(ϕ, α) =

 ∂q
∂α 0 1

∂q
∂ϕ 1 0

DΦTDΦ


∂q
∂α

∂q
∂α

0 1

1 0



=

 ∂q
∂α 0 1

∂q
∂ϕ 1 0




1

q(ϕ, α)2

(qcosϕ+R)2




∂q
∂α

∂q
∂α

0 1

1 0


=

(∂ϕq)
2 + q2 ∂ϕq∂αq

∂αq∂ϕq (∂αq)
2 + (qcosϕ+R)2

 .

(4.30)

The square root of the gram matrix determinant is simply√
|Dχ(ϕ, α)TDχ(ϕ, α)| =

√
q2(∂ϕ)2 + (qcosϕ+R)2(∂ϕq)2 + q2(qcosϕ+R)2 (4.31)
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4.2.2 Derivatives with respect to q

In order to calculate the shape derivatives we need to calculate the derivatives of

the transformation, the jacobian and the gram determinant with respect to the control q.

The derivative of the transformation is

∂χ(α,ϕ)

∂q
=


cosαcosϕ

sinϕ

sinαcosϕ.

 (4.32)

For the derivative of the jacobian w.r.t. the control we need

D
∂χ

∂q
= Dn =



−sinαcosϕ −cosαsinϕ

0 cosϕ

cosαcosϕ︸ ︷︷ ︸
∂n
∂α

−sinαsinϕ︸ ︷︷ ︸
∂n
∂ϕ


. (4.33)

We also need the quantity

∂Dχ

∂(∂αq)
δ(∂αq) +

∂Dχ

∂(∂ϕq)
δ(∂ϕq) =

cosαcosϕ 0

sinϕ 0

sinαcosϕ 0

 δ(∂αq) +


0 cosαcosϕ

0 sinϕ

0 sinαcosϕ

 δ(∂ϕq) =


cosαcosϕ

sinϕ

sinαcosϕ


[
δ(∂αq) δ(∂ϕq)

]

= n∇δq> (4.34)

The derivative of the jacobian finally reads

〈∂Dχ

∂q
, δq〉 = n∇δq> +Dnδq =

cosαcosϕ

sinϕ

sinαcosϕ


[
δ(∂αq) δ(∂ϕq)

]
+


−sinαcosϕ −cosαsinϕ

0 cosϕ

cosαcosϕ −sinαsinϕ

 · δq (4.35)
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the derivative of the square root of the gram matrix is

∂
√
g

∂q
=

1
√
g
cosϕ(qcosϕ+R)((∂ϕq)

2 + q2) + q((∂αq)
2 + (qcosϕ+R)2) (4.36)

and the derivatives of the grammian w.r.t. the gradients of q are

∂
√
g

∂(∂αq)
=

1
√
g

((∂αq)q
2 and

∂
√
g

∂(∂ϕq)
=

1
√
g

(∂ϕq)(qcosϕ+R)2 (4.37)

4.3 Integrating for the shape derivatives

The shape derivatives of each operator quantify the effect of an infinitestimal

deformation along a specific direction δqn. Thus in order to have a representation of the

combined effect of a finite directional deformation to the objective function we should

consistently apply to the shape derivatives the same surface operators that we have applied

for the construction of the original system in the spirit of 4.39, 2.40, 2.41. This leaves us

with

Lδqi = (uq
∗)>Ñsdq;δqiuq + (ϕq

∗)>B̃sdq;δqT
>uq − (uq

∗)>T>B̃sdq;δqϕq + (ϕ∗q)
>Ãsdq;δquq (4.38)
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with

B̃sd
q;δqm

:= Bκ
q;δqm +B0

q;δqm

Ãsdq;δqm := A0
q;δqm +Aκq;δqm

Ñsdq;δqm := Nκ
q;δqm +N0

q;δqm

Nκ
q;δq := κ2Aκq;δqm

A0
q;δqm

:= Y 0,1
q;δqm

Aκq;δqm := Y κ,1
q;δqm

+ 1
κ2
DY κ,2

q;δqm
D>

N0
q;δq := DY 0,2

q;δqm
D>

Bκ
q;δqm [i, j] := 〈∂M

∂q
(q; ui,uj), δqm〉 ui,uj ∈ H

−1/2
‖ (divΓ,Γ) (using 4.27)

Y κ,1
q;δqm

[i, j] := 〈∂K
κ

∂q
(q; ui,uj), δqm〉 ui,uj ∈ H

−1/2
‖ (divΓ,Γ) (using 4.23)

Y κ,2
q;δqm

[i, j] := 〈∂W
κ

∂q
(q;ψi, ψj), δqm〉 ψi, ψj ∈ H−1/2(Γ) (using 4.17)

(4.39)

(4.40)

which is the discrete version of 3.14. The discretization of the control is discussed in chap-

ter 5.
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Numerical Results

5.1 Optimization problem set-up

The basis functions that were used to represent the deformation were different

versions of truncated Fourier series for all examples since the problem considered is periodic.

The forward problem is calculated once with the deformed geometry and the result is

saved on the disk. Then the optimization run consists of starting from an undeformed

torus shape and attempting to achieve the previously computed configuration of discrete

Neumann traces on the surface by minimizing Equation 3.12 through the solution of the

adjoint problem and the use of the analytical shape derivative formulas. In the following

examples the gradients are normalized according to their L2 norms.

In the following sections some representative computational examples are pre-

sented. Only a small number of basis functions were considered. The reason was that

computationally heavy exact boundary element matrix assembly was employed. In order

to reach the following results no approximation technique was used. An approximation

technique at least for the assembly of the integrals is essential for the practical usefulness

of the method.

37
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5.1.1 Line search strategy

Initially exact line search was employed but it was found to be quite inefficient.Therefore

an inexact line-search was employed. The strategy was simply the bisection of the step

length in case the proposed step was leading to worse results but in case this process was

repeated more than 4 times the latest proposed step would be accepted and the optimization

would continue with computing a new descent direction.

5.1.2 Sphere enclosed by torus

Throughout the computation dimensionless units were considered. In the first

computational example the initial shape is an undeformed torus with large radius R = 0.01

and small radius r = 2 ∗ 10−3. Non-local excitation is produced by constraining the scalar

trace to have a unit jump along the cut as it was elaborated in section 2.3.3. In the present

example the target shape is a torus with deformation

qaopt =
r

3
(sin(α) + 0.5sin(2α))sin(2φ) (5.1)

along the normal where α, φ are angles as elaborated in section 4.1. Two examples are

presented with the torus/sphere configuration. In the first one the integration for the

loading of the adjoint is performed only on the enclosed sphere, and in the second one the

integration is performed on the entire computational domain. The basis functions that span

the control space are

δqakl =
2∑

k=1

3∑
l=1

sin(kα)sin(lφ) (5.2)

Integration on the sphere

As seen in Figure 5.1 the objective function diminishes quite consistently. The

figure on the right of 5.1 is the evolution of the contribution of the basis functions (the
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optimization parameters). A cross section of the configuration the optimization process

produced with an outline of the target configuration boundary are given in Figure 5.3.

Observing Figure 5.2 we can argue that the loading of the adjoint problem, or equivalently

the objective function, decays with the procedure quite fast and quite consistently for

visually indistinguishable variations on the torus surface. However, the shape of the torus

was not recovered with this example possibly due to the fact that the problem is severely

ill posed.

In the third and fourth examples an alternative configuration of measurement

domain and torus is presented that allows for reconstruction of the original shape of the

torus by data on a separate domain alone.
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sin a sin 2*phi
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sin 2*a sin 2*phi

sin 2*a sin 3*phi

Figure 5.1: Left : Objective function evolution - example 1 (line-search steps)
Right :Evolution of design vector - example 1 (line-search steps).

Integration on the entire domain

As validation of the implementation tests were run where the integration domain

was the entire computational domain. The rationale behind these tests was that when the

integration is the entire domain the shape reconstruction problem ceases to be so ill-posed
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Figure 5.2: Sphere enclosed by torus - integration only on sphere. Initial adjoint loading.
Color represents the cell averaged local contribution of the adjoint loading.

Figure 5.3: Sphere enclosed by torus - integration only on sphere. Color is the local contri-
bution to the loading of the adjoint problem. Scale is identical to Figure 5.2
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Figure 5.4: Left: Objective function evolution - example 2 (x axis is line-search steps) Right
: Evolution of design vector - example 2 (x-axis is line-search steps).

as in the first example and reconstruction should be observed in a much smaller number

of steps. In Figure 5.5 we can observe visually that the shape is indeed approximately

reconstructed by the algorithm.

In Figure 5.4 the evolution of the objective function and of the design vector is

presented. The full shape is not reconstructed due to the small number of steps but we can

observe that the basis functions δq12 and δq22 assume quite fast values close to their optimal

and continue to approach them while the contributions of all the other basis functions to

the shape are and remain small as they are expected.

5.1.3 Integration on external plate probe

Finally optimization runs were executed where the integration was performed on

a coarsely meshed external plate probe.

Optimization with target shape defined by qaopt

As seen in Figure 5.6 the shape is approximately reconstructed. In this example

the very small number of line search steps (4) led to divergence of the method in few
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Figure 5.5: Sphere enclosed by torus - integration on both domains. The target shape is
sketched in the cross section with a white the white line does not coincide with the outline
of the deformed mesh.

steps. Due to time restrictions the test could not be run with different parameters. Instead

a different example presented in the following subsection with an interesting, yet easier to

reconstruct, shape was preferred to validate the developed method but also with integration

on two plate probes.

Optimization with target shape defined by qbopt

As a final example a target shape was investigated with deformation

qbopt = 0.3r cos(α)− 0.3r cos(2α) + 0.1r cos(3α) + 0.2r sin(2ϕ) (5.3)

and with control discretization

δqbkl =

3∑
k=0

cos(kα) +

2∑
l=1

sin(lϕ). (5.4)

In this example the integration was performed on two plate probes were employed for inte-

gration enclosing the torus from two sides. It was observed that there is fast convergence to



Chapter 5: Numerical Results 43

Figure 5.6: top:Plate probe under torus - initial shape, forward solution, bottom:final shape
for qaopt target deformation.

the target configuration as seen in Figure 5.1.3. The objective function decreases accord-

ingly as seen in Equation 5.1.3.
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Figure 5.7: Left : Evolution of objective function with linesearch step for qbopt. Right:

Evolution of shape parameters with linesearch step for qbopt.

Figure 5.8: Left to right and top to bottom:Torus shape - initial, step 1, step 2, step 6 for
target qbopt. The gray outline is the target shape. The colors represent the local contributions
to the loading of the adjoint and they diminish. The target shape practically coincides with
the shape reconstructed at step 6.
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Implementation

The implementation of the proposed method without causing bugs to the rest

of BETL2 posed various interesting challenges. In the following the presentation will be

focused on usage of the implemented classes and the extended parts of the code. Specific

implementation details will be presented only when they possess some value to possible

extensions and improvements of the code. The future developers of this work are strongly

encouraged to read this part.

6.1 Parsing a mapped mesh

In order to facilitate the validation of the implementation of the ”mapped” BEM

operators special constructors of the mesh input interface and the internally used mesh

parser were created that accept a functor that realizes the mapping. On input the nodes

are mapped according to the functor thus there is a direct correspondence of the degrees

of freedom computed on the parameter plane with the degrees of freedom computed on the

torus. A usage example of the instantiation of such an input interface is given below.

45
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1 namespace big = betl2 : : input : : gmsh

2 // Where basename par , the parameter plane mesh , and t r a n s f f u n c ( . . . ) a ←↩

f unc to r used f o r the mapping

3 big : : Input input_tor_minus ( basename_par , transformation : : transf_func (r_ , R_←↩

, current_q_functions . q0_ ) ) ;

6.2 The ParamatricDiffeomorphism class

The first and most important challenge was to implement efficiently the compu-

tation of the additional jacobians and gramians used for the computation of the BEM

operators on the parameter domain. The boundary element method, especially when used

without acceleration techniques for the integration, was found to be rather unforgiving with

respect to inefficient parts of code due to the underlying double integration. The initial ap-

proach was to implement this through the use of modified kernel functions. This approach

was abandoned due to performance issues but also due to the fact that it complicates un-

necessarily the implementation of the shape derivative integrators as it will be elaborated

later. The most crucial performance consideration that led to the abandonment of this

approach was the absence of facilities for caching the fundamental solution evaluations. If

the additional quantities were to be computed along with the relatively cheap fundamental

solution evaluation an increase on operation count would occur that would be both unnec-

essary and significantly detrimental to the performance. Of course caching the fundamental

solution evaluations would have been too memory costly with small to non-existent perfor-

mance gains for the usual operators and this is apparently why such an approach is not

followed in the code. On the other hand there are caching facilities for the Geometry class

and these facilities were extended to accommodate the high operation count computations

for the additional jacobians and grammians.
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Key to the management of these additional quantities is the ParametricDiffeomorphism

class. This class accepts a set of functions for the additional quantities needed to implement

the diffeomorphism and the modified Geometry class and the FSLayerTraits specializations

that were implemented use these additional quantities. This had the advantage that since

the FSLayerTraits and the RuntimeCache are requesting the geometry related quantities

through the Geometry class they required minor modifications. However in order to imple-

ment caching for quantities relevant only to the shape derivatives the RuntimeCache class

was extended. As a representative example of how the geometry class that was implemented

works is given in Listing 6.1.

1

2

3 template< eth : : base : : RefElType RET , i n t NUM_NODES ,

4 i n t DIM_TO , i n t NUM_LOCAL_POINTS>

5 c l a s s GeometryImplParam :

6 pub l i c GeometryImplBaseTemplate<GeometryImplParam < . . .> ,

7 . . . > //CRTP base ←↩

c l a s s

8 {

9 .

10 .

11 .

12 i n l i n e

13 matrix_t< dimFrom , dimTo∗NUM_LOCAL_POINTS >

14 jacobianTransposed ( const matrix_t<dimFrom , NUM_LOCAL_POINTS>& local )

15 const

16 {

17 // compute g r a d i e n t s
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18 const matrix_t< NUM_NODES , dimFrom∗NUM_LOCAL_POINTS > gradients =

19 geometryImplTraits : : GradientShapeFun_t : : Eval ( local ) ;

20 // i n s t a n t i a t e JˆT

21 matrix_t< dimFrom , dimTo∗NUM_LOCAL_POINTS > JT ;

22

23 // c a r e f u l l − here I need the po in t s un−transformed

24 // to the parametr ic s u r f a c e ! This i s what the

25 // a d d i t i o n a l j acob ian fcn uses

26 matrix_t<dimTo , NUM_LOCAL_POINTS> param_global = nodal_coords_ ∗

27 geometryImplTraits : : ShapeFun_t : : template Eval<←↩

NUM_LOCAL_POINTS>( local ) ;

28

29 // go through a l l l o c a l po in t s

30 f o r ( i n t i = 0 ; i < NUM_LOCAL_POINTS ; ++i ) {

31 //we want the jacob ian returned to inc lude the one

32 // introduced due to the parameter domain −> to rus mapping

33 JT . template block<dimFrom , dimTo>(0 , i∗dimTo )

34 = gradients . template block<NUM_NODES , dimFrom>(0 ,i∗dimFrom ) .←↩

transpose ( ) ∗

35 nodal_coords_ . transpose ( ) ∗

36 cons t ca s t<ParametricDiffeomorphism<DIM_TO , DIM_TO>& >(←↩

par_diff_ ) . getJacob (

37 param_global . template block<dimTo ,1>(0 ,i ) ) . transpose ( ) ;

38

39 }

40 re turn JT ;

41 }

42 }

Listing 6.1: GeometryImplParam



Chapter 6: Implementation 49

6.3 The OperatorFactory class

This class manages through template argument deduction and a simple traits class

consistently the types for various interconnected objects in order to compute any of the

operators needed for our problem. The object keeps a RuntimeCache object internally

in order to avoid recomputing cached quantities for operators defined on the same mesh.

Though some quantities are re-initialized, their initialization is computationally trivial for

the problems considered and the main code becomes much simpler and easier to debug.

The most important method is given bellow. Use of such encapsulation utilities is essential

to the academically oriented usage of the library.

1 c l a s s OperatorFactory{

2 protec ted :

3 const grid_factory_t& grid_factory ;

4 cache_t cache ;

5 bool cache_contains_pdiff=f a l s e ;

6 // s i n g u l a r i t y d e t e c t o r t s i n g u l a r i t y d e t e c t o r ;

7 pub l i c :

8 OperatorFactory ( const grid_factory_t& grid_factory_ )

9 : grid_factory ( grid_factory_ ) ,

10 cache ( grid_factory_ )

11 {

12 } ;

13

14 template< c l a s s GALERKIN_KERNEL_T>

15 Eigen : : Matrix<typename GALERKIN_KERNEL_T : : numeric_t , Eigen : : Dynamic , Eigen : :←↩

Dynamic> build_operator ( GALERKIN_KERNEL_T& galerkin_kernel )

16 {

17 singularity_detector_t singularity_detector ( grid_factory ) ;



Chapter 6: Implementation 50

18 typede f typename GALERKIN_KERNEL_T : : testBasis_t feb_t ;

19

20 typede f betl2 : : fe : : DofHandler<feb_t ,

21 FETypeLocalTraits<feb_t > : : continuity ,

22 grid_factory_t > dh_febasis_t ;

23 dh_febasis_t dh_febasis ;

24 dh_febasis . distributeDofs ( grid_factory ) ;

25

26 // i n t e g r a t o r :

27 typede f bem : : GalerkinIntegrator< GALERKIN_KERNEL_T , typename ←↩

FETypeLocalTraits<feb_t > : : integration_traits > integrator_t ;

28 integrator_t integrator ( galerkin_kernel , singularity_detector , cache ) ;

29

30 typede f BemOperator< integrator_t ,

31 typename dh_febasis_t : : fespace_t > bem_op_t ;

32

33 bem_op_t bem_op ( integrator , dh_febasis . fespace ( ) ) ;

34 bem_op . compute ( ) ;

35 re turn bem_op . matrix ( ) ;

36 }

Listing 6.2: OperatorFactory

6.4 Implementation of Penalty method

Since BETL2 does not have any boundary condition enforcing capabilities a design

approach that could be generalized in the future was chosen. The rationale behind the

periodic boundary conditions is that the degrees of freedom that lie on corresponding faces

that have to be constrained have to be identified separately. Then corresponding pairs
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have to be identified in order to build the relevant vectors and matrices for the constraints.

This task is achieved with the CorrespondanceDeductor class. This class operates through

functors that represent the geometric conditions that define if a degree of freedom is on a face

to be set to periodic conditions and a simple boolean denoting in which side. Keeping track

of which side a degree of freedom lies is essential for the non-homogeneous scalar constraint.

For non-homogeneous constraints for vector elements it might be important to keep track of

the orientation but this issue does not occur in our case. The nonHomogPenalty function is

presented bellow where the left hand side and right hand side of the penalty contributions

are returned. It accepts a simple vector tuple that contains two integers denoting the

matched DOFs and a boolean that denotes whether the orientation is conforming or not

between vectorial degrees of freedom.

1 std : : pair<systemMatrix_t , systemMatrix_t> nonHomogPenalty ( std : : vector<std←↩

: : tuple< i n t , i n t , bool> > mfc , double val , i n t numdofs ) {

2 // i t e r a t e through the map

3 // s e t d i agona l s to 1 o f f−d iags to −1

4 systemMatrix_t lhs ( numdofs , numdofs ) ;

5 lhs . setZero ( ) ;

6 systemMatrix_t rhs ( numdofs , 1) ;

7 rhs . setZero ( ) ;

8 f o r ( i n t ind = 0 ; ind < mfc . size ( ) ; ind++){

9 i n t dof1 = std : : get<0>(mfc [ ind ] ) ;

10 i n t dof2 = std : : get<1>(mfc [ ind ] ) ;

11 lhs ( dof1 , dof1 ) = 1 ;

12 lhs ( dof2 , dof2 ) = 1 ;

13 // the No2 p o s i t i o n o f the tup l e conta in s a bool that t e l l s us i f the ←↩

o r i e n t a t i o n i s

14 // c o n s i s t e n t :
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15 i f ( std : : get<2>(mfc [ ind ] ) == f a l s e ) {

16 std : : cout<<” spotted o r i e n t a t i o n di s sagreement f o r pa i r : ”<<dof1 << ”←↩

, ” << dof2<<std : : endl ;

17 }

18 lhs ( dof1 , dof2 ) = std : : get<2>(mfc [ ind ] ) ? −1 : 1 ;

19 lhs ( dof2 , dof1 ) = std : : get<2>(mfc [ ind ] ) ? −1 : 1 ;

20 rhs ( dof1 ) = val ;

21 rhs ( dof2 ) = −val ;

22 }

23 re turn std : : pair<systemMatrix_t , systemMatrix_t >(lhs , rhs ) ;

24 }

25 } ;

Listing 6.3: nonHomogPenalty

6.5 Implementation of Shape Derivative Integrators

6.5.1 Implementation through the Geometry

For each case of shape derivative integrator (single layer scalar, single layer vec-

tor, double layer vector) a separate FSLayerTraits specialization had to be created. As

a basis for the implementation of the shape derivative integrators the corresponding op-

erators were used. For each of these cases the code needed to be edited in 3 parts that

were quite similar. A representative example of the editing of the double layer integrator

(or more precisely the FSLayerTraits is given bellow. The quantities glo dfi, dJyi R

all depend on computations from a ParametricDiffeomorphism instance. These quanti-

ties are not available through the BETL2 default geometry class and this was the reason

the ParametricDiffeomorphism class had to be created and the Geometry class had to
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be edited. One reason for this choice was that it was not necessary for the integrators

for the regular BEM operators to be edited. Simply by making the geometry object con-

tained in each element to return the jacobian or gramian ”augmented” with the terms

from ParametricDiffeomorphism when it contains such an object was sufficient for correct

integration.

It is noted that a template specialization of the geometry would not have been

sufficient and conceptually not integratable to BETL2 since the geometry has nothing to do

with the nature of the operator (if it is a shape derivative operator or a regular operator). In

the author’s opinion the concept of BEM operator in BETL2 is insufficient to accommodate

for the concept of the shape derivative of a BEM operator. However it is apparent that con-

ceptually the object that should provide encapsulation for additional geometric quantities

should be related somehow to geometry.

6.5.2 Implementation with fundamental solutions

The kernel functions return a number to the integrator given the global points.

Neglecting for a second the serious performance issues related to the (sound design choice

of) absence of caching for fundamental solution evaluations we briefly consider an imple-

mentation of the shape derivative operators through only the fundamental solutions (a

template specialization of the FundSol class). First of all, we have to observe that all shape

derivative integrals consist of two separate kernels. The implementation of the single-layer

vector operator on the first part of the integral in Equation 4.23 contains inner products

of the shape derivatives of the jacobians of the parametrization with the local to global

jacobians. One possible way of dealing with this would be passing the local to global jaco-

bians to the fundamental solution object for computation of their inner products with the

derivatives of the parameter domain to torus jacobians. This approach would violate the
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concept of fundamental solutions that are implemented simply to return a scalar value and

was rejected.

6.5.3 A rough implementation proposition for shape derivatives on BETL2

with finite elements

The proposed way for general shape optimization (and partially implemented but

not documented since it did not produce any results for the final project) would be an

operator that accepts not two but three FESpace objects. The two are regular finite element

spaces used for the BEM integration as BETL already implements but the third one should

be a separate finite element space used to discretize the shape derivative. The return

type for such an operator would be a sparse (but not banded) matrix for every degree

of freedom of the control space. The shape derivative integrator has to implement even

a naive way to identify the basis functions that have common support in the resulting

triple integral since looping through all the elements as in dense BEM operators would

be inefficient and unnecessary. It has to be noted that since all BETL2 BEM related

classes are designed for dense operators, as BEM operators essentially are if approximation

techniques for the integration are not used, their matrix representations are hard-coded

on template parameters. A suitable data structure that would accommodate the shape

derivative matrices of a discretization of the BEM operators with shape derivatives would

have been something in the lines of a vector of sparse matrices. Thus it seems that in order

for shape optimization with BEM to be feasible in BETL2 there are many extensions of

BETL2 that have to be implemented.

1 f o r ( i n t fx = 0 ; fx < NUM_ROWS ; ++fx ) {

2 f o r ( i n t fy = 0 ; fy < NUM_COLS ; ++fy ) {
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3 const dmatrix_t< dimFrom , 1 >& Fy = evalY . template block< dimFrom , 1 ←↩

>( fy∗dimFrom , gpY ) ;

4 const i n t idx = utils : : majorCol< NUM_ROWS , NUM_COLS >( fx , fy ) ;

5 Eigen : : Matrix<double ,3 ,1> dFFy = ( dJyi ∗ Fy ) . eval ( ) ;

6 Eigen : : Matrix<double ,3 ,1> FFy = ( Jyi ∗ Fy ) . eval ( ) ;

7

8 auto crossProd_A = FFy . cross ( glo_fi . template block< dimTo , 1>(0 ,fx ) )←↩

;

9 auto crossProd_dx = FFy . cross ( glo_dfi . template block< dimTo , 1>(0 ,fx←↩

) ) ;

10 auto crossProd_dy = dFFy . cross ( glo_fi . template block< dimTo , 1>(0 ,fx←↩

) ) ;

11

12 result ( idx , 0 ) = result ( idx , 0 )

13 + ddU_eval ∗ R_dxy ∗ R . dot ( crossProd_A )

14 + dU_eval ∗ ( dxy . dot ( crossProd_A )

15 + R . dot ( crossProd_dx + crossProd_dy ) ) ;

16 }

17 } ;

Listing 6.4: ”part ofGalerkinKernelLayerTraits DL sd”

6.6 Function Bundle

It was very convenient to define the basis functions and their gradients in the

present implementation as structs that contain lambda functions that are scaled according

to the design vector. Addition subtraction and scaling are defined for these objects with

operator overloading. A static factory method is provided that permits the easy construction

of ParametricDiffeomorphism objects from FunctionBundle objects.
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6.7 Basic Multithreading Control

When using the mapping from the parametric domain to the torus (for non-shape

derivative operators) no threading issues arise. However, the setting and un-setting of a

flag that controls the behavior of ParametricDiffeomorphism that was intended to be

removed in later stages of development caused race conditions. BETL2 does not have high

level facilities for threading management. Thus the code was edited to compute the mapped

operators with multiple threads (used for the assembly of the linear system) and the shape

derivative operators with only one thread. This was achieved by a trivial traits class. The

cleanest way to implement the single threading was to instruct METIS to create a single

cluster and adding a const bool thread safe flag in the integrator. Future developers

are referred to file bem operator dense impl mt.hpp.

1 namespace betl2 {

2 namespace bem {

3

4 template <FSLayer T>

5 s t r u c t ThreadSafeTraits{ s t a t i c const bool is_thread_safe=true ; } ;

6

7 template <> s t r u c t ThreadSafeTraits<FSLayer : : SL_sd>{ s t a t i c const bool ←↩

is_thread_safe=f a l s e ; } ;

8 template <> s t r u c t ThreadSafeTraits<FSLayer : : DL_sd>{ s t a t i c const bool ←↩

is_thread_safe=f a l s e ; } ;

9 . . .

10 }

11 }

Listing 6.5: ThreadSafeTraits
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6.8 Eddy Current Solver

This is the main class used for the computation of the adjoint and the forward

problem. In main it is used as shown bellow.

1 const ParametricDiffeomorphism<3,3> par_diff ( FuncBundle : : CreateParDiff (←↩

current_q_functions , FuncBundle : : Zero ( ) , t rue ) ) ;

2 // i n s t a n t i a t e a f i n i t e element space only to f i n d the degree s o f freedom←↩

e a s i l l y !

3 const grid_ptr_t grid_ptr_dofs (new grid_t ( inpInterface_cyl , ←↩

inpInterface_par ,

4 transformation : : no_transf_pt ( ) ,

5 transformation : : no_transf_jacob ( ) ,

6 transformation : : no_gram ( ) ) ) ;

7 const grid_ptr_t grid_ptr_param ( new grid_t ( inpInterface_cyl , ←↩

inpInterface_par , par_diff ) ) ;

8 const grid_factory_t grid_factory_par ( grid_ptr_param ) ;

9 const grid_factory_t grid_factory_dofs ( grid_ptr_dofs ) ;

10 // i n i t i a l i z i n g the s o l v e r :

11 EddyCurrentSolver eddy_current_solver ( grid_factory_par , ←↩

grid_factory_dofs ) ;

12

13 eddy_current_solver . initializeMatrices ( ) ;

14 SolutionPair solution_fw = eddy_current_solver . solve_forward ( ) ; //←↩

s o l v e s with B and a l l c o n s t r a i n t s

15 // . . .

16 SolutionPair solution_adj = eddy_current_solver . solve_adjoint ( ) ; //←↩

s o l v e s with −B and miss ing the jump cons t ra in t , r ep laced with f r e e ←↩

s c a l a r va lue s a long the same cut .
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Listing 6.6: EddyCurrentSolver usage

6.9 Usage

Except when the --help flag is used the first two arguments should be the mesh

input files. The first input file is a 2π periodic plane mesh with z = 0 and the second

argument is a mesh where no additional diffeomorphism is applied. A small set of flags were

implemented in order to run various tests without having to recompile since compilation is

really demanding in terms of system requirements.

See the following command :

1 BEM optimization f o r coupled eddy current simulation .

2

3 options :

4 −−validate_shape_deriv [ OP ] [ DELTA ] =

5 run validation f o r shape derivative operator .

6 [ OP ] = B0 | A0_edge | N0_lagr

7 −−calculate_target [ c0 ] [ c1 ] [ c2 ] [ c3 ] [ s1 ] [ s2 ] =

8 compute and save a solution f o r a speciffic s e t of ←↩

parameters .

9 [ cj ] − cosines , [ sj ] − sines . Need to provide exactly 6 .

10 −−optimization_options [ dom ] [ ofstring ] [ grad_rep ] [ max_ls_steps ] =

11 perform optimization run . Possible parameters :

12 [ dom ] : both−domains | probe

13 [ ofstring ] : phi | alpha | both

14 [ grad_rep ] : L2 | H1 | H1_2

15 [ max_ls_steps ] : 3 , 4 . . .
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16 −−cont inue [ dom ] [ ofstring ] [ grad_rep ] [ max_ls_steps ] [ c0 ] [ c1 ] [ c2 ] [ c3 ] [ s1←↩

] [ s2 ] =

17 Same as the previous option , but with the choice of ←↩

defining an initial design vector .

18

19 examples :

20

21

22 . / betl2_deformed_torus_operators msh0 . 45 asquare_coarse −−←↩

calculate_target 0 0 .3 −0.3 0 .1 0 0 .2

23 . / betl2_deformed_torus_operators inp_parametric inp_nonparametric −−←↩

optimization_options both−domains alpha L2 10

In order to modify the set of basis functions it is necessary to edit the executable on

the setting of the directions vector of functors. More flexibility was not deemed necessary

since the natural track of this project is to achieve BEM optimization with surface Lagrange

basis functions.
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Conclusion and future work

7.0.1 Conclusion

An optimization technique was presented and implemented for the E formulation

of the BEM coupled eddy current problem, using analytical shape derivatives and the adjoint

method. A parametrization of the shape was considered in a way that the shape derivative

formulas can be derived and computed in a straightforward manner. The results of the

performance of the method are satisfactory. The shape derivatives of the operators presented

are not limited to the eddy current model. The same analytical shape derivatives can be

used to compute gradients for other optimization problems with BEM.

7.0.2 Outlook

On BETL2 development

It is apparent that there are limitations that have not been dealt with and they

can be covered in future projects. In the author’s opinion future development in BEM with

BETL2 should be performed straight away with approximation techniques, at least for the

integration. Full integration for BEM operators is operation intensive on a scale that not

60
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only it obscures the real power of BEM, but also it hinders debugging and development.

As discussed in subsection 6.5.3 a general discretization of the control space should

be implemented and the relevant template classes should be extended to support it or a

different set of classes should be put in place for that. The second option seems more viable

and flexible but also probably less maintainable.

As for the coupled eddy current problem future works might investigate more

general loading than non-local current excitation and the H based formulation. Of course

the present work also paves the way for optimizing the shape of a coil for optimal inductive

hardening of components of critical importance for energy saving and performance.
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Appendix A

Validation of Mapping and Shape

Derivatives

A.0.3 Boundary Integral Operators

The validation was performed by directly comparing the discrete version of the

operators computed on the parametric plane and on an actual 3D mesh as it is represented

from a speciffic control function

q = cos(2α) + sin(3ϕ). (A.1)

In order to circumvent a possible interpolation step the three dimensional geometry

where the reference operators are computed is constructed by mapping the nodes from the

two dimensional plane to the point they correspond to on the 3D space.

This approach introduced an interesting inconsistency for the validation of the

matrix for the double layer potential. We keep in mind that the points are mapped from

the parameter plane to the surface of a torus that possesses curvature and continuous nor-

mal vector. A plane triangle parametrization of the torus introduces discontinuities on

63
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3-Noded
Mesh-h #elements err(DL) err(SLv) err(SLs)

0.40 512 13.07% 0.86% 2.089%
0.36 648 12.56% 0.70% 1.731%
0.25 1352 11.25% 0.36% 1.008%

6-Noded
Mesh-h #elements err(DL) err(SLv) err(SLs)

0.40 512 0.21% 0.146% 0.04%
0.36 648 0.17% 0.115% 0.05%
0.25 1352 0.10% 0.054% 0.02%

Table A.1: Validation of BEM operators

the normals along the elements and this had a signifficant impact on the validation. The

validation passes with reasonably good results when curved elements were used. That ef-

fect was indistinguisable on the single-layer vector potential calculation, very limited in the

single-layer scalar operator but very pronounced on the double layer potential that depends

on the normal of the boundary elements (or equivalently on the cross product of surface

vectors). We denote matrices computed on the parameter domain as MP
pot and matrices

computed directly on the 3D torus as MT
pot. The subscript pot is {SLs, SLv,DL} denoting

the single layer scalar, single layer vectorial and double layer operators respectively. The

results of the validation are given in the following table. err(·) denotes the norm ||MP
· −MT

· ||
||MP

· +MT
· ||

The quadrature points are 12 for all different cases of integration (edge adjacent, vertex

adjacent and regular).

A.0.4 Shape Derivatives of Operators

In order to validate the numerically computed shape derivatives from the analytical

formulas a central difference of the matrices was calculated for a deformation δq along the
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3-Noded
Mesh-h #elements err(DL) err(SLv) err(SLs)

0.40 512 7.60E-6% 3.81E-6% 1.60E-6%
0.36 648 9.30E-6% 3.88E-6% 1.70E-6%
0.25 1352 1.64E-6% 4.09E-6% 1.90E-6%

6-Noded
Mesh-h #elements err(DL) err(SLv) err(SLs)

0.40 512 7.50E-6% 3.81E-6% 1.60E-6%
0.36 648 9.20E-6% 3.88E-6% 1.70E-6%
0.25 1352 1.63E-6% 4.08E-6% 1.90E-6%

Table A.2: Validation of shape derivatives

normal vector of the undeformed torus surface.

〈∂K
∂q

, δq〉 := lim
ε→0

K(q + 1/2 ε δq)−K(q − 1/2 ε δq)

ε
(A.2)

The analytical formulas for the shape derivatives show excellent agreement with the for-

mulas calculated by finite differences. However it should be noted that the finite difference

approximation is particularly sensitive to the choice of ε and this approach breaks down for

ε→ 0 possibly due to quantities that occur during the evaluation that cannot be described

with machine precision. The following results were acquired for a deformation along the

direction A.1 and ε = 10−8r where r is the small radius of the torus. It is worth noting that

although the validation of the actual bilinear operators (not their shape derivatives) is not

giving encouraging results for 3-noded triangular elements this trend is not followed from

the shape derivatives of the bilinear operators.

The validation gives very good results for all the shape derivatives. There is a

striking agreement of the shape derivatives regardless of the geometric order of the elements

used. There is a slight trend of deterioration of the results with h−refinement but the

order of the errors along with the trend being quite insignifficant can be attributed to the
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numerical accuracy of the computations. We should take into account that pure numerical

approximation innacuracy is expected to accumulate in larger computations. In light of

these results one can argue that the shape derivative in our case seems to follow the order

of approximation of the corresponding bilinear form 1.

1However, it must be noted that we compute on a smooth domain and we take account smooth variations
of the domain. This argument might not generalize with sharp variations δq.
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