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Chapter 1

Introduction

1.1 The Shallow Water Equations

The shallow water equations model flows in lakes, rivers, near shore ocean,
etc., especially in phenomena where the vertical scales are much smaller
than the horizontal ones. I present a short sketch of the derivation of the
one-dimensional shallow water equations with flat bottom topography. Con-
sider a channel with unit width filled with water. It is assumed that the ver-
tical velocity is negligible. The horizontal velocity is approximately constant
throughout any cross section and it depends on x and t (space and time).
The water is assumed to be incompressible, so its density sρ is constant. The
height h of the water level changes in time and space, so h “ hpx, tq. One
assumes the conservation of mass and momentum throughout the channel.
The mass in an arbitrary interval ra, bs at time t is given by

ż b

a
sρhpx, tqdx . (1.1)

The mass flux is given by the momentum density sρu integrated over the
vertical scale. So the mass flux is given by

sρhpx, tqupx, tq . (1.2)

If (1.2) is smooth enough, the mass flux can be rewritten as

sρ

ż

B

Bx
pupx, tqhpx, tqqdx . (1.3)

The change of mass in time in the space interval ra, bs only depends on the
mass flux, so the following relation must hold

d
dt
p

ż b

a
sρhpx, tqdxq ` sρ

ż

B

Bx
pupx, tqhpx, tqqdx “ 0 . (1.4)
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1. Introduction

If one assumes that h is “nice” enough (smooth and integrable), the integra-
tion and differentiation can be interchanged

sρ

ż b

a

B

Bt
hpx, tqdx` sρ

ż

B

Bx
pupx, tqhpx, tqqdx “ 0 . (1.5)

Formally, one has
ht ` phuqx “ 0 (1.6)

since ra, bs was arbitrary and the equation (1.5) must hold for all such space
intervals in the domain. The constant sρ drops out.
The momentum in an arbitrary interval is given by

sρ

ż b

a
hpx, tqupx, tqdx . (1.7)

The momentum flux is given by (see [4])

sρhpx, tqpupx, tqq2 ` ppx, tq “
ż

B

Bx
psρhpx, tqpupx, tqq2 ` ppx, tqqdx (1.8)

where p is the pressure. In (1.8) it is assumed that h, u and p are “nice”
enough so that the integration and differentiation can be interchanged. The
change of momentum in time only depends on the momentum flux at the
endpoint. Thus, one gets

d
dt
p

ż b

a
sρhpx, tqupx, tqdxq `

ż b

a

B

Bx
psρhpx, tqpupx, tqq2 ` ppx, tqqdx “ 0 . (1.9)

In differential form the above equation (1.9) can be written as follows

phuqt ` phu2 ` pqx “ 0 . (1.10)

The pressure p can be determined by the hydrostatic law, which says that
the pressure at h´ y below the water level is given by

sρgph´ yq (1.11)

where g is the gravitational constant. Integrating (1.11) from y “ 0 to y “ h
yields

sρg
ż h

0
h´ ydy “

1
2
sρgh2 . (1.12)

Replacing p in (1.10) by (1.12) and dropping the constant sρ yields

phuqt ` phu2 `
1
2

gh2qx “ 0 . (1.13)
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1.1. The Shallow Water Equations

Combining equation (1.6) and (1.13) gives the conservative form of the one-
dimensional shallow water equations

ht ` phuqx “ 0

phuqt ` phu2 `
1
2

gh2qx “ 0 .
(1.14)

The conservative form of the shallow water equations in two dimensions
looks as follows

ht ` phuqx ` phvqy “ 0

phuqt ` phu2 `
1
2

gh2qx ` phuvqy “ 0 (1.15)

phvqt ` phuvqx ` phv2 `
1
2

gh2qy “ 0 .

In the above formulation I have neglected the eddy viscosity and assumed a
flat bottom topography, therefore there is no source term. Eddy viscosity is
the transfer of momentum from the large scales to the smaller scales of the
motion. In the rest of the thesis I will never consider the eddy viscosity. But I
introduce the shallow water equations with some given bottom topography.

ht ` phuqx ` phvqy “ 0

phuqt ` phu2 `
1
2

gh2qx ` phuvqy “ ´ghbx (1.16)

phvqt ` phuvqx ` phv2 `
1
2

gh2qy “ ´ghby

h is the height of the water (column), pu, vq is the velocity field, b is the
bottom topography and g is the gravitational constant, which is set to g “
9.807 m

s2 . I assume that b is nice enough, i.e. the function is at least contin-
uous and has some smoothness. In my numerical experiments b is always
piecewise smooth and continuous. As mentioned in the above derivation,
the mass and the momentum are conserved.
In the rest of the thesis, I am only going to work with the one-dimensional
shallow water equations

ht ` phuqx “ 0

phuqt ` phu2 `
1
2

gh2qx “ ´ghbx .
(1.17)

This can be formulated in terms of conservative variable, flux and source
vector; so one gets the following system of balance laws

Ut ` f pUqt “ ´spx, Uq (1.18)
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1. Introduction

where U “ ph, huqT, f “ phu, hu2 ` 1
2 gh2qT, s “ p0, ghbxq

T.
It is known that solutions of hyperbolic PDEs like (1.17) can develop dis-
continuous shocks after some (finite) time, even if the initial data is smooth
[4]. So, one can no longer speak about classical solutions and therefore, the
notion of weak solution is introduced.

Definition 1.1 (weak solution) Consider an arbitrary conservation law

Ut ` f pUqx “ 0

where f is an arbitrary flux function and U some unknown conservative variable.
Upx, tq is called a weak solution of the above conservation law given some initial
data rUpx, 0q, if

ż 8

0

ż 8

´8

pUϕt ` f pUqϕxdxdt`
ż 8

´8

Upx, 0qϕpx, 0qdx “ 0 (1.19)

holds for all ϕ P C1
c pRě0 ˆRq.

A solution of (1.18) considered in the weak sense is well-defined as long as
the source term remains uniformly bounded, see [2]. Since weak solutions
are not necessarily unique, one needs some admissibility conditions to get
unique solutions. In the case of the shallow water equations, one imposes
the so-called entropy condition.

Remark 1.2 Clearly, all smooth solutions satisfy (1.19).

1.2 Entropy Condition

Let EpUq be a convex function and H “ HpUq, J “ pJ1px, Uq, J2px, UqqT

functions such that the following relations hold

BU H “ xBUE, BU f pUqy, Bx J1 “ xBUE, sy (1.20)

where x¨, ¨y is the standard scalar product and f is the true flux of a balance
or conservation law. EpUq is called entropy function, HpUq and J are the so-
called entropy flux functions associated to the entropy function.
Smooth solutions satisfy

EpUqt ` pHpUq ` J1qx “ 0 .

Since one expects discontinuous shock solutions of the balance law, the
above equation is modified to an inequality, because there is energy should
dissipation at shock waves. So one gets

EpUqt ` pHpUq ` J1qx ď 0 .
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1.3. Numerical Methods

General systems of balance laws do not necessarily have an entropy function
but the shallow water equations do.
The entropy function of the shallow water equations is the total energy

E :“
1
2
phu2 ` ghph` bqq

and the associated entropy fluxes are then

HpUq :“
1
2
phu3 ` gh2uq, J :“ ghbpu, 0qT

plugging in these expressions into above yields

1
2
phu2 ` ghph` bqqt ` p

1
2
phu3 ` gh2uq ` ghbuqx ď 0 .

The entropy variable V is then given by

V “ BUE “ pgh´
u2

2
, uqT . (1.21)

Remark 1.3 The entropy variables and the energy variables denote the same quan-
tity for the shallow water equations, because their entropy function is the total
energy.

Remark 1.4 In contrast to systems of balance laws, one can show that scalar con-
servation and balance laws have an infinite number of entropy functions. In fact,
any strictly convex function is an entropy function for the scalar case.

1.3 Numerical Methods

Since explicit formulas for the solutions of the balance laws or conservation
laws are either very hard to compute or often not available, one uses nu-
merical schemes to approximate these solutions. I will use the finite volume
method in this thesis. The framework of this method can be found in [4]. I
outline the general idea for the one-dimensional case.
Consider the conservation law and a uniform Cartesian grid txiui Ă R. Gen-
erally, the mesh size does not need to be uniform, but for the sake of simplic-
ity I assume uniformity, so ∆x “ xj`1{2 ´ xj´1{2 @i. In the rest of the thesis I
always assume a uniform grid. Let Ci “ rxj´1{2, xj`1{2s denote a cell so that
tCiui is a partition of the domain.
In the finite volume method, one considers the approximate average of U
over the cell Ci

Uiptq «
1

∆x

ż

Ci

Upx, tqdx
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1. Introduction

and one updates these averages to the next time level by solving a Riemann
problem at each edge of the cells. This is the so-called Godunov method.
I consider the semi-discrete form of a standard finite volume method. For
systems of conservation laws the general scheme looks as follows

d
dt

Uiptq “ ´
1

∆x
pFi`1{2ptq ´ Fi´1{2ptqq (1.22)

where Fi`1{2 is a Godunov type numerical flux (e.g. Roe, Rusanov, etc.).
Since I want to compute balance laws, the above relation is intuitively modi-
fied to the following one

d
dt

Uiptq “ ´
1

∆x
pFi`1{2ptq ´ Fi´1{2ptqq ´ Si (1.23)

where Si is a suitable discretization of the source term. I will introduce an
explicit discretization in the next section.
The equation (1.22) respectively (1.23) can be considered as ODEs. So I can
use standard ODE solving methods to perform the time stepping. I use the
second order strong stability preserving Runge Kutta method (SSP RK2)

U‹
j “ Un

j ` ∆tLpUn
i q

U‹‹
j “ U‹

j ` ∆tLpU‹
i q (1.24)

Un`1
j “

1
2
pUn

j `U‹‹
j q .

L is defined as follows LpUiq :“ ´ 1
∆x pFi`1{2 ´ Fi´1{2q ´ Si and Un

j “ Ujptnq

the approximation of U at time tn. I assume uniform time steps.

Remark 1.5 A strong stability preserving (Runge Kutta) method is a TVD mul-
tistep method. TVD means “total variation diminishing” and this property is pre-
served in such methods. Recall the TVD property (see [4])

TVpUn`1q ď TVpUnq

where

TVpUq :“
8
ÿ

i“´8

|Ui ´Ui´1| .

In the thesis, I will present an energy conservative scheme introduced in [1]
and based on this, I will derive additional schemes (e.g. by adding numerical
diffusion) to handle the difficulties occuring with the energy conservative
scheme.
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1.4. Steady States

1.4 Steady States

Steady states are physically trivial, time independent states, which one wants
to preserve during the numerical computation. These steady states are often
used as test cases. A simple steady state for the shallow water equations is
the so-called lake at rest. This state is given by

h` b ” constant, u ” 0 . (1.25)

Although there is in fact nothing to compute, in a numerical point of view,
preserving this steady state can be difficult. Standard numerical schemes
with a naive bottom discretization produce unphysical oscillations in the
non-flat bottom region. If there are dry areas, i.e. hpxq` bpxq “ bpxq in some
region, then schemes may completely fail. For the moment, I assume that
there are no dry areas in the domain.
A more general steady state is the so-called moving equilibrium state, which
is given by

m ” constant, p ” constant (1.26)

where

m :“ hu, p :“
u2

2
` gph` bq (1.27)

m and p are called the equilibrium variables. The vector P :“ pm, pqT is simply
called the equilibrium variable.
The lake at rest is just a special case of this steady state with u ” 0, because

u ” 0 ñ m ” 0 and p “ gph` bq ” const. ñ h` b ” const.

A scheme which preserves a steady state (e.g. lake at rest) is called well-
balanced.
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Chapter 2

Well-Balanced Schemes

2.1 The Energy Conservative Scheme

I start with a basic energy conservative scheme. Its derivation is based on
a result of E. Tadmor, which can be found in [1]. Before I formulate the
theorem, I introduce the same standard notation used throughout the thesis.

vawi`1{2 :“ ai`1 ´ ai, sai`1{2 :“
1
2
pai ` ai`1q (2.1)

which denote the jump and the arithmetic average where ai :“ apxiq.

Theorem 2.1 (Tadmor [1]) Consider the one-dimensional system of conservation
law

Ut ` f pUqx “ 0 (2.2)

with entropy function EpUq, entropy variable V “ BUE, entropy flux H and entropy
potential Ψ :“ xV, f y ´ H. Let Fi`1{2 be a consistent numerical flux that satisfies

xvVwi`1{2, Fi`1{2y “ vΨwi`1{2 (2.3)

Then, the scheme
d
dt

Ui “ ´
1

∆x
pFi`1{2 ´ Fi´1{2q

satisfies the discrete entropy identity

d
dt

EpUiptqq “ ´
1

∆x
p rHi`1{2 ´

rHi´1{2q

where rHi`1{2 :“ xsVi`1{2, Fi`1{2y ´
sΨi`1{2 is the numerical entropy flux.

In particular, the scheme is energy preserving.

For the one-dimensional shallow water equations, one has the following
entropy variable and entropy potential

V “ pgh´
u2

2
, uqT “: pVp1q, Vp2qqT . (2.4)
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2. Well-Balanced Schemes

Ψ “
1
2

guh2 (2.5)

So the corresponding jumps look as follows:
For V I have

vVp1qwi`1{2 “ vgh´
1
2

u2wi`1{2

“ gvhwi`1{2 ´
1
2
vu2wi`1{2

“ gvhwi`1{2 ´
1
2
pu2

i`1 ´ u2
i q

“ gvhwi`1{2 ´
1
2
pui`1 ` uiqpui`1 ´ uiq

“ gvhwi`1{2 ´ sui`1{2vuwi`1{2

vVp2qwi`1{2 “ vuwi`1{2

and for the entropy potential

vΨwi`1{2 “
1
2

gvuh2wi`1{2

p˚q
“

1
2

gpsui`1{2vh2wi`1{2 `
sh2

i`1{2vuwi`1{2q

“
g
2
sui`1{2phi`1 ` hiqphi`1 ´ hiq `

g
2
sh2

i`1{2vuwi`1{2

“ gsui`1{2
shi`1{2vhwi`1{2 `

g
2
sh2

i`1{2vuwi`1{2 .

In p˚q, I used the following identity

vabwi`1{2 “ sai`1{2vbwi`1{2 `
sbi`1{2vawi`1{2 .

The identity above is a straightforward calculation.
The numerical flux Fi`1{2 can be written as Fi`1{2 “ pF

p1q
i`1{2, Fp2qi`1{2q

T. The
goal is to satisfy the assumption of Tadmor’s theorem, i.e. (2.3) , so that the
resulting flux is energy conservative.

xvVwi`1{2, Fi`1{2y “ vVp1qwi`1{2Fp1qi`1{2 ` vV
p2qwi`1{2Fp2qi`1{2

“ Fp1qi`1{2 ¨ pgvhwi`1{2 ´ sui`1{2vuwi`1{2q ` Fp2qi`1{2vuwi`1{2

!
“ gsui`1{2

shi`1{2vhwi`1{2 `
g
2
sh2

i`1{2vuwi`1{2

“ vΨwi`1{2

By rearranging the above terms, the following should hold

vhwi`1{2gFp1qi`1{2`vuwi`1{2pF
p2q
i`1{2´ sui`1{2Fp1qi`1{2q

!
“ gsui`1{2

shi`1{2vhwi`1{2`
g
2
sh2

i`1{2vuwi`1{2

10



2.1. The Energy Conservative Scheme

and by equating the coefficients in the jumps of h and u, I get the following
system of equations fot the two unknowns Fp1qi`1{2, Fp2qi`1{2

gFp1qi`1{2 “ gsui`1{2
shi`1{2

Fp2qi`1{2 ´ sui`1{2Fp1qi`1{2 “
g
2
sh2

i`1{2 .

This system can easily be solved and I get the components of the energy
conservative flux

Fp1qi`1{2 “ sui`1{2
shi`1{2

Fp2qi`1{2 “
g
2
sh2

i`1{2 ` psui`1{2q
2
shi`1{2 .

Based on this calculation, I can define the energy conservative (EC) flux as:

FECpUi, Ui`1q “ FEC
i`1{2 “

ˆ

sui`1{2
shi`1{2

g
2
sh2

i`1{2 ` psui`1{2q
2
shi`1{2

˙

(2.6)

This flux is clearly consistent.
Since I do not consider the conservation law but the balance law, I have to
implement the source term. The corresponding entropy variable V is then
slightly different than before, namely V “ pgph` bq ´ u2

2 , uqT. The energy
conservation statement from Tadmor’s theorem then has a slightly different
assumption. It is stated in the next lemma, which can be found in [2].

Lemma 2.2 A numerical flux Fi`1{2 is energy conservative if

xvVwi`1{2, Fi`1{2y “ vΨwi`1{2 ` gsui`1{2
shi`1{2vbwi`1{2 . (2.7)

The corresponding finite volume scheme then satisfies the energy conservation state-
ment

d
dt

Ei “ ´
1

∆x
p rHi`1{2 ´

rHi´1{2q

where the numerical energy flux is given by

rHi`1{2 “ x
sVi`1{2, Fi`1{2y ´

sΨi`1{2 ´
g
4
shi`1{2vuwi`1{2vbwi`1{2 .

In particular, the total energy is preserved:
ř

i Eiptq∆x “
ř

i Eip0q∆x, @t ą 0

A proof can also be found in [2]. It is a straightforward calculation.

Remark 2.3 One can easily see that FEC, V “ pgph` bq ´ u2

2 , uqT, Ψ satisfy the
identity (2.7), since all the terms are the same as before except the jump of the
bottom topography. This jump is multiplied by g and Fp1qi`1{2 “ sui`1{2

shi`1{2 which
is nothing else than the term added to vΨwi`1{2 on the right-hand side of (2.7). Thus,
the total energy is preserved with the EC flux.
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2. Well-Balanced Schemes

I now introduce the source discretization, which is chosen in such a way that
the steady state is conserved. It differs slightly from a naive discretization.

Si :“
ˆ

0
g

2∆x p
shi`1{2vbwi`1{2 `

shi´1{2vbwi´1{2q

˙

(2.8)

So, the following finite volume scheme is called the energy conservative
scheme, or short EC scheme

d
dt

Ui “ ´
1

∆x
pFEC

i`1{2 ´ FEC
i´1{2q ´ Si . (2.9)

or if one writes the scheme componentwise

d
dt

hi “ ´
1

∆x
pshi`1{2sui`1{2 ´

shi´1{2sui´1{2q (2.10)

d
dt
phiuiq “ ´

1
∆x
pshi`1{2psu2

i`1{2 `
g
2
sh2

i`1{2 ´
shi´1{2psu2

i´1{2 `
g
2
sh2

i´1{2q

´
g

2∆x
pshi`1{2vbwi`1{2 `

shi´1{2vbwi´1{2q . (2.11)

Some main properties of the EC scheme (2.9) are summerized in the follow-
ing theorem

Theorem 2.4 ([2]) The EC scheme (2.9) satisfies the following properties.

1. It is second order accurate.

2. It is energy conservative.

3. It is well-balanced for the lake at rest steady state, i.e. for given initial data

ui ” 0, hi ` bi ” constant @i

then
d
dt

hi ” 0,
d
dt
phiuiq ” 0 @i

Proof

1. This follows by truncation error analysis.

2. This property follows by lemma 2.2 and remark 2.3.

3. This is the most interesting part. For the first component (2.10), I have

ui ” 0 @i ñ ´
1

∆x
pshi`1{2sui`1{2 ´

shi´1{2sui´1{2q ” 0

ô
d
dt

hi ” 0 .

12
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For the second component, I use the following identity

sa2
i`1{2 ´

sa2
i´1{2 “ sai`1{2vawi`1{2 ` sai´1{2vawi´1{2 (2.12)

and the easy fact that

h` b ” constant ñ vh` bwi`1{2 ” 0 @i .

Since ui ” 0 @i the second equation (2.11) becomes

d
dt
phiuiq “ ´

g
2∆x

p sh2
i`1{2 ´

sh2
i´1{2 `

shi`1{2vbwi`1{2 `
shi´1{2vbwi´1{2q

(2.12)
“ ´

g
2∆x

pshi`1{2vhwi`1{2 `
shi´1{2vhwi´1{2 `

shi`1{2vbwi`1{2 `
shi´1{2vbwi´1{2q

“ ´
g

2∆x
pshi`1{2 vh` bwi`1{2

looooomooooon

”0

`shi´1{2 vh` bwi´1{2
looooomooooon

”0

q

” 0 . ˝

So, I have an energy conservative scheme which I now test in two numerical
experiments.

2.2 Numerical Experiments for EC Scheme

If not stated differently, throughout the thesis I use transmissive (open Neu-
mann) boundary condition, CFL “ 0.4 and number of grid points N “ 200.

2.2.1 Lake at rest

Theorem 2.4 ensures that this steady state should be preserved in theory.
The setting of the experiment is the following:
Given the domain Ω “ r0, 20s and a bottom topography

bpxq “

#

4´px´10q2
20 if x P r8, 12s

0 else .
(2.13)

Initial data is given by

ui ” 0, hi ` bi ” 1 @i .

I set the endtime T “ 100, since the lake at rest should be preserved at large
time scales. The EC scheme preserves the lake at rest, even at large time
scale. One can observe that in the beginning of the time stepping there are
few very small oscillations around the non-flat bottom topography region.
These tiny oscillations become more after a short time period but they are

13
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Figure 2.1: Lake at rest, T “ 100

very small (single precision error is zero). So, the lake at rest is preserved (up
to some very small error). Probably, these oscillations are an effect induced
by the time stepping routine, in my case the (SSP RK2). The scheme works
as long as the domain stays flooded. If I introduce some dry areas in the
initial data, the scheme fails to compute the lake at rest. The approximate
solution starts oscillating, first at small amplitude, then it grows until it
explodes. This happens after some very short time. In chapter 3, I am going
to do further analysis about dry areas.
With a little “trick”, I can achieve the preservation of the lake at rest with
initial dry area: If I weaken the condition that h, the height of the water,
is always non-negative. So, h can also be negative. I change the bottom
topography (2.13) so that I have a dry area with the same initial data as
above

rbpxq :“

#

4´px´10q2
3.5 if x P r8, 12s

0 else .

So, I have rb ą 1 at x “ 10. Together with hi `
rbi ” 1, I get that h ă 0 at

x “ 10. If I implement it this way allowing negative height, the lake at rest is
preserved even with dry areas. This approach only works if the lake stays at
rest. Computations of small perturbation completely fail due to the negative
height. In addition, h ă 0 physically makes no sense, so I do not want to
use this approach any further in this section.

2.2.2 Dam break

Now, I consider a simple dam break problem with flat bottom topography
in the domain Ω “ r´1, 1s. I have the following initial data

hpx, 0q “

#

2 if x ă 0
1.5 if x ě 0

, upx, 0q ” 0 .

14
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The derivation of the exact solution can be found in [4]. The exact solution
consists of a left-going rarefaction wave and a right-going shock wave. As
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Figure 2.2: Dam break, T “ 0.15, N “ 200.
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Figure 2.3: Dam break, T “ 0.15, N “ 800.

one can observe in figure 2.2 and 2.3, there are large post-shock oscillations.
If the number of grid cells is raised (e.g. N “ 800, . . .), the number of
oscillating parts in the approximate solution increases, as one can see in
figure 2.3. But the oscillations seem to be bounded. This effect is due to
the energy conservation property of the EC scheme, since one expects that
the energy should be dissipated at shocks. So, the EC scheme preserves this
energy in form of these unphysical post-shock oscillations.
There are several ways to encounter this difficulty of the EC scheme. E.g.
introducing eddy viscosity would be a possibility. But the results are not
very satisfying, because the eddy viscosity is a small quantity and thus, only
has a limited effect on these oscillations. With eddy viscosity, the number
of grid points needs to be very high to get rid of these oscillations. For
further readings, I refer to [1]. Another possibility is to introduce numerical
diffusion. This is done in the next sections.

2.3 Energy Stable Schemes

2.3.1 First Order Energy Stable Scheme

The first step of designing an energy stable scheme is the computation of
the Roe diffusion matrix QRoe

i`1{2. For this purpose, the eigenvalues and eigen-
vectors of f 1pUq need to be computed, where f 1pUq is the Jacobian matrix of
the true flux of the shallow water equations f pUq “ phu, hu2` 1

2 gh2qT. f 1pUq
is given by

f 1pUq “
ˆ

0 1
´u2 ` gh 2u

˙

.

15



2. Well-Balanced Schemes

The eigenvalues λ˘ and eigenvectors ri look as follows

λ˘ “ u˘
a

gh, r1,2 “

ˆ

1
λ˘

˙

.

The Roe diffusion matrix is then given by

QRoe
i`1{2 “

rRi`1{2|
rΛi`1{2|

rR´1
i`1{2 (2.14)

where

rRi`1{2 :“
1

a

2g

ˆ

1 1
λ´ λ`

˙

, |rΛi`1{2| “

ˆ

|λ´| 0
0 |λ`|

˙

.

The Roe flux is defined as follows

FRoe
i`1{2 :“ FRoepUi, Ui`1q :“

1
2
pFpUiq ` FpUi`1qq ´QRoe

i`1{2vUwi`1{2

where one puts the Roe average ph, pu into λ˘.These Roe averages are given
by

phi`1{2 :“
hi ` hi`1

2
, pui`1{2 :“

a

hiui `
a

hi`1ui`1
a

hi `
a

hi`1
.

As in [1], I modify the Roe flux by replacing the central part of the flux by
the EC flux and the diffusion matrix by a slightly different one, since the
Roe diffusion matrix may not preserve the lake at rest steady state. This
new diffusion matrix should preserve the lake at rest steady state.
I need some preliminary statements before designing the diffusion matrix.
The following lemma one can be found in [1]. But first, I define the Ri`1{2
and |Λi`1{2| matrix in terms of arithmetic averages:

Ri`1{2 :“
1

a

2g

ˆ

1 1
sλ´ sλ`

˙

, |Λi`1{2| :“
ˆ

|sλ´| 0
0 |sλ`|

˙

(2.15)

and
sλ˘ :“ sui`1{2 ˘

b

gshi`1{2 . (2.16)

Lemma 2.5 ([1]) Consider the conservative form of shallow water equations, i.e.
(1.17) with b ” constant, the total energy EpUq “ 1

2pgh2 ` hu2q and the energy
variable BUE “ V “ pgh´ u2

2 , uqT. Let Ui, Ui`1 be given. The following properties
hold:

1.
vUwi`1{2 “ pUVqi`1{2vVwi`1{2 (2.17)

16



2.3. Energy Stable Schemes

where

pUVqi`1{2 “
1
g

ˆ

1 sui`1{2
sui`1{2 psui`1{2q

2 ` gshi`1{2

˙

is the change of variable matrix in terms of averages.

2. Let Ri`1{2 be as above, then

Ri`1{2RT
i`1{2 “ pUVqi`1{2 . (2.18)

The proof are just straightforward calculations and can be found in [1].
So by this lemma, one gets the following relation

QRoe
i`1{2vUwi`1{2 “ Ri`1{2|Λi`1{2|R´1

i`1{2vUwi`1{2

(2.17)
“ Ri`1{2|Λi`1{2|R´1

i`1{2pUVqi`1{2vVwi`1{2

(2.18)
“ Ri`1{2|Λi`1{2|R´1

i`1{2Ri`1{2RT
i`1{2vVwi`1{2

“ Ri`1{2|Λi`1{2|RT
i`1{2vVwi`1{2 .

I now define the first order energy stable flux (ES1) based on the calculation
done above

FES1
i`1{2 :“ FEC

i`1{2 ´
1
2

Ri`1{2|Λi`1{2|RT
i`1{2vVwi`1{2 . (2.19)

Notation: DES1
i`1{2 :“ Ri`1{2|Λi`1{2|RT

i`1{2.
This ES1 flux is consistent, because FEC is consistent and the jump in the
energy variable vanishes.

FES1pU, Uq “ FECpU, Uq ´
1
2

DES1
i`1{2

ˆ

gh´ u2

2 ´ gh´ u2

2
u´ u

˙

“ f pUq

where f is the true flux of the balance law (1.18).
The resulting ES1 scheme looks as follows

d
dt

Ui “ ´
1

∆x
pFES1

i`1{2 ´ FES1
i´1{2q ´ Si . (2.20)

One can show that the ES1 scheme (2.20) is first order accurate and satisfies
a discrete energy identity which implies energy dissipation over time. For
further reading see [1]. Another property is stated in the next lemma.

Lemma 2.6 ([2]) The ES1 scheme preserves the lake at rest steady state. Hence, it
is well-balanced.
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2. Well-Balanced Schemes

Proof Given the lake at rest initial data.

ui ” 0, hi ` bi ” constant @i

It is enough to show that the jump vVwi`1{2 ” 0 @i, since FEC is well-
balanced.

vVp1qwi`1{2 “ vgph` bq ´
u2

2
wi`1{2

“ gvh` bwi`1{2 ´
1
2
vu2wi`1{2

“ 0

vVp2qwi`1{2 “ vuwi`1{2 “ 0 ˝

Before testing this scheme in some numerical experiments I want to intro-
duce two second order extensions of the ES1 scheme.

2.3.2 Second Order Energy Stable Scheme

It is standard procedure to replace the piecewise constant cell average by a
piecewise linear non-oscillatory reconstruction to get second order accuracy.
In a first approach, the reconstruction step is done in the energy variable Vi.
I define the piecewise linear reconstruction by

rVipxq :“ Vi `V1i ¨ px´ xiq, x P rxi´1{2, xi`1{2s

where

V1i :“
1

∆x
minmodpVi`1 ´Vi, Vi ´Vi´1q

minmodpa, bq :“

#

sgnpaqmint|a|, |b|u if sgnpaq “ sgnpbq
0 else .

18



2.3. Energy Stable Schemes

The reconstructed values at the cell interface edge are given by

Vr
i :“ rVipxi`1{2q “ Vi `V1i ¨ pxi`1{2 ´ xiq

“ Vi `
∆x
2

V1i

“ Vi `
1
2

minmodpVi`1 ´Vi, Vi ´Vi´1q

V l
i`1 :“ rVi`1pxi`1{2q “ Vi`1 `V1i`1 ¨ pxi`1{2 ´ xi`1q

“ Vi`1 ´
∆x
2

V1i`1

“ Vi`1 ´
1
2

minmodpVi`2 ´Vi`1, Vi`1 ´Viq

where the superscript in Vr,l
i denotes the right respective left edge value. I

compute the corresponding reconstructed conservative variable Ul
i`1,Ur

i . I.e.
for

Ul
i`1 “

ˆ

hl
i`1

hl
i`1ul

i`1

˙

, Ur
i “

ˆ

hr
i

hr
i u

r
i

˙

.

The diffusion matrix is then given by

DES2
i`1{2 :“ Ri`1{2|Λi`1{2|RT

i`1{2 (2.21)

where Ri`1{2 and |Λi`1{2| are defined as above and λ˘ is adapted to the
reconstructed values

λ˘ :“
1
2
pul

i`1 ` ur
i q ˘

c

g
2
phl

i`1 ` hr
i q .

The second order accurate energy stable flux, short ES2 flux, is then given
by

FES2
i`1{2 :“ FEC

i`1{2 ´
1
2

DES2
i`1{2pV

l
i`1 ´Vr

i q . (2.22)

It is easy to see that the flux is consistent. The resulting scheme looks as
follows

d
dt

Ui “ ´
1

∆x
pFES2

i`1{2 ´ FES2
i´1{2q ´ Si . (2.23)

The ES2 scheme preserve the lake at rest and is second order accurate.
A second approach to a second order extension of the ES1 scheme is the
following (cf. [1]).
Instead of reconstructing the energy variable Vi, I directly reconstruct the
conservative variable Ui. Define rU as the piecewise linear reconstruction.

rUipxq :“ Ui `U1
i ¨ px´ xiq, x P rxi´1{2, xi`1{2s (2.24)

19



2. Well-Balanced Schemes

where U1
i is given by

U1
i :“

1
∆x

minmodpUi`1 ´Ui,
1
2
pUi`1 ´Ui´1q, Ui ´Ui´1q

where in this case the minmod function is defined as follows

minmodpa, b, cq :“

#

sgnpaqmint|a|, |b|, |c|u if sgnpaq “ sgnpbq “ sgnpcq
0 else

Define the edge values Ul
i`1, Ur

i :

Ur
i :“ rUipxi`1{2q

“ Ui `U1
i ¨ pxi`1{2 ´ xiq

“ Ui `
1
2

minmodpUi`1 ´Ui,
1
2
pUi`1 ´Ui´1q, Ui ´Ui´1q

Ul
i`1 :“ rUi`1pxi`1{2q

“ Ui`1 ´
1
2

minmodpUi`2 ´Ui`1,
1
2
pUi`2 ´Uiq, Ui`1 ´Uiq .

The diffusion matrix is again defined in terms of the reconstructed values
Ur

i , Ul
i`1; I denote it by DES2,2

i`1{2. Then, this second order energy stable flux
(ES2,2) is simply given by

FES2,2
i`1{2 :“ FEC

i`1{2 ´
1
2

DES2,2
i`1{2pV

l
i`1 ´Vr

i q (2.25)

where V l
i`1, Vr

i are the energy variables of Ur
i , Ul

i`1. The flux is obviously
consistent. The numerical scheme is then given by

d
dt

Ui “ ´
1

∆x
pFES2,2

i`1{2 ´ FES2,2
i´1{2q ´ Si . (2.26)

As above, the ES2,2 scheme is second order accurate.

Remark 2.7 Although the ES1 scheme is energy stable, its second order extensions
may not be. The question, whether the second order schemes are energy conservative
is not answered yet.

2.4 Numerical Experiments for Energy Stable Schemes

2.4.1 Lake at rest

As for the EC scheme, I test if the three energy stable schemes preserve
the lake at rest steady state. The setting is the same as in section 2.2.1.
As expected, all three schemes preserve the state. In figure 2.4 or better in
figure 2.6 one can observe that the ES2,2 scheme slightly oscillates around
the non-flat bottom region. The ES1 and ES2 schemes preserve the lake at
rest far better than the ES2,2, as one can see in figure 2.7 and 2.6.
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Figure 2.4: ES2 schemes, T “ 1
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Figure 2.5: ES2 schemes, T “ 50
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Figure 2.6: ES2 schemes, T “ 1. Zoomed in.
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Figure 2.7: ES1 scheme, T = 100

2.4.2 Dam break

The energy stable schemes should resolve the dam break problem more accu-
rate than the EC scheme. In particular, the approximate solution should be
physically meaningful. The setting is the same as in 2.2.2. Recall the initial
data

hpx, 0q “

#

2 if x ă 0
1.5 if x ě 0

, upx, 0q ” 0 .

As expected, the dam break problem is solved more accurate by the ES schemes.
One can also observe in figure 2.8 that the second order extensions ES2 and
ES2,2 are less diffusive than the ES1 scheme. They capture the shock wave
more sharply. There are no post-shock oscillations as in the EC scheme. In
figure 2.9, I test whether the two different second order extensions differ
much. The approximate solution of ES2 and ES2,2 are almost the same ex-
cept at the beginning of the shock wave and rarefaction wave. There, the
ES2 scheme produces small artifacts.
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Figure 2.8: The ES2 vs ES1 scheme, T “ 0.1
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Figure 2.9: The ES2 vs ES2,2 scheme, T “ 0.1
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Figure 2.10: This is the initial height h.

0 5 10 15 20
0.99

0.995

1

1.005

1.01

1.015

x

h

 

 
ES2
ES1

Figure 2.11: ES2 vs. ES1 scheme, T “ 1.

2.4.3 Perturbated lake at rest

Consider the lake at rest with some non-flat bottom topography. But this time,
there is some small initial perturbation given as small height differences in
a small area.
The idea of this test case is to check if this initial perturbation remains small
after some time and if the pertubation does not cause oscillations in an
unphysical manner.
Let the domain and the bottom be as in 2.2.1. The initial data is given by:

hpx, 0q “

#

1.01´ bpxq if |x´ 6| ă 1
4

1´ bpxq else
, upx, 0q ” 0 .

The solution should be a left-going and a right-going wave. Figure 2.10
shows the initial height of the water (note that the figure is zoomed in so
the bottom topography is not visible). Figure 2.11 shows the water height
at T “ 1. The approximate solution consists of a left- and right-going wave
as the true solution. The second order extension ES2 performs better in
computing the perturbation than the ES1 scheme, since the waves are less
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Figure 2.12: ES2 vs. ES2,2 scheme, T “ 1.

diffusive. In contrast to the ES2 scheme, the ES2,2 scheme fails to capture
the small perturbation, as one can observe in figure 2.12. The approximate
solution of ES2,2 captures the left-going wave quite well but is nowhere near
the true solution for the right-going wave. Hence, this scheme is not useful
for the shallow water equations with bottom topography. If the bottom
topography is flat, the scheme works fine, as we have seen in section 2.4.2.

2.5 Well-Balanced Schemes For The General Steady
State

Up to here, I have only considered the lake at rest steady state. But how
to handle more general steady states? Recall from section 1.4 the moving
equilibrium steady state:

m ” constant , p ” constant (2.27)

where

m :“ hu , p :“
u2

2
` gph` bq .

Recall from section 1.4 P :“ pm, pqT. m, p are called the equilibrium vari-
ables. I define a discrete version of the classical momentum m, the staggered
momentum Mi`1{2

Mi`1{2 :“ shi`1{2sui`1{2 . (2.28)

The EC scheme preserves the discrete version of (2.27), i.e. instead of the
classical momentum, the staggered momentum is constant in time. This
property is formulated in the next lemma:

Lemma 2.8 ([2]) Let Mi`1{2 be the staggered momentum and pi “
u2

i
2 ` gphi` biq.

Then, the EC scheme preserves the state

Mi`1{2 ” C1 , pi ” C2 @i (2.29)
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for some constants C1, C2.

Proof
d
dt

hi “ ´
1

∆x
pshi`1{2sui`1{2 ´

shi´1{2sui´1{2q

“ ´
1

∆x
pMi`1{2 ´Mi´1{2q

“ 0 .

For the second equation, I use the following unhandy but useful identity

1
2
pshi`1{2vpwi`1{2 `

shi´1{2vpwi´1{2q ` uipMi`1{2 ´Mi´1{2q

“ shi`1{2psui`1{2q
2`

g
2
sh2

i`1{2´
shi´1{2psui´1{2q

2`
g
2
sh2

i´1{2`
g
2
pshi`1{2vbwi`1{2´

shi´1{2vbwi´1{2q.

(2.30)

This identity implies that the second equation (2.11) in the EC scheme can
be written as follows

d
dt

hiui “ ´
1

∆x
p
1
2
pshi`1{2vpwi`1{2 `

shi´1{2vpwi´1{2q ` uipMi`1{2 ´Mi´1{2qq .

But vpwi`1{2 ” 0 since pi ” constant, and Mi`1{2 ´Mi´1{2 “ 0 @i. This
implies

d
dt

hiui ” 0 .

Thus, the state (2.29) is preserved.
The above identity (2.30) can be proved by a straightforward calculation. ˝

As in the previous section, I need to design a diffusion matrix, since the
EC scheme produces large oscillations at shockwaves. The energy stable
schemes do not necessarily preserve the moving equilibrium steady state, so
a new diffusion matrix is needed.

2.5.1 Well-Balanced First Order Scheme

Instead of acting on the jump of the energy variable Vi like in the ES schemes,
I want to design a diffusion matrix that acts on the equilibrium variable P “
pm, pqT, respectively on its jump.
Therefore, consider the following change of variable matrix stated in the
lemma below.

Lemma 2.9 Given the conservative variables Ui, Ui`1 and their corresponding
equilibrium variables Pi, Pi`1 where Pi is definded as

Pi :“ pmi, piq
T, mi “ hiui, pi “

u2
i

2
` gphi ` biq .
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Then the following identity holds

vUwi`1{2 “ pUPqi`1{2vPwi`1{2 (2.31)

where

pUPqi`1{2 :“

˜

sui`1{2
αi`1{2

´
shi`1{2
αi`1{2

1 0

¸

, αi`1{2 :“ psui`1{2q
2 ´ gshi`1{2 .

The proof is a tedious but straightforward calculation.
Since the EC scheme is well-balanced with respect to the staggered momen-
tum, I define a staggered equilibrium variable rPi as follows

rPi :“ p
1
2
pMi`1{2 `Mi´1{2q, piq

T .

Note that rPi « Pi; they differ of order ∆x. For the scheme, I am going to use
the staggered equilibrium variable rather than the classical equilibrium variable,
because EC scheme may not preserve the classical momentum.
Consider now the standard Roe diffusion matrix that acts on the jump of the
conservative variable. Then, based on the previous consideration, one gets
the following relation

QRoe
i`1{2vUwi`1{2 “ Ri`1{2|Λi`1{2|R´1

i`1{2vUwi`1{2

(2.31)
“ Ri`1{2|Λi`1{2|R´1

i`1{2pUPqi`1{2vPwi`1{2

« Ri`1{2|Λi`1{2|R´1
i`1{2pUPqi`1{2v

rPwi`1{2 . (2.32)

Ri`1{2 and |Λi`1{2| is defined as in (2.15).
In the pUPqi`1{2 matrix, αi`1{2 might be equal to zero for some i. To avoid
dividing by zero, I define prUPqi`1{2 as follows

prUPqi`1{2 :“

˜

sui`1{2
rαi`1{2

´
shi`1{2
rαi`1{2

1 0

¸

, rαi`1{2 :“

#

maxtαi`1{2, εu if αi`1{2 ě 0
mintαi`1{2,´εu if αi`1{2 ď 0

.

where ε ą 0 is some small tolerance value (e.g. 10´6).
Then the relation (2.32) becomes

QRoe
i`1{2vUwi`1{2 « Ri`1{2|Λi`1{2|R´1

i`1{2pUPqi`1{2v
rPwi`1{2

« Ri`1{2|Λi`1{2|R´1
i`1{2p

rUPqi`1{2v
rPwi`1{2 . (2.33)

I then define the first order well-balanced diffusion matrix

DWB1
i`1{2 :“ Ri`1{2|Λi`1{2|R´1

i`1{2p
rUPqi`1{2 . (2.34)

25
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The corresponding flux is given by

FWB1
i`1{2 :“ FEC

i`1{2 ´
1
2

DWB1
i`1{2v

rPwi`1{2 . (2.35)

And the well-balanced first order scheme looks as follows

d
dt

Ui “ ´
1

∆x
pFWB1

i`1{2 ´ FWB1
i´1{2q ´ Si . (2.36)

The scheme is consistent, since FEC is consistent and the jump vrPwi`1{2 in the
diffusion term vanishes if one tests consistency.

Lemma 2.10 The WB1 scheme (2.36) preserves the moving equilibrium steady
state for the staggered equilibrium variable. So, if

Mi`1{2 ” C1, pi ” C2 @i.

for some constants C1, C2.
Then

d
dt

hi ” 0,
d
dt

hiui ” 0 @i

Proof FEC preserves this steady state as shown in lemma 2.8. The jump
vrPwi`1{2 vanishes, since

vrPp1qwi`1{2 “
1
2
pMi`3{2 `Mi`1{2q ´

1
2
pMi`1{2 `Mi´1{2q

“ 0

vrPp2qwi`1{2 “ pi`1 ´ pi “ 0

where the superscript in rPp1q,p2q denotes the first, respectively second com-
ponent of rP. ˝

It can be showed that the WB1 scheme is first order accurate. As in the
previous section about energy stable schemes, I introduce a second order
extension for the well-balanced scheme. It is done in a similar way as with
the energy stable schemes.

2.5.2 Well-Balanced Second Order Scheme

I replace the piecewise constant cell averages in terms of the equilibrium
variable rPi by a non-oscillatory piecewise linear reconstruction.
Define

pPipxq :“ rPi ` rP1i ¨ px´ xiq, x P rxi´1{2, xi`1{2s
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where
rP1i :“

1
∆x

minmodprPi`1 ´ rPi, rPi ´ rPi´1q .

Define the right and the left reconstructed edge values as follows

rPr
i :“ pPipxi`1{2 “

rPi ` rP1i ¨ pxi`1{2 ´ xiq

“ rPi `
∆x
2

rP1i

“ rPi `
1
2

minmodprPi`1 ´ rPi, rPi ´ rPi´1q

rPl
i`1 :“ pPi`1pxi`1{2 “

rPi`1 `
1
2

minmodprPi`2 ´ rPi`1, rPi`1 ´ rPiq .

Define the well-balanced second order (WB2) flux as follows

FWB2
i`1{2 :“ FEC

i`1{2 ´
1
2

Ri`1{2|Λi`1{2|R´1
i`1{2pUPqi`1{2p

rPl
i`1 ´

rPr
i q . (2.37)

The diffusion matrix is the same as before, only the jump is reconstructed.
The corresponding WB2 scheme looks as follows

d
dt

Ui “ ´
1

∆x
pFWB2

i`1{2 ´ FWB2
i´1{2q ´ Si . (2.38)

As before, the WB2 scheme is consistent, second order accurate and pre-
serves the moving equilibrium steady state.

Remark 2.11 The question whether the well-balanced schemes are energy stable
or not, is not answered yet, either. But numerical experiments indicate that the
schemes perform well.

2.6 Numerical Experiments for the Well-Balanced Schemes

The well-balanced schemes are designed to preserve the moving equilibrium
state. First, I consider an example with the sub- and supersonic steady state.

2.6.1 The Subsonic and Supersonic Steady State

The domain is given by Ω “ r0, 20s and the bottom topography b as above
in (2.13). I impose the following initial condition in terms of the staggered
equilibrium variables

pi “ 22.07, Mi`1{2 “ 4.42 @i. (2.39)

Now to get the conservative variables h, hu, I simply take

hu « Mi`1{2 “ 4.42 “: C
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and with pi “
u2

i
2 ` gphi ` biq I have the following equation

22.07 !
“

u2
i

2
` gphi ` biq

«
C2

2h2
i
` gphi ` biq

which is equivalent to the following third order equation in hi

gh3
i ` pgbi ´ 22.07qh2

i `
C2

2
!
“ 0 .

Generally, this equation has three dinstict solutions for hi. Note that the solu-
tions depend on bi (g and C are constant). In my case, there are always two
positive and one negative solution, so I can sort out the negative solution.
The other two solutions correspond to the subsonic respectively supersonic
state. Figure 2.13 shows a supersonic steady state. Supersonic means that
the Froude number Fr “ |u|?

gh
is greater than 1. Figure 2.14 shows the subsonic

steady state. In this case the, I have Fr ă 1.
These two states are clearly preserved with the well-balanced schemes, as
one can observe in 2.13 and 2.14 and. Even at large time scale, the steady
state is preserved. In the figures, I have only plotted the solution of the WB2
scheme, since the solution of the WB1 and WB2 schemes are indistinguish-
able in the plots.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

x

h

 

 
WB2
bottom

Figure 2.13: The supersonic case, T “ 20
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Figure 2.14: The subsonic case, T “ 20

2.6.2 Perturbated States

As in the lake at rest experiment in section 2.4.3, I want to test whether
a small initial perturbation may cause problems with the well-balanced
schemes. The initial condition of this experiment is the same as in the pre-
vious subsection 2.6.1, except in the region |x´ 6| ă 1

4 , I add 0.01 the the
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2.6. Numerical Experiments for the Well-Balanced Schemes

initial height. Mathematically formulated:
First, I have the initial values as in (2.39). From this information, I get the
two admissible height found in the previous experiment. I focus on the
subsonic case, denote the discrete height (without perturbation) values as
rhi “

rhpxiq. So, the perturbated initial height hi is given by

hi “ hpxiq “

#

rhi ` 1.01 if |xi ´ 6| ă 1
4

rhi else
.

Note that, Mi`1{2, the staggered momentum, is kept constant.
I use the WB2 scheme to compute the approximate solutions. In contrast to
the previous perturbated states experiment, I cannot say how the true solu-
tion looks like. Figure 2.15 and 2.16 show the supersonic steady state with
the initial perturbation. The created wave moves to the right side. As soon
as it dissappears in the hump, no real effect can be seen. When the wave
moves outward the hump (figure 2.15) it has lost its original shape and looks
like a small “cavity”. There are also small oscillations in the region where
the perturbation has started.
Figure 2.17 and 2.18 show the subsonic steady state with the initial pertur-
bation. Here, the approximate solution consists of two waves: a left-going
and a right-going one. The right-going wave passes the cavity in the middle
without changing a lot (apparently), as one can see in figure 2.18. As before,
there are small oscillations in the regions where the perturbation originated
(figure 2.18).
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Figure 2.15: Perturbated supersonic state, T “

0.3.
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Figure 2.16: Perturbated supersonic state, T “

1.2.

Remark 2.12 I receive some tiny osciallations in my plots, this is probably due to
my implementation.

Since I do not have any true solution for this experiment I compare my
results to a reference solution, in this case the WB2 scheme on a refined
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Figure 2.17: Perturbated subsonic state, T “

0.2.
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Figure 2.18: Perturbated subsonic state, T “

1.2.

mesh (N “ 1600). The reference solutions in the figures 2.19, 2.20, 2.21 and
2.21 show the approximate solution at the same endtime T as the solutions
computed on the coarse mesh (N “ 200). The oscillations mentioned in
remark 2.12 are damped to very small “noise”. The small cavity in figure
2.16 is much less diffusive in the reference solution (figure 2.20). As for
all waves, they are a slightly diffusive when computed on the coarse mesh
(N “ 200). But the approximate solutions on the coarse mesh capture the
reference solutions quite well.
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Figure 2.19: Reference solution, T “ 0.3.
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Figure 2.20: Reference solution, T “ 1.2.
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Figure 2.21: Reference solution, T “ 0.2.
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Figure 2.22: Reference solution, T “ 1.2.
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Chapter 3

Dry Areas

3.1 Basic Examples

Up to here, I have assumed that there are no dry areas in the initial situa-
tion of an experiment and the domain stays flooded during the whole time
stepping. But what does happen with the introduced schemes (EC, ES, WB),
if there are dry areas included.
I first consider the following simple example to show the limitation of the
schemes derived in the previous section.

Example 3.1 In this example, there are no dry areas in the initial setup, but after
some time there will be a dry area. The number of grid cells and the boundary
conditions are as usual. In this example I use a different CFL number, namely
CFL “ 0.1. The bottom topography is flat and the domain is Ω “ r´1, 1s. The
initial condition is given by

hpx, 0q ” 0.7, phuqpx, 0q “

#

´7 if x ă 0
7 if x ě 0

, b ” 0 . (3.1)

I use the WB2 scheme to compute the approximate solution. With this initial data,
the middle region is going to be dry after some short time period. As one can see in
figure 3.1, the approximate solution does not remain positive in the middle region;
it is slightly negative at T “ 0.0055. A bit later at T “ 0.0089, see figure 3.2,
the height of the approximate solution is just right before blowing up. All the other
schemes (EC, ES) presented in the previous chapter also show this phenomenon.

The problem in this very simple example is the negative height. None of the
schemes are positivity preserving with respect to the height, as example 3.1
showed us.
Another easy example has already been introduced in section 2.2.1.

Example 3.2 In this example, there are dry areas in the initial setup. The domain
is given by Ω “ r0, 20s. CFL and number of grid points are as usual. The initial
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Figure 3.1: WB2 scheme, T “ 0.0055
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Figure 3.2: WB2 scheme, T “ 0.0089

condition is given by

upx, 0q ” 0, hpxq ` bpxq “ maxt1, bpxqu (3.2)

where the bottom is defined as

bpxq :“

#

4´px´10q2
3.5 if x P r8, 12s

0 else.
(3.3)

This is the so-called lake at rest with dry areas. Figure 3.3 shows the initial setup.
The WB schemes fail immediately, since the Ri`1{2 matrix is singular for some i’s
and so the inverse matrix R´1

i`1{2 in (2.34) does not exist.
The energy stable schemes perform only slightly better. They start oscillating right
in the beginning and the height hi is negative for some i. After a short time, this
approximate solution blows up. In figure 3.4, one can see the approximate solution
computed with the EC scheme. It starts oscillating and the water seems to “drain
out” of the domain. At T “ 18, the water level is already significantly lowered. At
some later time, this approximate solution performed by the EC scheme also blows
up like the other schemes. An observation, which one cannot see out of the plot, is
that the approximate height hi is negative for a small number of i’s.
Of course, all of the above mentioned observations are physical nonsense, since the
lake should stay at rest even if there is a dry area. So, none of these schemes can
preserve the lake at rest with dry area although all of these schemes can preserve the
standard lake at rest.

The problem of the EC, ES and WB schemes is that they are not positivity
preserving with respect to h. Due to real world or physical observation, it
is implicit to require positive water height. So, in the next section 3.2, I
present a positivity preserving flux limiter. In section 3.4, I choose another
scheme which is positivity preserving by its own to perform some numerical
experiments.
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Figure 3.3: Lake at rest with dry area, T “ 0
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Figure 3.4: Lake at rest with dry area, T “ 18

3.2 Cut-Off Flux Limiter

The idea of the cut-off flux limiter is very easy. It simply cuts off the numer-
ical flux as soon as the scheme renders a positive value to a negative one. It
is based on a cut-off flux limiter for gas dynamics and can be found in [3].
It is originally designed to keep the density in gas dynamics positive.
If I have a water height hpxi, tnq “ hn

i ě 0 @i I want to preserve this positiv-
ity after one evolution time step, i.e. hn`1

i ě 0 @i. The superscript denotes
the index of the time level t (tn “ n ¨ ∆t, I assume a uniform time grid) and
not the n-th power of it.
For the beginning, I assume the conservation law of the shallow water equa-
tions. Consider the discrete time stepping of the finite volume scheme, i.e.

Un`1
i “ Un

i ´
∆t
∆x
pFi`1{2 ´ Fi´1{2q (3.4)

where Un
i is the conservative variable at time tn and Fi`1{2 “ pF

p1q
i`1{2, Fp2qi`1{2q

T

some numerical flux.
I multiply (3.4) by 2 and rewrite it as follows

2Un`1
i “ 2Un

i ` 2
∆t
∆x
pFi´1{2 ´ Fi`1{2q

“ pUn
i ` 2

∆t
∆x

Fi´1{2q ` pUn
i ´ 2

∆t
∆x

Fi`1{2q

“ U´
i `U`

i (3.5)

If U´
i and U`

i both are positive, then so is Un`1
i .

Let ε ą 0 be some small tolerance, then the cut-off flux limiter θi`1{2 is
defined as follows:

1. Set θ`i`1{2 “ θ´i`1{2 “ 1 @i.
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2. If hpU`
i q ă ε, i.e. if

hi ´ 2
∆t
∆x

Fp1qi`1{2 ă ε (3.6)

then, the following equation is solved for the unknown θ`i`1{2

hi ´ 2
∆t
∆x

θ`i`1{2Fp1qi`1{2
!
“ ε

ñ θ`i`1{2 “
hi ´ ε

2 ∆t
∆x Fp1qi`1{2

. (3.7)

3. If hpU´
i`1q ă ε, i.e. if

hi`1 ` 2
∆t
∆x

Fp1qi`1{2 ă ε (3.8)

then, the following equation is solved for the unknown θ´i`1{2

hi`1 ` 2
∆t
∆x

θ´i`1{2Fp1qi`1{2
!
“ ε

ñ θ´i`1{2 “
ε´ hi`1

2 ∆t
∆x Fp1qi`1{2

. (3.9)

4. Define θi`1{2 :“ mintθ´i`1{2, θ`i`1{2u. Define the limited flux F‹i`1{2 as

F‹i`1{2 :“ θi`1{2Fi`1{2 . (3.10)

Remark 3.3 It may happen that one has hi ă ε (e.g. if hi “ 0 in the initial
condition). To prevent from occuring, I define rhi as follows

rhi :“ maxphi, εq

and I consider this height rh for the computation.
Otherwise, if for instance Di such that hi ă ε and Fp1qi`1{2 “ 0, then (3.6) and (3.8)
hold. Hence I redefine θ˘i`1{2 as in (3.7) and (3.9), but this would fail (because of the
division by zero).

Remark 3.4 The original cut-off flux limiter in [3] is slightly different. U´
i and

U`
i are defined as follows:

2Un`1
i “ pUn

i ` 2
∆t
∆x
pFi´1{2 ´ fiqq ` pUn

i ` 2
∆t
∆x
p fi ´ Fi`1{2qq “: U´

i `U`
i

where fi is the true flux of the shallow water equations (or the true flux of any
considered conservation or balance law). In this case, θi`1{2 also depends on the
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true flux. This flux limiter is easily proved to be consistent and accuracy preserving.
However, for the cut-off flux limiter presented in section 3.2, I cannot give any proof
of consistency or accuracy preservation. So, numerical experiments might give some
information about the performance of this flux limiter.
I use the flux limiter derived in this section, because numerical experiments have
not been succesful with the original flux.

Remark 3.5 In fact, the tolerance ε is a lower bound for the height. So, if h “ ε in
some region (I assume that h is defined as in remark 3.3), then this region is called
a dry area.

3.3 Numerical Experiments with the Flux Limiter

In this section, I test the schemes introduced in chapter 2 augmented with
the cut-off flux limiter to several experiments. I use the usual CFL number
(CFL “ 0.4), number mesh points (N “ 200) and boundary condition (open
Neumann) if I do not state differently. The tolerance ε for the cut-off flux
limiter is set to 10´6.

3.3.1 Initial Momentum with Flat Bottom Topography

Basically, the setup of this experiment is the same as in example 3.1. The
CFL number is 0.1 and I use the WB2 scheme. The approximate solution
stays positive, as one can see in figure 3.5 and 3.6, and it looks physically
meaningful. The dry area in the middle in figure 3.6 is not really dry, i.e. it
has a thin layer of water with height ε. If the experiment runs for a longer
time, at some time there will be no water left in the domain.
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Figure 3.5: WB2 scheme, T “ 0.0089
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Figure 3.6: WB2 scheme, T “ 0.05

37



3. Dry Areas

3.3.2 Initial Momentum with Continuous Bottom Topography

In this experiment, I have a non-flat bottom topography. b is defined as
follows

bpxq “

#

´20x2 ` 0.2 if x P p´0.1, 0.1q
0 else.

I consider two different initial conditions. The first one is given by

hpx, 0q “ 1´ bpxq, phuqpx, 0q “

#

´7 if x ă 0
7 if x ě 0

. (3.11)

And the second initial condition is given by

hpx, 0q “ 1´ bpxq, phuqpx, 0q “

#

´7p1´ bpxqq if x ă 0
7p1´ bpxqq if x ě 0

. (3.12)

The difference between these two initial conditions is that in the first one
the whole momentum hu is kept constant and in the second one only the
speed u is constant. I use the WB2 scheme with the cut-off flux limiter
to compute the approximate solution and I take a different CFL number,
namely 0.1. Figure 3.7 and 3.8 show the approximate solution for the initial
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Figure 3.7: WB2 scheme, T “ 0.005
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Figure 3.8: WB2 scheme, T “ 0.05

data (3.12) computed with a coarse mesh (N “ 200). As one can observe,
the region in the middle becomes dry after some time and the scheme is
able to manage the dry region. Since I lack true solutions I compare the
approximate solution to a reference solution. In this case, it is the solution
computed with the WB2 on a refined mesh (N “ 1600). The figures 3.9 and
3.10 show the reference solution at the same time as the solution computed
on the coarse mesh. The approximate solution is slightly more diffusive
than the reference solution, as one can observe for instance in figure 3.9 in
comparison to 3.7. Apart from this, they do not differ much.
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Figure 3.9: Reference solution, T “ 0.005
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Figure 3.10: Reference solution, T “ 0.05

Figure 3.11 and 3.12 show the approximate solution for the second initial
data (3.12). As above, I use the WB2 scheme with the cut-off flux limiter and
as reference solution I compute the approximate solution on a refined mesh
(N “ 1600), see figure 3.13 and 3.14. The approximate solution is slightly
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Figure 3.11: WB2 scheme, T “ 0.005
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Figure 3.12: WB2 scheme, T “ 0.02

diffusive in comparison to the reference solution. As one may notice, in
figure 3.12 or in 3.11 the wave on the right hand-side is higher than on the
left hand-side. This effect is probably due to the discretization of the initial
condition (3.12) and the bottom topography. The point x “ 0 contributes
to the left hand-side in the initial condition and the bottom topography is
symmetric around zero. So, the “splitting” is not exactly done in the middle
but a bit on the right, what may lead to the observed height difference of the
waves. If I refine the mesh, these different wave heights vanish, see figure
3.14.
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Figure 3.13: Reference solution, T “ 0.005
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Figure 3.14: Reference solution, T “ 0.02

3.3.3 Initial Momentum with Discontinuous Bottom Topography

This experiment can be found in [5] (section 5.3). I use the WB2 scheme with
the cut-off flux limiter. I take the CFL number 0.1. The domain is Ω “ r0, 25s.
The bottom topography is given by

bpxq “

#

1 if x P r25
3 , 25

2 s p« r8.33, 12.5sq
0 else.

(3.13)

The initial condition is given by

hpx, 0q “ 10´ bpxq, phuqpx, 0q “

#

´350 if x ă 50
3 p« 16.67q

350 if x ě 50
3

. (3.14)

Figure 3.16 shows the approximate solution computed on a refined mesh
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Figure 3.15: WB2 scheme, T “ 0.05
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Figure 3.16: Refinded mesh N “ 800, T “ 0.05

(N “ 800). This approximate solution looks almost the same as the solution
in figure 3.15. The approximate solution computed on the coarse mesh (the
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Figure 3.17: WB2 scheme, T “ 0.25
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Figure 3.18: WB2 scheme, T “ 0.45

usual N “ 200) presents some more oscillations and is more diffusive than
the one computed on the refined mesh. Overall, the approximate solution
in figure 3.15, 3.17 and 3.18 matches quite well with the numerical result
obtained in [5].

3.3.4 Lake at Rest with Initial Dry Area

I now consider a simple lake at rest with a dry area in the initial setup. This
is a steady state and should be preserved during the time stepping. I use
the EC scheme with the cut-off flux limiter. I take the usual CFL number
0.4. The domain is Ω “ r0, 20s and the bottom topography is the same as in
example 3.2. Recall:

bpxq “

#

4´px´10q2
3.5 if x P r8, 12s

0 else.

The initial condition is given by

upx, 0q ” 0, hpx, 0q “

#

1´ bpxq if bpxq ă 1´ 10´6

10´6 else.
(3.15)

A thin water layer is put on the dry area, cf. remark 3.3. Figure 3.19 shows
the initial height. The scheme fails to preserve this steady state, since the
approximate solution oscillates and creates unphysical waves, as one can
observe in figure 3.20. So, the schemes presented so far cannot handle this
example.
If there are no initial dry areas, the EC and the WB2 schemes perform well
and give a reasonable approximate solution and a relatively coarse mesh
(N “ 200). But as soon as there are initial dry areas, the previous schemes
fail to compute reasonable approximate solutions. Due to the above men-
tioned observation, simulating the flooding of dry areas with the schemes
may also fail.
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Figure 3.19: Initial height, T “ 0
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Figure 3.20: EC scheme, T “ 3.3

3.3.5 Problematic Flux Tolerance

The cut-off flux limiter needs a small tolerance value ε. It seems that the
experiments may be very sensitive to this tolerance. If I take a smaller tol-
erance value than 10´8 for the flux limiter, the approximate solution of the
numerical experiment in section 3.3.2 blows up after some time.
However, in the experiment of section 3.3.3, taking ε smaller than 10´8, e.g.
10´10, does not affect the approximate solution, i.e. the solution does not
explode. I would need further analysis of the flux limiter and its tolerance,
but this lies beyond the scope of the thesis.

Remark 3.6 The tolerance value of the diffusion matrix in (2.34) and the tolerance
value of the flux limiter do not seem to be correlated.

3.4 Rusanov Scheme

The schemes derived in chapter 2 are not positivity preserving and therefore
have difficulties computing numerical experiments with dry areas. The cut-
off flux limiter introduced in section 3.2 works with these schemes as long as
there is no initial dry areas. I this section, I introduce the standard Rusanov
scheme to encounter the problems of the previous schemes.
The general Rusanov flux is given by

FRus
i`1{2 :“

1
2
p f pUiq ` f pUi`1qq ´

1
2

maxt|λ˘i |, |λ
˘
i`1|upUi`1 ´Uiq (3.16)

where f is the true flux of the conservation/balance law and λ is given by

λ˘i :“ ui ˘
a

ghi . (3.17)

The Rusanov flux is energy stable (see [1]). The resulting scheme looks as
follows

d
dt

Ui “ ´
1

∆x
pFRus

i`1{2 ´ FRus
i´1{2q ´ Si . (3.18)
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3.4. Rusanov Scheme

It is known that the Rusanov scheme is first order accurate.
First, consider the discrete time stepping of the conservation law (this is
equivalent to the semidiscrete scheme with Forward Euler time stepping).

Un`1
i “ Un

i ´
∆t
∆x
pFRus

i`1{2 ´ FRus
i´1{2q . (3.19)

For the shallow water equations, I have the following relation for the first
component of Ui:

hn`1
i “ hn

i ´
∆t
∆x
pFRus,p1q

i`1{2 ´ FRus,p1q
i´1{2 q

“: hn
i ´ GpUn

i´1, Un
i , Un

i`1q .

If GpUn
i´1, Un

i , Un
i`1q ď hn

i , then the scheme is positivity preserving since
hn

i ´ G ě 0. For convenience, I drop the superscript n in the rest of the
thesis.

Lemma 3.7 The Rusanov scheme is positivity preserving for the conservation law.
I.e. if hn

i ě 0 @i then hn`1
i ě 0 @i.

Proof As stated above, it is enough to show: G ď hi.

G “
∆t
∆x
p
1
2
phiui ` hi`1ui`1q ´

1
2

maxt|λ˘i |, |λ
˘
i`1|uphi`1 ´ hiq

´
1
2
phi´1ui´1 ` hiuiq `

1
2

maxt|λ˘i´1|, |λ
˘
i |uphi ´ hi´1q

“
∆t

2∆x
phipmaxt|λ˘i |, |λ

˘
i`1|u `maxt|λ˘i´1|, |λ

˘
i |uq

` hi`1pui`1 ´maxt|λ˘i |, |λ
˘
i`1|uq

´ hi´1pui´1 `maxt|λ˘i´1|, |λ
˘
i |uqq

“: p‹q

With the (restricted) CFL condition

∆t
∆x

maxt|u`
a

gh|u ď
1
2

I have
∆t

2∆x
phipmaxt|λ˘i |, |λ

˘
i`1|u `maxt|λ˘i´1|, |λ

˘
i |uq ď

1
2

hi

Define γ :“ ∆t
2∆x . So, I have the following upper bound for p‹q:

p‹q ď
1
2

hi ` γhi`1 pui`1 ´maxt|λ˘i |, |λ
˘
i`1|uq

loooooooooooooooomoooooooooooooooon

ď0

´γhi´1 pui´1 `maxt|λ˘i´1|, |λ
˘
i |uq

loooooooooooooooomoooooooooooooooon

ě0

ď hi

Since γ ą 0 and hi ě 0 @i.
Hence, the scheme is positivity preserving. ˝
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3. Dry Areas

For the balance law, the scheme remains positivity preserving as long as the
source term is “nice” enough.

3.5 Numerical Experiments with the Rusanov Scheme

For the numerical experiments, I use the Rusanov method with the cut-off
flux limiter to compute the approximate solutions. I use the flux limiter,
although the Rusanov scheme is positivity preserving, because numerical
errors may lead to very small negative heights hi, which cause the scheme
to fail. In contrast to the previous section, I use a very small tolerance for
the flux limiter, namely I set ε “ 10´15. The CFL number varies in each
experiment. The boundary condition and the mesh point are as usual if not
stated differently. First, I consider a standard experiment.

3.5.1 Lake at Rest

In this section, I test the Rusanov scheme to two different lake at rest steady
states. The main difference is the bottom topography.
In the first experiment, I consider the following bottom topography in the
domain Ω “ r0, 12s

bpxq :“
1

18
x2 ´

2
3

x` 2 . (3.20)

The CFL number is 0.1918 and the initial condition is given by

upx, 0q ” 0, hpx, 0q “

#

0.3´ bpxq if bpxq ă 0.3´ 10´15

10´15 else.
(3.21)

I have initial dry areas and a smooth bottom topography. The Rusanov
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Figure 3.21: Lake at rest, T “ 10
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Figure 3.22: Lake at rest, T “ 50

scheme produces very small oscillation in the beginning of time stepping,
as one can see in figure 3.21. There are also some artifacts at the wet/dry
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3.5. Numerical Experiments with the Rusanov Scheme

interface. But all these effects are rather small, since after some time the
water height is as in the initial setup, see figure 3.22. The momentum is not
perfectly preserved, due to this small perturbation in the beginning.
The second setup for the lake at rest is similar to the one from section 2.2.1.
The bottom topography in the domain Ω “ r0, 20s is given by

bpxq “

#

4´px´10q2
4.1 if x P r8, 12s

0 else.
(3.22)

The CFL number is 0.1 and the initial condition is given by

upx, 0q ” 0, hpx, 0q “ 1´ bpxq . (3.23)

I have no initial dry areas. Figure 3.23 shows rather strong oscillations of
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Figure 3.23: Lake at rest, T “ 0.4
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Figure 3.24: Refined mesh N “ 800, T “ 0.4
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Figure 3.25: Lake at rest, T “ 10
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Figure 3.26: Lake at rest, T “ 50

the approximate solution around the non-flat bottom region. In particular,
there are two artifacts where the bottom is not smooth anymore but only

45



3. Dry Areas

continuous. Both of these effects can be reduced by increasing the mesh-
points, see figure 3.24 with N “ 800. After some time, the height of the
water remains constant and the state stays preserved, see figure 3.25 and
3.25. The momentum hu, though, is not preserved perfectly due to the oscil-
lation in the beginning.
The Rusanov scheme does not preserve to lake at rest very well. But the
deviation are only very small and may be neglected in practice. One could
increase the accuracy by increasing the number of meshpoints.

3.5.2 Sloping Beach

In this experiment, I consider a beach and an incoming wave. The CFL
number is 0.131, the boundary condition is as usual and the domain is Ω “

r0, 12s. The bottom topography of the beach is given by

bpxq “

#

6
35 x´ 6

7 if x ě 5
0 else.

(3.24)

The initial condition is as follows

upx, 0q ” 0, hpx, 0q “

#

maxtmaxt0.7, bpxqu ´ bpxq, 10´15u if x P r3.5, 4.5s
maxtmaxt0.3, bpxqu ´ bpxq, 10´15u else.

(3.25)
The figures 3.27-3.34 show the incoming wave hitting the beach and flowing
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Figure 3.27: Initial height, T “ 0
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Figure 3.28: Sloping beach, T “ 1

back. The wave might be a bit diffusive, since I use the Rusanov flux. But
despite of this the approximate solution seems to be physically reasonable.
The next experiment even goes a step further.

3.5.3 Parabolic Bowls

This experiment consists of two parabolic bowls which are separated by
some small distance. They are connected with a quadratic curve, see figure 3.35.
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Figure 3.29: Sloping beach, T “ 2
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Figure 3.30: Sloping beach, T “ 3
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Figure 3.31: Sloping beach, T “ 4.5
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Figure 3.32: Sloping beach, T “ 6
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Figure 3.33: Sloping beach, T “ 12
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Figure 3.34: Sloping beach, T “ 20
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Both bowls contain some water. In the first bowl, I create two waves so that
one of the waves spills over into the other bowl. The bottom topography
(bowls) in the domain Ω “ r0, 25s is given by

bpxq “

$

’

&

’

%

1
18 x2 ´ 2

3 x` 2 if x P r0, 12s
´x2 ` 25x´ 154 if x P p12, 13q
1

18 x2 ´ 19
9 x` 361

18 if x P r13, 25s .

(3.26)

The CFL number is 0.3284 and the initial condition is given by

upx, 0q ” 0, hpx, 0q “

#

maxtmaxt4.4, bpxqu ´ bpxq, 10´15u if x P r5.25, 6.75s
maxtmaxt0.9, bpxqu ´ bpxq, 10´15u else.

(3.27)
The figures 3.35-3.42 show the water height at different times. For the two
times T “ 2 and T “ 4.5, I have computed a reference solution (with the
Rusanov scheme on a refinded mesh N “ 1600) to compare, see figure 3.43
and 3.44. This comparison shows that the Rusanov is indeed diffusive, but
the further I go in time the less important is this fact, if one compares 3.44
to 3.39. In a physical point of view, the Rusanov scheme performs well even
at the slopover. The waves in the two bowls move for a long time even at
T “ 100 there is no rest (figure 3.42). This is an expected observation, since
in reality water in such bowls behaves in that way (maybe not exactly in this
way, but similarly).
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Figure 3.35: Parabolic bowls, T “ 0.5
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Figure 3.36: Parabolic bowls, T “ 1

48



3.5. Numerical Experiments with the Rusanov Scheme

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

x

h

 

 
Rusanov

Figure 3.37: Parabolic bowls, T “ 2
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Figure 3.38: Parabolic bowls, T “ 3
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Figure 3.39: Parabolic bowls, T “ 4.5
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Figure 3.40: Parabolic bowls, T “ 6
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Figure 3.41: Parabolic bowls, T “ 10
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Figure 3.42: Parabolic bowls, T “ 100
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Figure 3.43: Reference solution, T “ 2
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Figure 3.44: Reference solution, T “ 4.5
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