
Finite volume methods for fluid
flow in porous media

Bachelor Thesis

Fabian Mönkeberg

Supervisor: Prof. Dr. Nils Henrik Risebro,
Prof. Dr. Ralf Hiptmair

ETH Zürich,
June 27, 2012

i

Acknowledgments

This thesis was done to receive the Bachelor of Science in Mathemetics.
I first thank my supervisor Prof. Dr. Nils Henrik Risebro for motivating me
and for his good advices. I also thank Prof. Dr. Ralf Hiptmair for his support.
Finally, I thank Simon Laumer for all the corrections.

Contents

1 Introduction 1

2 Modeling fluid flow in porous media 3
2.1 Rock and fluid properties . 4
2.2 Single-phase flow . 6

2.2.1 Single-phase flow in one dimension 6
2.2.2 Single-phase flow in two and three dimensions 7
2.2.3 Boundary conditions . 7
2.2.4 Special cases of single-phase flow 8

2.3 Two-phase flow . 9
2.3.1 General solution . 9
2.3.2 Pressure equation . 10
2.3.3 Pressure equation for incompressible immiscible flow . . . 11
2.3.4 Saturation equation . 11
2.3.5 Saturation equation for incompressible flow 12

2.4 Three-phase flow . 12
2.5 Multiphase and multicomponent flows 13

2.5.1 Black-oil model . 14

3 Elliptic pde’s 15
3.1 Setting and definitions . 15

3.1.1 Weak derivative: . 16
3.1.2 Sobolev spaces: . 16

3.2 Discretization of the elliptic problem/Galerkin approximation . . 17

4 Hyperbolic pde’s 19
4.1 Riemann problem . 20
4.2 Numerical methods for hyperbolic equations in 1-D 21

4.2.1 Finite difference schemes 21
4.3 Numerical methods for hyperbolic equations in 2-D 24

4.3.1 Splitting schemes . 24
4.3.2 Finite volume methods . 24

CONTENTS iii

5 FVM in 2-D on triangulation 27
5.1 Mesh construction . 27
5.2 Construction of the finite volume method 32
5.3 Construction of a Galerkin approximation routine 34

5.3.1 Element stiffness matrix 35
5.3.2 Load vector . 36

5.4 Simulation of flow in porous media 36

6 Conclusion and further work 48

CONTENTS iv

Abstract

This thesis develops a routine to compute finite volume methods on triangular
grids for solving hyperbolic partial differential equations. The implementation
in this thesis is based on the Engquist-Osher scheme, but it can be extended to
any other finite volume method.
In the second part, we test the implementation against a benchmark dataset
for reservoir simulation of the Society of Petroleum Engineers. This dataset is
used to define an immiscible and incompressible two-phase flow in a rectangular
domain. We had to implement a fast elliptic solver, due the needed split in an
elliptic and one hyperbolic equation.
The focus of these thesis is the implementation, not the convergence theory.

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The topic of this thesis is first the development of a program of a finite volume
method on a triangular mesh. Second focus was its verification based on sim-
ulations of flow in porous media. Nowadays, an approved method is the finite
volume method on a Cartesian grid. The advantage of a method on a Cartesian
grid is its simple handling, due to its nice structure. On the other hand, the
advantage of a method on a triangular mesh is a certain flexibility. Being more
precise, there exist several simple strategies for local refinements. Examples of
such local refinements are shown in figure 1.1 and 1.2. In this figures ∗ denotes
the triangle that should be refined. Note that, in order to receiving a correct
triangulation, we can not just refine one single triangle. We have to guarantee,
that the mesh is complete. Local refinements are used to guarantee convergence,
without refining the whole grid.

Figure 1.1: local refinement of triangular grid, [6]

Figure 1.2: local refinement of triangular grid, [6]

An other approach, which can be used on triangular grids, is local grid align-

CHAPTER 1. INTRODUCTION 2

ment. There you align the triangles in the direction of the flux or parallelize
them according to the shock waves. A shock wave is a discontinuous wave. This
approach improves the accuracy, too. The disadvantage is exactly that there
are a lot of possibilities to build a triangulation, and so we have no fix topology.
The aim is to find a method to get access to the informations of this topology
(triangular elements, neighbors of triangles, size of triangles,...).

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 3

Chapter 2

Modeling fluid flow in
porous media

The interest in the behavior of fluid in porous media is not a recency. It started
in the early days of the oil production out of reservoirs deep under the surface
of the earth. The main purpose in modeling fluid flow in porous media is to
simulate the flow of oil and water in the rock, to estimate and optimize the oil
and gas production. Another application is the simulation of groundwater con-
tamination. The existence of many depends on the subsistence of groundwater.
Problems appear from leaking tanks of chemicals, oil pipelines, or fertilizers. In
general, the whole pollution of the environment is problematic for the ground
water. The basic process is that we have clean groundwater as one medium and
polluted water, or even an toxic fluid as the second medium. To understand the
spreading of the second medium and its consequences is the aim.
The challenge is to model an interaction of different fluids in their phases (liq-
uid, gaseous, solid) and the environment. Basically, this means to simulate fluid
flow and mass transfer, while some external and internal forces, like gravity,
capillary and viscous forces, affect.
The mathematical model of this physical system is set by differential equations
and some special boundary conditions. To get these we use the fundamental
rules of conservation of mass, momentum and often we apply Darcy’s law (p.5)
for each phase, instead of Newton’s second law. The first challenge is to get an
accurate prediction of the flow scenarios, this means to receive the properties
of the different media and its interaction. Nowadays, their is an amount of new
and reliable techniques for getting these informations. But handling this huge
mass of data is the next difficult task. It is just impossible to run simulations
with all this information. This is because of the still limited computer resources.
So a suitable approximation is the key concept to solve this task. For further
informations, this chapter is based on the books [10], [2], [11] and the article [5].

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 4

2.1 Rock and fluid properties
The rock compressibility cr is a measure of how much the rock is compressible
and is defined by:

cr = 1
φ

dφ

dp
, (2.1)

where p is the overall reservoir pressure and φ, the porosity, is the void volume
fraction of the medium, 0 ≤ φ < 1. Often, in simplified models, the rock
compressibility is neglected and the porosity φ is assumed to depend only at the
spatial coordinates. In the other cases, it is common to use a linearization of φ:

φ = φ0(1 + cr(p− p0)). (2.2)

Usually, one assumes that the porosity is a piecewise continuous spatial function,
since the dimensions of the pores are very small compared to any scale of the
simulation.
The next important property of rock is the (absolute) permeability K, which is
a measure of the ability to transmit a single fluid at certain conditions. Because
the permeability does not have to be the same in each direction, K is a tensor,
e.g. in shale a fluid flows easily in the direction of the surface, but not through it.
In contrast to shale, the water flows easily through sandstone in each direction.
As you see in the example of the shale, the permeability is not necessarily
proportional to the porosity, but they are often strongly correlated to each
other.
The medium is called isotropic, if K is independent of the direction. K is
modeled in this case as scalar. The opposite is called anisotropic. If a rock
formation, like sandstone transmit fluids readily, then they are called permeable.
Otherwise they are called impermeable.
Let us assume that the rock pores are always filled with certain fluid or gas,
meaning that there exists no vacuum. Then we define the saturation si of each
phase as the volume fraction occupied by it. And we get that:∑

all phases
si = 1. (2.3)

Each phase contains one or more components, e.g. methane, ethane, propane,
etc. are hydrocarbon components. Since the number of them can be quite large
and they often have similar properties, it is common to group some components
into pseudo-components. We will make no difference between components and
pseudo-components. The mass fraction of component i in phase j is denoted by
cij . For N different components in phase j, we get:

N∑
i=1

cij = 1. (2.4)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 5

The density ρ and viscosity µ to each phase are functions of the phase pressure
pi and the composition of each phase.

ρi = ρi(pi, c1i, . . . , cNi), µi = µi(pi, c1i, . . . , cNi). (2.5)

The compressibility of the phase is defined as the compressibility for rock:

ci = 1
ρi

dρi
dpi

. (2.6)

It is obvious that for some fluids, the compressibility effects are more important
than for others. Similarly, some fluids depend more on the density, pressure
and component composition than others. For example, the dependencies for
the water phase are usually ignored, and the compressibility is more important
for the gas phase than for the oil and water phase.
Furthermore, it is obvious that the restriction of the motion of one phase at a
certain location depends on the presence of the other phases. This information
is stored in the relative permeability kri, which describes how one phase i flows
in the presence of the others. This means that it is a function depending on the
saturations of the other phases. The relative permeability defines the (effective)
permeability Ki = Kkri experienced by phase i. To prevent misunderstanding,
it has to be mentioned that the kri are nonlinear functions of the saturations,
so that the sum of all relative permeabilities is not necessarily one. The critical
saturation at which a phase starts or stops to move, is called the residual satu-
ration.
The discontinuity in fluid pressure occurs across an interface between any two
immiscible fluids, e.g. water and oil. This discontinuity is called the capillary
pressure pcij = pi − pj .

From now on, we concentrate on the production of oil and its reservoir sim-
ulation. The problem setting here is a bounded reservoir space, filled with gas,
oil and water. To produce the oil, you will do the following: First, drill some
wells, from which the oil will flow out by means of overpressure. This is called
the primary production. At a certain point of time, the pressure gets to a steady
state and the oil stops flowing out. To get the rest of the oil, one starts the
secondary production: Water or gas is injected into the reservoir to receive again
an higher pressure in the reservoir, so the production of the oil continues. Each
of these techniques produces about 20 percent of the oil. In order to produce
even more oil, one uses the Enhanced Oil Recovery (EOR, or tertiary recovery):
There the idea is to change the flow properties of water and oil, to push them
out. Therefore one injects some chemicals or even try to heat up the reservoir.
But so far these methods are too expensive for large commercial use and are
still in test stage.
One important attainment in this topic was Darcy’s law, which states that the
volumetric flow density v is proportional to the gradient of the fluid pressure
and a pull-down effect due to gravity:

v = −K
µ

(∇p+ ρg∇D), (2.7)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 6

where ∇p is the gradient of the pressure, µ is the viscosity of the fluid, D is
the spatial coordinate in the upward vertical direction, and K is the absolute
permeability of the medium.

2.2 Single-phase flow
2.2.1 Single-phase flow in one dimension
The single-phase flow is the simplest case in reservoir simulation. The result
is an equation for the pressure distribution and is used for the early stage in
the simulation. To derive a differential equation for flow in one dimension, we
assume that the cross-section area A for flow as well as the depth D, are func-
tions of the variable x in our one dimensional space. Additionally we introduce
a term for the injection q of fluid, which is equal to the mass rate of injection
per unit volume of reservoir. Consider a mass balance in a small box shown in
figure 2.1. The length of the box is ∆x, the left face has area A(x), the right
face has area A(x+ ∆x). So the rate at which fluid mass enters the box at the
left face is given by:

ρ(x)vx(x)A(x). (2.8)

In the same way we have the rate at which fluid mass leaves at the right face:

ρ(x+ ∆x)vx(x+ ∆x)A(x+ ∆x). (2.9)

If we define the average value of A and q between x and x+ ∆x as Ā and q̄, we
get, that the volume of the box is Ā∆x, and that the rate at which fluid mass
is injected into the box is:

q̄Ā∆x. (2.10)

The mass contained in the box is φ̄ρ̄Ā∆x. So we get the rate of accumulation
of mass in the box:

∂(φ̄ρ̄)
∂t

Ā∆x. (2.11)

Because of conservation of mass, we receive:

[rate in]− [rate out] + [rate injected] = [rate of accumulation] (2.12)

By using equation (2.8), (2.9), (2.10) and (2.11), we get:

ρ(x)vx(x)A(x)− ρ(x+ ∆x)vx(x+ ∆x)A(x+ ∆x) + q̄Ā∆x

= ∂(φ̄ρ̄)
∂t

Ā∆x. (2.13)

Dividing by ∆x:

−ρ(x+ ∆x)vx(x+ ∆x)A(x+ ∆x)− ρ(x)vx(x)A(x)
∆x + q̄Ā = ∂(φ̄ρ̄)

∂t
Ā (2.14)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 7

Figure 2.1: Differential elements of volume for a one-dimensional flow, [10]

Taking the limit ∆x −→ 0, we get the following result:

−∂(Aρvx)
∂x

+Aq = A
∂(φρ)
∂t

(2.15)

And this is the resulting differential equation.

2.2.2 Single-phase flow in two and three dimensions
To derive the differential equation in two and three dimensions, we use the
same techniques as before. In the two dimensional case, we have to introduce
the variation of the thickness of the reservoir H = H(x, y).
In 2D:

−∂(Hρvx)
∂x

− ∂(Hρvy)
∂y

+Hq = H
∂(φρ)
∂t

. (2.16)

In 3D:

−∂(ρvx)
∂x

− ∂(ρvy)
∂y

− ∂(ρvz)
∂z

+ q = ∂(φρ)
∂t

. (2.17)

By using Darcy’s law from the beginning, and by defining the function α:
1D: α(x, y, z) = A(x),
2D: α(x, y, z) = H(x, y),
3D: α(x, y, z) ≡ 1,
we get the general equation:

∇ ·
[
αρK

µ
(∇p+ ρg∇D)

]
+ αq = α

∂(φρ)
∂t

(2.18)

2.2.3 Boundary conditions
To get a complete solvable system, we have to set some boundary conditions. A
frequently used boundary condition is the no-flow condition. It means that the

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 8

reservoir lies within some closed boundary ∂Ω and there should hold v · n = 0,
where n is the normal vector pointing out of the boundary. This results in
a closed flow system, where no water can enter or exit the reservoir. The
problem with this boundary condition is that it is relatively difficult to obtain
numerically. So it is adequate to put our reservoir in a rectangle, and set
K(x, y), φ(x, y) = 0 outside of the boundary.
In theory we set a well as a point source or sink, where q is zero everywhere
except at this point. Since this is numerically impossible, we let Q be the desired
mass rate of injection at a well and let V be the volume of a small box centered
at the well. Within this box, we take:

q = Q/V

and outside we set q zero.

2.2.4 Special cases of single-phase flow
Incompressible single-phase flow

For the incompressible single-phase flow assume that the porosity φ of the rock
is constant in time and that the fluid is incompressible, which means constant
density. Then the time dependent derivative vanishes and we obtain the elliptic
equation for the water pressure:

∇ ·
[
−αK

µ
(∇p− ρG)

]
= αq

ρ
, (2.19)

where G = −g∇D.

Ideal liquid of constant compressibility

In this model, let us assume for simplicity that ∇D = 0 and q = 0. So equation
(2.18) becomes:

∇ ·
[
αρK

µ
∇p
]

= α
∂(φρ)
∂t

. (2.20)

As mentioned before, the compressibility c of a fluid is defined as:

c = 1
ρ

dρ

dp
. (2.21)

For an ideal liquid, this means constant compressibility and constant viscosity,
we get by integrating the following equation:

ρ = ρ0 exp[c(p− p0)]. (2.22)

From equation (2.21) follows:

ρ∇p = 1
c
∇ρ, (2.23)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 9

and so (2.20) becomes by applying (2.23):

∇ ·
[
αK

µc
∇ρ
]

= α
∂(φρ)
∂t

. (2.24)

If we additionally assume that the porous medium and the reservoir are homo-
geneous, then α, K, and φ are uniform, and we obtain:

∇2ρ = φµc

K

∂ρ

∂t
. (2.25)

2.3 Two-phase flow
2.3.1 General solution
Because general in reservoir simulation, there are involved at least two different
phases, the single-phase flow seldom occurs. So we would like to simulate the
displacement of oil by water or gas. The difficulty is, that this happens in a
simultaneous flow and not with a sharp edge. To make it not too difficult, we
start by assuming no mass transfer between the two fluids. In either case, there
is one wetting phase, which means that one fluid wets the porous medium more
than the other. In a water-oil system, the water is the wetting phase, and in
an oil-gas system, the oil would be the wetting phase. We refer to the wetting
phase by the subscript w and to the non-wetting phase by the subscript n. As
mentioned before, we have:

sn + sw = 1 (2.26)

As an empirical fact, we accept that the capillary pressure is a function of the
saturation of the wetting phase.

pcnw(sw) = pn − pw (2.27)

Darcy’s law can be extended to multiphase flow by assuming that the phase
pressure forces each fluid to flow. So equation (2.7) can be written as:

vn = −Kkrn
µn

(∇pn − ρnG), (2.28)

vw = −Kkrw
µw

(∇pw − ρwG). (2.29)

To obtain our differential equations, we apply, in the same way as in the single-
phase flow, the conservation of mass to each phase. Except of the rate of
accumulation, we get the same equations (2.8), (2.9) and (2.10) for each phase.
To receive the rate of accumulation, we have to multiply the volume by the
saturation and get:

−∇ · (αρnvn) + αqn = α
∂(φρnsn)

∂t
, (2.30)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 10

−∇ · (αρwvw) + αqw = α
∂(φρwsw)

∂t
. (2.31)

After applying Darcy’s law, we end up with:

∇ ·
[
αρnKkrn

µn
(∇pn − ρnG)

]
+ αqn = α

∂(φρnsn)
∂t

, (2.32)

∇ ·
[
αρwKkrw

µw
(∇pw − ρwG)

]
+ αqw = α

∂(φρwsw)
∂t

. (2.33)

In the following we will rewrite this equations in a more practical way consisting
of a pressure equation and a saturation equation.

2.3.2 Pressure equation
First we apply the Leibniz rule to the time derivative of equation (2.30) and
(2.31):

−∇ · (αρnvn) + αqn = α

[
ρnsn

∂φ

∂t
+ φsn

dρn
dpn

∂pn
∂t

+ φρn
∂sn
∂t

]
(2.34)

−∇ · (αρwvw) + αqw = α

[
ρwsw

∂φ

∂t
+ φsw

dρw
dpw

∂pw
∂t

+ φρw
∂sw
∂t

]
(2.35)

Now, we divide (2.34) by αρn and (2.35) by αρw, add the resulting equations
and use (2.26):

− 1
αρn
∇ · (αρnvn)− 1

αρw
∇ · (αρwvw) +Qt

= ∂φ

∂t
+ φsncn

∂pn
∂t

+ φswcw
∂pw
∂t

, (2.36)

where

Qt = qn
ρn

+ qw
ρw

is the total volumetric injection rate, and cn, cw are the phase compressibilities,
defined as in (2.6). By using the rock compressibility (2.1), equation (2.23),
equation (2.26) and defining the phase mobility λi of phase i by:

λi = kri
µi
, (2.37)

we get:

− 1
α
∇ · [αKλw(∇pw − ρwG) + αKλn(∇pn − ρnG)] + crφ

∂p

∂t

−cw
[
∇pw ·Kλw(∇pw − ρwG)− φsw

∂pw
∂t

]
−cn

[
∇pn ·Kλn(∇pn − ρnG)− φsn

∂pn
∂t

]
= Qt (2.38)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 11

In the resulting equation we have three different pressures: the total pressure p,
the pressure of the wetting phase pw and the pressure of the non-wetting phase
pn. By assuming that the capillary pressure pcnw = pn − pw is known and by
setting the non-wetting pressure pn as the primary variable, we get a parabolic
equation that can be solved for the non-wetting-phase pressure pn.

2.3.3 Pressure equation for incompressible immiscible flow
Since solving the parabolic equation (2.38) is not an easy task and since the
temporal derivative terms are quite small, equation (2.38) is nearly elliptic. By
assuming that the two phases are incompressible, i.e. cr = cw = cn = 0, we get:

− 1
α
∇ · [αKλw(∇pw − ρwG) + αKλn(∇pn − ρnG)] = Qt. (2.39)

We still have two unknown phase pressures, pw and pn, in our equation. As
mentioned before, there is a dependency between them, due to the capillary
pressure pcnw = pn−pw, which is assumed to be a function of sw. The next steps
follow an approach which introduces the global, the reduced, or the intermediate
pressure p = pn − pc (for more details, see [2]). The new variable pc is called
the saturation-dependent complementary pressure and is defined by

pc(sw) =
∫ sw

1
fw(ξ)∂pcnw

∂sw
(ξ)dξ, (2.40)

where the fractional-flow function fw = λw/(λw +λn) measures the water frac-
tion of the total flow. From (2.40) we get

∇pc = fw∇pcnw. (2.41)

Next, we express the total velocity v = vn+vw as function of the global pressure
p:

v = −K(λw + λn)∇p−K(λwρw + λnρn)G. (2.42)

Applying this to equation (2.39), we get

1
α
∇ · (αv) = Qt, (2.43)

where λ = λw+λn is the total mobility. As boundary condition, we use normally
the no-flow condition, but in some cases, there can be used some variation.

2.3.4 Saturation equation
In the previous part, we derived the pressure equation, which can be solved for
the global pressure p. But to derive a complete model, we should as well derive
an equation for each saturation. Since sw + sn = 1, it suffices to calculate only
one saturation. In practice, it is common to calculate sw. Therefore, we need

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 12

to find an expression for the velocity vw in terms of p and pc.
From Darcy’s law, we get

λnvw − λwvn = Kλnλw∇pcnw −Kλnλw(ρn − ρw)G. (2.44)

Inserting vn = v − vw and dividing by λ, we get

vw = fw[v +Kλn∇pcnw +Kλn(ρw − ρn)G]. (2.45)

Finally, we include ∇pcnw = ∂pcnw

∂sw
∇sw in equation (2.45). Applying the result

to equation (2.31), and we get:

α
∂(φρwsw)

∂t
= ∇ · (αρwhw∇sw)

−∇ · (αρw(fw[v +Kλn(ρw − ρn)G])) + αqw, (2.46)

where hw = −fwKλn ∂pcnw

∂sw
.

2.3.5 Saturation equation for incompressible flow
To get a simple equation compared to (2.46), we assume incompressibility of
the fluid and constant porosity, which includes that φ, ρn, and ρw are constant.
So (2.46) becomes:

αφ
∂sw
∂t

+∇·(αfwv)−∇·(αhw∇sw)+∇·(αKfwλn(ρw−ρn)G) = α
qw
ρw

(2.47)

To complete the model, we have to choose some initial value and again the
boundary conditions.We will impose the no-flow condition as boundary condi-
tion and take the initial value sw(x, 0) = s0

w(x).
In general, the saturation equation is a parabolic equation. However, on a
reservoir scale, the terms fw(s)v and fw(s)Kλn(ρw − ρn)G usually dominate
the term −∇ · (αhw∇sw). Hence, it has a strong hyperbolic nature and should
be discretized in a different way than the pressure equation.

2.4 Three-phase flow
Let us consider the case where three immiscible fluids are involved in our system.
In general these different fluids will be gas, oil and water (g, o, w). We again
assume no mass transfer between the three fluids. Deriving the differential
equations for three phases works in the same way as for two phases. First we
have

sg + so + sw = 1. (2.48)

But now we have three capillary pressures, whereof two are independent:

pcow = po − pw, (2.49)

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 13

pcgo = pg − po, (2.50)
pcgw = pg − pw = pcgo + pcow. (2.51)

In the two-phase model, it is quite easy to obtain some experimental data of the
capillary pressures, but in the three-phase case there is only little experimental
data. So it is necessary to get some estimates from the two-phase case.
One still important tool is Darcy’s law, which is in three phases the same as
before. To derive the differential equations, we use again conservation of each
phase, and get:

−∇ · (αρgvg) + αqg = α
∂(φρgsg)

∂t
, (2.52)

−∇ · (αρwvw) + αqw = α
∂(φρwsw)

∂t
, (2.53)

−∇ · (αρovo) + αqo = α
∂(φρoso)

∂t
. (2.54)

Next, we apply Darcy’s law to (2.52), (2.53) and (2.54), and end up with:

∇ ·
[
αρgKkrg

µg
(∇pg − ρgG)

]
+ αqg = α

∂(φρgsg)
∂t

, (2.55)

∇ ·
[
αρwKkrw

µw
(∇pw − ρwG)

]
+ αqw = α

∂(φρwsw)
∂t

, (2.56)

∇ ·
[
αρoKkro

µo
(∇po − ρoG)

]
+ αqo = α

∂(φρoso)
∂t

. (2.57)

Parallel to the pressure equation and saturation equation in the two-phase flow,
we can derive an alternative system, which equivalent to the three equations
(2.55), (2.56) and (2.57). The new system will consist of one elliptic or near-
elliptic pressure equation and two near-hyperbolic saturation equations, where
the saturation equation will depend on one saturation and the total velocity
v = vg + vo + vw.

2.5 Multiphase and multicomponent flows
After looking at the single-phase, two-phase and three-phase flow, we will deal
with the general case. Let us now consider N components (or chemical species),
whereof each may exist in any or all of the three phases (gas, oil, water). Note
that certain components can be in the oil phase and in the gas phase. Addi-
tionally, it may be, that some hydrocarbon component can be dissolved in the
water phase, too. As defined in the beginning, let cij be the mass fraction of
the ith component in the jth phase.
The main difference to the previous sections is that we can not assume conserva-
tion of mass in each phase. This is because it is now possible to transfer various
components between the phases. But we still have a certain conservation of

CHAPTER 2. MODELING FLUID FLOW IN POROUS MEDIA 14

mass, this holds now in each component. As long as the mass flux density of
each phase j is ρjvj , we have that the mass flux density of the ith component is

cigρgvg + cioρovo + ciwρwvw. (2.58)

And the mass of component i per unit bulk volume of porous medium is

φ(cigρgsg + cioρoso + ciwρwsw). (2.59)

Due to the conservation of mass for each component, we thus get:

−∇ · [α(cigρgvg + cioρovo + ciwρwvw)] + αqi

= α
∂

∂t
[φ(cigρgsg + cioρoso + ciwρwsw)]. (2.60)

The last missing part is again Darcy’s law, which holds in the same way as
before:

vi = −Kkri
µi

(∇pi − ρiG). (2.61)

2.5.1 Black-oil model
Solving the general system of the previous section is a really difficult task.
Therefore, we look again at a more reduced model. As long as we have a low-
volatility oil system, consisting mainly of methane and heavy components, we
can use the simplified "Black-oil" model. In this model it is assumed that no
mass transfer occurs between the water phase and the other two phases. This
means that the hydrocarbon fluid composition remains constant for all times.

Example 2.1 (Two-phase flow of water and hydrocarbon). An example for
the Black-oil model in two phases is that we have one water phase w and one
hydrocarbon phase, where the hydrocarbon consists of two components, dissolved
gas and a residual (or black) oil. So we get the following mass fractions:

cww = 1, cow = 0, cgw = 0,
cwo = 0, coo = mo

mo+mg
, cgo = mg

mo+mg
,

cwg = 0, cog = 0, cgg = 0.

where mo and mg are the masses of oil and gas.

CHAPTER 3. ELLIPTIC PDE’S 15

Chapter 3

Elliptic partial differential
equations

As we have seen in chapter 2, in order to solve a reservoir problem, we encounter
an elliptic or near-elliptic partial differential equation. This chapter presents a
short introduction to elliptic partial differential equations. Note, that we will
just present some basic results and numerical methods. For more details, for
example about convergence or existence, we refer to the books [1] and [4], upon
which this chapter is based.

3.1 Setting and definitions
Let u : Rn −→ R, n ∈ N.For simplicity, we introduce the following abbreviations:
Let α ∈ Nn, k ∈ N:

|α| :=
n∑
i=1

αi,

Du := ∇u,

D2u :=
(

∂2u

∂xi∂xj

)n
i,j=1

,

Dαu := ∂|α|u

∂α1
x1 . . . ∂

αn
xn

,

Dku := {Dαu; |α| = k},

uxi := ∂u

∂xi
.

CHAPTER 3. ELLIPTIC PDE’S 16

Let U ⊂ Rn be an open bounded set, aij ∈ C1(Ū).
A partial differential equation (pde) is called elliptic if it has following form:{

Lu = f, if x ∈ U
boundary conditions, if x ∈ ∂U

, (3.1)

where

Lu = −
n∑

i,j=1
(aij(x)uxi)xj +

n∑
i=1

bi(x)uxi + c(x)u, (3.2)

and such that there exists θ > 0 such that:
n∑

i,j=1
ξia

i,j(x)ξj ≥ θ|ξ|2,∀x, ξ ∈ Rn. (3.3)

One typical example for elliptic pde’s is{
Lu = f, if x ∈ U
u = 0, if x ∈ ∂U

, (3.4)

where Lu = ∆u.

3.1.1 Weak derivative:
v = uxi holds weakly in U ⊂ Rn, where U is open, if∫

U

vϕdx = (−1)
∫
∂U

uϕxi
dx, ∀ϕ ∈ C∞0 (U). (3.5)

Furthermore, we say v = Dαu, α ∈ Rn holds weakly in U ⊂ Rn, where U is
open, if∫

U

vϕdx = (−1)|α|
∫
∂U

uDαϕdx, ∀ϕ ∈ C∞0 (U), (3.6)

3.1.2 Sobolev spaces:
Let k, p ∈ N and U be a set in Rn. Then we define the Sobolev space as:

W k,p(U) := {u ∈ Lp(U); Dαu ∈ Lp(U), |α| ≤ k, α ∈ Rn}. (3.7)

For p = 2 we write:

Hk(U) := W k,2(U). (3.8)

CHAPTER 3. ELLIPTIC PDE’S 17

By defining the corresponding Sobolev norm

||u||Wk,p(U) :=
(∑
|α|≤k

||Dαu||pLp(U)

)1/p
, 1 ≤ p <∞, (3.9)

||u||Wk,∞(U) :=
∑
|α|≤k

||Dαu||L∞(U), (3.10)

the Sobolev space gets a Banach-space.
The resulting problem can be formulated as follows: Find u ∈ H1

0 (U) such that
(3.1) holds weakly, which means:

a(u, v) =
∫
U

fvdx,∀v ∈ H1
0 (U), (3.11)

where

a(u, v) =
∫
U

n∑
i,j=1

aij(x)uxi
vxj

+
n∑
i=1

bi(x)uxi
v + c(x)uvdx. (3.12)

To generalize the problem, let H be an Hilbert space, f ∈ H∗, a : H ×H −→ R
be bilinear, continuous (|a(u, v)| ≤ C||u||||v||, C ∈ R) and coercive (a(u, u) ≥
β||u||2, β ∈ R).
Problem: Find u ∈ H such that:

a(u, v) = l(v), ∀v ∈ H, (3.13)

where l(v) =< f, v >.

3.2 Discretization of the elliptic problem/Galerkin
approximation

Let VN ⊂ V be a finite dimensional subset of V , where dimVN = N . Thus, we
get a new discrete problem:
Find uN ∈ VN such that:

a(uN , v) = l(v),∀v ∈ VN . (3.14)

For the theory concerning existence and convergence of this solutions, we refer
to [1].
Assume that U is a polygonal domain, and τ be a triangulation of U , such
that two triangles overlap only at a point or along a line. Define N to be
the number of nodes of the triangulation τ . Let us now choose a basis of VN :
{b1(x), . . . , bN (x)}, such that

bi(pj) = δij , where pj is the jth node. (3.15)

CHAPTER 3. ELLIPTIC PDE’S 18

Then we can write uN in terms of basis elements:

uN (x) =
N∑
i=1

uibi(x) = uTNb(x), (3.16)

where uN := (u1, . . . , uN)T and b(x) := (b1(x), . . . , bN (x))T . By applying equa-
tion (3.16) to (3.14), we get:

N∑
i=1

uia(bi, bj) = l(bj),∀j = 1, . . . , N. (3.17)

To rewrite this as a matrix, define:
l := (l(b1), . . . , l(bN))T . (3.18)

So we get:
a(b, bT)uN = l⇒ AuN = l, (3.19)

where
(A)ij := a(bi, bj). (3.20)

Element stiffness matrix for triangulation:
Let K̂ = {ξ; ξi ≥ 0, ξ1 + ξ2 ≤ 1} be the reference element and let

FK(ξ) := p0 + ξ1(p1 − p0) + ξ2(p2 − p0) = p0 +BKξ. (3.21)
Define

N0(ξ) = 1− ξ1 − ξ2, (3.22)
N1(ξ) = xi1, (3.23)
N2(ξ) = ξ2, (3.24)

as the basis on the reference element. The non-zero basis functions on the
element K are:

bpj
(x) = Nj(F−1

K (x)), j = 0, 1, 2. (3.25)
Then we have:

A =
∑
K

TTKaKTK , (3.26)

where

aK = a(bpi , bpj) =
∫
K

∇bpi∇bpj

=
∫
K̂

(BTK)−1∇Ni(ξ)(BTK)−1∇Nj(ξ)|det(BK)|dξ, (3.27)

and

(TK)ij =
{

1, if j is the global number of pi in K
0, otherwise

. (3.28)

This method is called the Galerkin method.

CHAPTER 4. HYPERBOLIC PDE’S 19

Chapter 4

Hyperbolic partial
differential equations

The following chapter is a summary of the theory about hyperbolic equations.
For details, we refer to the books of D. Kröner [6] and R. J. LeVeque [8]. The
interesting and really difficult fact of hyperbolic partial differential equations is,
that the solution does not have to be smooth, even if the initial value is smooth.
In one space dimension we look at partial differential equation of the form:

ut + f(u)x = 0, (4.1)

where we define u : R×R+ −→ Rm and the flux function f : Rm −→ Rm . The
equation is called hyperbolic, if each eigenvalue of the Jacobian Df(u) is real, for
all values.
In general, we look at equations of the form:

ut + f1(u)x1 + . . .+ fn(u)xn = 0, (4.2)

where we define u : Rn × R+ −→ Rm and the flux functions fi : Rm −→
Rm,∀i = 1, . . . , n. Equation (4.2) is called hyperbolic, if any real linear combi-
nation α1Df1(u) + . . .+αnDfn(u) of the Jacobians has real eigenvalues. There
is not much known about the behavior of the solution in higher space dimen-
sions. In the further part, we will concentrate at most on two space dimensions.
If you look at u as a density (in one space dimension) in the state variable, and∫ x2
x1
u(x, t)dx is the total amount of this variable in the interval [x1, x2] at time

t. We see that these state variables are conserved in time, this means:∫ x2

x1

u(x, t)dx =
∫ x2

x1

u(x, t0)dx+
∫ t

t0

f(u(x1, t))dt−
∫ t

t0

f(u(x2, t))dxdt. (4.3)

If u is a density of a fluid, we can interpret this equation such that the total
amount of fluid at time t is equal to the total amount of fluid at time t0 plus the
value, which is flowing in between t0 and t at x1 and minus the value, which is

CHAPTER 4. HYPERBOLIC PDE’S 20

flowing out at x2. Therefore, equations (4.1) and (4.2) are called conservation
law.
As a consequence, that we can only prove local existence of the solution of
equation (4.2) , we have to generalize the definition of solutions of conservation
laws. We multiply equation (4.1) by φ ∈ C1

0 (R×R+) and after integrating over
time and space we get:∫ ∞

0

∫ ∞
−∞

φut + φf(u)xdxdt = 0. (4.4)

Next, we integrate by parts and obtain:∫ ∞
0

∫ ∞
−∞

φtu+ φxf(u)dxdt = −
∫ ∞
∞

φ(x, 0)u(x, 0)dx. (4.5)

The function u(x, t) is called a weak solution of the conservation law if (4.5)
holds for all functions φ ∈ C1

0 (R × R+). Unfortunately the weak solution does
not have to be unique. To restrict this, we look for the physically relevant weak
solution, the entropy solution. We will do this by making the vanishing viscosity
approach: Adding a small viscous term ε(uε)xx to equation (4.1), we receive a
parabolic equation, which has a unique solution:

(uε)t + f(uε)x = ε(uε)xx. (4.6)

So we define the unique viscosity solution as the limit of uε, ε −→ 0. With this
limit, you can derive Kruzkov’s entropy condition:
A weak solution of{

ut + f1(u)x + f2(u)y = 0, in R2 × R+

u(·, 0) = u0, inR2 (4.7)

is called an Kruzkov entropy solution, if we have for all φ ∈ C∞0 (R2)×R+), φ ≤ 0
and for all k ∈ R∫

R2

∫
R+

[φt|u− k|+ φxsign(u− k)(f1(u)− f1(k))

+ φysign(u− k)(f2(u)− f2(k))]dtdxdy ≥ 0. (4.8)

Kruzkov [7] has proved that every entropy solution can be considered as a vis-
cosity limit.

4.1 Riemann problem
One important problem is an arbitrary equation with a piecewise constant initial
value, which has one single jump discontinuity. This is known as the Riemann
problem. Solving this, leads us to three different types of waves: rarefaction
waves, shock waves and contact discontinuities.

CHAPTER 4. HYPERBOLIC PDE’S 21

4.2 Numerical methods for hyperbolic equations
in 1-D

4.2.1 Finite difference schemes
Linear equations

First we will look at numerical methods for linear equations of the form{
ut +Aux = 0, x ∈ R, t ≥ 0, A ∈ Rm×m,
u(x, 0) = u0(x).

(4.9)

We have to define a discrete map on the x-t plane by the points (xj , tn)

xj = jh, j ∈ Z,

tn = nk, n ∈ N,

xj+1/2 = xj + h/2 = (j + 1/2)h,

where h = ∆x, k = ∆t. For simplicity, we assume a uniform mesh, with con-
stant h and k.
To get a numerical method, we approximate the value of u on the mesh. Hence,
it is common to use the cell average of the cell [xj−1/2, xj+1/2] at time tn for the
value of unj ≈ u(xj , tn). To receive a method, we choose some finite difference,
e.g. backward Euler, and rewrite the differential equation by using the finite
difference instead of the real derivative.

Example 4.1 (Backward Euler).

ut(x, t) ≈
u(x, t+ k)− u(x, t)

k
,

ux(x, t) ≈ u(x+ h)− u(x− h)
2h ,

so instead of equation (4.9) we get

un+1
j − unj

k
+A

unj+1 − unj−1
2h = 0 (4.10)

After solving equation (4.10) for un+1
j , we obtain the Backward Euler formula:

un+1
j = unj −

k

2hA(Unj+1 − unj−1). (4.11)

But we will find out that in practice this method is useless, because of stability
problems.

CHAPTER 4. HYPERBOLIC PDE’S 22

An other approach to derive a method is by looking at the Taylor expan-
sion, where we replace the exact derivatives again by some approximations.
For example, the Lax-Wendroff and Beam-Warming method are based on this
approach.

Example 4.2 (Lax-Wendroff scheme).

un+1
j = unj −

k

2hA(unj+1 − unj−1)

+ k2

2h2A
2(unj+1 − 2unj + unj−1). (4.12)

Example 4.3 (Beam-Warming scheme).

un+1
j = unj −

k

2hA(3unj − 4unj−1 + unj−2)

+ k2

2h2A
2(unj − 2unj−1 + unj−2). (4.13)

Intuitionally it would be better if the numerical scheme takes the information
from the same direction as the direction in which the original solution flows. This
means that it follows the direction of the characteristics. This sort of schemes
are called upwind methods. The theoretical background can be looked up in the
book of R. J. LeVeque [8]. The scheme is build up such that, we do some sort
of decomposition into characteristics. We can decouple the system by making
a change of the basis and set v(x, t) = R−1u(x, t), where R is the matrix of
eigenvectors of A. So we get the equation:

vt + Λvx = 0, (4.14)

where Λ is the diagonal matrix of the eigenvalues. Let us define

λ+
p = max(λp, 0), Λ+ = diag(λ+

1 , . . . , λ
+
m), (4.15)

λ−p = min(λp, 0), Λ− = diag(λ−1 , . . . , λ−m), (4.16)

So the upwind method for (4.14) is

vn+1
j = vnj −

k

h
Λ+(vnj − vnj−1)− k

h
Λ−(vnj+1 − vnj). (4.17)

By multiplying R, the scheme can be transformed back to the original u.

un+1
j = unj −

k

h
A+(unj − unj−1)− k

h
A−(unj+1 − unj), (4.18)

where A+ = RΛ+R−1, A− = RΛ−R−1.

CHAPTER 4. HYPERBOLIC PDE’S 23

Nonlinear equations

Let us now take a look at numerical methods to nonlinear problems{
ut + f(u)x = 0, x ∈ R, t ≥ 0,
u(x, 0) = u0(x).

(4.19)

Here we might have the problem that our method converges to a function that
is not a weak solution of our equation, or that is the wrong weak solution (not
Entropy solution). It turns out to be quite simple to guarantee that we converge
at least not to a non-solution. The requirement is that the method has to be in
conservation form, which means that:

un+1
j = unj−

k

h
[F (unj−p, unj−p+1, . . . , u

n
j+q)−F (unj−p−1, u

n
j−p, . . . , u

n
j+q−1)], (4.20)

for some numerical flux function F of p+q+1 arguments. If we take the simplest
case, p = 0 and q = 1, we can see that this is really natural, by using the cell
average and integration by parts.

Let us assume a nonlinear system ut + f(u)x = 0, for which holds Df(unj)
has only nonnegative eigenvalues for all unj . Then, we can define a generalized
upwind method as

F (u, v) = f(u). (4.21)

It would be exactly the opposite, if Df(unj) has only nonpositive eigenvalues for
all unj .
But still we have not received a method converging to an entropy satisfying
solution. So we take look at Godunov’s method, invented in 1959 by Godunov.
The idea is to define a function ũn(x, tn) with the value unj on grid cell (xj−1/2, xj+1/2).
We will use ũn(x, tn) as initial data of the hyperbolic equation. Because these are
multiple Riemann problems, which we can solve exactly to obtain ũn(x, t), t ∈
[tn, tn+1]. After calculating the solution between tn and tn+1, we define the ap-
proximate solution by averaging the exact solution over [xj−1/2, xj+1/2]. Now,
repeat this progress.
Using equation (4.19) at the average we get

un+1
j = 1

h

∫ xj+1/2

xj−1/2

ũn(x, tn+1)dx = 1
h

∫ xj+1/2

xj−1/2

ũn(x, tn)dx

+ 1
k

∫ tn+1

tn

f(ũn(xj−1/2, t))dt−
1
k

∫ tn+1

tn

f(ũn(xj+1/2, t))dt (4.22)

So we get:

un+1
j = unj −

k

h
[F (unj , unj+1)− F (unj−1, u

n
j)], (4.23)

CHAPTER 4. HYPERBOLIC PDE’S 24

where the numerical flux function F is

F (unj , unj+1) = 1
k

∫ tn+1

tn

f(ũn(xj+1/2, t))dt. (4.24)

Theoretical the application of the Godunov method is no problem, because it
is possible to solve the Riemann problem at each cell. But in practice, it would
be too expensive. And notice that the most information of the exact solution
gets lost by averaging over the cells. So there are some different ways to solve it
approximately. One possibility is Roe’s approximate Riemann solver. It is based
on solving a constant coefficient linear system of conservation laws instead of
the original nonlinear system. The exact idea can be read in [8].

4.3 Numerical methods for hyperbolic equations
in 2-D

Up to now, we have only considered the one dimensional problem, but today
the relevant cases are in general in two or three dimensions. Let us take a look
especially at two dimensional scalar problems. So the conservation law has the
form {

ut + f1(u)x + f2(u)y = 0, inR2 × R+,

u(x, y, 0) = u0(x, y), inR2,
(4.25)

where u : R2 × R+ −→ R, f1, f2 : R −→ R and u0 ∈ L∞(R2).

4.3.1 Splitting schemes
The dimensional splitting is an intuitive method, where we just use one of the
previous 1D schemes in each direction. We use the solution of the first direction
as the initial value of the second one. Crandall and Majda proved in [3], that
for scalar conservation laws the following holds:
Let Hxk, H

y
k be a one dimensional monotone method with step size k. Then the

methods

ũn = (HykH
x
k)nu0, (4.26)

ûn = (Hxk/2H
y
kH

x
k/2)nu0 (4.27)

will converge to the solution of the 2D problem.

4.3.2 Finite volume methods
In this section, we will take a look at a new discretization method. We will
consider an unstructured grid in two dimensions. Let us introduce first some

CHAPTER 4. HYPERBOLIC PDE’S 25

definitions and notations.
Let a k-polygon be a closed polygon with k vertices. Then we define the set

T := {Ti;Ti is a k-polygon for i ∈ I ⊂ N}, (4.28)
which is called an unstructured grid of U ⊂ R2 if the following properties are
satisfied:
(i) U = ∪i∈ITi.

(ii) For two different Ti and Tj we have Ti ∩ Tj = ∅ or Ti ∩ Tj = a common
vertex of Ti and Tj or Ti ∩ Tj = a common edge of Ti and Tj .

Let (Tj)j∈I denote an unstructured grid of R2. Then we have:
• Tj : the jth cell of the grid;

• |Tj |: area of Tj;

• Tjl, l = 1, . . . , k: neighboring cells of Tj ;

• unj : approximation of the exact solution u on Tj at time n∆t;

• unjl: approximation of the exact solution u on Tjl at time n∆t;

• Sjl: lth edge of Tj ;

• νjl: outer normal to Sjl of length |Sjl|;

• njl = νjl/|νjl|: outer unit normal to Sjl;

• zjl: midpoint of the lth edge of the cell j;

• wj : centre of gravity of Tj ;

• wjl: centre of gravity of Tjl;

• α(j, l): global number of the lth neighboring cell of Tj such that Tjl =
Tα(j,l);

To get a basic idea of the finite volume method, assume that ϕ ∈ C∞(R2,R2).
And let (Tj)j∈I be a triangulation and n the outer unit normal, then we have

divϕ = 1
|Tj |

∫
Tj

divϕ+O(h)

= 1
|Tj |

∫
∂Tj

nϕ+O(h)

= 1
|Tj |

3∑
l=1

∫
Sjl

njlϕ+O(h)

= 1
|Tj |

3∑
l=1

njlϕ(zjl)|Sjl|+O(h)

= 1
|Tj |

3∑
l=1

νjlϕ(zjl) +O(h). (4.29)

CHAPTER 4. HYPERBOLIC PDE’S 26

Because the approximation of the exact solution is a piecewise constant func-
tion, which is constant on each element, the term ϕ(zjl) is not defined and we
replace it by some weighted mean value gjl(ϕ(wj), ϕ(wjl)).

Finite volume scheme: For given initial values u0 ∈ L∞(R2) let unj be defined
by the following numerical scheme:

u0
j := 1

|Tj |

∫
Tj

u0, (4.30)

un+1
j := unj −

∆t
|Tj |

k∑
l=1

gjl(unj , unjl), (4.31)

where for gjl, l = 1, . . . , k, we assume that for any R > 0 and for all u, v, u′, v′ ∈
BR(0) we have

|gjl(u, v)− gjl(u′, v′)| ≤ c(R)h(|u− u′|+ |v − v′|), (4.32)

gj,α(j,l)(u, v) = −gα(j,l),j(v, u), (4.33)
gj,α(j,l)(u, u) = νj,α(j,l)f(u), (4.34)

where

f(u) :=
(
f1(u)
f2(u)

)
. (4.35)

The condition (4.32) is called the local Lipschitz condition, (4.33) the conserva-
tion property and (4.34) the consistency property.

Example 4.4 (Engquist-Osher scheme). Consider a scalar conservation law in
2D. Define

cjl := njlf(u), (4.36)

and

c+
jl(u) := cjl(0) +

∫ u

0
max{c′jl(s), 0}ds, (4.37)

c−jl(u) :=
∫ u

0
min{c′jl(s), 0}ds. (4.38)

By setting

gjl(u, v) := |Sjl|[c+
jl(u) + c−jl(v)], (4.39)

we get the Engquist-Osher scheme in two dimensions.
For convergence, there is a necessary condition, called CFL-condition. For the
Engquist-Osher scheme the CFL-condition is:

sup
j∈I

∆t
|Tj |

k∑
l=1

max{νjlf ′(uj), 0} ≤ 1. (4.40)

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 27

Chapter 5

Finite volume method in
2-D on a triangular grid

In this chapter, we will focus at the construction of the finite volume method on
a triangular grid, instead of a method on a Cartesian grid. The interest in doing
this, is that there are simple methods to improve the grid during the running
simulation. A benefit on a triangular mesh is the possibility of local refinements.
One method defines a new point in a triangle and connecting each vertex with
this point. Other options are the examples shown in figure 1.1 and 1.2. A
further benefit is the existence of methods to align the mesh in direction of the
flux, resulting in a much more accurate solution. This methods are described by
D.Kröner in [6]. In section 5.1 we describe the construction of the triangulation
and its properties. In section 5.2 we build the finite volume method on this
triangular mesh and look at one example. For solving reservoir simulations, we
build a fast Galerkin solver in section 5.3. And finally in section 5.4 we present
a reservoir simulation, combining an hyperbolic and an elliptic equation.

5.1 Mesh construction
To use a mesh for calculating a finite volume method, we first have to define its
properties, and how to access them. Let us assume, that we construct the mesh
on a rectangular domain. We construct this mesh as a class with its members:

• coordinates: M × 2 -matrix, which defines the mesh points by its coordi-
nates;

• elements: N×3 -matrix, which defines the three vertices of each triangular
element;

• neighbors: N × 3 -matrix, which stores the neighbors of each element;

• size: N × 1 -matrix, which defines the size of each element;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 28

• incenters: N × 2 -matrix, which stores the coordinates of the incenter of
each element;

• norm: N × 2 × 3 -matrix, which stores the three normal vectors of each
element (stored with the indices as the neighbor to which it is pointing);

• edge size: N × 3 -matrix, which saves the size of edges in each element
(stored with the indices as the neighbor to which it is the boundary);

We decided to use MATLAB for implementation in this thesis. The advantage
of MATLAB is its support of initial setups. This means, you can start imple-
menting the main part of the program really fast.
By using MATLAB one way to set the different members of the triangulation is
by using the MATLAB function set DelaunayTri. Most of the above mentioned
members can be calculated with this set of functions.

Figure 5.1: Computed grid by Listing 5-1

The problematic part are the boundaries. The members of the elements at
the boundary are dependent on the boundary condition. As mentioned before,
usually the boundary conditions are the periodic and the no-flux boundary
condition. To identify the neighbors of the boundary element for the periodic
boundary condition, do following:

• get the elements at the boundary by using the MATLAB functions free-
Boundary and edgeAttachments,

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 29

• look at each element for "free edges", the edges with no neighbor,

• set as the neighbor of the "free edges" the one on the other side (for
periodicity),

• set the normal vectors of this edges as (1, 0), (−1, 0), (0, 1) or (0,−1).

In the end you just have to calculate the rest of the normal vectors by computing
the orthogonal vector of each edge. Listing 5-1, Listing 5-2 illustrate this.
The parameters n andm in Listing 5-1 are defined as in Figure 5.1, where n = 4,
m = 3.

It has to be highlighted that it is really important that the neighbors, normal
vectors and the edge sizes of the particular elements are indicated in the same
manner. Because otherwise it can not be used to vectorize the method.

f u n c t i o n Mesh = B u i l t _ T r i a n g u l a t i o n P (n , m)
% Construct ion o f a p e r i o d i c mesh on [0 , 1] x [0 , 1]
% Mesh . Coordinates = c o o r d i n a t e s o f v e r t i c e s
% Mesh . Elements = M−by−3 matrix where M i s the number o f e lements o f
% the t r i a n g u l a t i o n
% Mesh . Neighbors = Neighbors o f each t r i a n g l e M−by−3 matrix
% Mesh . s i z e = volume o f each t r i a n g l e
% Mesh . i n c e n t e r s = i n c e n t e r s o f each element
% Mesh . norm = M−by−2−by−3 matrix where Mesh . norm (i , : , j) i s the
% j t h normal
% o f the i t h element
% Mesh . e d g e s i z e = M−by−3, s i z e o f each edge

% D e f in i ng the v e r t i c e s o f the mesh and apply ing the Delaunay ←↩
T r i a n g u l a t i o n

A = z e r o s ((n+1) ∗(m+1) , 2) ;
f o r i =1: n+1

f o r j =1: m+1
A (i+(n+1) ∗(j−1) , :) =[(i−1)/n ; (j−1)/m] ;

end
end
x = A (: , 1) ;
y = A (: , 2) ;
dt = DelaunayTri (x , y) ;

ntri = s i z e (dt . Triangulation , 1) ;
Mesh . Coordinates = dt . X ;
Mesh . Elements = dt . T r i a n g u l a t i o n ;
Mesh . Neighbors = z e r o s (ntri , 3) ;
Mesh . s i z e = 1/2∗ abs ((Mesh . Coordinates (Mesh . Elements (: , 2) , 1)−Mesh .←↩

Coordinates (Mesh . Elements (: , 1) , 1)) . ∗ (Mesh . Coordinates (Mesh .←↩
Elements (: , 3) , 2)−Mesh . Coordinates (Mesh . Elements (: , 1) , 2))−(Mesh .←↩
Coordinates (Mesh . Elements (: , 3) , 1)−Mesh . Coordinates (Mesh . Elements←↩
(: , 1) , 1)) . ∗ (Mesh . Coordinates (Mesh . Elements (: , 2) , 2)−Mesh .←↩
Coordinates (Mesh . Elements (: , 1) , 2))) ;

Mesh . incenters = incenters (dt) ;
Mesh . norm = z e r o s (ntri , 2 , 3) ;
Mesh . edgesize = z e r o s (ntri , 3) ;

% S e t t i n g the ne ighbors o f each element by the MATLAB f u n c t ne ighbors
f o r i =1: ntri

neig = neighbors (dt , i) ;
Mesh . Neighbors (i , :) = neig ;

end

% Saving the boundary edges to c a l c u l a t e l a t e r the boundary v a l u e s

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 30

fe = fr eeB oun dar y (dt) ' ;
n0 = s i z e (fe , 2) ;
xe = x (fe) ;
ye = y (fe) ;

% f i t the ne ighbors s t we have the s p e c i f i c boundary c o n d i t i o n s
Mesh=P e r i o d i c B d d C o n d (Mesh , dt , fe , xe , ye , n0) ;

%c a l c u l a t i n g the normal v e c t o r s o f each edge
f o r i =1: ntri

n_i = Mesh . Neighbors (i , :) ;
f o r j =1:3

i f (Mesh . norm (i , : , j) ==[0 ,0])
v = Mesh . Elements (i , :) ;
v1 = Mesh . Elements (n_i (j) , :) ;
h =1;
f o r s =1:3

f o r t =1:3
i f (v (s)==v1 (t)&&h==1)

a=v (s) ;
h =2;

e l s e i f (v (s)==v1 (t)&&v (s)~=a&&h==2)
b=v (s) ;

end
end

end
n = (dt . X (a , :)−dt . X (b , :)) /norm (dt . X (a , :)−dt . X (b , :))←↩

∗ [0 , −1 ; 1 , 0] ;
i f (norm(−Mesh . incenters (i , :) +Mesh . incenters (n_i (j) , :)+n)<=←↩

norm(−Mesh . incenters (i , :) +Mesh . incenters (n_i (j) , :)−n))
n = −n ;

end
Mesh . norm (i , : , j)=n ;
Mesh . edgesize (i , j)= norm (dt . X (a , :)−dt . X (b , :)) ;

end
end

end
end

Listing 5-1: Triangulation of the mesh on periodic conditions

f u n c t i o n [Mesh]= P e r i o d i c B d d C o n d (Mesh , dt , fe , xe , ye , n0)
% C a l c u l a t e the p e r i o d i c boundary c o n d i t i o n on [0 , 1] x [0 , 1] .
f o r i = 1 : n0

a = e d g e A t t a c h m e n t s (dt , fe (: , i) ') ; % a i s the t r i a n g l e attached ←↩
at the edge f e (: , i)

a = a { : } ;
x_i = xe (: , i) ; % x c o o r d i n a t e s o f the ←↩

v e r t i c e s from the edge
y_i = ye (: , i) ; % y c o o r d i n a t e s o f the ←↩

v e r t i c e s from the edge
i f (y_i ==[0;0])

p_1 = [x_i (1) , 1] ;
p_2 = [x_i (2) , 1] ;
p1 = 0 ;
p2 = 0 ;
f o r i = 1 : s i z e (dt . X , 1)

i f (p_1==dt . X (i , :))
p1=i ;

end
i f (p_2==dt . X (i , :))

p2=i ;
end

end

b = e d g e A t t a c h m e n t s (dt , p1 , p2) ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 31

b = b { : } ;
h = 0 ;
f o r j =1:3

i f (i snan (Mesh . Neighbors (a , j))==1&&h==0)
Mesh . Neighbors (a , j)=b ;
Mesh . norm (a , : , j) = [0 , −1] ;
Mesh . edgesize (a , j) = s q r t ((x_i (1)−x_i (2)) ^2+(y_i (1)−←↩

y_i (2)) ^2) ;
h =1;

end
end

end
i f (y_i ==[1;1])

p_1 = [x_i (1) , 0] ;
p_2 = [x_i (2) , 0] ;
p1 = 0 ;
p2 = 0 ;
f o r i = 1 : s i z e (dt . X , 1)

i f (p_1==dt . X (i , :))
p1=i ;

end
i f (p_2==dt . X (i , :))

p2=i ;
end

end
b = e d g e A t t a c h m e n t s (dt , p1 , p2) ;
b = b { : } ;
h = 0 ;
f o r j =1:3

i f (i snan (Mesh . Neighbors (a , j))==1&&h==0)
Mesh . Neighbors (a , j)=b ;
Mesh . norm (a , : , j) = [0 , 1] ;
Mesh . edgesize (a , j) = s q r t ((x_i (1)−x_i (2)) ^2+(y_i (1)−←↩

y_i (2)) ^2) ;
h =1;

end
end

end
i f (x_i ==[0;0])

p_1 = [1 , y_i (1)] ;
p_2 = [1 , y_i (2)] ;
p1 = 0 ;
p2 = 0 ;
f o r i = 1 : s i z e (dt . X , 1)

i f (p_1==dt . X (i , :))
p1=i ;

end
i f (p_2==dt . X (i , :))

p2=i ;
end

end
b = e d g e A t t a c h m e n t s (dt , p1 , p2) ;
b = b { : } ;
h = 0 ;
f o r j =1:3

i f (i snan (Mesh . Neighbors (a , j))==1&&h==0)
Mesh . Neighbors (a , j)=b ;
Mesh . norm (a , : , j) = [−1 , 0] ;
Mesh . edgesize (a , j) = s q r t ((x_i (1)−x_i (2)) ^2+(y_i (1)−←↩

y_i (2)) ^2) ;
h =1;

end
end

end
i f (x_i ==[1;1])

p_1 = [0 , y_i (1)] ;
p_2 = [0 , y_i (2)] ;
p1 = 0 ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 32

p2 = 0 ;
f o r i = 1 : s i z e (dt . X , 1)

i f (p_1==dt . X (i , :))
p1=i ;

end
i f (p_2==dt . X (i , :))

p2=i ;
end

end
b = e d g e A t t a c h m e n t s (dt , p1 , p2) ;
b = b { : } ;
h = 0 ;
f o r j =1:3

i f (i snan (Mesh . Neighbors (a , j))==1&&h==0)
Mesh . Neighbors (a , j)=b ;
Mesh . norm (a , : , j) = [1 , 0] ;
Mesh . edgesize (a , j) = s q r t ((x_i (1)−x_i (2)) ^2+(y_i (1)−←↩

y_i (2)) ^2) ;
h =1;

end
end

end
end

Listing 5-2: Construction of periodic boundary condition

5.2 Construction of the finite volume method
The finite volume method used in this section is the Engquist-Osher scheme, de-
fined in example 4.4. Every other two dimensional, scalar finite volume method
can be used instead. The aim of this thesis was to design a vectorized routine
on a triangular mesh. Vectorization is requested to get better performance. To
reach this goal, we use the mesh introduced in section 5.1.
Assume, we are at the nth time step at time tn, this means that we have already
calculated the vector

U(:, n) = (U(1, n), . . . , U(N,n))T . (5.1)

This is our initial value for calculating the value of the next time step. The idea
is to calculate the vector (g1l(un1 , un1l), . . . , gNl(unN , unNl))T for the lth neigh-
bor. Next, we compute U(:, n + 1) by using equation (4.31) element wise.
Because of the construction of the grid, that the lth neighbor, the lth edge
and the lth normal vector are stored with the same indices, we can calculate
(g1l(un1 , un1l), . . . , gNl(unN , unNl))T without a for-loop statement, see Listing 5-3.

Example 5.1 (Burgers’ equation). We consider the nonlinear scalar equation

ut + f1(u)x + f2(u)y = 0, (5.2)

where f1(u) = 1/2u2, f2(u) = 0 and the domain U = [0, 1]× [0, 1]× [0, T] with
periodic boundary conditions. In Listing 5-3 n defines the number of intersec-
tions of [0, 1] and the parameters mu_1 = 1 and mu_2 = 0. The derived routine
is the following:

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 33

f u n c t i o n [U , M e s h] = B u r g e r E q (n , T , u0 , mu_1 , m u _ 2)

f = @ (u) [m u _ 1 /2∗ u . ^ 2 , m u _ 2 /2∗ u . ^ 2] ;
df = @ (u) [m u _ 1 ∗u , m u _ 2 ∗ u] ;

M e s h = B u i l t _ T r i a n g u l a t i o n P (n , n) ;
N = s i z e (M e s h . E l e m e n t s , 1) ;

MU = o n e s (s i z e (M e s h . E l e m e n t s , 1) , 2) ;
MU (: , 1) = MU (: , 1) ∗ m u _ 1 ;
MU (: , 2) = MU (: , 2) ∗ m u _ 2 ;

U = u0 (M e s h . i n c e n t e r s) ;
%% Time s t e p p i n g
i =1;
t = 0 ;
w h i l e (t (i)<T)

% CFL−c o n d i t i o n
. . .

dt = . . .
t (i +1) = t (i)+dt ;
% FVM
G _ 1 = abs (M e s h . e d g e s i z e (: , 1)) . ∗ (U (: , i) / 2 . ∗ max(sum (M e s h . norm←↩

(: , : , 1) . ∗ df (U (: , i)) , 2) , z e r o s (N , 1))+U (M e s h . N e i g h b o r s (: , 1) , i←↩
) / 2 . ∗ min (sum (M e s h . norm (: , : , 1) . ∗ df (U (M e s h . N e i g h b o r s (: , 1) , i)←↩
) , 2) , z e r o s (N , 1))) ;

G _ 2 = abs (M e s h . e d g e s i z e (: , 2)) . ∗ (U (: , i) / 2 . ∗ max(sum (M e s h . norm←↩
(: , : , 2) . ∗ df (U (: , i)) , 2) , z e r o s (N , 1))+U (M e s h . N e i g h b o r s (: , 2) , i←↩
) / 2 . ∗ min (sum (M e s h . norm (: , : , 2) . ∗ df (U (M e s h . N e i g h b o r s (: , 2) , i)←↩
) , 2) , z e r o s (N , 1))) ;

G _ 3 = abs (M e s h . e d g e s i z e (: , 3)) . ∗ (U (: , i) / 2 . ∗ max(sum (M e s h . norm←↩
(: , : , 3) . ∗ df (U (: , i)) , 2) , z e r o s (N , 1))+U (M e s h . N e i g h b o r s (: , 3) , i←↩
) / 2 . ∗ min (sum (M e s h . norm (: , : , 3) . ∗ df (U (M e s h . N e i g h b o r s (: , 3) , i)←↩
) , 2) , z e r o s (N , 1))) ;

U (: , i +1) = U (: , i) − dt . / (M e s h . s i z e) . ∗ (G _ 1+G _ 2+G _ 3) ;
i = i +1;

end

Listing 5-3: Burgers’ equation by Engquist-Osher scheme

As initial condition, we take a sine curve in the middle of the domain. Figure
5.2 shows the resulting movements of this bubble and the profile through the line
y = 0.5.
To derive the missing CFL-conditions we use equation (4.40), and so we derive
Listing 5-4.

D_1 = max ([Mesh . edgesize (: , 1) . ∗ sum(Mesh . norm (: , : , 1) . ∗ df (U (: , i)) , 2) ,←↩
z e r o s (s i z e (Mesh . edgesize (: , 1)))] , [] , 2) ;

D_2 = max ([Mesh . edgesize (: , 2) . ∗ sum(Mesh . norm (: , : , 2) . ∗ df (U (: , i)) , 2) ,←↩
z e r o s (s i z e (Mesh . edgesize (: , 2)))] , [] , 2) ;

D_3 = max ([Mesh . edgesize (: , 3) . ∗ sum(Mesh . norm (: , : , 3) . ∗ df (U (: , i)) , 2) ,←↩
z e r o s (s i z e (Mesh . edgesize (: , 3)))] , [] , 2) ;

D = max (1 . / (Mesh . s i z e) . ∗ (D_1+D_2+D_3)) ;
i f (D >0.1)

dt = 0. 7/ D ;
e l s e

D_1 = max ([Mesh . edgesize (: , 1) . ∗ sum(Mesh . norm (: , : , 1) . ∗ MU , 2) , z e r o s (←↩
s i z e (Mesh . edgesize (: , 1)))] , [] , 2) ;

D_2 = max ([Mesh . edgesize (: , 2) . ∗ sum(Mesh . norm (: , : , 2) . ∗ MU , 2) , z e r o s (←↩
s i z e (Mesh . edgesize (: , 2)))] , [] , 2) ;

D_3 = max ([Mesh . edgesize (: , 3) . ∗ sum(Mesh . norm (: , : , 3) . ∗ MU , 2) , z e r o s (←↩
s i z e (Mesh . edgesize (: , 3)))] , [] , 2) ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 34

D = max (1 . / (Mesh . s i z e) . ∗ (D_1+D_2+D_3)) ;
dt = 0. 7/ D ;

end
i f (t (i)+dt>T)

dt = T−t (i) ;
end

Listing 5-4: CFL-condition of the Engquist-Osher scheme

(a) Initial value at t=0 (b) Value at t=0.14615

(c) Value at t=0.29285 (d) Value at t=0.44245

Figure 5.2: Burger equation and its profile.

5.3 Construction of a Galerkin approximation
routine

Looking ahead to section 5.4, in this section we construct a fast scheme to solve
elliptic equations. Of course, we take the Galerkin method introduced in section
3.2. The challenge is to improve the performance by avoiding loops, but using
vector and matrix operations.

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 35

We implement two different functions, which calculate the element stiffness ma-
trix (3.20) and the load vector (3.18).

5.3.1 Element stiffness matrix
To get the element stiffness matrix, we use equation (3.27). First we calculate
the inverse of BK and its determinant, where invBK1_ (i, j) = B−1

K (1, j) and
invBK2_(i, j) = B−1

K (2, j) for the ith element.
Then, to get the resulting matrix A, we compute the local matrix aK and finally
assemble the global one (Listing 5-5). One important fact is, that the function
F is piecewise constant. Therefore it is much easier to integrate it.

f u n c t i o n [A] = As sem bly _ma t (Mesh , F)

% t h i s are v e c t o r s which s a f e the c o o r d i n a t e s f o r the i−th v e r t e x
% from every element
Vert1 = Mesh . Coordinates (Mesh . Elements (: , 1) , :) ;
Vert2 = Mesh . Coordinates (Mesh . Elements (: , 2) , :) ;
Vert3 = Mesh . Coordinates (Mesh . Elements (: , 3) , :) ;

% Element mapping BK = [a , b ; c , d]
a = Vert2 (: , 1)−Vert1 (: , 1) ;
c = Vert2 (: , 2)−Vert1 (: , 2) ;
b = Vert3 (: , 1)−Vert1 (: , 1) ;
d = Vert3 (: , 2)−Vert1 (: , 2) ;

invBK1_ = [a ~=0, a ~ = 0] . ∗ [1 . / (a+(a==0))+c . ∗ b . / ((d . ∗ (a . ^ 2)−c . ∗ b . ∗ a) +((d←↩
. ∗ (a . ^ 2)−c . ∗ b . ∗ a)==0)) ,−b . / ((d . ∗ a−c . ∗ b) +((d . ∗ a−c . ∗ b)==0))] ;

invBK1_ = invBK1_ +[a==0,a ==0].∗[−d . / ((b . ∗ c) +((b . ∗ c)==0)) , 1 . / (c+(c==0))←↩
] ;

invBK2_ = [a ~=0, a ~=0].∗ [− c . / ((a . ∗ d−c . ∗ b) +((a . ∗ d−c . ∗ b)==0)) , a . / ((d . ∗ a−c←↩
. ∗ b) +((d . ∗ a−c . ∗ b)==0))] ;

invBK2_ = invBK2_ +[a==0,a = = 0] . ∗ [1 . / (b+(b==0)) , z e r o s (s i z e (b))] ;

detBK = abs (a . ∗ d−b . ∗ c) ;

% c a l c u l a t i n g the l o c a l matrix
i11 = invBK1_ (: , 1) ;
i12 = invBK1_ (: , 2) ;
i21 = invBK2_ (: , 1) ;
i22 = invBK2_ (: , 2) ;

A11 = 1/2∗ detBK . ∗ (F (: , 1) . ∗ i11 .^2+ F (: , 2) . ∗ i12 .^2+2∗ F (: , 1) . ∗ i11 . ∗ i21+2∗F←↩
(: , 2) . ∗ i12 . ∗ i22+F (: , 1) . ∗ i21 .^2+ F (: , 2) . ∗ i22 . ^ 2) ;

A12 = 1/2∗ detBK .∗(− F (: , 1) . ∗ i11 .^2−F (: , 2) . ∗ i12 .^2−F (: , 1) . ∗ i11 . ∗ i21−F←↩
(: , 2) . ∗ i12 . ∗ i22) ;

A13 = 1/2∗ detBK .∗(− F (: , 1) . ∗ i11 . ∗ i21−F (: , 2) . ∗ i12 . ∗ i22−F (: , 1) . ∗ i21 .^2−F←↩
(: , 2) . ∗ i22 . ^ 2) ;

A21 = 1/2∗ detBK .∗(− F (: , 1) . ∗ i11 .^2−F (: , 2) . ∗ i12 .^2−F (: , 1) . ∗ i11 . ∗ i21−F←↩
(: , 2) . ∗ i12 . ∗ i22) ;

A22 = 1/2∗ detBK . ∗ (F (: , 1) . ∗ i11 .^2+ F (: , 2) . ∗ i12 . ^ 2) ;
A23 = 1/2∗ detBK . ∗ (F (: , 1) . ∗ i11 . ∗ i21+F (: , 2) . ∗ i12 . ∗ i22) ;
A31 = 1/2∗ detBK .∗(− F (: , 1) . ∗ i11 . ∗ i21−F (: , 2) . ∗ i12 . ∗ i22−F (: , 1) . ∗ i21 .^2−F←↩

(: , 2) . ∗ i22 . ^ 2) ;
A32 = 1/2∗ detBK . ∗ (F (: , 1) . ∗ i11 . ∗ i21+F (: , 2) . ∗ i12 . ∗ i22) ;
A33 = 1/2∗ detBK . ∗ (F (: , 1) . ∗ i21 .^2+ F (: , 2) . ∗ i22 . ^ 2) ;

% assemble the m a t r i c e s
I = z e r o s (9∗ s i z e (Mesh . Elements , 1) , 1) ;
J = z e r o s (9∗ s i z e (Mesh . Elements , 1) , 1) ;
A = z e r o s (9∗ s i z e (Mesh . Elements , 1) , 1) ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 36

I = [Mesh . Elements (: , 1) ; Mesh . Elements (: , 1) ; Mesh . Elements (: , 1) ; Mesh .←↩
Elements (: , 2) ; Mesh . Elements (: , 2) ; Mesh . Elements (: , 2) ; Mesh . Elements←↩
(: , 3) ; Mesh . Elements (: , 3) ; Mesh . Elements (: , 3)] ;

J = [Mesh . Elements (: , 1) ; Mesh . Elements (: , 2) ; Mesh . Elements (: , 3) ; Mesh .←↩
Elements (: , 1) ; Mesh . Elements (: , 2) ; Mesh . Elements (: , 3) ; Mesh . Elements←↩
(: , 1) ; Mesh . Elements (: , 2) ; Mesh . Elements (: , 3)] ;

A = [A11 ; A12 ; A13 ; A21 ; A22 ; A23 ; A31 ; A32 ; A33] ;
A = s p a r s e (I , J , A) ;

Listing 5-5: Computing the element stiffness matrix

5.3.2 Load vector
Calculate the load vector of a piecewise constant function is not a too difficult
task. Again, we first calculate the local Load vector and sum it up afterwards.
But now, we do not need the BK matrix, we just need the determinant of it.
So we get the function Assembly_Load_PC (Listing 5-6).

f u n c t i o n [L] = A s s e m b l y _ L o a d _ P C (Mesh , F)
% B u i l t the load v e c t o r o f the p i e c e w i s e constant f u n c t i o n f , where f
% i s a vector , which s t o r e s f o r each element i the value f (i) .

% t h i s are v e c t o r s which s a f e the c o o r d i n a t e s f o r the i−th v e r t e x
% from every element
Vert1 = Mesh . Coordinates (Mesh . Elements (: , 1) , :) ;
Vert2 = Mesh . Coordinates (Mesh . Elements (: , 2) , :) ;
Vert3 = Mesh . Coordinates (Mesh . Elements (: , 3) , :) ;

% c a l c u l a t i n g the i n t e g r a l o f the l o c a l load v e c t o r
detBK = abs ((Vert2 (: , 1)−Vert1 (: , 1)) . ∗ (Vert3 (: , 2)−Vert1 (: , 2))−(Vert3←↩

(: , 1)−Vert1 (: , 1)) . ∗ (Vert2 (: , 2)−Vert1 (: , 2))) ;
Lloc1 = detBK . ∗ F ∗1/6 ;
Lloc2 = detBK . ∗ F ∗1/6 ;
Lloc3 = detBK . ∗ F ∗1/6 ;

% assemble the load v e c t o r s
L = z e r o s (s i z e (Mesh . Coordinates , 1) , 1) ;
f o r i = 1 : s i z e (Mesh . Elements , 1)

L (Mesh . Elements (i , 1)) = L (Mesh . Elements (i , 1))+Lloc1 (i) ;
L (Mesh . Elements (i , 2)) = L (Mesh . Elements (i , 2))+Lloc2 (i) ;
L (Mesh . Elements (i , 3)) = L (Mesh . Elements (i , 3))+Lloc3 (i) ;

end

Listing 5-6: Computing the load vector

5.4 Simulation of flow in porous media
Succeeding in implementing the finite volume routine, we like to test it on reser-
voir models. In this section we present some complete simulators for reservoir
simulation. We look at the following problems of different difficulty:

• incompressible single-phase flow,

• incompressible two-phase flow with some assumptions,

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 37

• incompressible two-phase flow with data from 10th SPE Comparative So-
lution Project [9].

The following examples are based on the examples from J. E. Aarnes, T. Gimse
and K. Lie in [5], who have used different solvers. In this chapter, we work with
no-flow boundary condition, this means that we need another triangulation.
Hence, we use Listing 5-1 and use Listing 5-7 for the boundary condition.

f u n c t i o n [Mesh]= NFBddCond (Mesh , dt , fe , xe , ye , n0 , a_x , a_y)
% C a l c u l a t e boundary c o n d i t i o n f o r no−f low c o n d i t i o n on
% [0 , a_x] x [0 , a_y]
f o r i = 1 : n0

a = e d g e A t t a c h m e n t s (dt , fe (: , i) ') ;
a = a { : } ;
x_i = xe (: , i) ;
y_i = ye (: , i) ;
check = 0 ;
f o r j =1:3

i f (i snan (Mesh . Neighbors (a , j))==1&&check==0)
Mesh . Neighbors (a , j)=a ;
i f (y_i ==[0;0])

Mesh . norm (a , : , j) = [0 , −1] ;
e l s e i f (y_i==[a_y ; a_y])

Mesh . norm (a , : , j) = [0 , 1] ;
e l s e i f (x_i ==[0;0])

Mesh . norm (a , : , j) = [−1 , 0] ;
e l s e i f (x_i==[a_x ; a_x])

Mesh . norm (a , : , j) = [1 , 0] ;
end
Mesh . edgesize (a , j) = s q r t ((x_i (1)−x_i (2)) ^2+(y_i (1)−y_i (2)←↩

) ^2) ;
check = 1 ;

end
end

end

Listing 5-7: Construction of no-flow boundary condition

Example 5.2 (Incompressible single-phase flow). As in chapter 2 introduced,
for the incompressible single-phase flow, we get the elliptic equation (2.24). To
create an example as simple as possible, assume homogeneous and isotropic
permeability K ≡ 1 for all x ∈ R. In this model, we set an injection well
at the origin and production wells at the points (±1,±1) and assume no-flow
conditions at the boundary of [−1, 1]× [−1, 1]. In the model of the single-phase
flow, we have an initially filled domain with fluid. We inject additional fluid at
the injection well. Due to this injection the fluid is pushed out at the production
wells. The flow in this five-spot domain is symmetric about both the coordinate
axes. Therefore, we can reduce this model to a model on the domain [0, 1]2 with
only one injection well and one production well at (0, 0) and (1, 1). This is
called a quarter-five spot problem.
The pressure p is calculated by first evaluating the element stiffness matrix A
using Listening ?? and 5-5, then the load vector L by Listening 5-6 and in the
end solving the linear equation:

Ap = L. (5.3)

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 38

This routine gives us the pressure distribution for the incompressible single-phase
flow as plotted in Figure 5.3.

Figure 5.3: Pressure distribution for the incompressible single-phase flow

M e s h = B u i l t _ T r i a n g u l a t i o n _ N F (1 2 0 , 1 2 0 , 1 , 1) ;

s p o t = sum (M e s h . s i z e) / M e s h . s i z e (1 , 1) ;
q = @ (x , v a r a r g i n) s p o t f u n c t (x , Mesh , spot , v a r a r g i n) ;

%p e r m e a b i l i t y
K = o n e s (s i z e (M e s h . E l e m e n t s , 1) , 2) ;

N = s i z e (M e s h . E l e m e n t s , 1) ;
Q = q (M e s h . i n c e n t e r s) / s p o t ;

% Assemble s t i f f n e s s matr ix and l o a d v e c t o r
A = A s s e m b l y _ m a t (Mesh , K) ;
A (1 , :) = 0 ;
A (1 , 1) = 1 ;
L = A s s e m b l y _ L o a d _ P C (Mesh , Q ∗ s p o t) ;
L (1) =0;

% S o l v e l i n e a r system
P = A \ L ;

Listing 5-8: Solver of the incompressible single-phase flow.

f u n c t i o n y = s p o t f u n c t (x , Mesh , spot , v a r a r g i n)
% This t h e f u n c t i o n which r e t u r n s a t t h e lower− l e f t t r i a n g l e t h e
% v a l u e and +s p o t and a t t h e upper−r i g h t t r i a n g l e t h e v a l u e −s p o t .

[v _ m a x , l _ m a x]=max(M e s h . i n c e n t e r s (: , 1) .^2+ M e s h . i n c e n t e r s (: , 2) . ^ 2)←↩
; % s e a r c h e s t h e h i g h e s t r i g h t t r i a n g l e

[v _ m i n , l _ m i n]=min (M e s h . i n c e n t e r s (: , 1) .^2+ M e s h . i n c e n t e r s (: , 2) . ^ 2)←↩
; % s e a r c h e s t h e l o w e s t l e f t t r i a n g l e

a _ m a x = M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (l _ m a x , :) ' , :) ;
a _ m i n = M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (l _ m i n , :) ' , :) ;
y = z e r o s (s i z e (x , 1) , 1) ;

f o r i =1: s i z e (x , 1)

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 39

i f (d i s t _ t r i (x (i , :) , a _ m a x (1 , :) , a _ m a x (2 , :) , a _ m a x (3 , :))<=0)
y (i , 1) = −1∗ s p o t ;

e l s e i f (d i s t _ t r i (x (i , :) , a _ m i n (1 , :) , a _ m i n (2 , :) , a _ m i n (3 , :))<=0)
y (i , 1) = 1∗ s p o t ;

e l s e
y (i , 1) = 0 ;

end
end

f u n c t i o n d i s t = d i s t _ t r i (x , a , b , c)
%c a l c u l a t e s t h e d i s t a n c e o f x and t h e t r i a n g l e d e f i n e d
% by t h e p t s a , b , c

d i s t = −min (min (((x (: , 1)−a (1)) ∗(a (2)−b (2))−(x (: , 2)−a (2)) ∗(a (1)−←↩
b (1))) /norm (a−b) , . . .

((x (: , 1)−b (1)) ∗(b (2)−c (2))−(x (: , 2)−b (2)) ∗(b (1)−c (1))) /norm←↩
(b−c)) , . . .

((x (: , 1)−c (1)) ∗(c (2)−a (2))−(x (: , 2)−c (2)) ∗(c (1)−a (1))) /norm←↩
(c−a)) ;

r e t u r n

Listing 5-9: Injection and production term.

Since the incompressible single-phase flow is a trivial case, we take now a look
at a more complex example, the immiscible and incompressible two-phase flow.
Example 5.3 (Immiscible and incompressible two-phase flow). The immiscible
and incompressible two-phase flow was introduced in section 2.3. In addition let
us consider the setting of example 2.1, the quarter-five spot as before, no-flow
boundary condition and that it takes one time unit to inject one pore-volume of
water. In this model, the reservoir is initially filled with oil and we simulate
a water injection at (0, 0). When solving the problem, we solve the almost-
elliptic pressure equation (2.43) and the almost-hyperbolic saturation equation
(2.47). This equations are nonlinearly coupled primarily through the saturation
dependent mobility λi and the pressure dependent velocity vi. For simplicity, we
disregard the gravity and capillary forces. So we get the following equations:

−∇ ·Kλ(s)∇p = Qt, (5.4)

φ
∂s

∂t
+∇ · (f(s)v) = qw

ρw
. (5.5)

The strategy is to solve the two equations sequentially by the two routines derived
in the previous sections 5.2 and 5.3. As long as we only inject water, and produce
whatever reaches our production well, we get:

qw
ρw

= max{Qt, 0}+ f(s)min{Qt, 0}. (5.6)

For the last missing saturation dependent quantities, we use:

λw(s) = (s∗)2

µw
, λo(s) = (1−s∗)2

µo
, s∗ = s−swc

1−sor−swc
,

where sor is the lowest oil saturation, that can be achieved by displacing oil by
water, and swc is the connate water saturation. To keep the problem still simple,
we assume furthermore unit porosity, unit viscosity and set sor = swc = 0.
The solver of Example 5.2 can be used for the elliptic part by updating it. Instead
of K we now use Kλ. The procedure of our solver is:

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 40

• solve the elliptic pde;

• calculate the velocity v = Kλ(s)∇p, where ∇p is the discrete gradient,
Listing 5-10;

• solve the hyperbolic problem between 0 and ∆t, Listing 5-11;

• solve the elliptic pde with the new saturation;

• calculate the velocity v, Listing 5-10;

• solve the hyperbolic problem between ∆t and 2∆t, Listing 5-11;

• . . .

• solve the elliptic pde with the saturation at final time T .

Listing 5-12 contains the code to simulate all of this. For calculating the time
steps, we use the CFL-condition calculated by equation (4.40). We choose some
definitions a little bit more general, such that we can upgrade the code easily.

f u n c t i o n V = V e l o T r i (P , Mesh , Kf , l a m b d a , s)
% C a l c u l a t e v v e l o c i t y on Mesh g r i d
a _ 1 = (P (M e s h . E l e m e n t s (: , 1))−P (M e s h . E l e m e n t s (: , 2))) . ∗ (M e s h .←↩

C o o r d i n a t e s (M e s h . E l e m e n t s (: , 3) , 2)−M e s h . C o o r d i n a t e s (M e s h .←↩
E l e m e n t s (: , 2) , 2))−(P (M e s h . E l e m e n t s (: , 3))−P (M e s h . E l e m e n t s (: , 2))←↩
) . ∗ (M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 1) , 2)−M e s h . C o o r d i n a t e s (←↩
M e s h . E l e m e n t s (: , 2) , 2)) ;

a _ 2 = (M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 1) , 1)−M e s h . C o o r d i n a t e s (←↩
M e s h . E l e m e n t s (: , 2) , 1)) . ∗ (M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 3)←↩
, 2)−M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 2) , 2))−(M e s h . C o o r d i n a t e s (←↩
M e s h . E l e m e n t s (: , 3) , 1)−M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 2) , 1))←↩
. ∗ (M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 1) , 2)−M e s h . C o o r d i n a t e s (←↩
M e s h . E l e m e n t s (: , 2) , 2)) ;

b _ 1 = (P (M e s h . E l e m e n t s (: , 1))−P (M e s h . E l e m e n t s (: , 2))) . ∗ (M e s h .←↩
C o o r d i n a t e s (M e s h . E l e m e n t s (: , 3) , 1)−M e s h . C o o r d i n a t e s (M e s h .←↩
E l e m e n t s (: , 2) , 1))−(P (M e s h . E l e m e n t s (: , 3))−P (M e s h . E l e m e n t s (: , 2))←↩
) . ∗ (M e s h . C o o r d i n a t e s (M e s h . E l e m e n t s (: , 1) , 1)−M e s h . C o o r d i n a t e s (←↩
M e s h . E l e m e n t s (: , 2) , 1)) ;

b _ 2 = −a _ 2 ;

V = −Kf . ∗ [l a m b d a (s) , l a m b d a (s)] . ∗ [a _ 1 . / a_2 , b _ 1 . / b _ 2] ;
end

Listing 5-10: Computation of velocity using the pressure, v = Kλ(s)∇p.

f u n c t i o n [s , t]= E O S (s0 , t0 , d e l t a _ t , V , f , df , Q , phi , Mesh , s_wc , s _ o r)
% s o l v e s t h e h y p e r b o l i c e q u a t i o n by u s i n g t h e e n g q u i s t o s h e r ←↩

scheme between
% t 0 and t 0+d e l t a _ t w i t h i n i t i a l v a l u e s0
N = s i z e (M e s h . E l e m e n t s , 1) ;
t =0;
st=s0 ;
w h i l e (t<d e l t a _ t)

q w _ o v e r _ r h o w = max ([Q , z e r o s (s i z e (Q))] , [] , 2)+f (st) . ∗ min ([Q ,←↩
z e r o s (s i z e (Q))] , [] , 2) ;

% CFL−c o n d i t i o n
D _ 1 = max ([M e s h . e d g e s i z e (: , 1) . ∗ sum (M e s h . norm (: , : , 1) . ∗ df (st , V←↩

(: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 1)))] , [] , 2) ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 41

D _ 2 = max ([M e s h . e d g e s i z e (: , 2) . ∗ sum (M e s h . norm (: , : , 2) . ∗ df (st , V←↩
(: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 2)))] , [] , 2) ;

D _ 3 = max ([M e s h . e d g e s i z e (: , 3) . ∗ sum (M e s h . norm (: , : , 3) . ∗ df (st , V←↩
(: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 3)))] , [] , 2) ;

D = max (1 . / (M e s h . s i z e . ∗ p h i) . ∗ (D _ 1+D _ 2+D _ 3 +1)) ;
i f (D >0.1)

dt = 0 . 7 / D ;
e l s e

D _ 1 = max ([M e s h . e d g e s i z e (: , 1) . ∗ sum (M e s h . norm (: , : , 1) . ∗ df (2 ,←↩
V (: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 1)))←↩
] , [] , 2) ;

D _ 2 = max ([M e s h . e d g e s i z e (: , 2) . ∗ sum (M e s h . norm (: , : , 2) . ∗ df (2 ,←↩
V (: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 2)))←↩
] , [] , 2) ;

D _ 3 = max ([M e s h . e d g e s i z e (: , 3) . ∗ sum (M e s h . norm (: , : , 3) . ∗ df (2 ,←↩
V (: , 1) , V (: , 2)) , 2) , z e r o s (s i z e (M e s h . e d g e s i z e (: , 3)))←↩
] , [] , 2) ;

D = max (1 . / (M e s h . s i z e . ∗ p h i) . ∗ (D _ 1+D _ 2+D _ 3 +1)) ;
dt = 0 . 7 / D ;

end
i f (t+dt>d e l t a _ t)

dt=d e l t a _ t−t ;
end
t = t+dt ;
% c a l c u l a t i o n o f t h e Flux
G _ 1 = abs (M e s h . e d g e s i z e (: , 1)) . ∗ (f (st) . ∗ max(sum (M e s h . norm←↩

(: , : , 1) . ∗ V , 2) , z e r o s (N , 1))+f (st (M e s h . N e i g h b o r s (: , 1))) . ∗ min (←↩
sum (M e s h . norm (: , : , 1) . ∗ V , 2) , z e r o s (N , 1))) ;

G _ 2 = abs (M e s h . e d g e s i z e (: , 2)) . ∗ (f (st) . ∗ max(sum (M e s h . norm←↩
(: , : , 2) . ∗ V , 2) , z e r o s (N , 1))+f (st (M e s h . N e i g h b o r s (: , 2))) . ∗ min (←↩
sum (M e s h . norm (: , : , 2) . ∗ V , 2) , z e r o s (N , 1))) ;

G _ 3 = abs (M e s h . e d g e s i z e (: , 3)) . ∗ (f (st) . ∗ max(sum (M e s h . norm←↩
(: , : , 3) . ∗ V , 2) , z e r o s (N , 1))+f (st (M e s h . N e i g h b o r s (: , 3))) . ∗ min (←↩
sum (M e s h . norm (: , : , 3) . ∗ V , 2) , z e r o s (N , 1))) ;

st = st − dt . / (M e s h . s i z e . ∗ p h i) . ∗ (G _ 1+G _ 2+G _ 3)+dt . ∗ q w _ o v e r _ r h o w←↩
. / (M e s h . s i z e . ∗ p h i) ;

st = max(−(1− s _ w c) , min(1− s_wc , st)) ;
end
s=st ;
t=t0+d e l t a _ t ;
end

Listing 5-11: Solver of the hyperbolic problem between t0 and t0+delta_t using
the Engquist-Osher scheme.

%Main code

M e s h = B u i l t _ T r i a n g u l a t i o n _ N F (1 2 0 , 1 2 0 , 1 , 1) ;

T = 1 ; %End time
k = 1/25; % time s t e p a f t e r which t h e e l l i p t i c e q u a t i o n i s s o l v e d
nt = T / k ; % number o f t i m e s t h e e l l i p t i c e q u a t i o n i s s o l v e d .
s _ w c = 0 ;
s _ o r = 0 ;
m u _ w = 1 ;
m u _ o = 1 ;
n =1;
l a m b d a _ o = @ (s) (1−(s−s _ w c) ./(1− s_or−s _ w c)) . ^ 2 / m u _ o ;
l a m b d a _ w = @ (s) ((s−s _ w c) ./(1− s_or−s _ w c)) . ^ 2 / m u _ w ;
l a m b d a = @ (s) l a m b d a _ o (s)+l a m b d a _ w (s) ;
f = @ (s) l a m b d a _ w (s) . / l a m b d a (s) ;
df = @ (s , u , v) [2 ∗ m u _ w ∗ m u _ o ∗(s+s_or −1) . ∗ (s−s _ w c) ∗(s _ o r+s_wc −1) . / (←↩

m u _ w ∗(s+s_or −1) .^2+ m u _ o ∗(s−s _ w c) . ^ 2) . ^ 2 . ∗ u , 2 ∗ m u _ w ∗ m u _ o ∗(s+s_or←↩
−1) . ∗ (s−s _ w c) ∗(s _ o r+s_wc −1) . / (m u _ w ∗(s+s_or −1) .^2+ m u _ o ∗(s−s _ w c)←↩
. ^ 2) . ^ 2 . ∗ v] ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 42

I = [0 , −1 ; 1 , 0] ;
s = s _ w c ∗ o n e s (s i z e (M e s h . E l e m e n t s , 1) , 1) ; %i n i t i a l s a t u r a t i o n

s p o t = sum (M e s h . s i z e) / M e s h . s i z e (1 , 1) ;
q = @ (x , v a r a r g i n) s p o t f u n c t (x , Mesh , spot , v a r a r g i n) ;
% P e r m e a b i l i t y
Kf = o n e s (s i z e (M e s h . E l e m e n t s , 1) , 2) ;
p h i = o n e s (s i z e (M e s h . E l e m e n t s , 1) , 1) ;
N = s i z e (M e s h . E l e m e n t s , 1) ;
Q = q (M e s h . i n c e n t e r s) / s p o t ;

%% Assemble s t i f f n e s s matr ix and l o a d v e c t o r a t t ime t 0 = 0
K = [l a m b d a (s (: , 1)) , l a m b d a (s (: , 1))] . ∗ Kf ;
A = A s s e m b l y _ m a t (Mesh , K) ;
A (1 , :) = 0 ;
A (1 , 1) = 1 ;
L = A s s e m b l y _ L o a d _ P C (Mesh , Q ∗ s p o t) ;
L (1) =0;

% S o l v e l i n e a r system
P = z e r o s (s i z e (M e s h . C o o r d i n a t e s , 1) , nt +1) ;
P (: , 1) = A \ L ;

% C a l c u l a t e v v e l o c i t y on Grid
V=V e l o T r i (P (: , 1) , Mesh , Kf , l a m b d a , s (: , 1)) ;

%% Time s t e p p i n g
t =0;
f o r i = 1 : nt

i
% S o l v e h y p e r b o l i c p a r t between t and t+k
[s (: , i +1) , t] = E O S (s (: , i) , t , k , V , f , df , Q ∗ spot , phi , Mesh , s_wc , s _ o r←↩

) ;

% Assemble s t i f f n e s s matr ix and l o a d v e c t o r a t t ime i ∗ k
K = [l a m b d a (s (: , i +1)) , l a m b d a (s (: , i +1))] . ∗ Kf ;
A = A s s e m b l y _ m a t (Mesh , K) ;
A (1 , :) = 0 ;
A (1 , 1) = 1 ;
L = A s s e m b l y _ L o a d _ P C (Mesh , Q ∗ s p o t) ;
L (1) = 1 ;

% S o l v e l i n e a r system
P (: , i +1) = A \ L ;

% C a l c u l a t e v v e l o c i t y on Mesh g r i d
V=V e l o T r i (P (: , i +1) , Mesh , Kf , l a m b d a , s (: , i +1)) ;

end

Listing 5-12: Simulator for the immiscible and incompressible two-phase flow.

The saturation distribution computed by Listing 5-12 is shown in figure 5.4. The
appropriate functionality of the implementation is established by the following
two results. The first is, that the basic structure looks correct. And the second
is, that the theoretical value of the break through, the time at which the water
first reaches the production well, coincides with the theoretical value, what is
approximately 0.7 pore-volumes of water [5].
If you look at the exact shape of the water wave, you will recognize first a shock
wave and after this a monotonically increasing saturation.
Comparing the L1-error over time and space of the solution computed by the
program of this thesis and the solution of J. E. Aarnes, T. Gimse and K. A.
Lie in [5] we get a sublinear convergence plotted in figure 5.5.

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 43

(a) Value at t=0.08 (b) Value at t=0.24 (c) Value at t=0.40

(d) Value at t=0.56 (e) Value at t=0.72 (f) Value at t=0.84

Figure 5.4: Saturation profiles for the homogeneous quarter-five spot.

Example 5.4 (Simulation of the SPE-model by using finite volume method).
In the example 5.3, we still looked at a simplified two-phase model. Let us take
a look at a much more realistic setting of porosity and permeability, by look-
ing at the model 2 from the 10th SPE Comparative Solution Project [9]. The
model dimensions are 1200 × 2200 × 170 (ft) and the reservoir is described by
a heterogeneous distribution over a regular Cartesian grid with 60 × 220 × 85
grid-blocks. Because we use a triangular mesh, we have to transform this to a
triangular grid, Listing 5-13. We use only the top layer, in which the perme-
ability is smooth. We set again the injection well at the lower-left corner and
the production well at the upper-right one. For brevity, gravity and capillary
forces are neglect. And we consider a incompressible oil-water system, for which
swc = sor = 0.2, µw = 0.3 cp and µo = 3.0 cp. The reservoir is initially filled
with oil, this means that the initial water saturation is equal the connate water
saturation. Since the porosity is not uniform anymore, it may be zero. To avoid
division by zero, we set it to a minimal nonzero value.

Figure 5.6 shows the saturation distribution over the first 2000 days computed
by Listing 5-14. Figure 5.7 shows the distribution computed by J. E. Aarnes,
T. Gimse and K. A. Lie in [5]. By comparing the different results, it is obvious
that in our solution the water is much faster than in the solution of [5]. The
difference between the simulated flows occurs probably from a different setting
of parameters. By comparing the different production rates (figure 5.8), you see
that the presented algorithm in this thesis yields the correct behavior.
Comparing the derived code of this thesis and the code given in [9], you notice

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 44

Figure 5.5: Rate of convergence for the immiscible and incompressible two-phase
flow

that the original code is much faster than this one. The reason is, that they use
an implicit solver, in comparison to our explicit solver. In a implicit solver the
discretization is a large nonlinear system of equations, which are usually solved
with a Newton or a Newton-Raphson iterative method. The problem with explicit
solvers is that for convergence, we need to fulfill a CFL-condition, which in the
heterogeneous case gives us really tiny time steps. So in this case an implicit
solver would be faster.

f u n c t i o n [phi , Kf] = l o a d _ P h i _ P e r m (Mesh , s p e _ p e r m , s p e _ p h i)
% Transformation o f t h e p e r m e a b i l i t y perm and p o r o s i t y p h i t o t h e
% t r i a n g u l a r mesh
l o a d s p e _ p e r m . d a t ; l o a d s p e _ p h i . d a t ;
p e r m 2 = r e s h a p e (s p e _ p e r m ' , s i z e (s p e _ p e r m , 1) ∗2 ,3) ;
p e r m = z e r o s (6 0 , 2 2 0 , 2) ;
f o r i = 1 : 6 0 , f o r j = 0 : 2 1 9 , l = 0 ; p e r m (i , j +1 ,1) = p e r m 2 (i+j∗60+l←↩

∗220∗60 ,1) ; end , end
f o r i = 1 : 6 0 , f o r j = 0 : 2 1 9 , l = 0 ; p e r m (i , j +1 ,2) = p e r m 2 (i+j∗60+l←↩

∗220∗60 ,2) ; end , end

s p e _ p h i 2 = r e s h a p e (s p e _ p h i ' , s i z e (s p e _ p h i , 1) ∗ s i z e (s p e _ p h i , 2) , 1) ;
p h i = z e r o s (6 0 , 2 2 0 , 8 5) ;
f o r i = 1 : 6 0 , f o r j = 0 : 2 1 9 , f o r l = 0 , p h i (i , j +1 ,1) = s p e _ p h i 2 (i←↩

+j∗60+l ∗220∗60) ; end , end , end
Kg=p e r m ; % P e r m e a b i l i t y in l a y e r 1
P o r=p h i (: , : , 1) ; % P r e p r o c e s s e d p o r o s i t y in l a y e r 1

Kf = z e r o s (s i z e (M e s h . E l e m e n t s , 1) , 2) ;
p h i = z e r o s (s i z e (M e s h . E l e m e n t s , 1) , 1) ;
f o r i = 1 : s i z e (M e s h . E l e m e n t s , 1)

p h i (i) = P o r (f l o o r (M e s h . i n c e n t e r s (i , 1) /20) +1, f l o o r (M e s h .←↩
i n c e n t e r s (i , 2) /10) +1) ;

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 45

Kf (i , :) = Kg (f l o o r (M e s h . i n c e n t e r s (i , 1) /20) +1, f l o o r (M e s h .←↩
i n c e n t e r s (i , 2) /10) +1 ,:) ;

end
p h i=max(phi , 1 e−3) ;

Listing 5-13: Transformation of the data of the SPE-10 model to the triangular
grid.

(a) Value after 400 days (b) Value after 800 days

(c) Value after 1200 days (d) Value after 2000 days

Figure 5.6: Saturation profiles in the top layer of the SPE-10 model, computed
by Listing 5-14.

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 46

(a) Value after 400 days (b) Value after 800 days

(c) Value after 1200 days (d) Value after 2000 days

Figure 5.7: Saturation profiles in the top layer of the SPE-10 model, computed
by J. E. Aarnes, T. Gimse and K. A. Lie in [5].

(a) Solution from Listing 5-14 (b) Solution from [5]

Figure 5.8: Production profiles.

CHAPTER 5. FVM IN 2-D ON TRIANGULATION 47

%Main code

% Construct mesh
Mesh = B u i l t _ T r i a n g u l a t i o n _ N F (120 ,120 ,1200 ,2200) ;
spot =795/85∗(120∗120∗2) /(60∗220) ;
q = @ (x , varargin) spotfunct3 (x , Mesh , spot , varargin) ;
T = 1000;
k = 5 0 ;
nt = T/k ;
s_wc = 0 . 2 ;
s_or = 0 . 2 ;
mu_w = 0 . 3 ;%3e−4;
mu_o = 3 ;%3e−3;
lambda_o = @ (s) (1−(s−s_wc) ./(1− s_or−s_wc)) . ^ 2 / mu_o ;
lambda_w = @ (s) ((s−s_wc) ./(1− s_or−s_wc)) . ^ 2 / mu_w ;
lambda = @ (s) lambda_o (s)+lambda_w (s) ;
f = @ (s) lambda_w (s) . / lambda (s) ;
df = @ (s , u , v) [2 ∗ mu_w ∗ mu_o ∗(s+s_or−1) . ∗ (s−s_wc) ∗(s_or+s_wc−1) . / (mu_w ∗(←↩

s+s_or−1).^2+ mu_o ∗(s−s_wc) . ^ 2) . ^ 2 . ∗ u , 2 ∗ mu_w ∗ mu_o ∗(s+s_or−1) . ∗ (s−←↩
s_wc) ∗(s_or+s_wc−1) . / (mu_w ∗(s+s_or−1).^2+ mu_o ∗(s−s_wc) . ^ 2) . ^ 2 . ∗ v] ;

I = [0 , −1 ; 1 , 0] ;
s = s_wc ∗ ones (s i z e (Mesh . Elements , 1) , 1) ;
%n=1;
% Permeabi l i ty and p o r o s i t y
[phi , Kf] = l o a d _ P h i _ P e r m (Mesh , spe_perm , spe_phi) ;

N = s i z e (Mesh . Elements , 1) ;
Q = q (Mesh . incenters) / spot ;
%% Assemble s t i f f n e s s matrix and load v e c t o r at time t0 = 0
K = [lambda (s (: , 1)) , lambda (s (: , 1))] . ∗ Kf ;
A = As sem bly _m at (Mesh , K) ;
A (1 , :) = 0 ;
A (1 , 1) = 1 ;
L = A s s e m b l y _ L o a d _ P C (Mesh , Q∗ spot) ;
L (1) =0;

% Solve l i n e a r system
P = z e r o s (s i z e (Mesh . Coordinates , 1) , nt +1) ;
P (: , 1) = A\L ;

% C a l c u l a t e v v e l o c i t y on Mesh g r i d
V=VeloTri (P (: , 1) , Mesh , Kf , lambda , s (: , 1)) ;

%% Time s t e p p i n g
t =0;
f o r i = 1 : nt

i
% Solve h y p e r b o l i c part between t and t+k
[s (: , i+1) , t] = EOS (s (: , i) , t , k , V , f , df , Q∗ spot , phi , Mesh , s_wc , s_or) ;

% Assemble s t i f f n e s s matrix and load v e c t o r at time i ∗k
K = [lambda (s (: , i+1)) , lambda (s (: , i+1))] . ∗ Kf ;
A = As sem bly _m at (Mesh , K) ;
A (1 , :) = 0 ;
A (1 , 1) = 1 ;
L = A s s e m b l y _ L o a d _ P C (Mesh , Q∗ spot) ;
L (1) = 1 ;

% Solve l i n e a r system
P (: , i+1) = A\L ;

% C a l c u l a t e v v e l o c i t y on Mesh g r i d
V=VeloTri (P (: , i+1) , Mesh , Kf , lambda , s (: , i+1)) ;

end

Listing 5-14: Simulator for the immiscible and incompressible two-phase flow
for the top layer of the SPE-10 model.

CHAPTER 6. CONCLUSION AND FURTHER WORK 48

Chapter 6

Conclusion and further
work

The aim of this thesis was to design a routine to solve conservation laws by
finite volume methods on triangular grids. This goal was achieved in chapter 5.
The tests of the implementation were successful. The behavior of the Burgers
equation, incompressible single-phase flow and incompressible two-phase flow
are correct and the break-through of the water in example 5.3 fits to theory.
The disadvantage of this implementation is the run-time. It is really large, com-
pared to the run-time of an implicit method. Possibly there is some potential
of improvement. The other time-consuming part is the building of the triangu-
lation.
Unfortunately, we could not implement a finite volume method for systems of
conservation laws. But this should work in the same way by using the con-
structed triangular mesh of section 5.1.
A remaining interesting question is the convergence behavior of the method on a
triangular grid compared to a method on a Cartesian grid. As well, it would be
interesting to extend the code by some automatically local refinement or even
local grid alignment.
Hopefully this thesis will motivate and make curious to develop methods on
triangular grids for more dimensional and complex applications.

Bibliography

[1] D. Braess. Finite Elements. Cambridge University Press, 2007.

[2] G. Chavent and J. Jaffre. Mathematical models and finite elements for
reservoir simulation. North Holland, 1982.

[3] M. G. Crandall and A. Majda. The method of fractional steps for conser-
vation laws. Numerische Mathematik, 34:285–314, 1980.

[4] L. C. Evans. Partial differential equations. AMS, 2010.

[5] T. Gimse J. E. Aarnes and K. A. Lie. An introduction to the numerics of
flow in porous media using matlab. 2007.

[6] D. Kröner. Numerical Schemes for Conservation Laws. Wiley Teubner,
1997.

[7] S. N. Kruzkov. First order quasilinear equations in several independent
variables. Math. USSR Sbornik, 10:217–243, 1970.

[8] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser,
1992.

[9] M. Blunt M. Christie. Spe comparative solution project, 2001.
http://www.spe.org/web/csp/ (11.06.2012).

[10] D. W. Peaceman. Fundamentals of numerical reservoir simulation. Elsevier
scientific publishing company, 1977.

[11] G. Huan Z. Chen and Y. Ma. Computational methods for multiphase flows
in porous media. Society for Industrial and Applied Mathematics (SIAM),
2006.

