Implementation of Discontinuous
Galerkin Finite Element Method on
Polygonal Meshes

Bachelor Project Report supervised by Prof. Dr. Ralf Hiptmair

Tarzis Maurer, ETH Zirich, 17-934-274

July, 2023

Abstract

Discontinuous Galerkin Finite Element Methods are universal, do not lack in stability
which is featured in classical FEMs and can be implemented on general polytopic
meshes. An infrastructure for the problem solving of a linear degenerate second-
order boundary value problem on such general poygonal meshes in a discontinuous
finite element setting is added to the FEM library LehrEFEM++.

1. Introduction

It is known that Classical Finite Element Methods (FEMs) lack sufficient stability
when applied to hyperbolic or "nearly” hyperbolic problems. Oscillations in the ap-
proximated solution can show up, mostly around regions where the gradient of the an-
alytical solution is large. Discontinuous Galerkin Finite Element Methods (DGFEMs)
allow for general non-self-adjoint PDEs to be solved without those stabilization is-
sues. Additionally, polytopic meshes can be used (opposed to strictly triangular,
rectangular or hybrid meshes) because there are no continuity constraints between
neighbouring cells. This report describes a Bachelor Project which extends the C++
open-source Finite Element Method library LehrFEM++ [1], used for teaching of
the course Numerical Methods for Partial Differential Equations [2] at ETH Ziirich.
The two main additions are made up of an environment for the handling of general
polygonal meshes within the program and functionalities to solve the general linear
degenerate second order convection-diffusion-reaction boundary value problem

—div(A(x) - grad u) + div(b(x)u) + c(x)u = f in Q C R? (1)

u=gonlpUl'_ and A(x)-gradu-n(x) on I'y. (2)

Where A : Q — R%? is a positive semi-definite bounded matrix field, b a continuous
vector field on ©Q and ¢ : © — R a bounded function. ©Q € R? is an open domain
in two dimensions. I'p, I'_ and 'y are disjoint sections of the boundary 0f2 of the
domain.

All theoretical aspects of this project closely follow [3]. The error analysis etc. is
presented there and will not be repeated here. The book lies the mathematical
foundation for the weak formulation of the problem 1 & 2 and especially the symmetric
interior penalty (SIP)(also see [7]). The correctness of the implementation can be
proven by the method of manufactured solutions.

A number of symbols need to be introduced for their further use. A subdivision of the
domain §2 into disjoint open (and polygonal) elements « is denoted by 7. VP(.7,) is
the discrete finite element space defined over the domain. %, denotes the set of faces
of codimension 1 associated with .7,. This set is further subdivided into interior faces
Z;7 and faces on the boundary .#/7.

As stated above, this project extends LehrF'EM++, which already incorporated many
functionalities. Meshes with triangular, quadrilateral or hybrid partitions were al-
ready incorporated in the library and classical FEM with nodal basis functions in the
discrete space had been implemented.

Contents
1. Introduction
2. Overview of changes in LehrFEM++

3. Mesh
3.1, Theory o
3.2. Mesh Generation
3.3. Implementation

4. Discrete Finite Element Space
4.1. Theory e
4.2. Implementation

5. Boundary Value Problem
5.1. Theory o
5.2. Implementation

6. Numerical Experiments
7. Learnings and Outlook
A. Script Example

B. Proposed Changes

S ov ot @

11
11
13

20
20
22

27

28

31

38

2. Overview of changes in LehrFEM++

Numerous additions in LehrFEM++ emerge from this project. They are not merged
into the main branch of the library at this point. To have a visual overview of what is
newly implemented, see figure 1. Most additions are in the newly created namespace
If::dgfe as one goal of the project is to minimize interfering with existing infrastructure.
The additions in the other namespaces If::mesh, If::assemble, If::base and [f::10 feature
tests with Google’s C++ test framework and are working correctly. Functionalities
regarding the solving of 1 & 2 in a DGFEM setting are collected in the namespace
If::dgfe. Smaller parts of this module, e.g. the class 1f: :dgfe: :BoundingBox are also
tested. More complex utilities are shown to be correct by way of numerical experi-
ments, whose results can be found in section 6. The current state of the project can be
found in the github repository https://github.com/tarzm/lehrfempp/tree/dgfe.

If::dgfe | If::mesh

If::mesh::polytopic2d
BoundingBox poyoP |
. MeshFactory
MeshFunctionDGFE
MeshFunctionGradDGFE Mesh
MeshFunctionGlobalDGFE Polygon
Corners()
DGFESpace EdgePolygonAdjacency()
PolytopicFromHybrid()
SubTessellationIntegrator

If::mesh::test_utils |

AdvectionReactionMatrixAssembler

GeneratePolytopic2DTestMesh()

If::assemble |

UniformDGFEDofHandler

If::base

RefEIType::kPolygon

AdvectionReactionDiffusionRHSAssembler

DiscontinuityPenalization

DiffusionMatrixAssembler

L2ErrorSubTessellation()
legendre_basis()
subTessellation()

If::io
VtkPolytopicReader!
Key: Class Attribute namespace

Function |

Figure 1: Overview of LEHRFEM++ changes from this project.
The visualization is not complete but a base to discuss
upon.

https://github.com/google/googletest
https://github.com/tarzm/lehrfempp/tree/dgfe

3. Mesh

3.1. Theory

The application of discontinuous Galerkin finite element methods generally allows for
choosing general piecewise polynomial trial and test spaces and has - more important
for this section - no restrictions on the choice of subdivision of the computational
domain. That is the reason why polygonal or polytopic meshes have been introduced
and added to the LehrFEM++ library to allow for more general meshes. As the error
analysis in [3, sec. 5.2] requires shape regularity (defined and discussed also in [3])
of the polytopic cells in the mesh, this property is implied for all meshes used in the
polytopic setting. It can be assumed that the mesh generator used for the project
provides shape-regular meshes. More on the generator in the next section.

The variational formulation of the boundary value problem 1 & 2 includes the inte-
gration of jump terms over all edges in the mesh (see equation 24, further information
in section 5). To evaluate jump terms over internal edges, a reference from each edge
to the two adjacent polygonal cells is needed, otherwise an iteration over possibly all
polygons would be required for each evaluation. This functionality is provided and
discussed in section 3.3.

3.2. Mesh Generation

Polytopic meshes used in the project have been either made with PolyMesher [6],
were programmed by hand inside the library or were originally an existing hybrid
mesh from LehrFEM++ and then interpreted as a polytopic mesh.

PolyMesher creates meshes with linear convex polygons. They are Voronoi Tessella-
tions of the desired domain. All functionalities to generate meshes with PolyMesher
can be found in the LehrFFEM++ library in 1f/mesh/polytopic2d/polymesher. The
matlab file 1f/mesh/polytopic2d/polymesher/mesh.m provides the code used to
generate meshes with 2% up to 2'? cells (a graphical representation of 4 of these
are depicted in figure 2). It writes .txt-files with information about the nodes and
the elements of the mesh. Another file 1f/mesh/polytopic2d/polymesher/vtk_
writer.py 1f/io/plot_mesh.py, written in Python then reads the information and
packs it into a .vtk-file. Finally this file can be read by the new LehrFEM++
class 1f::io::VtkPolytopicReader which then provides the mesh in the internal
LehrFEM++ representation.

N =128

\
et sse

SEnELEas

Figure 2: Visualizations of Voronoi Tessellations generated by Poly-
Mesher. N describes the number of polygonal cells
present in the mesh. All meshes are subdivisions of

the unit square domain (0,1)%. They are created via
If::io::writeMatplotlib() and 1f/io/plot_mesh.py.

3.3. Implementation

An overview of the additions to the namespace If::mesh is depicted in figure 3. A new
namespace [f::mesh::polytopic2d holds the majority of new functionalities regarding
polygonal meshes.

‘ If::mesh |
Entity Mesh MeshFactory
If::mesh::hybrid2d If::mesh::polytopic2d
Mesh MeshFactory
MeshFactory Mesh
Point points_
segments_
Segment polygons_
Polygon
Triangle
nodes__
Quad edges_
corners_
If::mesh::test_utils geometry_
Corners()
tePolytopic2DTestMesh
GeneratePolytopic2DTestMesh() Corners()
EdgePolygonAdjacency()
PolytopicFromHybrid2D()
Key: | Abstract Class | [Class| | Attribute namespacel
i Function
inheritance "is a vector of" |

Figure 3: Visualization of the namespace If::mesh. It is not complete but
rather an overview of what is discussed in this section. A key
to the symbols can be found at the bottom of the figure.

Polygon

A new class Polygon describes all cells (codimension 0) in the 2D mesh. As depicted
in figure 3, it inherits from the abstract base class 1f: :mesh: :Entity. Its function-
alities are therefore very similar to the ones of a 1f::mesh::hybrid2d::Triangle
and 1f::mesh: :hybrid2d: :Quad. To keep things simple and use existing compo-
nents of LehrFEM++, the edges and nodes of Polygon are objects of types from the
namespace If::mesh::hybrid2d. There are a number of differences to the entities of
codimension 0 in the hybrid case:

e All polygons have the newly created dummy reference element 1f: :base: :
RefElType: :kPolygon.

e Polygons have no fixed number of nodes and edges. The attributes nodes_ and

Eigen::MatrixXd Corners(const 1f::mesh::Entity* ent){
LF_VERIFY_MSG(ent->RefE1() == 1f::base::RefEl::kPolygon(),
"This method is only implemented for Polygons");
return dynamic_cast<const 1f::mesh::polytopic2d::Polygon*>(ent)->Corners();

Listing 1: Definition of the function If::mesh::polytopic2d::Corners().

edges_ are of type vector with variable length instead of an array with fixed
length.

e The attribute geometry_is a nullpointer. Due to polygons not having a common
reference element, there is also no affine mapping between a general polygon
and all instances in the mesh. Therefore the 1f: :geometry: :Geometry object
(More on this in [2, sec. 2.7.2.3]) has no relevance for polygons. How basis
functions are created on polygons is discussed in section 4.

e There is a new attribute corners_ which stores the coordinates of the nodes of
the polygon in a 2xn matrix, where n is the number of nodes in the polygon.
As discussed above, polygons have no 1f: :geometry: : Geometry object which
stores its topological information in one place. Rather than having to iterate
over its nodes every time coordinates are needed, Corners() provides that func-
tionality. In most parts of the program, a polygon is interpreted as the base
class 1f: :mesh: :Entity, so directly calling Corners() from it will cause an er-
ror. That is the reason for the existence of the function Corners() which takes
an 1f::mesh::Entity as an argument. It will then perform a dynamic cast
to make the Corner() member function work. The definition of this function is
showed in listing 1.

Apart from those differences, the Polygon class works like its hybrid equivalents.

Mesh

The class Mesh in the polytopic setting provides the same functionalities as in the
hybrid setting. All entities of codimension 0 are of type 1f: .mesh: :polytopic2d: :
Polygon. As has been mentioned above, a functionality which provides a reference
from all 1f: :mesh: :Segments to their adjacent polygons in the mesh is needed. This
is implemented in EdgePolygonAdjacency(). It takes a pointer to a mesh as an argu-
ment and returns a data set containing pointers to both polygons for each segment
and the local indices of the segment in the polygons. If the segment is on the bound-
ary, i.e. has only one adjacent polygon, the pointer to the second polygon is a null
pointer. The declaration of the function can be seen in listing 2.

A function which is very important, but nowhere depicted here is
If::mesh::utils::flagEntitiesOnBoundary(). Polytopic meshes and polygons are imple-
mented such that the function works exactly the same as in the hybrid setting.

10

11

12

13

14

15

16

using PolygonPair = std::pair<std::pair<const 1f::mesh::Entity*, size_type>,
std::pair<const 1f::mesh::Entity*, size_type>>;
/%%

* Q@brief Constructs A CodimMeshDataSet that contains the adjacencies

* of the Segements. Each Segment is adjacent to either two Polygons
* (inner Segment) or one Polygon (boundary Segment). Returns a pair
* of pairs. First object of the inner pair is

* a pointer to the polygon, the second is the local idx of

* the edge in that polygon.

*
* QOparam mesh_ptr The mesh used.
* Q@return 1f::mesh::utils::CodimMeshDataSet<PolygonPair> The constructed
* CodimMeshDataSet
*/
1f::mesh::utils::CodimMeshDataSet<PolygonPair> EdgePolygonAdjacency (
std: :shared_ptr<const 1f::mesh::Mesh> mesh_ptr);

Listing 2: Declaration of the function If::mesh::polytopic2d::EdgePolygonAdjacency/().

explicit MeshFactory(dim_t dim_world, bool check_completeness = true,
bool unit_square = true): dim_world_(dim_world),

check_completeness_(check_completeness), unit_square_(unit_square) {}

Listing 3: Declaration of the constructor of 1f : :mesh: :polytopic2d: :MeshFactory().

MeshFactory

Like in the hybrid setting, 1f: :mesh: :polytopic2d: :MeshFactory inherits from the
abstract base class 1f: :mesh: :MeshFactory and thus incorporates almost identical
components. Two functionalities are added.

As described above, most meshes used in the project are generated by PolyMesher
and are subdivisions of the unit square. PolyMesher collapses small edges into one
node (in the middle of the collapsed edge) in its iterative mesh generation process.
This results in nodes in the mesh that should be exactly on the boundary of the unit
square, but due to the edge collapsing they are not. To counter this problem, a new
member unit_square was added to the MeshFactory. It can be passed as an optional
construction argument, as shown in listing 5. If set to true, all added coordinates
closer to the boundary than the macro COORD_TOLERANCE (currently set to
1077) are "cleaned” and set to exactly the boundary coordinate.

In order to be able to compare the hybrid and polytopic meshes numerically, the
function polytopicFromHybrid() can be used. Every hybrid mesh can be interpreted
as a general polytopic one and this is what the function does. Its declaration is shown
in listing 4.

Additionally, a polytopic equivalent to If::mesh::test_utils:: GenerateHybrid2D Test Mesh()
is implemented as If::mesh::test_utils::GeneratePolytopic2DTestMesh(). Two poly-

/*%
* Q@brief returns a polytopic 2D mesh from a hybrid 2D mesh
*/
std: :shared_ptr<1lf::mesh: :Mesh> PolytopicFromHybrid2D(
std: :shared_ptr<const 1f::mesh::Mesh> mesh_ptr);

Listing 4: Declaration of the function PolytopicFromHybrid2D().

topic test meshes are available. One is depicted in figure 4. The second one is a
subdivision of the unit square by four equal-sized squares.

Mesh created by GeneratePolytopic2DTestMesh(0,1)

0.54
0
| L 1 L L I L L L |
| 1 T T I T T T
0 0.5 1
Figure 4: Visualization of the mesh re-
trieved with If::mesh::test_-

utils::GeneratePolytopic2D TestMesh(0,1).

10 Functionalities

The io-part of the polytopic mesh module is not visualized in figure 3. Mainly a new
class 1f::io::VtkPolytopicReader is implemented to read polytopic mesh data
from VTK-files and provide the polytopic mesh. A sample usage is shown in listing
5.

In order to be able to plot polytopic meshes like their hybrid counterparts, If::io::
writeMatplotlib() is slightly adjusted to accept entities of codimension 0 with the

10

std::filesystem::path here = __FILE__;

auto mesh_file_name = "msh_files/unit_square_voronoi_64_cells.vtk";

auto mesh_file = here.parent_path().string() + mesh_file_name;

1f::io::VtkPolytopicReader reader
(std::make_unique<lf::mesh::polytopic2d::MeshFactory>(2), mesh_file);

auto mesh = reader.mesh();

//example loop over polygonal cells

for (auto polygon : mesh->Entities(0)) { ... }

Listing 5: Example usage of 1f::io: :VtkPolytopicReader.

reference element 1f::base::RefE1Type: :kPolygon. The output of this function
(which is a .csv file) can then be plotted via 1f/io/plot_mesh.py.

4. Discrete Finite Element Space

4.1. Theory

As stated above, the general theoretical decisions of the project follow the book [3].
Basis functions of the discrete finite element V?P(.7,) space in a discontinuous finite
element setting are not subject to any continuity constraints between cells (thus the
term ”discontinuous”). A rather simple construction of basis functions is achieved
by mapping a polynomial space defined on a reference bounding box kg to the axis-
aligned bounding box B, of each specific polygonal cell x in the mesh. This space is
then restricted to k. The axis-aligned bounding box is the minimal cartesian axis-
aligned rectangle such that all vertices of the cell either are inside the rectangle, or on
its boundary, i.e. & C B,. The reference bounding box is defined as kp = (—1,1)%
Via an affine mapping F,, the bounding box kg is mapped to a polygon:

F.x)=x=JXx+c. (3)

With J, = diag(hq, hs), ¢ = (mq1,my)T, X a general point in ki and x its image in
B... Additionally h;,7 = 1,2 is half the length of the i-th side of B, and m; is the
midpoint of the i-th side of B,. See figure 5 for a sketch of this mapping.

11

X;;

X5

X]

A
N\

RR

X

Figure 5: Mapping between the reference bounding box xg
and the bounding box B, of a cell x in the mesh.

For polynomial basis functions, tensor product Legendre Polynomials in two di-
mensions are used. {zi(i’)}fzo describes the family of L?(—1,1)-orthonormal one-
dimensional Legendre polynomials (their respective degree being i), in this project
namely the ones in table 1. There are two options in the program: 1D-legendre
polynomials of maximum degree 1 or maximum degree 2.

i | Li(#)

0 1

1 @

2| 3327 —1)

Table 1: One-dimensional legendre polynomials with polynomial degree ¢

The basis functions ;(%X) on the reference bounding box are then defined as
$:(%) = Li, (@)L, (9) (4)

With ¢, and i, being the polynomial degrees of the 1D-legendre polynomials in the
direction of the first and second axis of the cartesian coordinate system. The plots
and explicit numbering of @;(X) is depicted in figure 6 in case of one-dimensional

12

legendre polynomials of maximum degree two. There is also an option for the usage
of one-dimensional legendre polynomials of maximum degree one. More of this choice
in section 4.2.

The polynomial basis functions of a general polygon x in the mesh are then given by
mapping ng(i) via F, to B, and restricting its support to k.

b, . (x) = &;(F 1 (x)) Vx €k C B, Vue T, (5)
h

Finally, the discrete space VP(.7},) is spanned by all basis functions @; ., on all polyg-
onal cells.

VP (%) = span{ &; .} (6)

4.2. Implementation

As mentioned before, most of the new components in LehrFEM++ are integrated
in the new namespace [If::dgfe. It contains both basic functionalities of a discrete
Galerkin finite element space as well as the algorithms used to assemble the Galerkin
matrix and right-hand side vector of equation 24. A visual overview of If::dgfe is
depicted in figure 7.

If::dgfe .
legendre_basis()

legendre_basis_dx() subTessellation()
legendre_basis_dy()

L2ErrorSubTessellation()
L2ErrorGradSubTessellation()

|AdvectionReactionMatrixAssembIer| |DGFESpace DiffusionMatrixAssembler | |BoundingBox

dgfe_space_ptr_ max_legendre_degree_ dgfe_space_ptr_ translation_

integration_degree_ num_shape_funct_polygon_ integration_degree_ jacobi_

max_legendre_degree_ dofh_ max_legendre_degree_ inverse_jacobi_

qr_cache_ edge_polygon_adjacency_ qr_cache_ map()

b_coeff_ Mesh a_coeff_ inverseMap()

c_coeff_ () boundary_edge_ inverseJacobi()

boundary_edge_ LocGlobMap() boundary_d_edge_ det()

boundary_d_edge MaxLegendreDegree() disc_pen_

boundary_minus_edge NumRefShapeFunctions()

- - - AdjacentPolygons() assemble()
assemble()
| MeshFunctionGlobalDGFE |
|AdvectionReactionDiffusionRHSAssembIer |
f

|DiscontinuityPenaIization| |SubTesseIIationIntegrator | |MeshFunctionDGFE operator()

dgfe_space_ptr_ qr_cache_ dgfe_space_ |MeshFunctionGradDGFE |

c_inv_const_ int " dof_vector_

c_sigma_const_ integrate() num_shape_funct_polygon_ operator()

operator() operator()

Key: | Aftribute | [hamespace
i Function |

Figure 7: Visualization of the namespace [f::dgfe. It is not complete but
rather an overview of what is discussed in the report. A key
to the symbols can be found at the bottom of the figure.

13

Go(R) = Lo(R)Lo()) 61(%) = Lo(AL1 () &,(%) = Lo(R)L,(9)

G6(%) = L (R)Lo()) 6,(%) = L,(0L.()) B(%) = L (R

Figure 6: Plots of tensor product Legendre Polynomials on the unit

square in two dimensions used as basis functions &;(%).
This is the specific case when the maximal degree of one-
dimensional Legendre polynomials used is 2.

14

BoundingBox

The in section 4.1 discussed axis-aligned bounding box is implemented as the class
1f::dgfe: :BoundingBox. It is a fairly lightweight class that is constructed and
deleted "on the fly” within Galerkin assembly algorithms. Once initialized for a
specific polygon « (constructor in listing 6), it implements F, as the member function
map() (listing 7) and the inverse F! as inverseMap() (listing 8). For the integration
of functions and gradients of basis functions, the determinant of J, and single entries
of the inverse of J, in equation 3 are needed. The two member functions det() and
inverseJacobi() provide this information.

BoundingBox(const 1f::mesh::Entity &entity);

Listing 6: Declaration of the constructor of 1f::dgfe: :BoundingBox.

/**
* Q@brief maps from reference bounding box to the cell's bounding box
*
* Q@param corners local points to be mapped into global coordinates
* Q@return Eigen::Matrix Global points
*/

Eigen: :MatrixXd map(const Eigen::MatrixXd corners) ;

Listing 7: Declaration of 1f::dgfe: :BoundingBox: :map().

* QObrief Maps global coordinates into reference bounding box

* Q@param corners global points
* Q@return Eigen::MatrixXd local points
*/

Eigen::MatrixXd inverseMap(const Eigen::MatrixXd corners);

Listing 8: Declaration of 1f::dgfe: :BoundingBox: : inverseMap().

Basis Functions

The tensor product Legendre Polynomials &; (%) from section 4.1 are implemented in
the function legendre_basis(). Its declaration is shown in listing 9.

15

10

11

10

11

12

13

/%%

*

@brief returns 2D basis function at coordinate defined on

* reference bounding box

* Q@param n index of basis function on reference bounding box

* Qparam max_degree maximum polynomial degree of 1D legendre polnynomials
* present in basis

* Q@param coord point for which the polynomial is evaluated

*/

scalar_t legendre_basis(size_type n, size_type max_degree,

const Eigen::Vector2d &coord) ;

Listing 9: Declaration of If::dgfe::legendre_basis().

Furthermore, the derivatives of (Zgl(fc) in x- and y-dimension are implemented. The
declaration in x-direction is in listing 10.

/%%

* Q@brief returns partial derivative in x of 2D reference basis function at coord

*

defined on reference bounding box

* @note !! DO NOT FORGET TO MULTIPLY WITH ENTRY (0, 0) OF
* THE INVERSE JACOBI OF THE REFERENCE BOX MAPPING !!

* @param n nth basis function of

* Q@param max_degree maximum degree of 1D legendre polnynomials present in basis
* Q@param coord point for which the polynomial is evaluated

*/

scalar_t legendre_basis_dx(size_type n, size_type max_degree,

const Eigen::Vector2d &coord) ;

Listing 10: Declaration of If::dgfe::legendre_basis_dx().

As can be read in listing 10, it is necessary to multiply the derivatives of b, (%) with
the corresponding entries of J.' from equation 3. This is due to the chain rule of

derivatives.
S0 = 2 [BE)] = 5 (8) (F60) - (B9) ()

More functions regarding Legendre Polynomials are implemented, but their discussion
is omitted here for clarity and priority reasons.

Mesh Functions

A MeshFunction is one of LehrFEM++’s concepts. A MeshFunction must particu-
larily overload the bracket operator as shown in listing 11. The concept can be seen
in https://craffael.github.io/lehrfempp/group__mesh__function.html.

16

https://craffael.github.io/lehrfempp/group__mesh__function.html

std: :vector<R> operator() (const 1f::mesh::Entity& e,
const Eigen::MatrixXd& local) const

Listing 11: Overloading of the bracket operator to satisfy LehrFEM++’s concept of
a MeshFunction.

It has been discussed above that there exists no general parametric mapping from a
reference polygon to all polygons in a mesh. Therefore the "local” coordinates used in
listing 11 have a different meaning in the polytopic setting. Here, the local coordinates
are coordinates in the reference bounding box xkg. The entity e must be a polygon such
that the local coordinates can be mapped to global coordinates in the mesh via the
mapping F,. Three different mesh function classes exist. MeshFunctionGlobalDGFE
is initialized with a lambda function f(x) like in listing 13. MeshFunctionDGFE is
initialized with a vector holding the coefficients of a basis expansion of a function
f(x). MeshFunctionGradDGFE works exactly like MeshFunctionDGFE but returns the
gradient of the function for which the basis expansion is given.

Numerical Integration

As [3, sec. 6.3.1] indicates , developing numerical quadrature rules on polygons is
not trivial. To keep it rather simple and universal, triangular sub-tessellations of
the polygons are used to then apply standard quadrature rules on each triangle.
This approach is computationally inefficient compared to other methods [4, sec.
2.1]. But its implementation is straight-forward and it can be used to integrate
any function given in procedural form. The sub-tessellation of polygons is realized
in If::dgfe::subTessellation() (listing 12). Given a polygon with n nodes it returns n
objects of type 1f: :geometry: :Tria01 in a vector. Each of them is created from the
coordinates of the barycenter of the cell and those of two adjacent nodes. Note that
this only works with convex polygons (which PolyMesher produces exclusively).

/%%

* @brief returns a vector of triangle geometry objects resulting

* from subdividing a polyon from its barycenter into triangles.

*/

std: :vector<std::unique_ptr<1f::geometry::Tria01>> subTessellation(
const 1f::mesh::Entity *polygon);

Listing 12: Declaration of If::dgfe::subTessellation().

The class SubTessellationIntegrator uses If:dgfe::subTessellation() to integrate
over polygonal cells. A demonstration for the integration of a function over a polygo-
nal is shown in listing 13. It makes use of the class 1f: :dgfe: :MeshFunctionGlobalDGFE
which is discussed above. For the integration on the triangle geometries result-
ing from the sub-tessellation, LehrF'EM++’s internal quadrature infrastructure is

17

10

11

12

13

14

15

16

used. SubTessellationIntegrator has a 1f::quad::QuadruleCache as a private
attribute for efficiency. For a general function f(z), its integration over a polygon is
implemented in the following way:

1= [305 i (v (&) a0 (8) 9

With W; being LehrFEM++’s mapping from the reference triangle T to a general
triangle T' (Note: in [2, sec. 2.8.1], the local-global mapping is denoted by ®x. In
this report, ® already stands for basis functions). 7' denotes a triangle of the sub-
tessellation . of k. Additionally, w; are the weights of the quadrature rule employed
on the reference triangle, él are the quadrature points on the reference triangle and
‘det DU <€l> ‘ are the gramian determinants of the mapping W;. For MeshFunctions
A, the following relation needs to be taken into account and is implemented in
SubTessellationIntegrator:

(00 (8)) - (7 (30 6))) 0

//get mesh
auto mesh_ptr = 1f::mesh::test_utils::GeneratePolytopic2DTestMesh(0,1);
//lambda x~2 + e~ (x*y) for mesh function
auto exponential_lambda = [](Eigen::Vector2d x) -> double {
return x[0]*x[0] + exp(x[0] * x[1]);
s
1f::dgfe: :MeshFunctionGlobalDGFE<decltype (exponential_lambda)>
exp_msh_funct (exponential_lambda) ;
1f::dgfe: :SubTessellationIntegrator<double, decltype(exp_msh_funct)>
exp_integrator;
int integration_degree = 10;
double sum = 0.0;
//loop over cells and integrate
for (auto cell : mesh_ptr->Entities(0)){
sum += exp_integrator.integrate(*cell, exp_msh_funct, integration_degree);

3

Listing 13: Demonstration of the integration of 22 + e**¥ over a polytopic mesh of the
unit square (test mesh shown in figure 4).

The function integrate() takes the degree of exactness of the quadrature rule used for
an argument as shown in listing 13.

The infrastructure for numerical integration in the discontinuous setting is completed
by two functions to calculate the error over a mesh. More precisely, they calculate
the L?-norm of the difference of two functions. Both of them are implemented as

18

templated functions. For two sclar-valued functions f and g defined on a domain (2,
L2ErrorSubTessellation() calculates the following expression:

15 = ol = [1760 alPax) (10)

L2ErrorGradSubTessellation() does the same routine, but here f and g have to be
provided as vector-valued functions. The functions feature the word ”error” because
if one passes the known true solution of a PDE and the calculated approximation in
the discrete space, the L?-norm of the error of the approximation is received.

DGFE Space

A new class 1f: :assemble: :UniformDGFEDofHandler does the handling of degrees
of freedom in a discontinuous setting and is situated where its classical equivalents
are: In 1f/assemble/dofhandler.h. It is an implementation of the abstract base
class 1f: :dgfe: :DofHandler.

Most functionalities to solve equation 24 numerically are collected in the class 1f: :dgfe: :
DGFESPace. It contains a pointer to a 1f::mesh: :polytopic2d: :Mesh , the
1f::assemble: :UniformDGFEDofHandler which is used as well as a 1f: :mesh::
utils::CodimMeshDataSet with the information about adjacent polygons of each
segment (discussed in section 3.1). The 1f::dgfe: :DGFESpace constructor takes a
polytopic mesh as a first argument and the maximum polynomial degree of one-
dimensional Legendre Polynomials used in the basis functions in table 1. There are
only two options available at the moment. Either it is set to 2 which results in the
basis functions on the reference bounding box kg being exactly as depicted in figure
6. Or it is set to 1 which leads to a basis of 4 functions per polygon, namely those
in the top left corner in 6. The DofHandler of the discrete space is initialized in the
space’s constructor.

19

5. Boundary Value Problem

5.1. Theory

As has been mentioned multiple times before, the notation used here is almost identi-
cal to [3] to make direct links to the book possible. Deriving and explaining all parts
of the variational formulation of 1 & 2 would go far beyond the scope of this project
and would be a copy of the work done in [3]. What is discussed here are all parts
from the book which are necessary to implement and solve the variational formulation
of 1. First off, there is a need to introduce a series of operators and symbols used.
Let x; and k; be two adjacent polygons of .7,. F' describes the interior face they
have in common F' = 0k; N 0k;. The outward unit normal vectors with respect to
r; and k; on F' are indentified with n,, and n,.. Then, v is a general scalar-valued
function and q is a general vector-valued function. In the discontinuous setting it is
important to describe precisely to which cell, x; or ;, a function trace on a common

face belongs to. For this reason (U;_, q:) and (v,jfj, qZJ) are used to distinguish traces

of the functions v and q taken from the interior of the two cells. Now the average

operator can be introduced. For x € F' € .%;” the averages of v and q are given by

vl = % (v;fi + v@) R CHES % (q;; + q;fj) : (11)

The complementary jump operator is defined by:

[v] = vin, +ving, [d]=q) n.,+aq n, . (12)

If the face I' € %/ is on the boundary of the mesh such that there is only one
adjacent cell k;, the operators become:

o} =vl, {d}=qi, [l=vin. [d]=q; n. . (13)

And the upwind jump operator defined on interior faces F' € .%;” is denoted by:

lv] ==vf —v, . (14)
The discontinuity penalization function o : .%;” U.ZP — R is defined as:
%ﬁim}, xeFeZ ,FCOk NIk,
CUAFOIN\/(pH,l{,F) r ‘F‘, XEFE?;?,FC@I{.

||

CO' MmaXge{k+,x—} {CINV (pa K, F)
o(x) =

(15)
with Ap := H\/KnH%OO(F), for every face F' C Ok, F € F; UZFP, and C, a sufficiently
large positive constant. The maximal total polynomial degree of the tensor-product
Legendre Polynomial basis function is denoted as p,. It is the result of adding the
maximum polynomial degree of the used one-dimensional Legendre Polynomials. The
term p is the polynomial degree appearing in the definition of shape-regularity of

20

meshes in [3, sec. 3.1, Def. 10] and in this project is defined as the maximum poly-
nomial degree of the used one-dimensional Legendre Polynomials.
The function Ciyy appearing in 15 is defined as:

F
SUf i |K

Civv(p, k, F) == Ciyy min {L,p%d—l)} . (16)

With C},, being a positive constant and /ﬁzf: € #F. This # is the family of all
triangles (simplices) contained in x having at least one common face with . Then,
ki € Z[is a simplex which shares the specific face F' C dx. A visualization of the
implementation of this is depicted in figure 8.

For expressions v it will always be clear to which element x,x € .7, the functions
correspond to. Therefore the subscript x is suppressed from now on. A further

subdivision of the boundary of the domain 0f2 is needed to comply with the notation
of [3]:

0€) = {x € 0N : Z a;;(x)nin; > O}) (17)

ij=1
With a;; being entries of the diffusion tensor and n = (ny,n2)7 the outward unit

normal vector to 0§2. The part set of the boundary which is not 02 is further
divided:

0_Q = {x € 9N\ : b(x) -n(x) < 0}

(18)
0.0 = {x € 90\ : b(x) - n(x) > 0}.

Also 0y€ is further divided into two sets, namely the set where Dirichlet Boundary
Conditions are employed, denoted by 0€2p, and the part where Neumann Boundary
Conditions are enforced, which is 9Q2y. Therefore 02 = 9_Q U 0, QU 0Qx U 0Qp.
Analogously to 0_(2, there exists a subset of the boundary of cells which appears in
the DGFEM vraiational formulation of equations 1 and 2:

0_k:={x €0k :b(x) n(x) <0}. (19)

The full variational formulation of equation 1 derived in [3, sec. 5.1] is now presented.
As stated above, no reasoning or derivation will be given, find all of this in [3, sec.
5.1]. First off, the reaction-advection part of the equation results in:

Bar(w, v) Z/ bw+cwvdx—2/ (b-n)|wl|vt dS

KET} KET, 9-r\OQ (20)
— Z / -n)wtvtdS
ez, Jo_rn(@apUo- Q

Then, the diffusion part is

21

(w,v) = Z/an \Z" dx+/ ofw] - [v]dS

fﬂ 7D
KE %L U/}

S P N MO RS e A B HTGEE

F7U
(1)

Where IT ;> : [L2(Q)]° = [VP(,)]? denotes the orthogonal L*projection onto the

finite element space [VP ()]

Putting these two parts together results in the bilinear form of the variational formu-

lation:

B(w, v) := Bu(w,v) + Ba(w, v) (22)
The linear term of the variational formulation is:

= /fv dx — Z/ (b-n)gpvtds

KE q-h KE 7- KD(BQDUE) Q

_ /BQD 9o (VaIl2(v/aVv) -n—ov) ds + / gnu ds.

219N

(23)

Finally, the full DGFEM approximation of the original problem 1: Find uj, € VP(.7,)
such that:

B (un,vp) = (vp) Yo, € VP (). (24)

5.2. Implementation
Discontinuity Penalization

The SIP is implemented as a class as seen in figure 7. Listing 14 shows its constructor.
The class owns a pointer to the discrete space used so it can access the data set which
contains information about the adjacent polygons of each face in the mesh. How to
set the constants Cj,y and C, is not defined clearly in [3]. They are rather heuristic
values whose correctness can be shown by the method of manufactured solutions.
And they are used for the theoretical error analysis in [3]. The variable Ap needs to
be calculated in the program before calling operator() of the SIP on a face.

The implementation of the SIP is rather straight-forward. A visualization of the
calculation of k" € Z/ is depicted in figure 8. This is implemented in a function
simplexAreas() which returns a vector of the areas of kf € . as shown in figure
8. The declaration of the constructor and the operator() of the SIP-class is shown in
listing 14.

22

DiscontinuityPenalization(std: :shared_ptr<const 1f::dgfe::DGFESpace>
dgfe_space_ptr, scalar_t c_inv_constant, scalar_t
c_sigma_constant) :
dgfe_space_ptr_(std: :move(dgfe_space_ptr)),
c_inv_const_(c_inv_constant),

c_sigma_const_(c_sigma_constant) {}

scalar_t operator() (const 1f::mesh::Entity &edge, scalar_t A_f) const ;

Listing 14: Declaration of the constructor of 1f: :dgfe: :DiscontinuityPenalization
and the declaration of its operator().

K K K

F F F

Figure 8: Visualization of the explicit calculation of ' € Z. For a cell
k and a face F' € Ok the three blue triangles are the s which
are taken into account.

Assembly of Galerkin Matrix and RHS Vector

Assembling the Galerkin Matrix (eq.21) correctly was the hardest step of the project.
This process, including the simplification of the more complex terms and their trans-
formation into pseudocode is presented here. All terms which cannot be implemented
straight-forward and include jump(12), average(11) or upwind jump(14) operators are
discussed.

Diffusion The second and third addend of equation 21 both have different forms for
interior and boundary segments. Equations 12, 11 and 13 are used to arrive at the
following results.

Firstly the second addend of the diffusion term is presented. For interior edges:

23

/ ofw] - [v] dS
:U/ (wi-ni+wj-nj)(vi-ni+vj~nj) dS
y
:0'/ (wi~ni—wj-ni) (vi-ni—vj'ni) dS (25)
—a/ Wi v N —w; vy N — Wy v NG+ w; v dS
F

=0 Wy -V — Wi -V — W - v +wj-v; dS
75

And for boundary edges:

/ﬂD ow] - [v] dS

7'h

:a/ w-n-v-ndsS (26)
T

:a/ w-vdS
TP

This second addend of equation 21 is assembled in the Galerkin Matrix with algorithm
1.
Algorithm 1: Assembly of the Galerkin Matrix regarding the second ad-

dend of equation 21.

for each e € #; do
for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add o [w; - v; dS to Galerkin Matrix at (DOF(v;), DOF (w;))
Add —o [w; - v; dS to Galerkin Matrix at (DOF(v;), DOF (w;))
Add —o [w; - v; dS to Galerkin Matrix at (DOF(v;), DOF(w;))
Add o [w; - v; dS to Galerkin Matrix at (DOF(v;), DOF(w;))
end

end

end

for each e € Z do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
| Add o [, w-v dS to Galerkin Matrix at (DOF(v), DOF(w))
end

end
end

24

Note that w; and w; refer to traces of the basis functions on two different cells x; and
k; adjacent to edge e. When the edge is on the boundary, there is only one adjacent
cell with the basis functions w and v.

The third addend of equation 21 features an orthogonal L2-projection IT ;2> onto the
finite element space VP (.},). Although the projection plays a factor in the methods’
ability to solve problems with strong discontinuities, its discussion and also its imple-
mentation is omitted in this project for simplicity and clarity reasons. They remain
a task for the future.

In the following the expansion of one part of the third addend of 21 is presented.
The whole addend features two terms which are exactly the same except that trial
(w) and test (v) functions are swapped. Shown is only one of those two parts. For
interior edges:

/ {aVw} - [v] dS
Fil

1
= /ﬁy 3 (aVw; + aVwj) - (v; - n; +v; - ny) dS
i (27)
= — / (aVw; + aVwj) - (v; - n; — v - n3) dS
2)zp
1
= 5/ aVw; - v; -0y — aVw; - vj - n; +aVw,; - v; -0y —aVw; - v -0y dS
7

And for boundary edges:

{aVw} - [v] dS

oD
"/h

:/ aVw-v-ndS
FD

h

(28)

Which results in algorithm 2 to assemble its entries in the Galerkin Matrix.

25

Algorithm 2: Assembly of the Galerkin Matrix regarding one part of the
third addend of equation 21.

for each e € .#; do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add —% LaVw; - v; -0y dS to Galerkin at (DOF(v;), DOF (w;))
Add 5 [aVw; - v; - m; dS to Galerkin at (DOF(v;), DOF(w;))
Add —1 [aVw; - v; - n; dS to Galerkin at (DOF(v;), DOF (w;))
Add § [aVw; - v; - n; dS to Galerkin at (DOF(v;), DOF (w;))

end

end

end
for each e € ZP do
for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
| Add [aVw-v-n dS to Galerkin at (DOF(v), DOF(w))
end

end
end

Advection-Reaction And the last term which is extensively discussed appears in
equation 20 and features the upwind jump operator (14).

/ (b-n)|wl|vt dS
- k\OQ

= / (b-n)- (wr —w™)-v" dS (29)
O_k\OQ

:/ b-n-w-v"—b-n-w -vtdS
9_Kk\OQ

Here, w™ and v™ refer to basis functions defined on the current cell in the sum while
w™ refers to a basis function defined on another cell adjacent to 0_k\0S2 (see equation
19 for further explanation on this set). The corresponding algorithm is displayed in
algorithm 3.

26

Algorithm 3: Assembly of the Galerkin Matrix regarding the second ad-
dend of equation 20.
for each k € 7, do
for each e € 0_k\0S) do
for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add — [(b-n-wt-v" dS to Galerkin at
(DOF(v*t), DOF(w™))
Add [[b-n-w" vt dS to Galerkin at (DOF(v*), DOF(w™))
end

end

end
end

In contrast to the assembly of the LSE components of the variational formulation
in the classical setting, the DGFEM version routines cannot be trivially passed to a
general assembly algorithm that iterates over cells of codimension 0. The equations
20, 21 and 23 all feature parts of integration over sets of faces in the mesh rather than
cells only. Additionally, also the cell-oriented assembly depends on information from
the edges of the mesh.

Extensive routines for the DGFEM LSE assembly are implemented in classes rep-
resenting the equations 20, 21 and 23. The classes AdvectionReactionMatrixAs-
sembler and DiffusionMatrixAssembler assemble entries in the Galerkin matrix
themselves and are not passed to LehrFEM++’s assembling algorithms
If::assemble::AssembleMatrixLocally(). The same goes for the class which assem-
bles the linear term (right hand side vector of 24 AdvectionReactionDiffusion-
RHSAssembler.

For a full example of the usage of all essential parts of the implementation refer to
the complete listing 15 in the appendix.

6. Numerical Experiments

Finite Element Methods are proven to be correct by the method of manifactured
solutions. A known solution is inserted into the PDE, the problem is solved with
according boundary conditions and the convergence of the approximation error is
studied.

In this case 1 and 2 are solved on a series of Voronoi Tessellations (of which some are
displayed in figure 2) of the unit square (0,1)? generated by PolyMesher. Neumann
boundary conditions are employed on I'y which is made up of all edges of which
both nodes are on the side x = 1. The rest of the boundary belongs to I'p and is
employed with dirichlet boundary conditions. The diffusion coefficient is defined by
a(z,y) = 0, with § = sin(4-11- (z+y))?>+1. The advection coefficient is [2—zy, 2—2?|T

27

and the reaction coefficient ¢ = (1 +) - (1 + y)2.

This problem has the analytical solution e = 1+ sin(IT- (1 + z) - (1 + y)* - %)
The parameters of the discontinuity penalization in equation 15 and 16 are set to
Cinv = 0.5 and C, = 20. Figure 9 shows that the Ly error of the approximated
solution converges as is expected and shown in [3, sec. 6.4.1].

Error convergence of full Advection-Reaction-Diffusion problem

with mixed boundary conditions

1071 3

L LT e p=1
L AR * p=2
10-2 4 LA e e O(hP*1)
E e,
+ fea,
e,
10-3 * e
s] *-. ‘®..
5 Tk e
> 1074 4 *.)
3 ' RS
1075 - ¥
] *..
1076 - L 59
3 L
*
T T L —
10! 102 103

n [# cells in mesh]

Figure 9: Convergence of the Lo-error of solutions to 1 & 2 using discon-
tinuous Galerkin FEM. Constants set for the SIP are C,, = 0.5
and C, = 20.
dimensional Legendre polynomials used for basis functions.
The maxmimum mesh width of the Voronoi tessellations is
denoted by h.

P describes to polynomial degree of one-

7. Learnings and Outlook

As is usual in programming projects, many problems that have not been not on the
radar before were encountered. Already the incorporation of polytopic meshes into
LehrFEM++ and especially their generation and data import into the program was
full of problems. The code provided for PolyMesher did not work out of the box. One
actual bug had to be found and multiple adaptions were necessary for the process to
work as planned. The bug will be reported to the authors of PolyMesher. A big learn-
ing is that one should first go for the straight-forward and universal implementations
before trying to go for an elegant and efficient type. This was particularly the case for

28

the numerical integration used on the polytopic mesh. Displayed in the appendix B
that the original idea was to use an algorithm used for the very fast integration of ho-
mogeneous functions, presented in [4]. After some troubles of actually implementing
it (it is still present on the current repository branch but only works for polynomial
functions), it was noticed that is not universal enough for the use in this project. In
general, many parts were implemented without being absolutely necessary. But that
is okay for a Bachelor project. Self-organization and pragmatic problem solving were
needed. The challenge was interesting and an instructive experience.

As mentioned before, the implementation of the orthogonal L2-projection IT ;2 onto
the finite element space VP (.7,) remains a task.

Most algorithms implemented in the project can surely be implemented a lot more
efficiently. The focus is set strictly to correct results while performance optimizations
are kept to a minimum.k

29

References

1]

Hiptmair, R., Casagrande, R. et al, LEHRFEM++, Simplistic Finite Ele-
ment Framework for research and education, https://github.com/craffael/
LehrFEMpp

Hiptmair, Ralf. " Numerical Methods for Partial Differential Equations”. Spring
2023, ETH Zurich. https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.
pdf

Cangiani, A., Dong, Z., Geourgoulis, E. H., Houston, P. (2017). hp-Version Dis-
continuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs
in Mathematics. https://doi.org/10.1007/978-3-319-67673-9

Antonetti, P. F., Houston, P., Pennesi, G. (2018). Fast Numerical Integration
on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element
Methods. Journal of Scientific Computing (2018) 77:1339-1370. https://doi.
org/10.1007/s10915-018-0802-y

A. Cangiani, E.H. Georgoulis, P. Houston, hp-Version discontinuous Galerkin
methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci.
24(10),(2014)

Talischi, C., Paulino, G. H., Pereira, A., Menezes, 1. F. M. (2012). PolyMesher: a
general-purpose mesh generator for polygonal elements written in Matlab. https:
//link.springer.com/article/10.1007/s00158-011-0706-z

Georgoulis, E. H., Lasis A., A note on the design of hp-version interior penalty dis-
continuous Galerkin finite element methods for degenerate problems . IMA Journal
of Numerical Analysis 26(2) (2006) https://doi.org/10.1093/imanum/dri038

30

https://github.com/craffael/LehrFEMpp
https://github.com/craffael/LehrFEMpp
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://doi.org/10.1007/978-3-319-67673-9
https://doi.org/10.1007/s10915-018-0802-y
https://doi.org/10.1007/s10915-018-0802-y
https://link.springer.com/article/10.1007/s00158-011-0706-z
https://link.springer.com/article/10.1007/s00158-011-0706-z
https://doi.org/10.1093/imanum/dri038

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

A. Script Example

/*x @file

* Qbrie

f Bachelor Thesis DGFEM

* @author Tarzis Maurer

* Qdate
* Qcopy

*/

#include
#include
#include
#include
#include
#include

#include

#include
#include
#include
#include
#include
#include
#include
#include

#include

#include

July 23
right ETH Zurich

<cstdlib>
<filesystem>
<iostream>
<stdexcept>
<string>
<vector>

<iomanip>

<1f/mesh/polytopic2d/polytopic2d.h>
<1f/mesh/hybrid2d/hybrid2d.h>

<1f/mesh/mesh.h>
<1f/io/io.h>
<1f/mesh/utils/utils.h>
<1f/base/base.h>
<1f/dgfe/dgfe.h>
<1f/fe/fe.h>
<1f/uscalfe/uscalfe.h>

"1f/mesh/test_utils/test_meshes.h"

//function to write error to a file

void Write_error_file(std::string run_name, double c_inv, int c_sigma, int

— num_cells, std::string error_type, double error){

//error file

std::

auto

setprecision(17);

c_inv_str = std::to_string(c_inv);

c_inv_str.resize(4);

auto c_sigma_str = std::to_string(c_sigma);
std::string out_file_name = "measurements/" + run_name + "/" +
— std::to_string(num_cells) + "_" + c_inv_str

+ "_" + c_sigma_str + "_" + error_type + ".txt";

std::ofstream out_file(out_file_name);

out_f
out_f

ile << error;

ile.close();

int main(int argc, char *argv([]){

31

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

[/ #H R HE USAGE of this script in bash #########
/%

./projects.dgfem.full_bvp <RUN_NAME> <C_INV> <C_SIGMA> <LIST OF # cells in mesh

— separated by space>

EXAMPLE:

“\newpage"

./projects.dgfem.full_bvp my_run_name 0.5 20 4 8 16 32 64 128 256 512 1024 2048
< 4096

*/

//get run arguments: name and constants for discontinuity penalty
std::string run_name = argv[1];

double c_inv = std::stod(argv[2]);

double c_sigma = std::stod(argv[3]);

std::cout << "C_inv: " << c_inv << " and C_sigma: " << c_sigma << "\n";

//set the integration degree used for assembling Galerkin Matrix and RHS

int integration_degree = 15;

// Scalar valued reaction coefficient c
auto c_coeff_lambda = [](Eigen::Vector2d x) -> double {
return (1 + x[0]) * (1 + x[1]) * (1 + x[1]);
};
1f::dgfe: :MeshFunctionGlobalDGFE m_c_coeff{c_coeff_lambdal};
//Vector valued advection coefficient b
auto b_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Vector2d {
return (Eigen::Vector2d{2 - x[0]* x[1] , 2 - x[0]*x[0]});
};
1f::dgfe: :MeshFunctionGlobalDGFE m_b_coeff{b_coeff_lambdal};
// Scalar valued div of advection coeff
auto div_b_coeff_lambda = [](Eigen::Vector2d x) -> double {
return -x[1];
};
1f::dgfe: :MeshFunctionGlobalDGFE m_div_b_coeff{div_b_coeff_lambdal};
// 2x2 diffusion tensor A(x)
auto a_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Matrix<double, 2, 2> {
double entry = 1.0 + (std::sin(4.0 * M_PI *(x[0] + x[1]))) * (std::sin(4.0 *
— M_PI x(x[0] + x[11)));
return (Eigen::Matrix<double, 2, 2>() << entry, 0.0, 0.0, entry).finished();
};
1f::dgfe: :MeshFunctionGlobalDGFE m_a_coeff{a_coeff_lambda};

32

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

//define eulers number
const double E =
— 2.7182818284590452353602874713526624977572470936999595749669676277 ;
// Scalar valued prescribed function gD
auto gD_lambda = [](Eigen::Vector2d x) -> double {
return 1.0 + std::sin(M_PI * (1.0 + x[0]) * (1.0 + x[1]) * (1.0 + x[1])
- 0.125);
+;
1f::dgfe: :MeshFunctionGlobalDGFE m_gD{gD_lambdal;

auto gN_lambda = [E] (Eigen::Vector2d x) -> double {
return 0.39269908169872414*std: :pow(l + x[1],2)*
std: :co0s(0.39269908169872414* (1.0 + x[0])*std::pow(l + x[1],2))*
(1.0 + std::pow(std::sin(4*M_PI*(x[0] + x[1]1)),2));
I
1f::dgfe: :MeshFunctionGlobalDGFE m_gN{gN_lambda};

// Scalar valued prescribed function f
auto f_lambda = [](Eigen::Vector2d x) -> double {
return 0.7853981633974483*(1 + x[0])*(2 - std::pow(x[0],2))*(1 + x[1])*
std: :co0s(0.39269908169872414*(1 + x[0])*std::pow(1l + x[1],2)) +
0.39269908169872414xstd: :pow(1l + x[1],2)*(2 - x[0]*x[1])*
std::cos(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2)) -
x[1]*(1 + std::sin(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2)))
(1 + x[0])*std::pow(l + x[1],2)*
(1 + std::sin(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2))) -
19.739208802178716%(1 + x[0])*(1 + x[1])*
std::cos(0.39269908169872414*(1 + x[0])*std::pow(l + x[1],2))*
std::cos(4*M_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -
9.869604401089358*std: :pow(1l + x[1],2)*
std: :cos(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2))*
std::cos(4*xM_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -
0.7853981633974483*(1 + x[0])*
std: :co0s(0.39269908169872414*(1 + x[0])*std::pow(1l + x[1],2))*
(1 + std::pow(std::sin(4*M_PI*(x[0] + x[1]1)),2)) +
0.6168502750680849*std: :pow(l + x[0],2)*std::pow(1l + x[1],2)*
std: :sin(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2))*
(1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2)) +
0.15421256876702122*std: :pow(l + x[1],4)*
std::sin(0.39269908169872414* (1 + x[0])*std::pow(l + x[1],2))*
(1 + std::pow(std::sin(4*M_PIx(x[0] + x[1]1)),2));
};
1f::dgfe: :MeshFunctionGlobalDGFE m_f{f_lambda};

33

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

//loop over meshes

for (int i = 4; i < argc; i++){

//read number of cells

std::string num_cells = argv[i];

//get mesh
std::filesystem: :path here = __FILE__;
auto mesh_file = here.parent_path().string() +
— "/msh_files/unit_square_voronoi_" + num_cells + "_cells.vtk";
1f::io::VtkPolytopicReader
—» reader(std::make_unique<lf::mesh: :polytopic2d: :MeshFactory>(2), mesh_file);

auto mesh_ptr = reader.mesh();

//write mesh for python drawing
//1f::io::writeMatplotlib (*mesh_ptr, "./csvs/" +
— std::to_string(mesh_ptr->NumEntities(0)) + ".csv");

//dgfe space p = 1
1f::dgfe: :DGFESpace dgfe_space(mesh_ptr, 1);
auto dgfe_space_ptr = std::make_shared<lf::dgfe: :DGFESpace>(dgfe_space) ;

auto boundary_edge = 1f::mesh::utils::flagEntitiesOnBoundary(mesh_ptr, 1);

//boundary_N_edge

1f::mesh::utils::CodimMeshDataSet<bool> boundary_n_edge(mesh_ptr, 1, false);

//boundary_0_edge

1f::mesh::utils: :CodimMeshDataSet<bool> boundary_O_edge(mesh_ptr, 1, false);

//boundary_D_edge

1f::mesh::utils::CodimMeshDataSet<bool> boundary_d_edge(mesh_ptr, 1, false);

//boundary_minus_edge

1f::mesh::utils::CodimMeshDataSet<bool> boundary_minus_edge (mesh_ptr, 1,
— false);

//boundary_plus_edge

1f::mesh::utils::CodimMeshDataSet<bool> boundary_plus_edge(mesh_ptr, 1,
— false);

//setup qr rule for segments
const 1f::quad::QuadRule qr_s =
— 1f::quad::make_QuadRule(1lf::base::RefEl: :kSegment(), integration_degree);
// qr points
const Eigen::MatrixXd zeta_ref_s{qr_s.Points()};
//weights
Eigen::VectorXd w_ref_s{qr_s.Weights()};

34

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

—

//BOUNDARY SETS ASSEMBLY
for (auto cell : mesh_ptr->Entities(0)){
for (auto edge : cell->SubEntities(1)){
if (boundary_edge (*xedge)){
//normal n
auto polygon_pair = dgfe_space_ptr->AdjacentPolygons (edge) ;
auto normal =
1f::dgfe: :outwardNormal (1f: : geometry: :Corners (* (edge->Geometry())));
//if orientation of edge in polygon is negative, normal has to be
multiplied by -1;
normal *= (int)

(cell->RelativeOrientations() [polygon_pair.first.second]);

1f::dgfe: :BoundingBox box(*cell);

// qr points mapped to segment

Eigen::MatrixXd
zeta_global_s{edge->Geometry()->Global(zeta_ref_s)};

// qr points mapped back into reference bounding box to retrieve
values

Eigen: :MatrixXd zeta_box_s{box.inverseMap(zeta_global_s)};

//gramian determinants

Eigen::VectorXd
gram_dets_s{edge->Geometry()->IntegrationElement (zeta_ref_s)};

auto a_evaluated = m_a_coeff(*xcell, zeta_box_s);

double boundary_O_sum = 0.0;

for (int i = 0; i < gram_dets_s.size(); i++){
boundary_O_sum += normal.dot(a_evaluated[i] * normal) *
gram_dets_s[i] * w_ref_s[il;
}
//BOUNDARY O ##t#######H####
if (boundary_O_sum > 0){
boundary_0O_edge (*edge) = true;
//HERE DIRICHLET AND NEUMANN ################
auto corners = 1f::geometry::Corners (*(edge->Geometry()));
if (corners(0,0) == 1.0 && corners(0,1) == 1.0){ //whole edge

on side x =1

boundary_n_edge (*edge) = true;
} else {
boundary_d_edge (*edge) = true;

}

} else { //BOUNDARY_plus and BOUNDARY_minus ###############
auto b_evaluated = m_b_coeff (*xcell, zeta_box_s);
double boundary_plus_sum = 0.0;

for (int i = 0; i < gram_dets_s.size(); i++){

35

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

boundary_O_sum += b_evaluated[i] .dot(normal) *

— gram_dets_s[i] * w_ref_s[i];

}
if (boundary_plus_sum < 0){
boundary_minus_edge (xedge) = true;
} else {
boundary_plus_edge (*edge) = true;

}
¥
}
}

}

e END PREPARE BOUNDARY EDGE
SETS—-——-—-—————————————————

e ASSEMBLE GALERKIN MATRIX &
RHS-———————————————————————

//set up discontinuity penalization
1f::dgfe::DiscontinuityPenalization disc_pen(dgfe_space_ptr, c_inv, c_sigma);

unsigned n_dofs = dgfe_space_ptr->LocGlobMap() .NumDofs();

//galerkin matrix initialization
1f::assemble: :COOMatrix<double> A(n_dofs, n_dofs);
A.setZero();
//diffusion assembler
1f::dgfe::DiffusionMatrixAssembler<decltype(A), double, decltype(m_a_coeff),
decltype (boundary_edge)>

diffusionAssembler(dgfe_space_ptr, m_a_coeff, boundary_edge,
boundary_d_edge, integration_degree, disc_pen);
//advection reaction matrix assembler
1f::dgfe: :AdvectionReactionMatrixAssembler<decltype(A), double,
decltype(m_b_coeff), decltype(m_c_coeff), decltype(boundary_edge),
decltype(m_div_b_coeff)>

advectionReactionAssembler (dgfe_space_ptr, m_b_coeff,
m_div_b_coeff, m_c_coeff, boundary_edge, boundary_d_edge,
boundary_minus_edge, integration_degree);
//assemble matrix
diffusionAssembler.assemble(A);

advectionReactionAssembler.assemble(A) ;

//rhs initialization

Eigen: :VectorXd rhs(n_dofs);

rhs.setZero();

//RHS Assembler

1f::dgfe: :AdvectionReactionDiffusionRHSAssembler<double, decltype(m_a_coeff),

— decltype(m_b_coeff), decltype(boundary_edge), decltype(m_f), decltype(m_gD),

36

248

249

250

251

252

254

255

256

257

258

259

260

261

262

263

264

266

267

268

269

270

271

272

274

275

276

277

278

279

280

281

decltype(m_gN),
decltype(rhs)>
rhsAssembler(dgfe_space_ptr, m_f, m_gD, m_gN,
m_a_coeff, m_b_coeff, boundary_minus_edge,

boundary_d_edge, boundary_n_edge, integration_degree,

— disc_pen);

//assemble rhs vector

rhsAssembler.assemble(rhs);

[/===mmmmmmmmm oo END ASSEMBLE GALERKIN MATRIX &
R
e SOLVE LSE-------—=--=—-=——=——————-

Eigen: :SparseMatrix<double> A_crs = A.makeSparse();

Eigen: :SparseLU<Eigen: :SparseMatrix<double>> solver;
solver.compute(A_crs);

LF_VERIFY_MSG(solver.info() == Eigen::Success, "LU decomposition failed");
Eigen::VectorXd sol_vec = solver.solve(rhs);

LF_VERIFY_MSG(solver.info() == Eigen::Success, "Solving LSE failed");

[/=== mmm e END SOLVE LSE--------—--=-=——————————-
[/=== mmm e MESH FUNCTION AND ERROR
CALCULATION--------—=—=—=——————————

1f::dgfe: :MeshFunctionDGFE<double> dgfe_mesh_function(dgfe_space_ptr,

< sol_vec);

//calculate L2 error of solution with "overkill" QR

double mesh_func_12_error = 1f::dgfe::L2ErrorSubTessellation<double,

— decltype(dgfe_mesh_function), decltype(m_gD)>(dgfe_mesh_function, m_gD,
< mesh_ptr, 30);

[[==mmmmmmmmm e END MESH FUNCTION AND ERROR
CALCULATION----—-===—==————————————
[[==mmmmmm e WRITE ERROR TO FILE------—----—-——————————

write_error_file(run_name, c_inv, c_sigma, std::stoi(num_cells), "L2",

—» mesh_func_12_error);

std::cout << "L2 Error for " << num_cells << " cells: \t" <<

< mesh_func_12_error << "\n";

return 0;
} //end main

Listing 15: Script example to produce the measurements with p = 1 in figure 9.

37

B. Proposed Changes

Here the proposed changes to the LehrFEM++ library which have been formulated
in the beginning of the project.

Changes LehvFemt+ wimz (polylopic meshes ¥ DGFE)
4

meodvle s

66{;;: /’I//‘VW/

ay#m‘? with the oianges 710 {he
//.escu Hae mc-Hiod / wl'// a/7/77 Yo fh/frq/c 'ﬂ‘g hecessas

terms ove- Palf’apu and seqgmends. /| wi¥ closely follon H‘e/fa/‘u
o{ Arndowgtti 'P. ! ”Gv:l/au y aly/ Penvesi G. - "Tasl Mowecilal Ihfeguation o
foly}la,fc Meshes with A‘Pfllra'lmus to Disconknvos Galerbin Finitd Element

U ethods', ntips:ilink springer.com/article/10.1007/s10915-018-0802-y , /I ;oow'.(es '/h /ormaﬁau on

how fo assemble the Galerbrn Mafvic. The a(/v ons' le—a(/"n(d boun/f'n] boxes
ore mapped o Hhae erevice poundin box (- 41,7)?
T he compu#ahans for Hie' element mahites
is Hew done on Yhe mg /n,s of He _
po(,,ous wiHrin (",4}2. The* reasoun fo» Hils
I) 'HAC 0‘10f¢r 0/ (e n'/vf folynam:.a(s dg/l'ufd
on (-4,19)% as basis {yncﬁ'ons o/ Hae
Aisciete space V* More of Hhis /m a
(A‘&. Jt[fou_ . -

The Jrans /orma/mu Fo: 8 —»> ;k ma,a;

the refevence bowwding box i f-1,4)7

14 Hee oxis -aligned “boondivg box B
of one <pecifit polyjon XK i yhe mest.

Fk(;) =Jﬂt; + +R W""A ng g— iE‘l.-rl

: acobian ©
trans foymalion, b e Y
tramslation Gelween [o,o]'ra\.d e
bAHtmlu O({/ 33(Foo is aﬂ]wc’ o thevefore oliaqoual. Dk = 0“0_, (‘M ha)

with by, he beinj ‘Mlo; +he [wjﬂas of Bxs sictex.

b!;m
[gnw

In the foflowing sechions [will 9o oves Some of (ebFEMs moddes whict
ove /e/”a/n/ below. . The orofec [wtrch ! 40 Hevgl, Hrewr js ina boHom—o
m anner and He c&au7es proposed su chi tuaf ng dependecicies from highe
fo (owe~ moolle avé crealed. Erl'sl;qo fuucl-o'onqu'h'es are /rc:u—ve ‘
LenWFEM mcrct7 s extendeof .

‘ uscalfe-module: Lagrangian FEM ‘

|

fe-module: Parametric scalar finite elements

assemble-module: d.o.f. handling and flagging

refinement-module: mesh hierarchies

geometry-module: entity shapes and mappings

mesh-module: mesh entity management

base-module: containers, data types, entity types

38

M) Base —PefEe

As can be seen albovc' tHeve ¢ N0 pfeence elemend fo
fd[/ ons. To comply with /1[711» modvles , whichh reguive an w/:l, /n
the mesh {o héeve 'a Ze/E(; @ "Aicabled Re/éd " {cy /"{770“5 ('g
infvoclvceof. Most fouctionalities o/ e other teferérmce’ elements
ave nof /wow'o(eo/, assects will farl if Hee Co&rc:Foud"ﬁ', mew, ber
{moﬁou of ﬂ‘& elass © Cal/ea/,

Frisd oﬂ, Here /s a hew //,oe 0/ 26’/[‘(:

fpoiu-l =

cse Mcn‘ =
é/‘r;'.q = 3, /
t Quad = d,
é/’a(y"am = 3,

envm clasc A’efEef,a:: Una‘;jncd cha. £
. 2

3
Aeve are screen shofs of +ue fwc/r'ons ad aftvibvies o/

Public Member Functions Private Attributes

constexpr RefEl (RefEIType type) noexcept RefEIType type_
Create a RefEl from a If::base::RefEIType enum. More...

constexpr RefEl (const RefEl &)=default Static Private Attributes

Default copy constructor. More... static const Eigen::MatrixXd ncoords_point_dynamic_ = Eigen::VectorXd(0)
constexpr RefEl (RefEl &&)=default static const Eigen::MatrixXd ncoords_segment_dynamic_
Default move construtor. More... static const Eigen::MatrixXd ncoords_tria_dynamic_

tati t Eigen::MatrixXd d d_d i
constexpr RefEl & operator= (const RefEl &rhs) slallc const Egen: Ll ncoofds _qact dynamic

" static const std::vector< Eigen::Matrix< double, 0, 1 >> ncoords_point_static.
Default copy assignment operator. More. _point_static_

static const std::vector< Eigen::Matrix< double, 1, 1 >> ncoords_segment_static_
constexpr RefEl & operator= (RefEl &&rhs) noexcept

static const std::vector< Eigen::Vector2d > ncoords_tria_static_
Default move assignment operator. More

static const std::vector< Eigen::Vector2d > ncoords_guad_static_

constexpr dim_t Dimension () const im_t, 2>,3> sub_sub_entity_index_tria_= {{{0, 1}, {1, 2}, {2,

static constexpr std::array< std:array< base::

Return the dimension of this reference element. More... o
x constexpr size_type NumNodes () const static constexpr std::array< std::array< base::dim_t, 2>, 4> sub_sub_entity_index_quad_ = {{{0, 1}, {1, 2}, {2,
The number of nodes of this reference element. More.... 3}, {3, 0B

X const Eigen::MatrixXd & NodeCoords () const
Get the coordinates of the nodes of this reference element. More...

Y constexpr size_type NumSubEntities (dim_t sub_codim) const Static Public Member Functions

Get the number of sub-entities of this RefEl with the given codimension. More... static constexpr RefEl KkPoint ()
Y constexpr RefEl SubType (dim_t sub_codim, dim_t sub_index) const Returns the (0-dimensional) reference point. More

Retun the RefEl of the sub-entity with codim sub_codim and index sub_index static constexpr RefEl kSegment ()

More Returns the (1-dimensional) reference segment.
IC constexpr sub_idx_t SubSubEntity2SubEntity (dim_t sub_codim, sub_idx_t sub_index, dim_t N

sub_rel_codim, sub_idx_t sub_rel_index) const static constexpr RefEl kTria ()

Identifies sub-entities of sub-entities (so-called sub-sub-entities) with sub-entities. Returns the reference triangle. More...

More... static constexpr RefEl kQuad ()

std:string ToString () const Returns the reference quadrilateral. More...

5 ¢ ¢
Return a string representation of this Reference element. More. template<RefElType type> clalic comlenpe QefEC (Potygan O

static const std::vector< NodeC: type >>& NodeCoords ()
Get the coordinates of the nodes of a reference

constexpr operator RefEIType () const

Conversion operator, converts this RefEl to a If::base::RefEIType enum. More...
element. More.
constexpr unsigned int Id () const

Return a unique id for this reference element. More...

~RefEl ()=default

[Aecided 4o pot erenn incledle #ue iifomaton oa Hae
hombee o f nodes a/ e poly fope [n Ve teforemce elemend. The
5"““1*&5 fo tHie {ouoh'ou.s are thee -/Ove. all. vy swall . All ./uu(/h'ou.s et
are comsfexpr will remain <o. The ones marked with a X will fail
an assevt if fhey ave called vpon a Refte o :

All other fuuction’s will be /'mp(cmeu#ed fov polygons accovoling ly.

@ 'éeome‘l;ly

The COMPO"‘QHOV‘S -{ov the elemend malrices are done ofivectl;

on Hae I”frgﬂ“- The qu,z'u’_r belueen (4,1)2 ond Hue qu'g_.h",.(/
bovudlin bqrcs o of each elemeut 5 Irivial and w,ll be (cmfu/eo/ on e -ty
whew reguived . Thovefore, the -'[woh'aulqllﬁu of Hae ;4.0»1&"7

module ave nof vied i Hae /Jo/y-/oflc mesh sefling.

To comply with e mfw'umwls o) Ja ’)al’ on SHUU bhas

o poin e fo a aﬁjea/. This /;or'u/c«_ codled just be sef
to LB | fecied fo ceale ourmm 740“&/7 classeg Ha//'v:/ have assev/s
in ereny prblic fouchion. This males debugging easien, i case one revebeless
hies Yo call membec 7(0"0/!'00\3 o/ fog'/o’m ;eom&h/' oﬁ/‘(:*/l.

The screenshot below shows aff fv"rc membe funclron;

inlhf'tc. The aplded class (anno-/a‘zd nre_eurhm‘ on e siqgul] wrtl have Lhein
filled withh assets. W Pdylopic mesh emlities wilt have “a 7.aomoh7 pointer to
a (/:.-ﬂomdv/::PalrloPic object .

Public Member Functions o'/ If::geometryGeometry

virtual dim_t DimLocal () const =0
Dimension of the domain of this mapping. More.

virtual dim_t DimGlobal () const =0 ——————— Ifzgeometry:Parallelogram
Dimension of the image of this mapping. More
virtual base::RefEl RefEl () const =0
The Reference element that defines the domain of this mapping. More. If::geometry:Point
virtual Eigen::MatrixXd Global (const Eigen::MatrixXd &local) const =0
Map a number of points in local coordinates into the global coordinate
system. More...

If:geometry:QuadO1
virtual Eigen::MatrixXd Jacobian (const Eigen::MatrixXd &local) const =0

Evaluate the jacobian of the mapping simultaneously at numPoints

points. More... If::geometry:Quad02

virtual Eigen::MatrixXd i ian (const Eigen::MatrixXd &local) const =0
Evaluate the Jacobian * Inverse Gramian (J(J7.J)™") simultaneously

at numPoints. More...
If:geometry:SegmentO1

virtual Eigen::VectorXd Integrati (const Eigen::MatrixXd &local) const =0
The integration element (factor appearing in integral transformation
formula, see below) at number of evaluation points (specified in local
o oramaton e —————— If:geometry:SegmentO2
virtual std::unique_ptr< Geometry > SubGeometry (dim_t codim, dim_t i) const =0
Construct a new Geometry() object that describes the geometry of the

i-th sub-entity with codimension=codim More e If::geometry:TriaO1
virtual std::vector< std::unique_ptr< Geometry >> C y (const attern &ref_pat, If::base::dim_t

codim) const =0

Generate geometry objects for child entities created in the course of e If::geometry:TriaO2

refinement. More...

virtual bool isAffine () const
element shape by affine mapping from reference element More.

virtual ~Geometry ()=default
Virtual destructor. More...

@ Mesl

LehFEM+ comes with a {u" uwm diveckional -,'Gfo(ej repver ecd adice
as tan be seem juw HAs screeushol faken frvown w.z Num PDE

leclvre docowment :
P
A S ! o
X ‘\\ X \ (C) Full unidirectional topology representation:
/ : g 4 All geometric entities are stored as (virtual)
é= f N\ \)/ | “objects”.
g~

LS \.\. 4 Elements hold lists/vectors of references to
s their vertices and edges.
4 Edges have references to their endpoints.

B> | Topology representation in LEHRFEM++

U he bilineay .(ovw\ covveaPondiuJ -(-o e symmelvic iwlevior
Pemally also featvves Htevws a ave 4o be compubed on
sequents ovd vequire lnowledse of +ee adjacent "polyg ows.
(f “Fhe seqments do wof hold aw Adala ov We 2 polygouns 'HA()/
beloug o', findivgy Fue bwe lovlet have o Cowpleer?y o)ﬁ &),
N 6e.'uj the hvwbe a/ pa(”ons In e mevu.
[o avet Hus durinn the witiatization of e mex\s, a
is croated +hat clores poinfer s 1o +the fwo ad/hcwf
Polygous (ov ouly owe iw case of a Bowdaur ed,,e).

The new namespace is mtvooluecel. H wrll (q/ur(3 classes
who oave depicted fbelow, /o)—lv/ﬁu wra +twe abstvar! base clasc

ﬂ‘t/ ‘nher? frvomn.

l/:meih-tfn‘ﬂy //-’-‘mt’ﬁh i MES‘IFac-/u]

| /[-mesh::pobyoprz 2D.. Pelygon | | LY :mesh: polylepic2D Mesh | | Lf-mesh ;- polylupie2D:: Mesh Caclosy
The wil have fthe same /:u ionaltres anof
members as exce/o/ Haal! it Stoves s noolea
and eolnes s vectovs inclead of avays. .
The awnof of Hue mest il be objects of the
classen of +ae 47 bvied J-o#:'uj . Tlte/ w have a ‘disablect 4
and & " dummy ' 8s mewers f“iauyﬁ.
The unew wll © mlalize the ,o("/a,if. mesh

as well as e fron above rom a le.

@ Shape Functions 4 L§E ass'emél/
As Proposed in the poper om]n‘eq,ra’rl'ov\ on polilopic merhes ‘m e jwdvodue {ion

the .(am‘l of one -dimensional and L -oriuonormal Leqemdre polynomials delived over
L (-1, "will be vsed as basis {wmdHonc o cpan o stawdad po(,v\ovv\ia(space.

Ly G . A
Zr\ (X) = 4 : it ln= = d 2 4]
TN h 2l e C(x2-n"]

Thew, basis -/W\d-l(ou.s ?[av J?, (ﬁ},\ are A&/Ilhea(. €T ':5,. a mulb —imdex
I-= {iq,}z_) . The basis {uudious on B ave deuofed 57 ;f't;"":ﬂ‘P (Z=14ic)

b 5]~ g (Ri)= Ly G)Lnl)

-!;L\e;‘/\e,f'.i’lgcc{ ’Lo(yuow\ial leaces on Hee bouuolfuj boxes By

b1 (x) = Gz (E'() VYV x e xedx VI.02|Tlcpn

Finall 0 0<¢ITecpy ¢ I s Hae basi; of Hre
Al‘schIcfﬁs' ace U _Of eadn dwf?wl Heee Is o

bjective relation pelueenfl - (i),)3 and 1,2, .. dim (B (x)) 3

I (elvPEM |, fuuckion alities reaa»d-'uj His basis wil be cofleched 1w

a new module . M will also {featvre +he /nfe jation o / Hose
batis fuwctions gver polytopes aud se s ju dhe mesnn.

The mednod ysed is +me’ A4 fvown Jue paper of Awlouethi P.
floustonP. avd Peuwesi 6. .fece & screemshot of Hue Pseudo codle:

Algorithm 1 (N, £, ki, ... kg) = [x}' ... x5 doy (x1, ..., x0)
ifN=0(&=(y,..., vg) € R is a point)
return Z(N, &, kq, ..., kg) = vll<1 -~-v§";

elseif] <N <d—1(£isapointifd =1 oranedgeif d =2 orafaceif d = 3)

m

1
..... kj) = ——— di Z(N —1,&; ki, ..., kg)
N+Z;,i:1kn (g

+x01k1 Z(N,E k1 —1,ka, ..., kq)

Z(N, &,k

¥+ x0q kg TN, E Ky, ..., kd—])>;

else if N = d (€ is an interval if d = 1 or a polygon if d = 2 or a polyhedron if d = 3)

1 m
I(N,Eky, ..., ki) = ———— D b I(N —1,& ki, ..., kq)).
N+Zn:lk" (i=1)

end if

The module will f’ea#on: enkity matvix / vecton
larowo(ur: which can be ovged rockues 4o assemble
the ths * Lhs a/ Hre Discon lmuoas Ka(a-lm (SE 97/

4k¢ .6oundav/ valve fvob(em

~div (hix) 7va0//4/l} Fodn (b)) + ¢ () = 7/ in NeR?

@ = on TouT
A(x)%aol,u n (x] = h on T

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Implementation of Discontinuous Galerkin Finite Element Method on Polygonal Meshes

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

Maurer Tarzis

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

—

Zurich, 31.07.23 |

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Introduction
	Overview of changes in LehrFEM++
	Mesh
	Theory
	Mesh Generation
	Implementation

	Discrete Finite Element Space
	Theory
	Implementation

	Boundary Value Problem
	Theory
	Implementation

	Numerical Experiments
	Learnings and Outlook
	Script Example
	Proposed Changes

