Implementation of Discontinuous Galerkin Finite Element Method on Polygonal Meshes

Bachelor Project Report supervised by Prof. Dr. Ralf Hiptmair

Tarzis Maurer, ETH Zürich, 17-934-274

July, 2023

Abstract

Discontinuous Galerkin Finite Element Methods are universal, do not lack in stability which is featured in classical FEMs and can be implemented on general polytopic meshes. An infrastructure for the problem solving of a linear degenerate secondorder boundary value problem on such general poygonal meshes in a discontinuous finite element setting is added to the FEM library LehrFEM ++ .

1. Introduction

It is known that Classical Finite Element Methods (FEMs) lack sufficient stability when applied to hyperbolic or "nearly" hyperbolic problems. Oscillations in the approximated solution can show up, mostly around regions where the gradient of the analytical solution is large. Discontinuous Galerkin Finite Element Methods (DGFEMs) allow for general non-self-adjoint PDEs to be solved without those stabilization issues. Additionally, polytopic meshes can be used (opposed to strictly triangular, rectangular or hybrid meshes) because there are no continuity constraints between neighbouring cells. This report describes a Bachelor Project which extends the C++ open-source Finite Element Method library LehrFEM ++ [1], used for teaching of the course Numerical Methods for Partial Differential Equations [2] at ETH Zürich. The two main additions are made up of an environment for the handling of general polygonal meshes within the program and functionalities to solve the general linear degenerate second order convection-diffusion-reaction boundary value problem

$$
\begin{gather*}
-\operatorname{div}(\mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} u)+\operatorname{div}(\mathbf{b}(\mathbf{x}) u)+c(\mathbf{x}) u=f \text { in } \Omega \subset \mathbb{R}^{2}, \tag{1}\\
u=g \text { on } \Gamma_{D} \cup \Gamma_{-} \quad \text { and } \quad \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} u \cdot \mathbf{n}(\mathbf{x}) \text { on } \Gamma_{N} . \tag{2}
\end{gather*}
$$

Where $\mathbf{A}: \Omega \rightarrow \mathbb{R}^{2,2}$ is a positive semi-definite bounded matrix field, \mathbf{b} a continuous vector field on Ω and c : $\Omega \rightarrow \mathbb{R}$ a bounded function. $\Omega \in \mathbb{R}^{2}$ is an open domain in two dimensions. Γ_{D}, Γ_{-}and Γ_{N} are disjoint sections of the boundary $\partial \Omega$ of the domain.

All theoretical aspects of this project closely follow [3]. The error analysis etc. is presented there and will not be repeated here. The book lies the mathematical foundation for the weak formulation of the problem $1 \& 2$ and especially the symmetric interior penalty (SIP)(also see [7]). The correctness of the implementation can be proven by the method of manufactured solutions.
A number of symbols need to be introduced for their further use. A subdivision of the domain Ω into disjoint open (and polygonal) elements κ is denoted by \mathscr{T}_{h}. $V^{\mathbb{P}}\left(\mathscr{T}_{h}\right)$ is the discrete finite element space defined over the domain. \mathscr{F}_{h} denotes the set of faces of codimension 1 associated with \mathscr{T}_{h}. This set is further subdivided into interior faces $\mathscr{F}_{h}^{\mathscr{I}}$ and faces on the boundary $\mathscr{F}_{h}^{\mathscr{B}}$.

As stated above, this project extends LehrFEM ++ , which already incorporated many functionalities. Meshes with triangular, quadrilateral or hybrid partitions were already incorporated in the library and classical FEM with nodal basis functions in the discrete space had been implemented.

Contents

1. Introduction 2
2. Overview of changes in LehrFEM ++ 4
3. Mesh 5
3.1. Theory 5
3.2. Mesh Generation 5
3.3. Implementation 6
4. Discrete Finite Element Space 11
4.1. Theory 11
4.2. Implementation 13
5. Boundary Value Problem 20
5.1. Theory 20
5.2. Implementation 22
6. Numerical Experiments 27
7. Learnings and Outlook 28
A. Script Example 31
B. Proposed Changes 38

2. Overview of changes in LehrFEM ++

Numerous additions in LehrFEM++ emerge from this project. They are not merged into the main branch of the library at this point. To have a visual overview of what is newly implemented, see figure 1 . Most additions are in the newly created namespace $l f:: d g f e$ as one goal of the project is to minimize interfering with existing infrastructure. The additions in the other namespaces $l f:: m e s h, l f:: a s s e m b l e, l f:: b a s e ~ a n d ~ l f:: i o ~ f e a t u r e ~$ tests with Google's C++ test framework and are working correctly. Functionalities regarding the solving of $1 \& 2$ in a DGFEM setting are collected in the namespace $l f:: d g f e$. Smaller parts of this module, e.g. the class lf::dgfe : :BoundingBox are also tested. More complex utilities are shown to be correct by way of numerical experiments, whose results can be found in section 6 . The current state of the project can be found in the github repository https://github.com/tarzm/lehrfempp/tree/dgfe.

Figure 1: Overview of LEHRFEM++ changes from this project. The visualization is not complete but a base to discuss upon.

3. Mesh

3.1. Theory

The application of discontinuous Galerkin finite element methods generally allows for choosing general piecewise polynomial trial and test spaces and has - more important for this section - no restrictions on the choice of subdivision of the computational domain. That is the reason why polygonal or polytopic meshes have been introduced and added to the LehrFEM ++ library to allow for more general meshes. As the error analysis in [3, sec. 5.2] requires shape regularity (defined and discussed also in [3]) of the polytopic cells in the mesh, this property is implied for all meshes used in the polytopic setting. It can be assumed that the mesh generator used for the project provides shape-regular meshes. More on the generator in the next section.

The variational formulation of the boundary value problem $1 \& 2$ includes the integration of jump terms over all edges in the mesh (see equation 24, further information in section 5). To evaluate jump terms over internal edges, a reference from each edge to the two adjacent polygonal cells is needed, otherwise an iteration over possibly all polygons would be required for each evaluation. This functionality is provided and discussed in section 3.3.

3.2. Mesh Generation

Polytopic meshes used in the project have been either made with PolyMesher [6], were programmed by hand inside the library or were originally an existing hybrid mesh from LehrFEM ++ and then interpreted as a polytopic mesh.

PolyMesher creates meshes with linear convex polygons. They are Voronoi Tessellations of the desired domain. All functionalities to generate meshes with PolyMesher can be found in the LehrFEM + + library in lf/mesh/polytopic2d/polymesher. The matlab file lf/mesh/polytopic2d/polymesher/mesh.m provides the code used to generate meshes with 2^{2} up to 2^{12} cells (a graphical representation of 4 of these are depicted in figure 2). It writes .txt-files with information about the nodes and the elements of the mesh. Another file lf/mesh/polytopic2d/polymesher/vtk_ writer.py lf/io/plot_mesh.py, written in Python then reads the information and packs it into a .vtk-file. Finally this file can be read by the new LehrFEM++ class lf::io::VtkPolytopicReader which then provides the mesh in the internal LehrFEM++ representation.

Figure 2: Visualizations of Voronoi Tessellations generated by PolyMesher. N describes the number of polygonal cells present in the mesh. All meshes are subdivisions of the unit square domain $(0,1)^{2}$. They are created via lf::io::writeMatplotlib() and lf/io/plot_mesh.py.

3.3. Implementation

An overview of the additions to the namespace $l f:: m e s h$ is depicted in figure 3. A new namespace lf::mesh::polytopic2d holds the majority of new functionalities regarding polygonal meshes.

Figure 3: Visualization of the namespace $l f:: m e s h$. It is not complete but rather an overview of what is discussed in this section. A key to the symbols can be found at the bottom of the figure.

Polygon

A new class Polygon describes all cells (codimension 0) in the 2D mesh. As depicted in figure 3, it inherits from the abstract base class lf::mesh::Entity. Its functionalities are therefore very similar to the ones of a lf::mesh::hybrid2d::Triangle and lf::mesh::hybrid2d::Quad. To keep things simple and use existing components of LehrFEM ++ , the edges and nodes of Polygon are objects of types from the namespace lf::mesh::hybrid2d. There are a number of differences to the entities of codimension 0 in the hybrid case:

- All polygons have the newly created dummy reference element lf::base: RefElType::kPolygon.
- Polygons have no fixed number of nodes and edges. The attributes nodes_ and

```
Eigen::MatrixXd Corners(const lf::mesh::Entity* ent){
    LF_VERIFY_MSG(ent->RefEl() == lf::base::RefEl::kPolygon(),
        "This method is only implemented for Polygons");
    return dynamic_cast<const lf::mesh::polytopic2d::Polygon*>(ent)->Corners();
}
```

Listing 1: Definition of the function lf::mesh::polytopic2d::Corners().
edges_ are of type vector with variable length instead of an array with fixed length.

- The attribute geometry_ is a nullpointer. Due to polygons not having a common reference element, there is also no affine mapping between a general polygon and all instances in the mesh. Therefore the lf::geometry: Geometry object (More on this in [2, sec. 2.7.2.3]) has no relevance for polygons. How basis functions are created on polygons is discussed in section 4.
- There is a new attribute corners_ which stores the coordinates of the nodes of the polygon in a 2 xn matrix, where n is the number of nodes in the polygon. As discussed above, polygons have no lf::geometry::Geometry object which stores its topological information in one place. Rather than having to iterate over its nodes every time coordinates are needed, Corners() provides that functionality. In most parts of the program, a polygon is interpreted as the base class lf::mesh: :Entity, so directly calling Corners() from it will cause an error. That is the reason for the existence of the function Corners() which takes an lf::mesh: :Entity as an argument. It will then perform a dynamic cast to make the Corner() member function work. The definition of this function is showed in listing 1.

Apart from those differences, the Polygon class works like its hybrid equivalents.

Mesh

The class Mesh in the polytopic setting provides the same functionalities as in the hybrid setting. All entities of codimension 0 are of type lf:.mesh: :polytopic2d:: Polygon. As has been mentioned above, a functionality which provides a reference from all lf::mesh::Segments to their adjacent polygons in the mesh is needed. This is implemented in EdgePolygonAdjacency(). It takes a pointer to a mesh as an argument and returns a data set containing pointers to both polygons for each segment and the local indices of the segment in the polygons. If the segment is on the boundary, i.e. has only one adjacent polygon, the pointer to the second polygon is a null pointer. The declaration of the function can be seen in listing 2 .
A function which is very important, but nowhere depicted here is
lf::mesh::utils::flagEntitiesOnBoundary(). Polytopic meshes and polygons are implemented such that the function works exactly the same as in the hybrid setting.

```
using PolygonPair = std::pair<std::pair<const lf::mesh::Entity*, size_type>,
            std::pair<const lf::mesh::Entity*, size_type>>;
/**
* @brief Constructs A CodimMeshDataSet that contains the adjacencies
* of the Segements. Each Segment is adjacent to either two Polygons
* (inner Segment) or one Polygon (boundary Segment). Returns a pair
* of pairs. First object of the inner pair is
* a pointer to the polygon, the second is the local idx of
* the edge in that polygon.
*
* @param mesh_ptr The mesh used.
* @return lf::mesh::utils::CodimMeshDataSet<PolygonPair> The constructed
* CodimMeshDataSet
*/
lf::mesh::utils::CodimMeshDataSet<PolygonPair> EdgePolygonAdjacency(
    std::shared_ptr<const lf::mesh::Mesh> mesh_ptr);
```

Listing 2: Declaration of the function lf::mesh::polytopic2d::EdgePolygonAdjacency().

```
explicit MeshFactory(dim_t dim_world, bool check_completeness = true,
    bool unit_square = true): dim_world_(dim_world),
    check_completeness_(check_completeness), unit_square_(unit_square) {}
```

Listing 3: Declaration of the constructor of $1 \mathrm{f}:: \mathrm{mesh}:$:polytopic2d: :MeshFactory().

MeshFactory

Like in the hybrid setting, lf::mesh::polytopic2d::MeshFactory inherits from the abstract base class lf::mesh::MeshFactory and thus incorporates almost identical components. Two functionalities are added.
As described above, most meshes used in the project are generated by PolyMesher and are subdivisions of the unit square. PolyMesher collapses small edges into one node (in the middle of the collapsed edge) in its iterative mesh generation process. This results in nodes in the mesh that should be exactly on the boundary of the unit square, but due to the edge collapsing they are not. To counter this problem, a new member unit_square was added to the MeshFactory. It can be passed as an optional construction argument, as shown in listing 5 . If set to true, all added coordinates closer to the boundary than the macro COORD_TOLERANCE (currently set to 10^{-7}) are "cleaned" and set to exactly the boundary coordinate.
In order to be able to compare the hybrid and polytopic meshes numerically, the function polytopicFromHybrid() can be used. Every hybrid mesh can be interpreted as a general polytopic one and this is what the function does. Its declaration is shown in listing 4.
Additionally, a polytopic equivalent to lf::mesh::test_utils::GenerateHybrid2DTestMesh() is implemented as lf::mesh::test_utils::GeneratePolytopic2DTestMesh(). Two poly-

```
/**
* @brief returns a polytopic 2D mesh from a hybrid 2D mesh
*/
std::shared_ptr<lf::mesh::Mesh> PolytopicFromHybrid2D(
    std::shared_ptr<const lf::mesh::Mesh> mesh_ptr);
```

Listing 4: Declaration of the function PolytopicFromHybrid2D().
topic test meshes are available. One is depicted in figure 4. The second one is a subdivision of the unit square by four equal-sized squares.

Figure 4: Visualization trieved
of the with
mesh re-
lf::mesh::test_- utils::GeneratePolytopic2DTestMesh(0,1).

IO Functionalities

The io-part of the polytopic mesh module is not visualized in figure 3. Mainly a new class lf::io::VtkPolytopicReader is implemented to read polytopic mesh data from VTK-files and provide the polytopic mesh. A sample usage is shown in listing 5.

In order to be able to plot polytopic meshes like their hybrid counterparts, lf::io::
writeMatplotlib() is slightly adjusted to accept entities of codimension 0 with the

```
std::filesystem::path here = __FILE__;
auto mesh_file_name = "msh_files/unit_square_voronoi_64_cells.vtk";
auto mesh_file = here.parent_path().string() + mesh_file_name;
lf::io::VtkPolytopicReader reader
    (std::make_unique<lf::mesh::polytopic2d::MeshFactory>(2), mesh_file);
auto mesh = reader.mesh();
//example loop over polygonal cells
for (auto polygon : mesh->Entities(0)) { ... }
```

Listing 5: Example usage of lf::io::VtkPolytopicReader.
reference element lf::base::RefElType::kPolygon. The output of this function (which is a .csv file) can then be plotted via lf/io/plot_mesh.py.

4. Discrete Finite Element Space

4.1. Theory

As stated above, the general theoretical decisions of the project follow the book [3]. Basis functions of the discrete finite element $V^{\mathbf{P}}\left(\mathscr{T}_{h}\right)$ space in a discontinuous finite element setting are not subject to any continuity constraints between cells (thus the term "discontinuous"). A rather simple construction of basis functions is achieved by mapping a polynomial space defined on a reference bounding box κ_{R} to the axisaligned bounding box B_{κ} of each specific polygonal cell κ in the mesh. This space is then restricted to κ. The axis-aligned bounding box is the minimal cartesian axisaligned rectangle such that all vertices of the cell either are inside the rectangle, or on its boundary, i.e. $\bar{\kappa} \subseteq \bar{B}_{\kappa}$. The reference bounding box is defined as $\kappa_{R}:=(-1,1)^{2}$. Via an affine mapping \mathbf{F}_{κ}, the bounding box κ_{R} is mapped to a polygon:

$$
\begin{equation*}
\mathbf{F}_{\kappa}(\hat{\mathbf{x}})=\mathbf{x}=J_{\kappa} \hat{\mathbf{x}}+\mathbf{c} . \tag{3}
\end{equation*}
$$

With $J_{\kappa}:=\operatorname{diag}\left(h_{1}, h_{2}\right), \mathbf{c}:=\left(m_{1}, m_{2}\right)^{\top}, \hat{\mathbf{x}}$ a general point in κ_{R} and \mathbf{x} its image in B_{κ}. Additionally $h_{i}, i=1,2$ is half the length of the i-th side of B_{κ} and m_{i} is the midpoint of the i-th side of B_{κ}. See figure 5 for a sketch of this mapping.

Figure 5: Mapping between the reference bounding box κ_{R} and the bounding box B_{κ} of a cell κ in the mesh.

For polynomial basis functions, tensor product Legendre Polynomials in two dimensions are used. $\left\{\hat{L}_{i}(\hat{x})\right\}_{i=0}^{2}$ describes the family of $L^{2}(-1,1)$-orthonormal onedimensional Legendre polynomials (their respective degree being i), in this project namely the ones in table 1. There are two options in the program: 1D-legendre polynomials of maximum degree 1 or maximum degree 2 .

i	$\hat{L}_{i}(\hat{x})$
0	1
1	\hat{x}
2	$\frac{1}{2}\left(3 \hat{x}^{2}-1\right)$

Table 1: One-dimensional legendre polynomials with polynomial degree i

The basis functions $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ on the reference bounding box are then defined as

$$
\begin{equation*}
\hat{\Phi}_{i}(\hat{\mathbf{x}})=\hat{L}_{i_{x}}(\hat{x}) \hat{L}_{i_{y}}(\hat{y}) \tag{4}
\end{equation*}
$$

With i_{x} and i_{y} being the polynomial degrees of the 1D-legendre polynomials in the direction of the first and second axis of the cartesian coordinate system. The plots and explicit numbering of $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ is depicted in figure 6 in case of one-dimensional
legendre polynomials of maximum degree two. There is also an option for the usage of one-dimensional legendre polynomials of maximum degree one. More of this choice in section 4.2.
The polynomial basis functions of a general polygon κ in the mesh are then given by mapping $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ via \mathbf{F}_{κ} to B_{κ} and restricting its support to κ.

$$
\begin{equation*}
\Phi_{i, \kappa}(\mathbf{x})=\hat{\Phi}_{i}\left(\mathbf{F}_{\kappa}^{-1}(\mathbf{x})\right) \quad \forall \mathbf{x} \in \kappa \subset B_{\kappa} \quad \forall \kappa \in \mathscr{T}_{h} \tag{5}
\end{equation*}
$$

Finally, the discrete space $V^{\mathbf{P}}\left(\mathscr{T}_{h}\right)$ is spanned by all basis functions $\Phi_{i, \kappa}$ on all polygonal cells.

$$
\begin{equation*}
V^{\mathbf{P}}\left(\mathscr{T}_{h}\right)=\operatorname{span}\left\{\Phi_{i, \kappa}\right\} \tag{6}
\end{equation*}
$$

4.2. Implementation

As mentioned before, most of the new components in LehrFEM ++ are integrated in the new namespace $l f:: d g f e$. It contains both basic functionalities of a discrete Galerkin finite element space as well as the algorithms used to assemble the Galerkin matrix and right-hand side vector of equation 24. A visual overview of $l f:: d g f e$ is depicted in figure 7 .

Figure 7: Visualization of the namespace $l f:: d g f e$. It is not complete but rather an overview of what is discussed in the report. A key to the symbols can be found at the bottom of the figure.

Figure 6: Plots of tensor product Legendre Polynomials on the unit square in two dimensions used as basis functions $\hat{\Phi}_{i}(\hat{\mathbf{x}})$. This is the specific case when the maximal degree of onedimensional Legendre polynomials used is 2 .

BoundingBox

The in section 4.1 discussed axis-aligned bounding box is implemented as the class lf::dgfe::BoundingBox. It is a fairly lightweight class that is constructed and deleted "on the fly" within Galerkin assembly algorithms. Once initialized for a specific polygon κ (constructor in listing 6), it implements \mathbf{F}_{κ} as the member function $\operatorname{map}()$ (listing 7) and the inverse \mathbf{F}_{κ}^{-1} as inverseMap() (listing 8). For the integration of functions and gradients of basis functions, the determinant of J_{κ} and single entries of the inverse of J_{κ} in equation 3 are needed. The two member functions $\operatorname{det}()$ and inverseJacobi() provide this information.

```
BoundingBox(const lf::mesh::Entity &entity);
```

Listing 6: Declaration of the constructor of lf::dgfe::BoundingBox.

```
/**
* @brief maps from reference bounding box to the cell's bounding box
*
* @param corners local points to be mapped into global coordinates
* @return Eigen::Matrix Global points
*/
Eigen::MatrixXd map(const Eigen::MatrixXd corners);
```

Listing 7: Declaration of lf::dgfe::BoundingBox::map().

```
/**
* @brief Maps global coordinates into reference bounding box
*
* @param corners global points
* @return Eigen::MatrixXd local points
*/
Eigen::MatrixXd inverseMap(const Eigen::MatrixXd corners);
```

Listing 8: Declaration of lf::dgfe::BoundingBox::inverseMap().

Basis Functions

The tensor product Legendre Polynomials $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ from section 4.1 are implemented in the function legendre_basis(). Its declaration is shown in listing 9.

```
/**
* Obrief returns 2D basis function at coordinate defined on
* reference bounding box
*
* @param n index of basis function on reference bounding box
* @param max_degree maximum polynomial degree of 1D legendre polnynomials
* present in basis
* @param coord point for which the polynomial is evaluated
*/
scalar_t legendre_basis(size_type n, size_type max_degree,
    const Eigen::Vector2d &coord);
```

Listing 9: Declaration of lf::dgfe::legendre_basis().

Furthermore, the derivatives of $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ in x - and y -dimension are implemented. The declaration in x -direction is in listing 10 .

```
/**
* @brief returns partial derivative in x of 2D reference basis function at coord
* defined on reference bounding box
*
* @note !! DO NOT FORGET TO MULTIPLY WITH ENTRY (O, O) OF
* THE INVERSE JACOBI OF THE REFERENCE BOX MAPPING !!
*
* @param n nth basis function of
* @param max_degree maximum degree of 1D legendre polnynomials present in basis
* @param coord point for which the polynomial is evaluated
*/
scalar_t legendre_basis_dx(size_type n, size_type max_degree,
    const Eigen::Vector2d &coord);
```

Listing 10: Declaration of lf::dgfe::legendre_basis_dx().
As can be read in listing 10 , it is necessary to multiply the derivatives of $\hat{\Phi}_{i}(\hat{\mathbf{x}})$ with the corresponding entries of J_{κ}^{-1} from equation 3. This is due to the chain rule of derivatives.

$$
\begin{equation*}
\frac{\partial}{\partial x} \Phi_{i, \kappa}(\mathbf{x})=\frac{\partial}{\partial x}\left[\hat{\Phi}_{i}\left(\mathbf{F}_{\kappa}^{-1}(\mathbf{x})\right)\right]=\frac{\partial}{\partial x}\left(\hat{\Phi}_{i}\right)\left(\mathbf{F}_{\kappa}^{-1}(\mathbf{x})\right) \cdot \frac{\partial}{\partial x}\left(\mathbf{F}_{\kappa}^{-1}(\mathbf{x})\right) \tag{7}
\end{equation*}
$$

More functions regarding Legendre Polynomials are implemented, but their discussion is omitted here for clarity and priority reasons.

Mesh Functions

A MeshFunction is one of LehrFEM++'s concepts. A MeshFunction must particularily overload the bracket operator as shown in listing 11. The concept can be seen in https://craffael.github.io/lehrfempp/group__mesh__function.html.

```
std::vector<R> operator()(const lf::mesh::Entity& e,
    const Eigen::MatrixXd& local) const
```

Listing 11: Overloading of the bracket operator to satisfy LehrFEM++'s concept of a MeshFunction.

It has been discussed above that there exists no general parametric mapping from a reference polygon to all polygons in a mesh. Therefore the "local" coordinates used in listing 11 have a different meaning in the polytopic setting. Here, the local coordinates are coordinates in the reference bounding box κ_{R}. The entity e must be a polygon such that the local coordinates can be mapped to global coordinates in the mesh via the mapping \mathbf{F}_{κ}. Three different mesh function classes exist. MeshFunctionGlobaldGFE is initialized with a lambda function $f(\mathbf{x})$ like in listing 13. MeshFunctionDGFE is initialized with a vector holding the coefficients of a basis expansion of a function $f(\mathbf{x})$. MeshFunctionGradDGFE works exactly like MeshFunctionDGFE but returns the gradient of the function for which the basis expansion is given.

Numerical Integration

As [3, sec. 6.3.1] indicates, developing numerical quadrature rules on polygons is not trivial. To keep it rather simple and universal, triangular sub-tessellations of the polygons are used to then apply standard quadrature rules on each triangle. This approach is computationally inefficient compared to other methods [4, sec. 2.1]. But its implementation is straight-forward and it can be used to integrate any function given in procedural form. The sub-tessellation of polygons is realized in lf::dgfe::subTessellation() (listing 12). Given a polygon with n nodes it returns n objects of type lf::geometry: :Tria01 in a vector. Each of them is created from the coordinates of the barycenter of the cell and those of two adjacent nodes. Note that this only works with convex polygons (which PolyMesher produces exclusively).

```
/**
* @brief returns a vector of triangle geometry objects resulting
* from subdividing a polyon from its barycenter into triangles.
*/
std::vector<std::unique_ptr<lf::geometry::Tria01>> subTessellation(
    const lf::mesh::Entity *polygon);
```

Listing 12: Declaration of lf::dgfe::subTessellation().

The class SubTessellationIntegrator uses lf::dgfe::subTessellation() to integrate over polygonal cells. A demonstration for the integration of a function over a polygonal is shown in listing 13. It makes use of the class lf : :dgfe : :MeshFunctionGlobaldGFE which is discussed above. For the integration on the triangle geometries resulting from the sub-tessellation, LehrFEM ++'s internal quadrature infrastructure is
used. SubTessellationIntegrator has a lf::quad::QuadruleCache as a private attribute for efficiency. For a general function $f(x)$, its integration over a polygon is implemented in the following way:

$$
\begin{equation*}
\int_{\kappa} f(x) d x=\sum_{T \in \mathscr{S}} \int_{T} f(x) d x \approx \sum_{T \in S} \sum_{l=1}^{p} \hat{w}_{l} f\left(\Psi_{T}\left(\hat{\xi}_{l}\right)\right)\left|\operatorname{det} D \Psi_{T}\left(\hat{\xi}_{l}\right)\right| . \tag{8}
\end{equation*}
$$

With Ψ_{T} being LehrFEM ++'s mapping from the reference triangle \hat{T} to a general triangle T (Note: in [2, sec. 2.8.1], the local-global mapping is denoted by Φ_{K}. In this report, Φ already stands for basis functions). T denotes a triangle of the subtessellation \mathscr{S} of κ. Additionally, \hat{w}_{l} are the weights of the quadrature rule employed on the reference triangle, $\hat{\xi}_{l}$ are the quadrature points on the reference triangle and $\left|\operatorname{det} D \Psi_{T}\left(\hat{\xi}_{l}\right)\right|$ are the gramian determinants of the mapping Ψ_{T}. For MeshFunctions \mathscr{M}, the following relation needs to be taken into account and is implemented in SubTessellationIntegrator:

$$
\begin{equation*}
f\left(\Psi_{T}\left(\hat{\xi}_{l}\right)\right)=\mathscr{M}\left(\kappa, \mathbf{F}_{\kappa}^{-1}\left(\Psi_{T}\left(\hat{\xi}_{l}\right)\right)\right) \tag{9}
\end{equation*}
$$

```
//get mesh
auto mesh_ptr = lf::mesh::test_utils::GeneratePolytopic2DTestMesh(0,1);
//lambda x^2 + e^(x*y) for mesh function
auto exponential_lambda = [](Eigen::Vector2d x) -> double {
    return x[0]*x[0] + exp(x[0] * x[1]);
};
lf::dgfe::MeshFunctionGlobalDGFE<decltype(exponential_lambda)>
    exp_msh_funct(exponential_lambda);
lf::dgfe::SubTessellationIntegrator<double, decltype(exp_msh_funct)>
    exp_integrator;
int integration_degree = 10;
double sum = 0.0;
//loop over cells and integrate
for (auto cell : mesh_ptr->Entities(0)){
    sum += exp_integrator.integrate(*cell, exp_msh_funct, integration_degree);
}
```

Listing 13: Demonstration of the integration of $x^{2}+e^{x * y}$ over a polytopic mesh of the unit square (test mesh shown in figure 4).

The function integrate() takes the degree of exactness of the quadrature rule used for an argument as shown in listing 13.
The infrastructure for numerical integration in the discontinuous setting is completed by two functions to calculate the error over a mesh. More precisely, they calculate the L^{2}-norm of the difference of two functions. Both of them are implemented as
templated functions. For two sclar-valued functions f and g defined on a domain Ω, L2ErrorSubTessellation() calculates the following expression:

$$
\begin{equation*}
\|f-g\|_{L^{2}(\Omega)}=\left(\int_{\Omega}\|f(\mathbf{x})-g(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

L2ErrorGradSubTessellation() does the same routine, but here f and g have to be provided as vector-valued functions. The functions feature the word "error" because if one passes the known true solution of a PDE and the calculated approximation in the discrete space, the L^{2}-norm of the error of the approximation is received.

DGFE Space

A new class lf::assemble::UniformDGFEDofHandler does the handling of degrees of freedom in a discontinuous setting and is situated where its classical equivalents are: In lf/assemble/dofhandler.h. It is an implementation of the abstract base class lf::dgfe::DofHandler.
Most functionalities to solve equation 24 numerically are collected in the class lf: :dgfe: : DGFESPace. It contains a pointer to a lf::mesh::polytopic2d: :Mesh, the lf::assemble::UniformDGFEDofHandler which is used as well as a lf::mesh:: utils::CodimMeshDataSet with the information about adjacent polygons of each segment (discussed in section 3.1). The lf::dgfe::DGFESpace constructor takes a polytopic mesh as a first argument and the maximum polynomial degree of onedimensional Legendre Polynomials used in the basis functions in table 1. There are only two options available at the moment. Either it is set to 2 which results in the basis functions on the reference bounding box κ_{R} being exactly as depicted in figure 6. Or it is set to 1 which leads to a basis of 4 functions per polygon, namely those in the top left corner in 6 . The DofHandler of the discrete space is initialized in the space's constructor.

5. Boundary Value Problem

5.1. Theory

As has been mentioned multiple times before, the notation used here is almost identical to [3] to make direct links to the book possible. Deriving and explaining all parts of the variational formulation of $1 \& 2$ would go far beyond the scope of this project and would be a copy of the work done in [3]. What is discussed here are all parts from the book which are necessary to implement and solve the variational formulation of 1 . First off, there is a need to introduce a series of operators and symbols used. Let κ_{i} and κ_{j} be two adjacent polygons of $\mathscr{T}_{h} . F$ describes the interior face they have in common $F=\partial \kappa_{i} \cap \partial \kappa_{j}$. The outward unit normal vectors with respect to κ_{i} and κ_{j} on F are indentified with $\mathbf{n}_{\kappa_{i}}$ and $\mathbf{n}_{\kappa_{j}}$. Then, v is a general scalar-valued function and \mathbf{q} is a general vector-valued function. In the discontinuous setting it is important to describe precisely to which cell, κ_{i} or κ_{j}, a function trace on a common face belongs to. For this reason $\left(v_{\kappa_{i}}^{+}, \mathbf{q}_{\kappa_{i}}^{+}\right)$and $\left(v_{\kappa_{j}}^{+}, \mathbf{q}_{k_{j}}^{+}\right)$are used to distinguish traces of the functions v and \mathbf{q} taken from the interior of the two cells. Now the average operator can be introduced. For $\mathbf{x} \in F \in \mathscr{F}_{h}^{\mathscr{J}}$ the averages of v and \mathbf{q} are given by

$$
\begin{equation*}
\{v\}\}:=\frac{1}{2}\left(v_{\kappa_{i}}^{+}+v_{\kappa_{j}}^{+}\right), \quad\{\mathbf{q}\}:=\frac{1}{2}\left(\mathbf{q}_{\kappa_{i}}^{+}+\mathbf{q}_{\kappa_{j}}^{+}\right) . \tag{11}
\end{equation*}
$$

The complementary jump operator is defined by:

$$
\begin{equation*}
\llbracket v \rrbracket:=v_{\kappa_{i}}^{+} \mathbf{n}_{\kappa_{i}}+v_{\kappa_{j}}^{+} \mathbf{n}_{\kappa_{j}}, \quad \llbracket \mathbf{q} \rrbracket:=\mathbf{q}_{\kappa_{i}}^{+} \cdot \mathbf{n}_{\kappa_{i}}+\mathbf{q}_{\kappa_{j}}^{+} \cdot \mathbf{n}_{\kappa_{j}} . \tag{12}
\end{equation*}
$$

If the face $F \in \mathscr{F}_{h}^{\mathscr{B}}$ is on the boundary of the mesh such that there is only one adjacent cell κ_{i}, the operators become:

$$
\begin{equation*}
\{v\}:=v_{\kappa_{i}}^{+}, \quad\{\mathbf{q}\}:=\mathbf{q}_{\kappa_{i}}^{+}, \quad \llbracket v \rrbracket:=v_{\kappa_{i}}^{+} \mathbf{n}_{\kappa_{i}} \quad \llbracket \mathbf{q} \rrbracket:=\mathbf{q}_{\kappa_{i}}^{+} \cdot \mathbf{n}_{\kappa_{i}} . \tag{13}
\end{equation*}
$$

And the upwind jump operator defined on interior faces $F \in \mathscr{F}_{h}^{\mathscr{V}}$ is denoted by:

$$
\begin{equation*}
\lfloor v\rfloor:=v_{\kappa}^{+}-v_{\kappa}^{-} . \tag{14}
\end{equation*}
$$

The discontinuity penalization function $\sigma: \mathscr{F}_{h}^{\mathscr{I}} \cup \mathscr{F}_{h}^{D} \rightarrow \mathbb{R}$ is defined as:
$\sigma(\mathbf{x}):= \begin{cases}C_{\sigma} \max _{\kappa \in\left\{\kappa^{+}, \kappa^{-}\right\}}\left\{C_{\mathrm{INV}}(p, \kappa, F) \frac{\left.A_{F}\right|_{\kappa} p_{\kappa}^{2}|F|}{|\kappa|}\right\}, & \mathbf{x} \in F \in \mathscr{F}_{h}, F \subset \partial \kappa^{+} \cap \partial \kappa^{-}, \\ C_{\sigma} A_{F} C_{\mathrm{INV}}\left(p_{\kappa}, \kappa, F\right) \frac{p_{\kappa}^{2}|F|}{|\kappa|}, & \mathbf{x} \in F \in \mathscr{F}_{h}^{D}, F \subset \partial \kappa .\end{cases}$
with $A_{F}:=\|\sqrt{\mathbf{A}} \mathbf{n}\|_{L^{\infty}(F)}^{2}$, for every face $F \subset \partial \kappa, F \in \mathscr{F}_{h}^{\mathscr{I}} \cup \mathscr{F}_{h}^{D}$, and C_{σ} a sufficiently large positive constant. The maximal total polynomial degree of the tensor-product Legendre Polynomial basis function is denoted as p_{κ}. It is the result of adding the maximum polynomial degree of the used one-dimensional Legendre Polynomials. The term p is the polynomial degree appearing in the definition of shape-regularity of
meshes in [3, sec. 3.1, Def. 10] and in this project is defined as the maximum polynomial degree of the used one-dimensional Legendre Polynomials.
The function $C_{\text {INV }}$ appearing in 15 is defined as:

$$
\begin{equation*}
C_{\mathrm{INV}}(p, \kappa, F):=C_{\mathrm{inv}} \min \left\{\frac{|\kappa|}{\sup _{\kappa_{b}^{F} \subset \kappa}\left|\kappa_{\mathrm{b}}^{F}\right|}, p^{2(d-1)}\right\} . \tag{16}
\end{equation*}
$$

With $C_{\text {inv }}$ being a positive constant and $\kappa_{\mathrm{b}}^{F} \in \mathscr{F}_{\mathrm{b}}^{\kappa}$. This $\mathscr{F}_{\mathrm{b}}^{\kappa}$ is the family of all triangles (simplices) contained in κ having at least one common face with κ. Then, $\kappa_{\mathrm{b}}^{F} \in \mathscr{F}_{\mathrm{b}}^{\kappa}$ is a simplex which shares the specific face $F \subset \partial \kappa$. A visualization of the implementation of this is depicted in figure 8.
For expressions $v_{\kappa}^{ \pm}$it will always be clear to which element $\kappa, \kappa \in \mathscr{T}_{h}$ the functions correspond to. Therefore the subscript κ is suppressed from now on. A further subdivision of the boundary of the domain $\partial \Omega$ is needed to comply with the notation of [3]:

$$
\begin{equation*}
\partial_{0} \Omega:=\left\{\mathbf{x} \in \partial \Omega: \sum_{i, j=1}^{2} a_{i j}(\mathbf{x}) \mathbf{n}_{\mathbf{i}} \mathbf{n}_{\mathbf{j}}>0\right\} . \tag{17}
\end{equation*}
$$

With $a_{i j}$ being entries of the diffusion tensor and $\mathbf{n}=\left(n_{1}, n_{2}\right)^{\top}$ the outward unit normal vector to $\partial \Omega$. The part set of the boundary which is not $\partial_{0} \Omega$ is further divided:

$$
\begin{align*}
\partial_{-} \Omega & :=\left\{\mathbf{x} \in \partial \Omega \backslash \partial_{0} \Omega: \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})<0\right\} \\
\partial_{+} \Omega & :=\left\{\mathbf{x} \in \partial \Omega \backslash \partial_{0} \Omega: \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \geq 0\right\} . \tag{18}
\end{align*}
$$

Also $\partial_{0} \Omega$ is further divided into two sets, namely the set where Dirichlet Boundary Conditions are employed, denoted by $\partial \Omega_{D}$, and the part where Neumann Boundary Conditions are enforced, which is $\partial \Omega_{N}$. Therefore $\partial \Omega=\partial_{-} \Omega \cup \partial_{+} \Omega \cup \partial \Omega_{N} \cup \partial \Omega_{D}$. Analogously to $\partial_{-} \Omega$, there exists a subset of the boundary of cells which appears in the DGFEM vraiational formulation of equations 1 and 2:

$$
\begin{equation*}
\partial_{-} \kappa:=\{\mathbf{x} \in \partial \kappa: \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})<0\} . \tag{19}
\end{equation*}
$$

The full variational formulation of equation 1 derived in [3, sec. 5.1] is now presented. As stated above, no reasoning or derivation will be given, find all of this in $[3$, sec. 5.1]. First off, the reaction-advection part of the equation results in:

$$
\begin{align*}
B_{\mathrm{ar}}(w, v):= & \sum_{\kappa \in \mathscr{F}_{h}} \int_{\kappa}(\nabla \cdot(\mathbf{b} w)+c w) v \mathrm{~d} \mathbf{x}-\sum_{\kappa \in \mathscr{F}_{h}} \int_{\partial_{-} \kappa \partial \Omega}(\mathbf{b} \cdot \mathbf{n})\lfloor w\rfloor v^{+} d S \\
& -\sum_{\kappa \in \mathscr{T}_{h}} \int_{\partial_{-} \kappa \cap\left(\partial \Omega_{\mathrm{D}} \cup \partial_{-} \Omega\right)}(\mathbf{b} \cdot \mathbf{n}) w^{+} v^{+} \mathrm{d} S . \tag{20}
\end{align*}
$$

Then, the diffusion part is

$$
\begin{align*}
\hat{B}_{\mathrm{d}}(w, v):= & \sum_{\kappa \in \mathscr{T}_{h}} \int_{\kappa} a \nabla w \cdot \nabla v \mathrm{~d} \mathbf{x}+\int_{\mathscr{F}_{h}^{\mathscr{F}} \cup \mathscr{F}_{h}^{D}} \sigma \llbracket w \rrbracket \cdot \llbracket v \rrbracket \mathrm{~d} S \\
& -\int_{\mathscr{F}_{h}^{\mathscr{F}} \cup \mathscr{F}_{h}^{D}}\left(\left\{\left\{\sqrt{a} \boldsymbol{\Pi}_{L^{2}}(\sqrt{a} \nabla w)\right\}\right\} \cdot \llbracket v \rrbracket+\left\{\left\{\sqrt{a} \boldsymbol{\Pi}_{L^{2}}(\sqrt{a} \nabla v)\right\} \cdot \llbracket w \rrbracket\right) \mathrm{d} S\right. \tag{21}
\end{align*}
$$

Where $\boldsymbol{\Pi}_{L^{2}}:\left[L^{2}(\Omega)\right]^{2} \rightarrow\left[V^{\mathbf{p}}\left(\mathscr{T}_{h}\right)\right]^{2}$ denotes the orthogonal L^{2}-projection onto the finite element space $\left[V^{\mathbf{p}}\left(\mathscr{T}_{h}\right)\right]^{2}$.
Putting these two parts together results in the bilinear form of the variational formulation:

$$
\begin{equation*}
B(w, v):=B_{\mathrm{ar}}(w, v)+\hat{B}_{\mathrm{d}}(w, v) \tag{22}
\end{equation*}
$$

The linear term of the variational formulation is:

$$
\begin{align*}
\hat{\ell}(v):= & \sum_{\kappa \in \mathscr{T}_{h}} \int_{\kappa} f v \mathrm{~d} \mathbf{x}-\sum_{\kappa \in \mathscr{\mathscr { F } _ { h }}} \int_{\partial-\kappa \cap\left(\partial \Omega_{\mathrm{D}} \cup \partial-\Omega\right)}(\mathbf{b} \cdot \mathbf{n}) g_{\mathrm{D}} v^{+} \mathrm{d} s \tag{23}\\
& -\int_{\partial \Omega_{\mathrm{D}}} g_{\mathrm{D}}\left(\sqrt{a} \boldsymbol{\Pi}_{L^{2}}(\sqrt{a} \nabla v) \cdot \mathbf{n}-\sigma v\right) \mathrm{d} s+\int_{\partial \Omega_{\mathrm{N}}} g_{\mathrm{N}} v \mathrm{~d} s .
\end{align*}
$$

Finally, the full DGFEM approximation of the original problem 1: Find $u_{h} \in V^{\mathbf{p}}\left(\mathscr{T}_{h}\right)$ such that:

$$
\begin{equation*}
B\left(u_{h}, v_{h}\right)=\hat{\ell}\left(v_{h}\right) \quad \forall v_{h} \in V^{\mathbf{p}}\left(\mathscr{T}_{h}\right) . \tag{24}
\end{equation*}
$$

5.2. Implementation

Discontinuity Penalization

The SIP is implemented as a class as seen in figure 7. Listing 14 shows its constructor. The class owns a pointer to the discrete space used so it can access the data set which contains information about the adjacent polygons of each face in the mesh. How to set the constants $C_{\text {inv }}$ and C_{σ} is not defined clearly in [3]. They are rather heuristic values whose correctness can be shown by the method of manufactured solutions. And they are used for the theoretical error analysis in [3]. The variable A_{F} needs to be calculated in the program before calling operator() of the SIP on a face.
The implementation of the SIP is rather straight-forward. A visualization of the calculation of $\kappa_{\mathrm{b}}^{F} \in \mathscr{F}_{\mathrm{b}}^{\kappa}$ is depicted in figure 8. This is implemented in a function simplexAreas() which returns a vector of the areas of $\kappa_{\mathrm{b}}^{F} \in \mathscr{F}_{\mathrm{b}}^{\kappa}$ as shown in figure 8. The declaration of the constructor and the operator() of the SIP-class is shown in listing 14.

```
DiscontinuityPenalization(std::shared_ptr<const lf::dgfe::DGFESpace>
    dgfe_space_ptr, scalar_t c_inv_constant, scalar_t
    c_sigma_constant) :
    dgfe_space_ptr_(std::move(dgfe_space_ptr)),
    c_inv_const_(c_inv_constant),
    c_sigma_const_(c_sigma_constant) {}
scalar_t operator()(const lf::mesh::Entity &edge, scalar_t A_f) const ;
```

Listing 14: Declaration of the constructor of lf::dgfe::DiscontinuityPenalization and the declaration of its operator().

Figure 8: Visualization of the explicit calculation of $\kappa_{\mathrm{b}}^{F} \in \mathscr{F}_{\mathrm{b}}^{\kappa}$. For a cell κ and a face $F \in \partial \kappa$ the three blue triangles are the κ_{b}^{F} which are taken into account.

Assembly of Galerkin Matrix and RHS Vector

Assembling the Galerkin Matrix (eq.21) correctly was the hardest step of the project. This process, including the simplification of the more complex terms and their transformation into pseudocode is presented here. All terms which cannot be implemented straight-forward and include jump(12), average(11) or upwind jump(14) operators are discussed.

Diffusion The second and third addend of equation 21 both have different forms for interior and boundary segments. Equations 12,11 and 13 are used to arrive at the following results.
Firstly the second addend of the diffusion term is presented. For interior edges:

$$
\begin{align*}
& \quad \int_{\mathscr{F}_{h}^{\mathscr{G}}} \sigma \llbracket w \rrbracket \cdot \llbracket v \rrbracket d S \\
& =\sigma \int_{\mathscr{F}_{h}^{\mathscr{G}}}\left(w_{i} \cdot \mathbf{n}_{i}+w_{j} \cdot \mathbf{n}_{j}\right)\left(v_{i} \cdot \mathbf{n}_{i}+v_{j} \cdot \mathbf{n}_{j}\right) d S \\
& =\sigma \int_{\mathscr{F}_{h}^{\mathscr{G}}}\left(w_{i} \cdot \mathbf{n}_{i}-w_{j} \cdot \mathbf{n}_{i}\right)\left(v_{i} \cdot \mathbf{n}_{i}-v_{j} \cdot \mathbf{n}_{i}\right) d S \tag{25}\\
& =\sigma \int_{\mathscr{F}_{h}^{\mathscr{G}}} w_{i} \cdot v_{i} \cdot \mathbf{n}_{i}^{2}-w_{i} \cdot v_{j} \cdot \mathbf{n}_{i}^{2}-w_{j} \cdot v_{i} \cdot \mathbf{n}_{i}^{2}+w_{j} \cdot v_{j} \cdot \mathbf{n}_{i}^{2} d S \\
& =\sigma \int_{\mathscr{F}_{h}^{\mathscr{G}}} w_{i} \cdot v_{i}-w_{i} \cdot v_{j}-w_{j} \cdot v_{i}+w_{j} \cdot v_{j} d S
\end{align*}
$$

And for boundary edges:

$$
\begin{align*}
& \int_{\mathscr{F}_{h}^{D}} \sigma \llbracket w \rrbracket \cdot \llbracket v \rrbracket d S \\
& =\sigma \int_{\mathscr{F}_{h}^{D}} w \cdot \mathbf{n} \cdot v \cdot \mathbf{n} d S \tag{26}\\
& =\sigma \int_{\mathscr{F}_{h}^{D}} w \cdot v d S
\end{align*}
$$

This second addend of equation 21 is assembled in the Galerkin Matrix with algorithm 1.

Algorithm 1: Assembly of the Galerkin Matrix regarding the second addend of equation 21.

```
for each \(e \in \mathscr{F}_{h}^{\mathscr{I}}\) do
            for \(v=1\) to \# basis functions per cell do
            for \(w=1\) to \# basis functions per cell do
                Add \(\sigma \int_{e} w_{i} \cdot v_{i} d S\) to Galerkin Matrix at \(\left(\operatorname{DOF}\left(\mathrm{v}_{i}\right), \operatorname{DOF}\left(w_{i}\right)\right)\)
                    Add \(-\sigma \int_{e} w_{i} \cdot v_{j} d S\) to Galerkin Matrix at \(\left(\operatorname{DOF}\left(\mathrm{v}_{j}\right), D O F\left(w_{i}\right)\right)\)
                    Add \(-\sigma \int_{e} w_{j} \cdot v_{i} d S\) to Galerkin Matrix at \(\left(\operatorname{DOF}\left(\mathrm{v}_{i}\right), \operatorname{DOF}\left(w_{j}\right)\right)\)
                    Add \(\sigma \int_{e} w_{j} \cdot v_{j} d S\) to Galerkin Matrix at \(\left(\operatorname{DOF}\left(\mathrm{v}_{j}\right), \operatorname{DOF}\left(w_{j}\right)\right)\)
            end
        end
    end
    for each \(e \in \mathscr{F}_{h}^{D}\) do
        for \(v=1\) to \# basis functions per cell do
            for \(w=1\) to \# basis functions per cell do
            Add \(\sigma \int_{e} w \cdot v d S\) to Galerkin Matrix at (DOF(v), \(\left.\operatorname{DOF}(\mathrm{w})\right)\)
            end
        end
    end
```

Note that w_{i} and w_{j} refer to traces of the basis functions on two different cells κ_{i} and κ_{j} adjacent to edge e. When the edge is on the boundary, there is only one adjacent cell with the basis functions w and v.
The third addend of equation 21 features an orthogonal L^{2}-projection $\boldsymbol{\Pi}_{L^{2}}$ onto the finite element space $V^{\mathbf{p}}\left(\mathscr{T}_{h}\right)$. Although the projection plays a factor in the methods' ability to solve problems with strong discontinuities, its discussion and also its implementation is omitted in this project for simplicity and clarity reasons. They remain a task for the future.
In the following the expansion of one part of the third addend of 21 is presented. The whole addend features two terms which are exactly the same except that trial (w) and test (v) functions are swapped. Shown is only one of those two parts. For interior edges:

$$
\begin{align*}
& \quad \int_{\mathscr{F}_{h}^{\mathscr{G}}}\{\{a \nabla w\} \cdot \llbracket v \rrbracket d S \\
& =\int_{\mathscr{F}_{h}^{\mathscr{G}}} \frac{1}{2}\left(a \nabla w_{i}+a \nabla w_{j}\right) \cdot\left(v_{i} \cdot \mathbf{n}_{\mathbf{i}}+v_{j} \cdot \mathbf{n}_{\mathbf{j}}\right) d S \\
& =\frac{1}{2} \int_{\mathscr{F}_{h}^{\mathscr{G}}}\left(a \nabla w_{i}+a \nabla w_{j}\right) \cdot\left(v_{i} \cdot \mathbf{n}_{\mathbf{i}}-v_{j} \cdot \mathbf{n}_{\mathbf{i}}\right) d S \tag{27}\\
& =\frac{1}{2} \int_{\mathscr{F}_{h}^{\mathscr{G}}} a \nabla w_{i} \cdot v_{i} \cdot \mathbf{n}_{\mathbf{i}}-a \nabla w_{i} \cdot v_{j} \cdot \mathbf{n}_{\mathbf{i}}+a \nabla w_{j} \cdot v_{i} \cdot \mathbf{n}_{\mathbf{i}}-a \nabla w_{j} \cdot v_{j} \cdot \mathbf{n}_{\mathbf{i}} d S
\end{align*}
$$

And for boundary edges:

$$
\begin{align*}
& \int_{\mathscr{F}_{h}^{D}}\{a \nabla \nabla w\} \cdot \llbracket v \rrbracket d S \\
& =\int_{\mathscr{F}_{h}^{D}} a \nabla w \cdot v \cdot \mathbf{n} d S \tag{28}
\end{align*}
$$

Which results in algorithm 2 to assemble its entries in the Galerkin Matrix.

```
Algorithm 2: Assembly of the Galerkin Matrix regarding one part of the
third addend of equation 21.
    for each \(e \in \mathscr{F}_{h}^{\mathscr{I}}\) do
        for \(v=1\) to \# basis functions per cell do
            for \(w=1\) to \# basis functions per cell do
                Add \(-\frac{1}{2} \int_{e} a \nabla w_{i} \cdot v_{i} \cdot \mathbf{n}_{\mathbf{i}} d S\) to Galerkin at \(\left(\operatorname{DOF}\left(\mathrm{v}_{i}\right), \operatorname{DOF}\left(w_{i}\right)\right)\)
                    Add \(\frac{1}{2} \int_{e} a \nabla w_{i} \cdot v_{j} \cdot \mathbf{n}_{\mathbf{i}} d S\) to Galerkin at \(\left(\operatorname{DOF}\left(\mathrm{v}_{j}\right), \operatorname{DOF}\left(w_{i}\right)\right)\)
                Add \(-\frac{1}{2} \int_{e} a \nabla w_{j} \cdot v_{i} \cdot \mathbf{n}_{\mathbf{i}} d S\) to Galerkin at \(\left(\operatorname{DOF}\left(\mathrm{v}_{i}\right), \operatorname{DOF}\left(w_{j}\right)\right)\)
                Add \(\frac{1}{2} \int_{e} a \nabla w_{j} \cdot v_{j} \cdot \mathbf{n}_{\mathbf{i}} d S\) to Galerkin at \(\left(\operatorname{DOF}\left(\mathrm{v}_{j}\right), \operatorname{DOF}\left(w_{j}\right)\right)\)
            end
    end
    end
    for each \(e \in \mathscr{F}_{h}^{D}\) do
        for \(v=1\) to \# basis functions per cell do
            for \(w=1\) to \# basis functions per cell do
                Add \(\int_{e} a \nabla w \cdot v \cdot \mathbf{n} d S\) to Galerkin at (DOF(v), DOF(w))
            end
        end
    end
```

Advection-Reaction And the last term which is extensively discussed appears in equation 20 and features the upwind jump operator (14).

$$
\begin{align*}
& \int_{\partial_{-} \kappa \backslash \Omega}(\mathbf{b} \cdot \mathbf{n})\lfloor w\rfloor v^{+} d S \\
= & \int_{\partial_{-} \kappa \backslash \Omega}(\mathbf{b} \cdot \mathbf{n}) \cdot\left(w^{+}-w^{-}\right) \cdot v^{+} d S \tag{29}\\
= & \int_{\partial_{-} \kappa \backslash \Omega} \mathbf{b} \cdot \mathbf{n} \cdot w^{+} \cdot v^{+}-\mathbf{b} \cdot \mathbf{n} \cdot w^{-} \cdot v^{+} d S
\end{align*}
$$

Here, w^{+}and v^{+}refer to basis functions defined on the current cell in the sum while w^{-}refers to a basis function defined on another cell adjacent to $\partial_{-} \kappa \backslash \partial \Omega$ (see equation 19 for further explanation on this set). The corresponding algorithm is displayed in algorithm 3.

Algorithm 3: Assembly of the Galerkin Matrix regarding the second addend of equation 20.

```
for each \(\kappa \in \mathscr{T}_{h}\) do
    for each \(e \in \partial_{-} \kappa \backslash \partial \Omega\) do
            for \(v=1\) to \# basis functions per cell do
                for \(w=1\) to \# basis functions per cell do
                            Add \(-\int_{e} \mathbf{b} \cdot \mathbf{n} \cdot w^{+} \cdot v^{+} d S\) to Galerkin at
                    \(\left(\operatorname{DOF}\left(\mathrm{v}^{+}\right), D O F\left(w^{+}\right)\right)\)
                    Add \(\int_{e} \mathbf{b} \cdot \mathbf{n} \cdot w^{+} \cdot v^{+} d S\) to Galerkin at \(\left(\operatorname{DOF}\left(\mathrm{v}^{+}\right), D O F\left(w^{-}\right)\right)\)
                end
            end
        end
    end
```

In contrast to the assembly of the LSE components of the variational formulation in the classical setting, the DGFEM version routines cannot be trivially passed to a general assembly algorithm that iterates over cells of codimension 0 . The equations 20,21 and 23 all feature parts of integration over sets of faces in the mesh rather than cells only. Additionally, also the cell-oriented assembly depends on information from the edges of the mesh.

Extensive routines for the DGFEM LSE assembly are implemented in classes representing the equations 20, 21 and 23. The classes AdvectionReactionMatrixAssembler and DiffusionMatrixAssembler assemble entries in the Galerkin matrix themselves and are not passed to LehrFEM ++ 's assembling algorithms lf::assemble::AssembleMatrixLocally(). The same goes for the class which assembles the linear term (right hand side vector of 24 AdvectionReactionDiffusionRHSAssembler.
For a full example of the usage of all essential parts of the implementation refer to the complete listing 15 in the appendix.

6. Numerical Experiments

Finite Element Methods are proven to be correct by the method of manifactured solutions. A known solution is inserted into the PDE, the problem is solved with according boundary conditions and the convergence of the approximation error is studied.
In this case 1 and 2 are solved on a series of Voronoi Tessellations (of which some are displayed in figure 2) of the unit square $(0,1)^{2}$ generated by PolyMesher. Neumann boundary conditions are employed on Γ_{N} which is made up of all edges of which both nodes are on the side $x=1$. The rest of the boundary belongs to Γ_{D} and is employed with dirichlet boundary conditions. The diffusion coefficient is defined by $a(x, y)=\delta I_{2}$ with $\delta=\sin (4 \cdot \Pi \cdot(x+y))^{2}+1$. The advection coefficient is $\left[2-x y, 2-x^{2}\right]^{T}$
and the reaction coefficient $c=(1+x) \cdot(1+y)^{2}$.
This problem has the analytical solution $u_{\text {true }}=1+\sin \left(\Pi \cdot(1+x) \cdot(1+y)^{2} \cdot \frac{1}{8}\right)$. The parameters of the discontinuity penalization in equation 15 and 16 are set to $C_{\text {inv }}=0.5$ and $C_{\sigma}=20$. Figure 9 shows that the L_{2} error of the approximated solution converges as is expected and shown in [3, sec. 6.4.1].

Error convergence of full Advection-Reaction-Diffusion problem with mixed boundary conditions

Figure 9: Convergence of the L_{2}-error of solutions to $1 \& 2$ using discontinuous Galerkin FEM. Constants set for the SIP are $C_{\text {inv }}=0.5$ and $C_{\sigma}=20$. P describes to polynomial degree of onedimensional Legendre polynomials used for basis functions. The maxmimum mesh width of the Voronoi tessellations is denoted by h.

7. Learnings and Outlook

As is usual in programming projects, many problems that have not been not on the radar before were encountered. Already the incorporation of polytopic meshes into LehrFEM ++ and especially their generation and data import into the program was full of problems. The code provided for PolyMesher did not work out of the box. One actual bug had to be found and multiple adaptions were necessary for the process to work as planned. The bug will be reported to the authors of PolyMesher. A big learning is that one should first go for the straight-forward and universal implementations before trying to go for an elegant and efficient type. This was particularly the case for
the numerical integration used on the polytopic mesh. Displayed in the appendix B that the original idea was to use an algorithm used for the very fast integration of homogeneous functions, presented in [4]. After some troubles of actually implementing it (it is still present on the current repository branch but only works for polynomial functions), it was noticed that is not universal enough for the use in this project. In general, many parts were implemented without being absolutely necessary. But that is okay for a Bachelor project. Self-organization and pragmatic problem solving were needed. The challenge was interesting and an instructive experience.
As mentioned before, the implementation of the orthogonal L^{2}-projection $\boldsymbol{\Pi}_{L^{2}}$ onto the finite element space $V^{\mathbf{p}}\left(\mathscr{T}_{h}\right)$ remains a task.
Most algorithms implemented in the project can surely be implemented a lot more efficiently. The focus is set strictly to correct results while performance optimizations are kept to a minimum.k

References

[1] Hiptmair, R., Casagrande, R. et al, LEHRFEM++, Simplistic Finite Element Framework for research and education, https://github.com/craffael/ LehrFEMpp
[2] Hiptmair, Ralf. "Numerical Methods for Partial Differential Equations". Spring 2023, ETH Zurich. https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE. pdf
[3] Cangiani, A., Dong, Z., Geourgoulis, E. H., Houston, P. (2017). hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. https://doi.org/10.1007/978-3-319-67673-9
[4] Antonetti, P. F., Houston, P., Pennesi, G. (2018). Fast Numerical Integration on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element Methods. Journal of Scientific Computing (2018) 77:1339-1370. https://doi. org/10.1007/s10915-018-0802-y
[5] A. Cangiani, E.H. Georgoulis, P. Houston, hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10),(2014)
[6] Talischi, C., Paulino, G. H., Pereira, A., Menezes, I. F. M. (2012). PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. https: //link.springer.com/article/10.1007/s00158-011-0706-z
[7] Georgoulis, E. H., Lasis A., A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems . IMA Journal of Numerical Analysis 26(2) (2006) https://doi.org/10.1093/imanum/dri038

A. Script Example

```
/** @file
    * Obrief Bachelor Thesis DGFEM
    * @author Tarzis Maurer
    * @date July 23
    * @copyright ETH Zurich
    */
#include <cstdlib>
#include <filesystem>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include <iomanip>
#include <lf/mesh/polytopic2d/polytopic2d.h>
#include <lf/mesh/hybrid2d/hybrid2d.h>
#include <lf/mesh/mesh.h>
#include <lf/io/io.h>
#include <lf/mesh/utils/utils.h>
#include <lf/base/base.h>
#include <lf/dgfe/dgfe.h>
#include <lf/fe/fe.h>
#include <lf/uscalfe/uscalfe.h>
#include "lf/mesh/test_utils/test_meshes.h"
//function to write error to a file
void write_error_file(std::string run_name, double c_inv, int c_sigma, int
@um_cells, std::string error_type, double error){
    //error file
    std::setprecision(17);
    auto c_inv_str = std::to_string(c_inv);
    c_inv_str.resize(4);
    auto c_sigma_str = std::to_string(c_sigma);
    std::string out_file_name = "measurements/" + run_name + "/" +
\hookrightarrow std::to_string(num_cells) + "_" + c_inv_str
                            + "_" + c_sigma_str + "_" + error_type + ".txt";
    std::ofstream out_file(out_file_name);
    out_file << error;
    out_file.close();
}
int main(int argc, char *argv[]){
```

```
//############# USAGE of this script in bash #########################
/*
./projects.dgfem.full_bvp <RUN_NAME> <C_INV> <C_SIGMA> <LIST OF # cells in mesh
@ separated by space>
EXAMPLE:
`\newpage`
./projects.dgfem.full_bvp my_run_name 0.5 20 4 8 16 32 64 128 256 512 1024 2048
\hookrightarrow4096
*/
//get run arguments: name and constants for discontinuity penalty
std::string run_name = argv[1];
double c_inv = std::stod(argv[2]);
double c_sigma = std::stod(argv[3]);
std::cout << "C_inv: " << c_inv << " and C_sigma: " << c_sigma << "\n";
//set the integration degree used for assembling Galerkin Matrix and RHS
int integration_degree = 15;
//-----------------------------
// Scalar valued reaction coefficient c
auto c_coeff_lambda = [](Eigen::Vector2d x) -> double {
    return (1 + x[0]) * (1 + x[1]) * (1 + x[1]);
};
lf::dgfe::MeshFunctionGlobalDGFE m_c_coeff{c_coeff_lambda};
//Vector valued advection coefficient b
auto b_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Vector2d {
    return (Eigen::Vector2d{2 - x[0]* x[1] , 2 - x[0]*x[0]});
};
lf::dgfe::MeshFunctionGlobalDGFE m_b_coeff{b_coeff_lambda};
// Scalar valued div of advection coeff
auto div_b_coeff_lambda = [](Eigen::Vector2d x) -> double {
    return -x[1];
};
lf::dgfe::MeshFunctionGlobalDGFE m_div_b_coeff{div_b_coeff_lambda};
// 2x2 diffusion tensor A(x)
auto a_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Matrix<double, 2, 2> {
    double entry = 1.0 + (std::sin(4.0 * M_PI *(x[0] + x[1]))) * (std::sin(4.0 *
M M_PI *(x[0] + x[1])));
    return (Eigen::Matrix<double, 2, 2>() << entry, 0.0, 0.0, entry).finished();
};
lf::dgfe::MeshFunctionGlobalDGFE m_a_coeff{a_coeff_lambda};
```

```
//------------------------END PREPARE COEFFICIENTS
//-----------------------PREPARE PRESCRIBED FUNCTIONS
//define eulers number
const double E =
\hookrightarrow 2.7182818284590452353602874713526624977572470936999595749669676277;
// Scalar valued prescribed function gD
auto gD_lambda = [](Eigen::Vector2d x) -> double {
    return 1.0 + std::sin(M_PI * (1.0 + x[0]) * (1.0 + x[1]) * (1.0 + x[1]) *
@ 0.125);
};
lf ::dgfe::MeshFunctionGlobalDGFE m_gD{gD_lambda};
auto gN_lambda = [E] (Eigen::Vector2d x) -> double {
    return 0.39269908169872414*std::pow(1 + x[1],2)*
        std::cos(0.39269908169872414*(1.0 + x[0])*std::pow(1 + x[1],2))*
        (1.0 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2));
};
lf::dgfe::MeshFunctionGlobalDGFE m_gN{gN_lambda};
// Scalar valued prescribed function f
auto f_lambda = [](Eigen::Vector2d x) -> double {
    return 0.7853981633974483*(1 + x[0])*(2 - std::pow(x[0],2))*(1 + x[1])*
    std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2)) +
    0.39269908169872414*std::pow(1 + x[1],2)*(2 - x[0]*x[1])*
    std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2)) -
    x[1]*(1 + std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))) +
    (1 + x[0])*std::pow(1 + x[1],2)*
    (1 + std::sin(0.39269908169872414*(1 + x[0])*std::pow (1 + x[1],2))) -
    19.739208802178716*(1 + x[0])*(1 + x[1])*
    std::cos(0.39269908169872414*(1 + x[0])*std::pow (1 + x[1],2))*
    std::cos(4*M_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -
    9.869604401089358*std::pow(1 + x[1],2)*
    std:: cos(0.39269908169872414*(1 + x[0])*std::pow (1 + x[1],2))*
    std::cos(4*M_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -
    0.7853981633974483*(1 + x[0])*
    std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*
    (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2)) +
    0.6168502750680849*std::pow (1 + x[0],2)*std::pow (1 + x[1],2)*
    std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*
    (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2)) +
    0.15421256876702122*std::pow(1 + x[1],4)*
    std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*
    (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2));
};
lf::dgfe::MeshFunctionGlobalDGFE m_f{f_lambda};
```

```
//----------------------EEND PREPARE PRESCRIBED FUNCTIONS-------------------------------
//-----------------------LOOP over Meshes--------------------------------
//loop over meshes
for (int i = 4; i < argc; i++){
    //read number of cells
    std::string num_cells = argv[i];
    //get mesh
    std::filesystem::path here = __FILE__;
    auto mesh_file = here.parent_path().string() +
\hookrightarrow "/msh_files/unit_square_voronoi_" + num_cells + "_cells.vtk";
    lf::io::VtkPolytopicReader
\hookrightarrow reader(std::make_unique<lf::mesh::polytopic2d::MeshFactory>(2), mesh_file);
    auto mesh_ptr = reader.mesh();
    //write mesh for python drawing
    //lf::io::writeMatplotlib(*mesh_ptr, "./csvs/" +
\hookrightarrow std::to_string(mesh_ptr->NumEntities(0)) + ".csv");
    //dgfe space p = 1
    lf::dgfe::DGFESpace dgfe_space(mesh_ptr, 1);
    auto dgfe_space_ptr = std::make_shared<lf::dgfe::DGFESpace>(dgfe_space);
    //----------------------PREPARE BOUNDARY EDGE SETS---------------------
    auto boundary_edge = lf::mesh::utils::flagEntitiesOnBoundary(mesh_ptr, 1);
    //boundary_N_edge
    lf::mesh::utils::CodimMeshDataSet<bool> boundary_n_edge(mesh_ptr, 1, false);
    //boundary_0_edge
    lf::mesh::utils::CodimMeshDataSet<bool> boundary_0_edge(mesh_ptr, 1, false);
    //boundary_D_edge
    lf::mesh::utils::CodimMeshDataSet<bool> boundary_d_edge(mesh_ptr, 1, false);
    //boundary_minus_edge
    lf::mesh::utils::CodimMeshDataSet<bool> boundary_minus_edge(mesh_ptr, 1,
false);
    //boundary_plus_edge
    lf::mesh::utils::CodimMeshDataSet<bool> boundary_plus_edge(mesh_ptr, 1,
false);
    //setup qr rule for segments
    const lf::quad::QuadRule qr_s =
\hookrightarrow lf::quad::make_QuadRule(lf::base::RefEl::kSegment(), integration_degree);
    // qr points
    const Eigen::MatrixXd zeta_ref_s{qr_s.Points()};
    //weights
    Eigen::VectorXd w_ref_s{qr_s.Weights()};
```

```
    //BOUNDARY SETS ASSEMBLY
    for (auto cell : mesh_ptr->Entities(0)){
        for (auto edge : cell->SubEntities(1)){
            if (boundary_edge(*edge)){
            //normal n
            auto polygon_pair = dgfe_space_ptr->AdjacentPolygons(edge);
            auto normal =
\hookrightarrow lf::dgfe::outwardNormal(lf::geometry::Corners(*(edge->Geometry())));
                            //if orientation of edge in polygon is negative, normal has to be
multiplied by -1;
    normal *= (int)
\hookrightarrow (cell->RelativeOrientations()[polygon_pair.first.second]);
    lf::dgfe::BoundingBox box(*cell);
    // qr points mapped to segment
    Eigen::MatrixXd
\hookrightarrow zeta_global_s{edge->Geometry()->Global(zeta_ref_s)};
    // qr points mapped back into reference bounding box to retrieve
 values
    Eigen::MatrixXd zeta_box_s{box.inverseMap(zeta_global_s)};
    //gramian determinants
    Eigen::VectorXd
\hookrightarrow gram_dets_s{edge->Geometry() -> IntegrationElement(zeta_ref_s)};
    auto a_evaluated = m_a_coeff(*cell, zeta_box_s);
    double boundary_0_sum = 0.0;
    for (int i = 0; i < gram_dets_s.size(); i++){
        boundary_0_sum += normal.dot(a_evaluated[i] * normal) *
\hookrightarrow gram_dets_s[i] * w_ref_s[i];
    }
    //BOUNDARY O #############
    if (boundary_0_sum > 0){
        boundary_0_edge(*edge) = true;
        //HERE DIRICHLET AND NEUMANN ################
        auto corners = lf::geometry::Corners(*(edge->Geometry()));
        if(corners(0,0) == 1.0 && corners (0,1) == 1.0){ //whole edge
@ on side x = 1
            boundary_n_edge(*edge) = true;
        } else {
                            boundary_d_edge(*edge) = true;
        }
    } else { //BOUNDARY_plus and BOUNDARY_minus ###############
        auto b_evaluated = m_b_coeff(*cell, zeta_box_s);
        double boundary_plus_sum = 0.0;
        for (int i = 0; i < gram_dets_s.size(); i++){
```

```
                                    boundary_0_sum += b_evaluated[i].dot(normal) *
-> gram_dets_s[i] * w_ref_s[i];
            }
                                    if (boundary_plus_sum < 0){
                                    boundary_minus_edge(*edge) = true;
                                    } else {
                                    boundary_plus_edge(*edge) = true;
                                }
                }
            }
        }
    }
    //----------------------END PREPARE BOUNDARY EDGE
\hookrightarrow SETS--------------------------
    //-----------------------ASSEMBLE GALERKIN MATRIX &
R RHS
    //set up discontinuity penalization
    lf::dgfe::DiscontinuityPenalization disc_pen(dgfe_space_ptr, c_inv, c_sigma);
    unsigned n_dofs = dgfe_space_ptr->LocGlobMap().NumDofs();
    //galerkin matrix initialization
    lf::assemble::COOMatrix<double> A(n_dofs, n_dofs);
    A.setZero();
    //diffusion assembler
    lf::dgfe::DiffusionMatrixAssembler<decltype(A), double, decltype(m_a_coeff),
 decltype(boundary_edge)>
                            diffusionAssembler(dgfe_space_ptr, m_a_coeff, boundary_edge,
\hookrightarrow boundary_d_edge, integration_degree, disc_pen);
    //advection reaction matrix assembler
    lf::dgfe::AdvectionReactionMatrixAssembler<decltype(A), double,
\hookrightarrow decltype(m_b_coeff), decltype(m_c_coeff), decltype(boundary_edge),
@ decltype(m_div_b_coeff)>
                            advectionReactionAssembler(dgfe_space_ptr, m_b_coeff,
\hookrightarrow m_div_b_coeff, m_c_coeff, boundary_edge, boundary_d_edge,
\hookrightarrow boundary_minus_edge, integration_degree);
    //assemble matrix
    diffusionAssembler.assemble(A);
    advectionReactionAssembler.assemble(A);
    //rhs initialization
    Eigen::VectorXd rhs(n_dofs);
    rhs.setZero();
    //RHS Assembler
    lf::dgfe::AdvectionReactionDiffusionRHSAssembler<double, decltype(m_a_coeff),
\hookrightarrow decltype(m_b_coeff), decltype(boundary_edge), decltype(m_f), decltype(m_gD),
```

```
@ decltype(rhs)>
                                rhsAssembler(dgfe_space_ptr, m_f, m_gD, m_gN,
m_a_coeff, m_b_coeff, boundary_minus_edge,
                                boundary_d_edge, boundary_n_edge, integration_degree,
disc_pen);
    //assemble rhs vector
    rhsAssembler.assemble(rhs);
    //----------------------END ASSEMBLE GALERKIN MATRIX &
RHS
    //-----------------------SOLVE LSE--------------------------------
    Eigen::SparseMatrix<double> A_crs = A.makeSparse();
    Eigen::SparseLU<Eigen::SparseMatrix<double>> solver;
    solver.compute(A_crs);
    LF_VERIFY_MSG(solver.info() == Eigen::Success, "LU decomposition failed");
    Eigen::VectorXd sol_vec = solver.solve(rhs);
    LF_VERIFY_MSG(solver.info() == Eigen::Success, "Solving LSE failed");
    //----------------------END SOLVE LSE------------------------------
    //----------------------MESH FUNCTION AND ERROR
CALCULATION
    lf::dgfe::MeshFunctionDGFE<double> dgfe_mesh_function(dgfe_space_ptr,
@ sol_vec);
    //calculate L2 error of solution with "overkill" QR
    double mesh_func_l2_error = lf::dgfe::L2ErrorSubTessellation<double,
\hookrightarrow decltype(dgfe_mesh_function), decltype(m_gD)>(dgfe_mesh_function, m_gD,
@ mesh_ptr, 30);
    //----------------------EEND MESH FUNCTION AND ERROR
CALCULATION
    //-----------------------WRITE ERROR TO FILE---------------------------------
    write_error_file(run_name, c_inv, c_sigma, std::stoi(num_cells), "L2",
\hookrightarrow mesh_func_l2_error);
    std::cout << "L2 Error for " << num_cells << " cells: \t" <<
@ mesh_func_l2_error << "\n";
    //---------------------END WRITE ERROR TO FILE------------------------------
}
//-----------------------END LOOP over Meshes--------------------------------------------
return 0;
} //end main
```

Listing 15: Script example to produce the measurements with $p=1$ in figure 9 .

B. Proposed Changes

Here the proposed changes to the LehrFEM++ library which have been formulated in the beginning of the project.

Changes LehrFemt+ nasion 2 (polytopic meshes \times DGFE)

Before starting with the changes to the dillament modules

 Polytotris Meshes with Applications to Discontivoos Gaceltin Finder Element

how to assemble the Gacertin Matrix. The poly yous' aris-aligned bounding boxes are mopped to the reference bounding box $(-1,1)^{2}$. The computations for the element matrices is then done on the mappings of the polygons within $(1,1)$? The reason for miss is the choices of Legendre Polynomials defined on $(-1,1)^{2}$ as basis is functions of the aiscrece space $V V^{n}$. More of this in a Iata section.
The transformation $F_{x}: \hat{B} \rightarrow B_{x}$ maps
the reference bounding box $\beta^{2} \times(-1,)^{2}$
t. the axis-aligned bounding box B_{x}
of one specific: polygon x in the mere.
$F_{x}(\hat{x})=J_{x} \hat{x}+t_{x}$
with $J_{x} \in \mathbb{R}^{2 \times 2}$ being

transformation, the $+\in \mathbb{R}^{2}$ the
translation befucen $[0,0]^{\top}$ and the
barycenter of B_{x}. F_{1}, is $_{\text {is a chine, }} \rho_{x}$ thectore diagonal. $\partial_{x}=\operatorname{diang}\left(h_{1}, h_{2}\right)$
with h_{1}, h_{2} being halt the lengths of \mathcal{B}_{x} s sites.

In the following sections I will go over some of LehrIEM's modules which ave depicted below. The order in which 1 go through them is in a bottom-up manner and the changes proposed such that no de pendencies from higher manner and the changes created. Existing functionalities are preserved.
to Cue module are
cehrFEM merely is extended.

(1) Base-RetEe

As can be seen above, there is no reference element for polygons. To comply with higher "moduces 'which requive an entity in the mesh to have a RefEC, a "disabled RefEe" for polygons is introduced. Most functionalities of the other reference elements are not provided, assents will fail if the corresponding menber function of the class is called.
First off, there is a new type of RefEl:
enum class RefEeType: unsigned chat k

$$
\begin{aligned}
& \text { kPoint }=1, \\
& \text { cSegment }=2, \\
& \text { kloia }=3, \\
& \text { kQuad }=4, \\
& \text { kPolygon }=3,
\end{aligned}
$$

$3 ;$
Here are screenshots of the functions and aftributes of lf:base:Refte:

Public Member Functions
constexpr RefEl (RefEIType type) noexcept
Create a RefEl from a If::base::RefEIType enum. More...
constexpr RefEl (const RefEl \&)=default
Default copy constructor. More.
constexpr RefEI (RefEI \&\&)=default
Default move constructor. More..
constexpr RefEI \& operator= (const RefEl \&rhs)
Default copy assignment operator. More...
constexpr RefEI \& operator= (RefEI \&\&rhs) noexcept
Default move assignment operator. More.,
constexpr dim_t Dimension () const
Return the dimension of this reference element. More...
X constexpr size_type NumNodes () const
The number of nodes of this reference element. More...
X const Eigen::MatrixXd \& NodeCoords () const
Get the coordinates of the nodes of this reference element. More...
X constexpr size_type NumSubEntities (dim_t sub_codim) const
Get the number of sub-entities of this RefEl with the given codimension. More...
X constexpr RefEl SubType (dim_t sub_codim, dim_t sub_index) const More...
X constexpr sub_idx_t SubSubEntity2SubEntity (dim_t sub_codim, sub_idx_t sub_index, dim_t sub_rel_codim, sub_idx_t sub_rel_index) const identifies sub-entities of sub-entities (so-called sub-sub-entities) with sub-entities. More...
std::string ToString () const
Return a string representation of this Reference element. More...
constexpr operator RefEIType () const
Conversion operator, converts this RefEl to a If::base::RefEIType enum. More...
constexpr unsigned int Id () const
Return a unique id for this reference element. More..

Private Attributes
RefElType type_
Static Private Attributes
static const Eigen::MatrixXd ncoords_point_dynamic_= Eigen::VectorXd(0) static const Eigen::MatrixXd ncoords_segment_dynamic_ static const Eigen::MatrixXd ncoords_tria_dynamic_ static const Eigen::MatrixXd ncoords_quad_dynamic_ static const std:::vector< Eigen::Matrix<double, $0,1 \gg$ ncoords_point_static_
static const std::vector< Eigen::Matrix<double, 1, 1>> ncoords_segment_static_ static const std::vector<Eigen::Matrix<double, 1, $1 \gg$ ncoords_segment_static_ static const std:::vector< Eigen::Vector2d> ncoords_quad_static_
static constexpr std::array< std::array< base::dim_t, $2>, 3>$ sub_sub_entity_index_tria_ $=\{\{\{0,1\},\{1,2\},\{2$, $\begin{aligned} & \text { static constexpr std:: array< std::array< base:: dim_t, } 2>, 4> \text { sub_sub_entity_index_quad__ }=\{\{\{0,1\},\{1,2\},\{2, \\ &3\},\{3,0\}\}\end{aligned}$

Static Public Member Functions

I decided to not even include the information on the number of nodes of the poly tope in the reference element. The changes to the functions are there fore all ray small. All functions that are constexpr will remain so. The ones marked with a x will fail an assert if they are called upon a Refte of type- EPolygon. All other functions will be implemented for polygons accordingly.

The computations for the element matrices are done directly. on the polygons. The mappings between (1, 11) and the arrisbounding bores \mathcal{B}_{x} of enoch element, is trivial and will be computed on the -fy when lectured. The fore the functionalities, of the geometry
mod vie are not used in the polytypic mesh retting. module are not used in the polytypic mesh retting. a point to a Ilirementery Geometry objed This Point polygon still has
 in Cray public function. This males debugging easier, in case one nevatheless ties to call member fundious of polytypic geometry object. The screenshot below shows all public member functions Utiscometry-biomely intaface. The added class (annotated screenshot on the right) will have them

(3) Mesh

LehvFEM ++ comes with a full unidirectional topology representation as can be seen in this screenshot taken from the NumPDE lecture document:

(C) Full unidirectional topology representation:

- All geometric entities are stored as (virtual) "objects".
- Elements hold lists/vectors of references to their vertices and edges.
- Edges have references to their endpoints.

Topology representation in LEHRFEM++

The bilinear form corresponding to the symmetric interior penalty also features terms that are to be computed on segments and require knowledge of the adjacent polygons. If the segments do not hold any data on the 2 polygons they belong to finding the two would have a complexity of $\theta(N)$, N being the number of polygons in the morn.
To avoid this, during the initialization of the mesh, a 4/:mesh:: utile: Codimmeshoataset is created that stores pointer to the two adjacent polygons (or only one in case of a boundary edge).
The new namespace lf:mesh:: polytopie2d is introduced. It will feature 3 classes who are depicted below, together will the abstract base class they inherit from.

The lli:meshiipolytopic2D:: Polygon will have the same functionalities and members as lf:mesh:ihybridi2D:: Triangle except that it stores its nodes and edges in rectors instead of arrays.
The points and segments of the mesh will be objects of the " classes of the hybrid setting. They will have a "disabled Ref?" and a "dummy Geometry" as members though.
The new llimesh:i polylopic 20:: Mesh Factory will intialize the polytopic mesh as well as the ifimerhiutils: CodimMeshDataset from above from a among file.

3] Shape Functions \& LSE assembly
As proposed in the paper on integration on pocitopic meshes in the introduction, the family of one-dimensional and L^{2}-orthonormal Legendre polynomials defined over $L^{2}(-1,1)$ will be used as basis functions to span a standard polynomial space.

$$
\mathcal{L}_{n}(x)=\frac{L_{n}(x)}{\left\|L_{n}\right\|_{L^{2}(-1,1)}} \quad \text { with } \quad L_{n}=\frac{1}{2^{n} n!} \frac{d}{d x}\left[\left(x^{2}-1\right)^{n}\right]
$$

Then, basis functions for $P_{p}(\hat{B})$ are defined. I is a multi-index: $I=\left(i_{1}, i z\right)$. The basis functions on \hat{B} are denoted by $\left\{\hat{\phi}_{I}\right\} \quad 0 \leq 1 \eta \leq p\left(I=i_{1}+i_{2}\right)$

$$
\hat{\phi}_{I}(\hat{x})=\hat{\phi}_{I}\left(\hat{x}_{1}, \hat{x}_{2}\right)=\mathcal{L}_{i 1}\left(\hat{x}_{1}\right) \mathscr{L}_{i_{2}}\left(\hat{x}_{2}\right)
$$

Then, the polynomial spaces on the bounding boxes \mathcal{B}_{0} is defined by

$$
\phi_{I, x}(x)=\delta_{I}\left(F_{x}^{-1}(x)\right) \quad \forall x \in x_{x} \in \beta_{x} \quad \forall I: 0 \leq|I| \leq p_{x}
$$

Finally $\left\{\phi_{I}, x: 0 \leq 1 I \leq p_{x}, x \in \mathcal{J}_{h}\right\}^{\text {set }}$ of polygons in the mesh the basis of the discrete space V_{h}. On each element, there is a bijective relation between $\left\{\underline{L}=\left(i_{1}, i_{2}\right)\right\}$ and $\left\{1,2, \ldots, \operatorname{dim}\left(\mathcal{P}_{p}(0)\right)\right\}$

In LehrFEM, functionalities regarding this basis will be collected in a new module lp: dgfe. It will also feature the integration of those basis functions over polytopes and segments in the mesh. The method used is the A1 from the paper of Antonetti P. flouston P. and pennesi 6. Here a screenshot of the pseudo code:

$$
\begin{gathered}
\text { Algorithm } 1 \mathcal{I}\left(N, \mathcal{E}, k_{1}, \ldots, k_{d}\right)=\int_{\mathcal{E}} x_{1}^{k_{1}} \ldots x_{d}^{k_{d}} \mathrm{~d} \sigma_{N}\left(x_{1}, \ldots, x_{d}\right) \\
\text { if } N=0\left(\mathcal{E}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d} \text { is a point }\right) \\
\text { return } \mathcal{I}\left(N, \mathcal{E}, k_{1}, \ldots, k_{d}\right)=v_{1}^{k_{1}} \ldots v_{d}^{k_{d}}
\end{gathered}
$$

else if $1 \leq N \leq d-1(\mathcal{E}$ is a point if $d=1$ or an edge if $d=2$ or a face if $d=3)$

$$
\begin{aligned}
\mathcal{I}\left(N, \mathcal{E}, k_{1}, \ldots, k_{d}\right) & =\frac{1}{N+\sum_{n=1}^{d} k_{n}}\left(\sum_{i=1}^{m} d_{i} \mathcal{I}\left(N-1, \mathcal{E}_{i}, k_{1}, \ldots, k_{d}\right)\right. \\
& +x_{0,1} k_{1} \mathcal{I}\left(N, \mathcal{E}, k_{1}-1, k_{2}, \ldots, k_{d}\right) \\
& \left.+\cdots+x_{0, d} k_{d} \mathcal{I}\left(N, \mathcal{E}, k_{1}, \ldots, k_{d}-1\right)\right)
\end{aligned}
$$

else if $N=d(\mathcal{E}$ is an interval if $d=1$ or a polygon if $d=2$ or a polyhedron if $d=3)$

$$
\mathcal{I}\left(N, \mathcal{E}, k_{1}, \ldots, k_{d}\right)=\frac{1}{N+\sum_{n=1}^{d} k_{n}}\left(\sum_{i=1}^{m} b_{i} \mathcal{I}\left(N-1, \mathcal{E}_{i}, k_{1}, \ldots, k_{d}\right)\right)
$$

end if

The lfidgte module will feature entity matrix/uector providers which can be used with ltuassemble routines to assemble the the k hs of the Discontinuous Galeatin LSE of the boundary value problem

$$
\begin{gathered}
-\operatorname{div}(A(x) \operatorname{qrad}(v))+\operatorname{div}(b(x) \sim)+c(x) v=f \text { in } \Omega \subset \mathbb{R}^{2} \\
N=g \text { on } T_{0} \cup T_{-} \\
A(x) \operatorname{qad} N \cdot n(x)=h \text { on } T_{N}
\end{gathered}
$$

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis, Master's thesis and any other degree paper undertaken during the course of studies, including the respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):
Implementation of Discontinuous Galerkin Finite Element Method on Polygonal Meshes

Authored by (in block letters):
For papers written by groups the names of all authors are required.
Name(s): First name(s):
Maurer Tarzis
\qquad
\qquad
\qquad
\qquad
With my signature I confirm that

- I have committed none of the forms of plagiarism described in the 'Citation etiquette' information sheet.
- I have documented all methods, data and processes truthfully.
- I have not manipulated any data.
- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date

Zurich, 31.07.23

Signature(s)

\qquad
\qquad
\qquad

For papers written by groups the names of all authors are required. Their signatures collectively guarantee the entire content of the written paper.

