
Implementation of Discontinuous

Galerkin Finite Element Method on

Polygonal Meshes
Bachelor Project Report supervised by Prof. Dr. Ralf Hiptmair

Tarzis Maurer, ETH Zürich, 17-934-274

July, 2023

Abstract

Discontinuous Galerkin Finite Element Methods are universal, do not lack in stability

which is featured in classical FEMs and can be implemented on general polytopic

meshes. An infrastructure for the problem solving of a linear degenerate second-

order boundary value problem on such general poygonal meshes in a discontinuous

finite element setting is added to the FEM library LehrFEM++.

1

1. Introduction

It is known that Classical Finite Element Methods (FEMs) lack sufficient stability

when applied to hyperbolic or ”nearly” hyperbolic problems. Oscillations in the ap-

proximated solution can show up, mostly around regions where the gradient of the an-

alytical solution is large. Discontinuous Galerkin Finite Element Methods (DGFEMs)

allow for general non-self-adjoint PDEs to be solved without those stabilization is-

sues. Additionally, polytopic meshes can be used (opposed to strictly triangular,

rectangular or hybrid meshes) because there are no continuity constraints between

neighbouring cells. This report describes a Bachelor Project which extends the C++

open-source Finite Element Method library LehrFEM++ [1], used for teaching of

the course Numerical Methods for Partial Differential Equations [2] at ETH Zürich.

The two main additions are made up of an environment for the handling of general

polygonal meshes within the program and functionalities to solve the general linear

degenerate second order convection-diffusion-reaction boundary value problem

− div(A(x) · gradu) + div(b(x)u) + c(x)u = f in Ω ⊂ R2, (1)

u = g on ΓD ∪ Γ− and A(x) · gradu · n(x) on ΓN . (2)

Where A : Ω → R2,2 is a positive semi-definite bounded matrix field, b a continuous

vector field on Ω and c : Ω → R a bounded function. Ω ∈ R2 is an open domain

in two dimensions. ΓD, Γ− and ΓN are disjoint sections of the boundary ∂Ω of the

domain.

All theoretical aspects of this project closely follow [3]. The error analysis etc. is

presented there and will not be repeated here. The book lies the mathematical

foundation for the weak formulation of the problem 1 & 2 and especially the symmetric

interior penalty (SIP)(also see [7]). The correctness of the implementation can be

proven by the method of manufactured solutions.

A number of symbols need to be introduced for their further use. A subdivision of the

domain Ω into disjoint open (and polygonal) elements κ is denoted by Th. V
p(Th) is

the discrete finite element space defined over the domain. Fh denotes the set of faces

of codimension 1 associated with Th. This set is further subdivided into interior faces

FI
h and faces on the boundary FB

h .

As stated above, this project extends LehrFEM++, which already incorporated many

functionalities. Meshes with triangular, quadrilateral or hybrid partitions were al-

ready incorporated in the library and classical FEM with nodal basis functions in the

discrete space had been implemented.

2

Contents

1. Introduction 2

2. Overview of changes in LehrFEM++ 4

3. Mesh 5

3.1. Theory . 5

3.2. Mesh Generation . 5

3.3. Implementation . 6

4. Discrete Finite Element Space 11

4.1. Theory . 11

4.2. Implementation . 13

5. Boundary Value Problem 20

5.1. Theory . 20

5.2. Implementation . 22

6. Numerical Experiments 27

7. Learnings and Outlook 28

A. Script Example 31

B. Proposed Changes 38

3

2. Overview of changes in LehrFEM++

Numerous additions in LehrFEM++ emerge from this project. They are not merged

into the main branch of the library at this point. To have a visual overview of what is

newly implemented, see figure 1. Most additions are in the newly created namespace

lf::dgfe as one goal of the project is to minimize interfering with existing infrastructure.

The additions in the other namespaces lf::mesh, lf::assemble, lf::base and lf::io feature

tests with Google’s C++ test framework and are working correctly. Functionalities

regarding the solving of 1 & 2 in a DGFEM setting are collected in the namespace

lf::dgfe. Smaller parts of this module, e.g. the class lf::dgfe::BoundingBox are also

tested. More complex utilities are shown to be correct by way of numerical experi-

ments, whose results can be found in section 6. The current state of the project can be

found in the github repository https://github.com/tarzm/lehrfempp/tree/dgfe.

Figure 1: Overview of LEHRFEM++ changes from this project.

The visualization is not complete but a base to discuss

upon.

4

https://github.com/google/googletest
https://github.com/tarzm/lehrfempp/tree/dgfe

3. Mesh

3.1. Theory

The application of discontinuous Galerkin finite element methods generally allows for

choosing general piecewise polynomial trial and test spaces and has - more important

for this section - no restrictions on the choice of subdivision of the computational

domain. That is the reason why polygonal or polytopic meshes have been introduced

and added to the LehrFEM++ library to allow for more general meshes. As the error

analysis in [3, sec. 5.2] requires shape regularity (defined and discussed also in [3])

of the polytopic cells in the mesh, this property is implied for all meshes used in the

polytopic setting. It can be assumed that the mesh generator used for the project

provides shape-regular meshes. More on the generator in the next section.

The variational formulation of the boundary value problem 1 & 2 includes the inte-

gration of jump terms over all edges in the mesh (see equation 24, further information

in section 5). To evaluate jump terms over internal edges, a reference from each edge

to the two adjacent polygonal cells is needed, otherwise an iteration over possibly all

polygons would be required for each evaluation. This functionality is provided and

discussed in section 3.3.

3.2. Mesh Generation

Polytopic meshes used in the project have been either made with PolyMesher [6],

were programmed by hand inside the library or were originally an existing hybrid

mesh from LehrFEM++ and then interpreted as a polytopic mesh.

PolyMesher creates meshes with linear convex polygons. They are Voronoi Tessella-

tions of the desired domain. All functionalities to generate meshes with PolyMesher

can be found in the LehrFEM++ library in lf/mesh/polytopic2d/polymesher. The

matlab file lf/mesh/polytopic2d/polymesher/mesh.m provides the code used to

generate meshes with 22 up to 212 cells (a graphical representation of 4 of these

are depicted in figure 2). It writes .txt-files with information about the nodes and

the elements of the mesh. Another file lf/mesh/polytopic2d/polymesher/vtk_

writer.py lf/io/plot_mesh.py, written in Python then reads the information and

packs it into a .vtk-file. Finally this file can be read by the new LehrFEM++

class lf::io::VtkPolytopicReader which then provides the mesh in the internal

LehrFEM++ representation.

5

Figure 2: Visualizations of Voronoi Tessellations generated by Poly-

Mesher. N describes the number of polygonal cells

present in the mesh. All meshes are subdivisions of

the unit square domain (0, 1)2. They are created via

lf::io::writeMatplotlib() and lf/io/plot_mesh.py.

3.3. Implementation

An overview of the additions to the namespace lf::mesh is depicted in figure 3. A new

namespace lf::mesh::polytopic2d holds the majority of new functionalities regarding

polygonal meshes.

6

Figure 3: Visualization of the namespace lf::mesh. It is not complete but

rather an overview of what is discussed in this section. A key

to the symbols can be found at the bottom of the figure.

Polygon

A new class Polygon describes all cells (codimension 0) in the 2D mesh. As depicted

in figure 3, it inherits from the abstract base class lf::mesh::Entity. Its function-

alities are therefore very similar to the ones of a lf::mesh::hybrid2d::Triangle

and lf::mesh::hybrid2d::Quad. To keep things simple and use existing compo-

nents of LehrFEM++, the edges and nodes of Polygon are objects of types from the

namespace lf::mesh::hybrid2d. There are a number of differences to the entities of

codimension 0 in the hybrid case:

• All polygons have the newly created dummy reference element lf::base::

RefElType::kPolygon.

• Polygons have no fixed number of nodes and edges. The attributes nodes and

7

1 Eigen::MatrixXd Corners(const lf::mesh::Entity* ent){

2 LF_VERIFY_MSG(ent->RefEl() == lf::base::RefEl::kPolygon(),

3 "This method is only implemented for Polygons");

4 return dynamic_cast<const lf::mesh::polytopic2d::Polygon*>(ent)->Corners();

5 }

Listing 1: Definition of the function lf::mesh::polytopic2d::Corners().

edges are of type vector with variable length instead of an array with fixed

length.

• The attribute geometry is a nullpointer. Due to polygons not having a common

reference element, there is also no affine mapping between a general polygon

and all instances in the mesh. Therefore the lf::geometry::Geometry object

(More on this in [2, sec. 2.7.2.3]) has no relevance for polygons. How basis

functions are created on polygons is discussed in section 4.

• There is a new attribute corners which stores the coordinates of the nodes of

the polygon in a 2xn matrix, where n is the number of nodes in the polygon.

As discussed above, polygons have no lf::geometry::Geometry object which

stores its topological information in one place. Rather than having to iterate

over its nodes every time coordinates are needed, Corners() provides that func-

tionality. In most parts of the program, a polygon is interpreted as the base

class lf::mesh::Entity, so directly calling Corners() from it will cause an er-

ror. That is the reason for the existence of the function Corners() which takes

an lf::mesh::Entity as an argument. It will then perform a dynamic cast

to make the Corner() member function work. The definition of this function is

showed in listing 1.

Apart from those differences, the Polygon class works like its hybrid equivalents.

Mesh

The class Mesh in the polytopic setting provides the same functionalities as in the

hybrid setting. All entities of codimension 0 are of type lf:.mesh::polytopic2d::

Polygon. As has been mentioned above, a functionality which provides a reference

from all lf::mesh::Segments to their adjacent polygons in the mesh is needed. This

is implemented in EdgePolygonAdjacency(). It takes a pointer to a mesh as an argu-

ment and returns a data set containing pointers to both polygons for each segment

and the local indices of the segment in the polygons. If the segment is on the bound-

ary, i.e. has only one adjacent polygon, the pointer to the second polygon is a null

pointer. The declaration of the function can be seen in listing 2.

A function which is very important, but nowhere depicted here is

lf::mesh::utils::flagEntitiesOnBoundary(). Polytopic meshes and polygons are imple-

mented such that the function works exactly the same as in the hybrid setting.

8

1 using PolygonPair = std::pair<std::pair<const lf::mesh::Entity*, size_type>,

2 std::pair<const lf::mesh::Entity*, size_type>>;

3 /**

4 * @brief Constructs A CodimMeshDataSet that contains the adjacencies

5 * of the Segements. Each Segment is adjacent to either two Polygons

6 * (inner Segment) or one Polygon (boundary Segment). Returns a pair

7 * of pairs. First object of the inner pair is

8 * a pointer to the polygon, the second is the local idx of

9 * the edge in that polygon.

10 *

11 * @param mesh_ptr The mesh used.

12 * @return lf::mesh::utils::CodimMeshDataSet<PolygonPair> The constructed

13 * CodimMeshDataSet

14 */

15 lf::mesh::utils::CodimMeshDataSet<PolygonPair> EdgePolygonAdjacency(

16 std::shared_ptr<const lf::mesh::Mesh> mesh_ptr);

Listing 2: Declaration of the function lf::mesh::polytopic2d::EdgePolygonAdjacency().

1 explicit MeshFactory(dim_t dim_world, bool check_completeness = true,

2 bool unit_square = true): dim_world_(dim_world),

3 check_completeness_(check_completeness), unit_square_(unit_square) {}

Listing 3: Declaration of the constructor of lf::mesh::polytopic2d::MeshFactory().

MeshFactory

Like in the hybrid setting, lf::mesh::polytopic2d::MeshFactory inherits from the

abstract base class lf::mesh::MeshFactory and thus incorporates almost identical

components. Two functionalities are added.

As described above, most meshes used in the project are generated by PolyMesher

and are subdivisions of the unit square. PolyMesher collapses small edges into one

node (in the middle of the collapsed edge) in its iterative mesh generation process.

This results in nodes in the mesh that should be exactly on the boundary of the unit

square, but due to the edge collapsing they are not. To counter this problem, a new

member unit square was added to the MeshFactory. It can be passed as an optional

construction argument, as shown in listing 5. If set to true, all added coordinates

closer to the boundary than the macro COORD TOLERANCE (currently set to

10−7) are ”cleaned” and set to exactly the boundary coordinate.

In order to be able to compare the hybrid and polytopic meshes numerically, the

function polytopicFromHybrid() can be used. Every hybrid mesh can be interpreted

as a general polytopic one and this is what the function does. Its declaration is shown

in listing 4.

Additionally, a polytopic equivalent to lf::mesh::test utils::GenerateHybrid2DTestMesh()

is implemented as lf::mesh::test utils::GeneratePolytopic2DTestMesh(). Two poly-

9

1 /**

2 * @brief returns a polytopic 2D mesh from a hybrid 2D mesh

3 */

4 std::shared_ptr<lf::mesh::Mesh> PolytopicFromHybrid2D(

5 std::shared_ptr<const lf::mesh::Mesh> mesh_ptr);

Listing 4: Declaration of the function PolytopicFromHybrid2D().

topic test meshes are available. One is depicted in figure 4. The second one is a

subdivision of the unit square by four equal-sized squares.

Figure 4: Visualization of the mesh re-

trieved with lf::mesh::test -

utils::GeneratePolytopic2DTestMesh(0,1).

IO Functionalities

The io-part of the polytopic mesh module is not visualized in figure 3. Mainly a new

class lf::io::VtkPolytopicReader is implemented to read polytopic mesh data

from VTK-files and provide the polytopic mesh. A sample usage is shown in listing

5.

In order to be able to plot polytopic meshes like their hybrid counterparts, lf::io::

writeMatplotlib() is slightly adjusted to accept entities of codimension 0 with the

10

1 std::filesystem::path here = __FILE__;

2 auto mesh_file_name = "msh_files/unit_square_voronoi_64_cells.vtk";

3 auto mesh_file = here.parent_path().string() + mesh_file_name;

4 lf::io::VtkPolytopicReader reader

5 (std::make_unique<lf::mesh::polytopic2d::MeshFactory>(2), mesh_file);

6 auto mesh = reader.mesh();

7 //example loop over polygonal cells

8 for (auto polygon : mesh->Entities(0)) { ... }

Listing 5: Example usage of lf::io::VtkPolytopicReader.

reference element lf::base::RefElType::kPolygon. The output of this function

(which is a .csv file) can then be plotted via lf/io/plot_mesh.py.

4. Discrete Finite Element Space

4.1. Theory

As stated above, the general theoretical decisions of the project follow the book [3].

Basis functions of the discrete finite element Vp(Th) space in a discontinuous finite

element setting are not subject to any continuity constraints between cells (thus the

term ”discontinuous”). A rather simple construction of basis functions is achieved

by mapping a polynomial space defined on a reference bounding box κR to the axis-

aligned bounding box Bκ of each specific polygonal cell κ in the mesh. This space is

then restricted to κ. The axis-aligned bounding box is the minimal cartesian axis-

aligned rectangle such that all vertices of the cell either are inside the rectangle, or on

its boundary, i.e. κ ⊆ Bκ. The reference bounding box is defined as κR := (−1, 1)2.

Via an affine mapping Fκ, the bounding box κR is mapped to a polygon:

Fκ(x̂) = x = Jκx̂+ c. (3)

With Jκ := diag(h1, h2), c := (m1,m2)
⊺, x̂ a general point in κR and x its image in

Bκ. Additionally hi, i = 1, 2 is half the length of the i-th side of Bκ and mi is the

midpoint of the i-th side of Bκ. See figure 5 for a sketch of this mapping.

11

Figure 5: Mapping between the reference bounding box κR

and the bounding box Bκ of a cell κ in the mesh.

For polynomial basis functions, tensor product Legendre Polynomials in two di-

mensions are used.
{
L̂i(x̂)

}2

i=0
describes the family of L2(−1, 1)-orthonormal one-

dimensional Legendre polynomials (their respective degree being i), in this project

namely the ones in table 1. There are two options in the program: 1D-legendre

polynomials of maximum degree 1 or maximum degree 2.

i L̂i(x̂)

0 1

1 x̂

2 1
2
(3x̂2 − 1)

Table 1: One-dimensional legendre polynomials with polynomial degree i

The basis functions Φ̂i(x̂) on the reference bounding box are then defined as

Φ̂i(x̂) = L̂ix(x̂)L̂iy(ŷ) (4)

With ix and iy being the polynomial degrees of the 1D-legendre polynomials in the

direction of the first and second axis of the cartesian coordinate system. The plots

and explicit numbering of Φ̂i(x̂) is depicted in figure 6 in case of one-dimensional

12

legendre polynomials of maximum degree two. There is also an option for the usage

of one-dimensional legendre polynomials of maximum degree one. More of this choice

in section 4.2.

The polynomial basis functions of a general polygon κ in the mesh are then given by

mapping Φ̂i(x̂) via Fκ to Bκ and restricting its support to κ.

Φi,κ(x) = Φ̂i(F
−1
κ (x)) ∀x ∈ κ ⊂ Bκ ∀κ ∈ Th (5)

Finally, the discrete space Vp(Th) is spanned by all basis functions Φi,κ on all polyg-

onal cells.

Vp(Th) = span{Φi,κ} (6)

4.2. Implementation

As mentioned before, most of the new components in LehrFEM++ are integrated

in the new namespace lf::dgfe. It contains both basic functionalities of a discrete

Galerkin finite element space as well as the algorithms used to assemble the Galerkin

matrix and right-hand side vector of equation 24. A visual overview of lf::dgfe is

depicted in figure 7.

Figure 7: Visualization of the namespace lf::dgfe. It is not complete but

rather an overview of what is discussed in the report. A key

to the symbols can be found at the bottom of the figure.

13

Figure 6: Plots of tensor product Legendre Polynomials on the unit

square in two dimensions used as basis functions Φ̂i(x̂).

This is the specific case when the maximal degree of one-

dimensional Legendre polynomials used is 2.

14

BoundingBox

The in section 4.1 discussed axis-aligned bounding box is implemented as the class

lf::dgfe::BoundingBox. It is a fairly lightweight class that is constructed and

deleted ”on the fly” within Galerkin assembly algorithms. Once initialized for a

specific polygon κ (constructor in listing 6), it implements Fκ as the member function

map() (listing 7) and the inverse F−1
κ as inverseMap() (listing 8). For the integration

of functions and gradients of basis functions, the determinant of Jκ and single entries

of the inverse of Jκ in equation 3 are needed. The two member functions det() and

inverseJacobi() provide this information.

1 BoundingBox(const lf::mesh::Entity &entity);

Listing 6: Declaration of the constructor of lf::dgfe::BoundingBox.

1 /**

2 * @brief maps from reference bounding box to the cell's bounding box

3 *

4 * @param corners local points to be mapped into global coordinates

5 * @return Eigen::Matrix Global points

6 */

7 Eigen::MatrixXd map(const Eigen::MatrixXd corners);

Listing 7: Declaration of lf::dgfe::BoundingBox::map().

1 /**

2 * @brief Maps global coordinates into reference bounding box

3 *

4 * @param corners global points

5 * @return Eigen::MatrixXd local points

6 */

7 Eigen::MatrixXd inverseMap(const Eigen::MatrixXd corners);

Listing 8: Declaration of lf::dgfe::BoundingBox::inverseMap().

Basis Functions

The tensor product Legendre Polynomials Φ̂i(x̂) from section 4.1 are implemented in

the function legendre basis(). Its declaration is shown in listing 9.

15

1 /**

2 * @brief returns 2D basis function at coordinate defined on

3 * reference bounding box

4 *

5 * @param n index of basis function on reference bounding box

6 * @param max_degree maximum polynomial degree of 1D legendre polnynomials

7 * present in basis

8 * @param coord point for which the polynomial is evaluated

9 */

10 scalar_t legendre_basis(size_type n, size_type max_degree,

11 const Eigen::Vector2d &coord);

Listing 9: Declaration of lf::dgfe::legendre basis().

Furthermore, the derivatives of Φ̂i(x̂) in x- and y-dimension are implemented. The

declaration in x-direction is in listing 10.

1 /**

2 * @brief returns partial derivative in x of 2D reference basis function at coord

3 * defined on reference bounding box

4 *

5 * @note !! DO NOT FORGET TO MULTIPLY WITH ENTRY (0, 0) OF

6 * THE INVERSE JACOBI OF THE REFERENCE BOX MAPPING !!

7 *

8 * @param n nth basis function of

9 * @param max_degree maximum degree of 1D legendre polnynomials present in basis

10 * @param coord point for which the polynomial is evaluated

11 */

12 scalar_t legendre_basis_dx(size_type n, size_type max_degree,

13 const Eigen::Vector2d &coord);

Listing 10: Declaration of lf::dgfe::legendre basis dx().

As can be read in listing 10, it is necessary to multiply the derivatives of Φ̂i(x̂) with

the corresponding entries of J−1
κ from equation 3. This is due to the chain rule of

derivatives.

∂

∂x
Φi,κ(x) =

∂

∂x

[
Φ̂i(F

−1
κ (x))

]
=

∂

∂x

(
Φ̂i

) (
F−1

κ (x)
)
· ∂

∂x

(
F−1

κ (x)
)

(7)

More functions regarding Legendre Polynomials are implemented, but their discussion

is omitted here for clarity and priority reasons.

Mesh Functions

A MeshFunction is one of LehrFEM++’s concepts. A MeshFunction must particu-

larily overload the bracket operator as shown in listing 11. The concept can be seen

in https://craffael.github.io/lehrfempp/group__mesh__function.html.

16

https://craffael.github.io/lehrfempp/group__mesh__function.html

1 std::vector<R> operator()(const lf::mesh::Entity& e,

2 const Eigen::MatrixXd& local) const

Listing 11: Overloading of the bracket operator to satisfy LehrFEM++’s concept of

a MeshFunction.

It has been discussed above that there exists no general parametric mapping from a

reference polygon to all polygons in a mesh. Therefore the ”local” coordinates used in

listing 11 have a different meaning in the polytopic setting. Here, the local coordinates

are coordinates in the reference bounding box κR. The entity e must be a polygon such

that the local coordinates can be mapped to global coordinates in the mesh via the

mapping Fκ. Three different mesh function classes exist. MeshFunctionGlobalDGFE

is initialized with a lambda function f(x) like in listing 13. MeshFunctionDGFE is

initialized with a vector holding the coefficients of a basis expansion of a function

f(x). MeshFunctionGradDGFE works exactly like MeshFunctionDGFE but returns the

gradient of the function for which the basis expansion is given.

Numerical Integration

As [3, sec. 6.3.1] indicates , developing numerical quadrature rules on polygons is

not trivial. To keep it rather simple and universal, triangular sub-tessellations of

the polygons are used to then apply standard quadrature rules on each triangle.

This approach is computationally inefficient compared to other methods [4, sec.

2.1]. But its implementation is straight-forward and it can be used to integrate

any function given in procedural form. The sub-tessellation of polygons is realized

in lf::dgfe::subTessellation() (listing 12). Given a polygon with n nodes it returns n

objects of type lf::geometry::TriaO1 in a vector. Each of them is created from the

coordinates of the barycenter of the cell and those of two adjacent nodes. Note that

this only works with convex polygons (which PolyMesher produces exclusively).

1 /**

2 * @brief returns a vector of triangle geometry objects resulting

3 * from subdividing a polyon from its barycenter into triangles.

4 */

5 std::vector<std::unique_ptr<lf::geometry::TriaO1>> subTessellation(

6 const lf::mesh::Entity *polygon);

Listing 12: Declaration of lf::dgfe::subTessellation().

The class SubTessellationIntegrator uses lf::dgfe::subTessellation() to integrate

over polygonal cells. A demonstration for the integration of a function over a polygo-

nal is shown in listing 13. It makes use of the class lf::dgfe::MeshFunctionGlobalDGFE

which is discussed above. For the integration on the triangle geometries result-

ing from the sub-tessellation, LehrFEM++’s internal quadrature infrastructure is

17

used. SubTessellationIntegrator has a lf::quad::QuadruleCache as a private

attribute for efficiency. For a general function f(x), its integration over a polygon is

implemented in the following way:∫
κ

f(x)dx =
∑
T∈S

∫
T

f(x)dx ≈
∑
T∈S

p∑
l=1

ŵlf
(
ΨT

(
ξ̂l

)) ∣∣∣detDΨT

(
ξ̂l

)∣∣∣. (8)

With ΨT being LehrFEM++’s mapping from the reference triangle T̂ to a general

triangle T (Note: in [2, sec. 2.8.1], the local-global mapping is denoted by ΦK . In

this report, Φ already stands for basis functions). T denotes a triangle of the sub-

tessellation S of κ. Additionally, ŵl are the weights of the quadrature rule employed

on the reference triangle, ξ̂l are the quadrature points on the reference triangle and∣∣∣detDΨT

(
ξ̂l

)∣∣∣ are the gramian determinants of the mapping ΨT . For MeshFunctions

M , the following relation needs to be taken into account and is implemented in

SubTessellationIntegrator:

f
(
ΨT

(
ξ̂l

))
= M

(
κ , F−1

κ

(
ΨT

(
ξ̂l

)))
. (9)

1 //get mesh

2 auto mesh_ptr = lf::mesh::test_utils::GeneratePolytopic2DTestMesh(0,1);

3 //lambda x^2 + e^(x*y) for mesh function

4 auto exponential_lambda = [](Eigen::Vector2d x) -> double {

5 return x[0]*x[0] + exp(x[0] * x[1]);

6 };

7 lf::dgfe::MeshFunctionGlobalDGFE<decltype(exponential_lambda)>

8 exp_msh_funct(exponential_lambda);

9 lf::dgfe::SubTessellationIntegrator<double, decltype(exp_msh_funct)>

10 exp_integrator;

11 int integration_degree = 10;

12 double sum = 0.0;

13 //loop over cells and integrate

14 for (auto cell : mesh_ptr->Entities(0)){

15 sum += exp_integrator.integrate(*cell, exp_msh_funct, integration_degree);

16 }

Listing 13: Demonstration of the integration of x2+ ex∗y over a polytopic mesh of the

unit square (test mesh shown in figure 4).

The function integrate() takes the degree of exactness of the quadrature rule used for

an argument as shown in listing 13.

The infrastructure for numerical integration in the discontinuous setting is completed

by two functions to calculate the error over a mesh. More precisely, they calculate

the L2-norm of the difference of two functions. Both of them are implemented as

18

templated functions. For two sclar-valued functions f and g defined on a domain Ω,

L2ErrorSubTessellation() calculates the following expression:

∥f − g∥L2(Ω) =

(∫
Ω

∥f(x)− g(x)∥2dx
) 1

2

. (10)

L2ErrorGradSubTessellation() does the same routine, but here f and g have to be

provided as vector-valued functions. The functions feature the word ”error” because

if one passes the known true solution of a PDE and the calculated approximation in

the discrete space, the L2-norm of the error of the approximation is received.

DGFE Space

A new class lf::assemble::UniformDGFEDofHandler does the handling of degrees

of freedom in a discontinuous setting and is situated where its classical equivalents

are: In lf/assemble/dofhandler.h. It is an implementation of the abstract base

class lf::dgfe::DofHandler.

Most functionalities to solve equation 24 numerically are collected in the class lf::dgfe::

DGFESPace. It contains a pointer to a lf::mesh::polytopic2d::Mesh , the

lf::assemble::UniformDGFEDofHandler which is used as well as a lf::mesh::

utils::CodimMeshDataSet with the information about adjacent polygons of each

segment (discussed in section 3.1). The lf::dgfe::DGFESpace constructor takes a

polytopic mesh as a first argument and the maximum polynomial degree of one-

dimensional Legendre Polynomials used in the basis functions in table 1. There are

only two options available at the moment. Either it is set to 2 which results in the

basis functions on the reference bounding box κR being exactly as depicted in figure

6. Or it is set to 1 which leads to a basis of 4 functions per polygon, namely those

in the top left corner in 6. The DofHandler of the discrete space is initialized in the

space’s constructor.

19

5. Boundary Value Problem

5.1. Theory

As has been mentioned multiple times before, the notation used here is almost identi-

cal to [3] to make direct links to the book possible. Deriving and explaining all parts

of the variational formulation of 1 & 2 would go far beyond the scope of this project

and would be a copy of the work done in [3]. What is discussed here are all parts

from the book which are necessary to implement and solve the variational formulation

of 1. First off, there is a need to introduce a series of operators and symbols used.

Let κi and κj be two adjacent polygons of Th. F describes the interior face they

have in common F = ∂κi ∩ ∂κj. The outward unit normal vectors with respect to

κi and κj on F are indentified with nκi
and nκj

. Then, v is a general scalar-valued

function and q is a general vector-valued function. In the discontinuous setting it is

important to describe precisely to which cell, κi or κj, a function trace on a common

face belongs to. For this reason
(
v+κi

,q+
κi

)
and

(
v+κj

,q+
kj

)
are used to distinguish traces

of the functions v and q taken from the interior of the two cells. Now the average

operator can be introduced. For x ∈ F ∈ FI
h the averages of v and q are given by

{{v}} :=
1

2

(
v+κi

+ v+κj

)
, {{q}} :=

1

2

(
q+
κi
+ q+

κj

)
. (11)

The complementary jump operator is defined by:

JvK := v+κi
nκi

+ v+κj
nκj

, JqK := q+
κi
· nκi

+ q+
κj
· nκj

. (12)

If the face F ∈ FB
h is on the boundary of the mesh such that there is only one

adjacent cell κi, the operators become:

{{v}} := v+κi
, {{q}} := q+

κi
, JvK := v+κi

nκi
JqK := q+

κi
· nκi

. (13)

And the upwind jump operator defined on interior faces F ∈ FI
h is denoted by:

⌊v⌋ := v+κ − v−κ . (14)

The discontinuity penalization function σ : FI
h ∪ FD

h → R is defined as:

σ(x) :=

Cσ maxκ∈{κ+,κ−}

{
CINV (p, κ, F)

AF |κ p2κ |F |
|κ|

}
, x ∈ F ∈ Fh, F ⊂ ∂κ+ ∩ ∂κ−,

CσAFCINV (pκ, κ, F) p2κ |F |
|κ| , x ∈ F ∈ FD

h , F ⊂ ∂κ.

(15)

with AF := ∥
√
An∥2L∞(F), for every face F ⊂ ∂κ, F ∈ FI

h ∪FD
h , and Cσ a sufficiently

large positive constant. The maximal total polynomial degree of the tensor-product

Legendre Polynomial basis function is denoted as pκ. It is the result of adding the

maximum polynomial degree of the used one-dimensional Legendre Polynomials. The

term p is the polynomial degree appearing in the definition of shape-regularity of

20

meshes in [3, sec. 3.1, Def. 10] and in this project is defined as the maximum poly-

nomial degree of the used one-dimensional Legendre Polynomials.

The function CINV appearing in 15 is defined as:

CINV(p, κ, F) := Cinv min

{
|κ|

supκF
b ⊂κ |κF

b |
, p2(d−1)

}
. (16)

With Cinv being a positive constant and κF
b ∈ F κ

b . This F κ
b is the family of all

triangles (simplices) contained in κ having at least one common face with κ. Then,

κF
b ∈ F κ

b is a simplex which shares the specific face F ⊂ ∂κ. A visualization of the

implementation of this is depicted in figure 8.

For expressions v±κ it will always be clear to which element κ, κ ∈ Th the functions

correspond to. Therefore the subscript κ is suppressed from now on. A further

subdivision of the boundary of the domain ∂Ω is needed to comply with the notation

of [3]:

∂0Ω :=

{
x ∈ ∂Ω :

2∑
i,j=1

aij(x)ninj > 0

}
. (17)

With aij being entries of the diffusion tensor and n = (n1, n2)
⊺ the outward unit

normal vector to ∂Ω. The part set of the boundary which is not ∂0Ω is further

divided:

∂−Ω := {x ∈ ∂Ω\∂0Ω : b(x) · n(x) < 0}
∂+Ω := {x ∈ ∂Ω\∂0Ω : b(x) · n(x) ≥ 0} .

(18)

Also ∂0Ω is further divided into two sets, namely the set where Dirichlet Boundary

Conditions are employed, denoted by ∂ΩD, and the part where Neumann Boundary

Conditions are enforced, which is ∂ΩN . Therefore ∂Ω = ∂−Ω ∪ ∂+Ω ∪ ∂ΩN ∪ ∂ΩD.

Analogously to ∂−Ω, there exists a subset of the boundary of cells which appears in

the DGFEM vraiational formulation of equations 1 and 2:

∂−κ := {x ∈ ∂κ : b(x) · n(x) < 0} . (19)

The full variational formulation of equation 1 derived in [3, sec. 5.1] is now presented.

As stated above, no reasoning or derivation will be given, find all of this in [3, sec.

5.1]. First off, the reaction-advection part of the equation results in:

Bar(w, v) :=
∑
κ∈Th

∫
κ

(∇ · (bw) + cw)v dx−
∑
κ∈Th

∫
∂−κ\∂Ω

(b · n)⌊w⌋v+ dS

−
∑
κ∈Th

∫
∂−κ∩(∂ΩD∪∂−Ω)

(b · n)w+v+dS .

(20)

Then, the diffusion part is

21

B̂d(w, v) :=
∑
κ∈Th

∫
κ

a∇w · ∇v dx+

∫
FI

h ∪FD
h

σJwK · JvKdS

−
∫

FI
h ∪FD

h

({
{
√
aΠ L2(

√
a∇w)}} · JvK +

{
{
√
aΠ L2(

√
a∇v)}} · JwK

)
dS

(21)

Where Π L2 : [L2(Ω)]
2 → [V p (Th)]

2 denotes the orthogonal L2-projection onto the

finite element space [V p (Th)]
2.

Putting these two parts together results in the bilinear form of the variational formu-

lation:

B(w, v) := Bar(w, v) + B̂d(w, v) (22)

The linear term of the variational formulation is:

ℓ̂(v) :=
∑
κ∈Th

∫
κ

fv dx−
∑
κ∈Th

∫
∂−κ∩(∂ΩD∪∂−Ω)

(b · n)gDv+ds

−
∫
∂ΩD

gD
(√

aΠL2(
√
a∇v) · n− σv

)
ds+

∫
∂ΩN

gNv ds.

(23)

Finally, the full DGFEM approximation of the original problem 1: Find uh ∈ Vp(Th)

such that:

B (uh, vh) = ℓ̂ (vh) ∀vh ∈ V p (Th) . (24)

5.2. Implementation

Discontinuity Penalization

The SIP is implemented as a class as seen in figure 7. Listing 14 shows its constructor.

The class owns a pointer to the discrete space used so it can access the data set which

contains information about the adjacent polygons of each face in the mesh. How to

set the constants Cinv and Cσ is not defined clearly in [3]. They are rather heuristic

values whose correctness can be shown by the method of manufactured solutions.

And they are used for the theoretical error analysis in [3]. The variable AF needs to

be calculated in the program before calling operator() of the SIP on a face.

The implementation of the SIP is rather straight-forward. A visualization of the

calculation of κF
b ∈ F κ

b is depicted in figure 8. This is implemented in a function

simplexAreas() which returns a vector of the areas of κF
b ∈ F κ

b as shown in figure

8. The declaration of the constructor and the operator() of the SIP-class is shown in

listing 14.

22

1 DiscontinuityPenalization(std::shared_ptr<const lf::dgfe::DGFESpace>

2 dgfe_space_ptr, scalar_t c_inv_constant, scalar_t

3 c_sigma_constant) :

4 dgfe_space_ptr_(std::move(dgfe_space_ptr)),

5 c_inv_const_(c_inv_constant),

6 c_sigma_const_(c_sigma_constant) {}

7

8 scalar_t operator()(const lf::mesh::Entity &edge, scalar_t A_f) const ;

Listing 14: Declaration of the constructor of lf::dgfe::DiscontinuityPenalization

and the declaration of its operator().

Figure 8: Visualization of the explicit calculation of κF
b ∈ F κ

b . For a cell

κ and a face F ∈ ∂κ the three blue triangles are the κF
b which

are taken into account.

Assembly of Galerkin Matrix and RHS Vector

Assembling the Galerkin Matrix (eq.21) correctly was the hardest step of the project.

This process, including the simplification of the more complex terms and their trans-

formation into pseudocode is presented here. All terms which cannot be implemented

straight-forward and include jump(12), average(11) or upwind jump(14) operators are

discussed.

Diffusion The second and third addend of equation 21 both have different forms for

interior and boundary segments. Equations 12, 11 and 13 are used to arrive at the

following results.

Firstly the second addend of the diffusion term is presented. For interior edges:

23

∫
FI

h

σJwK · JvK dS

= σ

∫
FI

h

(wi · ni + wj · nj) (vi · ni + vj · nj) dS

= σ

∫
FI

h

(wi · ni − wj · ni) (vi · ni − vj · ni) dS

= σ

∫
FI

h

wi · vi · n2
i − wi · vj · n2

i − wj · vi · n2
i + wj · vj · n2

i dS

= σ

∫
FI

h

wi · vi − wi · vj − wj · vi + wj · vj dS

(25)

And for boundary edges: ∫
FD

h

σJwK · JvK dS

= σ

∫
FD

h

w · n · v · n dS

= σ

∫
FD

h

w · v dS

(26)

This second addend of equation 21 is assembled in the Galerkin Matrix with algorithm

1.

Algorithm 1: Assembly of the Galerkin Matrix regarding the second ad-

dend of equation 21.

for each e ∈ FI
h do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add σ

∫
e
wi · vi dS to Galerkin Matrix at (DOF(vi), DOF (wi))

Add −σ
∫
e
wi · vj dS to Galerkin Matrix at (DOF(vj), DOF (wi))

Add −σ
∫
e
wj · vi dS to Galerkin Matrix at (DOF(vi), DOF (wj))

Add σ
∫
e
wj · vj dS to Galerkin Matrix at (DOF(vj), DOF (wj))

end

end

end

for each e ∈ FD
h do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add σ

∫
e
w · v dS to Galerkin Matrix at (DOF(v), DOF(w))

end

end

end

24

Note that wi and wj refer to traces of the basis functions on two different cells κi and

κj adjacent to edge e. When the edge is on the boundary, there is only one adjacent

cell with the basis functions w and v.

The third addend of equation 21 features an orthogonal L2-projection Π L2 onto the

finite element space V p (Th). Although the projection plays a factor in the methods’

ability to solve problems with strong discontinuities, its discussion and also its imple-

mentation is omitted in this project for simplicity and clarity reasons. They remain

a task for the future.

In the following the expansion of one part of the third addend of 21 is presented.

The whole addend features two terms which are exactly the same except that trial

(w) and test (v) functions are swapped. Shown is only one of those two parts. For

interior edges:

∫
FI

h

{{a∇w}} · JvK dS

=

∫
FI

h

1

2
(a∇wi + a∇wj) · (vi · ni + vj · nj) dS

=
1

2

∫
FI

h

(a∇wi + a∇wj) · (vi · ni − vj · ni) dS

=
1

2

∫
FI

h

a∇wi · vi · ni − a∇wi · vj · ni + a∇wj · vi · ni − a∇wj · vj · ni dS

(27)

And for boundary edges: ∫
FD

h

{{a∇w}} · JvK dS

=

∫
FD

h

a∇w · v · n dS

(28)

Which results in algorithm 2 to assemble its entries in the Galerkin Matrix.

25

Algorithm 2: Assembly of the Galerkin Matrix regarding one part of the

third addend of equation 21.

for each e ∈ FI
h do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add −1

2

∫
e
a∇wi · vi · ni dS to Galerkin at (DOF(vi), DOF (wi))

Add 1
2

∫
e
a∇wi · vj · ni dS to Galerkin at (DOF(vj), DOF (wi))

Add −1
2

∫
e
a∇wj · vi · ni dS to Galerkin at (DOF(vi), DOF (wj))

Add 1
2

∫
e
a∇wj · vj · ni dS to Galerkin at (DOF(vj), DOF (wj))

end

end

end

for each e ∈ FD
h do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add

∫
e
a∇w · v · n dS to Galerkin at (DOF(v), DOF(w))

end

end

end

Advection-Reaction And the last term which is extensively discussed appears in

equation 20 and features the upwind jump operator (14).∫
∂−κ\∂Ω

(b · n)⌊w⌋v+ dS

=

∫
∂−κ\∂Ω

(b · n) · (w+ − w−) · v+ dS

=

∫
∂−κ\∂Ω

b · n · w+ · v+ − b · n · w− · v+ dS

(29)

Here, w+ and v+ refer to basis functions defined on the current cell in the sum while

w− refers to a basis function defined on another cell adjacent to ∂−κ\∂Ω (see equation

19 for further explanation on this set). The corresponding algorithm is displayed in

algorithm 3.

26

Algorithm 3: Assembly of the Galerkin Matrix regarding the second ad-

dend of equation 20.

for each κ ∈ Th do

for each e ∈ ∂−κ\∂Ω do

for v = 1 to # basis functions per cell do

for w = 1 to # basis functions per cell do
Add −

∫
e
b · n · w+ · v+ dS to Galerkin at

(DOF(v+), DOF (w+))

Add
∫
e
b · n · w+ · v+ dS to Galerkin at (DOF(v+), DOF (w−))

end

end

end

end

In contrast to the assembly of the LSE components of the variational formulation

in the classical setting, the DGFEM version routines cannot be trivially passed to a

general assembly algorithm that iterates over cells of codimension 0. The equations

20, 21 and 23 all feature parts of integration over sets of faces in the mesh rather than

cells only. Additionally, also the cell-oriented assembly depends on information from

the edges of the mesh.

Extensive routines for the DGFEM LSE assembly are implemented in classes rep-

resenting the equations 20, 21 and 23. The classes AdvectionReactionMatrixAs-

sembler and DiffusionMatrixAssembler assemble entries in the Galerkin matrix

themselves and are not passed to LehrFEM++’s assembling algorithms

lf::assemble::AssembleMatrixLocally(). The same goes for the class which assem-

bles the linear term (right hand side vector of 24 AdvectionReactionDiffusion-

RHSAssembler.

For a full example of the usage of all essential parts of the implementation refer to

the complete listing 15 in the appendix.

6. Numerical Experiments

Finite Element Methods are proven to be correct by the method of manifactured

solutions. A known solution is inserted into the PDE, the problem is solved with

according boundary conditions and the convergence of the approximation error is

studied.

In this case 1 and 2 are solved on a series of Voronoi Tessellations (of which some are

displayed in figure 2) of the unit square (0, 1)2 generated by PolyMesher. Neumann

boundary conditions are employed on ΓN which is made up of all edges of which

both nodes are on the side x = 1. The rest of the boundary belongs to ΓD and is

employed with dirichlet boundary conditions. The diffusion coefficient is defined by

a(x, y) = δI2 with δ = sin(4·Π·(x+y))2+1. The advection coefficient is [2−xy, 2−x2]T

27

and the reaction coefficient c = (1 + x) · (1 + y)2.

This problem has the analytical solution utrue = 1 + sin(Π · (1 + x) · (1 + y)2 · 1
8
).

The parameters of the discontinuity penalization in equation 15 and 16 are set to

Cinv = 0.5 and Cσ = 20. Figure 9 shows that the L2 error of the approximated

solution converges as is expected and shown in [3, sec. 6.4.1].

101 102 103
n [# cells in esh]

10−6

10−5

10−4

10−3

10−2

10−1

||u
−
u h
|| L

2 (
Ω)

Error con(ergence of full Ad(ection-Reaction-Diffusion problem
with mixed boundary conditions

p = 1
p = 2
(hp+1)

Figure 9: Convergence of the L2-error of solutions to 1 & 2 using discon-

tinuous Galerkin FEM. Constants set for the SIP are Cinv = 0.5

and Cσ = 20. P describes to polynomial degree of one-

dimensional Legendre polynomials used for basis functions.

The maxmimum mesh width of the Voronoi tessellations is

denoted by h.

7. Learnings and Outlook

As is usual in programming projects, many problems that have not been not on the

radar before were encountered. Already the incorporation of polytopic meshes into

LehrFEM++ and especially their generation and data import into the program was

full of problems. The code provided for PolyMesher did not work out of the box. One

actual bug had to be found and multiple adaptions were necessary for the process to

work as planned. The bug will be reported to the authors of PolyMesher. A big learn-

ing is that one should first go for the straight-forward and universal implementations

before trying to go for an elegant and efficient type. This was particularly the case for

28

the numerical integration used on the polytopic mesh. Displayed in the appendix B

that the original idea was to use an algorithm used for the very fast integration of ho-

mogeneous functions, presented in [4]. After some troubles of actually implementing

it (it is still present on the current repository branch but only works for polynomial

functions), it was noticed that is not universal enough for the use in this project. In

general, many parts were implemented without being absolutely necessary. But that

is okay for a Bachelor project. Self-organization and pragmatic problem solving were

needed. The challenge was interesting and an instructive experience.

As mentioned before, the implementation of the orthogonal L2-projection Π L2 onto

the finite element space V p (Th) remains a task.

Most algorithms implemented in the project can surely be implemented a lot more

efficiently. The focus is set strictly to correct results while performance optimizations

are kept to a minimum.k

29

References

[1] Hiptmair, R., Casagrande, R. et al, LEHRFEM++, Simplistic Finite Ele-

ment Framework for research and education, https://github.com/craffael/

LehrFEMpp

[2] Hiptmair, Ralf. ”Numerical Methods for Partial Differential Equations”. Spring

2023, ETH Zurich. https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.

pdf

[3] Cangiani, A., Dong, Z., Geourgoulis, E. H., Houston, P. (2017). hp-Version Dis-

continuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs

in Mathematics. https://doi.org/10.1007/978-3-319-67673-9

[4] Antonetti, P. F., Houston, P., Pennesi, G. (2018). Fast Numerical Integration

on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element

Methods. Journal of Scientific Computing (2018) 77:1339–1370. https://doi.

org/10.1007/s10915-018-0802-y

[5] A. Cangiani, E.H. Georgoulis, P. Houston, hp-Version discontinuous Galerkin

methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci.

24(10),(2014)

[6] Talischi, C., Paulino, G. H., Pereira, A., Menezes, I. F. M. (2012). PolyMesher: a

general-purpose mesh generator for polygonal elements written in Matlab. https:

//link.springer.com/article/10.1007/s00158-011-0706-z

[7] Georgoulis, E. H., Lasis A., A note on the design of hp-version interior penalty dis-

continuous Galerkin finite element methods for degenerate problems . IMA Journal

of Numerical Analysis 26(2) (2006) https://doi.org/10.1093/imanum/dri038

30

https://github.com/craffael/LehrFEMpp
https://github.com/craffael/LehrFEMpp
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://people.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
https://doi.org/10.1007/978-3-319-67673-9
https://doi.org/10.1007/s10915-018-0802-y
https://doi.org/10.1007/s10915-018-0802-y
https://link.springer.com/article/10.1007/s00158-011-0706-z
https://link.springer.com/article/10.1007/s00158-011-0706-z
https://doi.org/10.1093/imanum/dri038

A. Script Example

1 /** @file

2 * @brief Bachelor Thesis DGFEM

3 * @author Tarzis Maurer

4 * @date July 23

5 * @copyright ETH Zurich

6 */

7

8 #include <cstdlib>

9 #include <filesystem>

10 #include <iostream>

11 #include <stdexcept>

12 #include <string>

13 #include <vector>

14 #include <iomanip>

15

16 #include <lf/mesh/polytopic2d/polytopic2d.h>

17 #include <lf/mesh/hybrid2d/hybrid2d.h>

18 #include <lf/mesh/mesh.h>

19 #include <lf/io/io.h>

20 #include <lf/mesh/utils/utils.h>

21 #include <lf/base/base.h>

22 #include <lf/dgfe/dgfe.h>

23 #include <lf/fe/fe.h>

24 #include <lf/uscalfe/uscalfe.h>

25

26 #include "lf/mesh/test_utils/test_meshes.h"

27

28 //function to write error to a file

29 void write_error_file(std::string run_name, double c_inv, int c_sigma, int

num_cells, std::string error_type, double error){↪→

30 //error file

31 std::setprecision(17);

32 auto c_inv_str = std::to_string(c_inv);

33 c_inv_str.resize(4);

34 auto c_sigma_str = std::to_string(c_sigma);

35 std::string out_file_name = "measurements/" + run_name + "/" +

std::to_string(num_cells) + "_" + c_inv_str↪→

36 + "_" + c_sigma_str + "_" + error_type + ".txt";

37 std::ofstream out_file(out_file_name);

38 out_file << error;

39 out_file.close();

40 }

41

42 int main(int argc, char *argv[]){

43

31

44 //############ USAGE of this script in bash #########################

45 /*

46

47 ./projects.dgfem.full_bvp <RUN_NAME> <C_INV> <C_SIGMA> <LIST OF # cells in mesh

separated by space>↪→

48

49 EXAMPLE:

50

51 `\newpage`

52

53 ./projects.dgfem.full_bvp my_run_name 0.5 20 4 8 16 32 64 128 256 512 1024 2048

4096↪→

54

55 */

56

57 //get run arguments: name and constants for discontinuity penalty

58 std::string run_name = argv[1];

59 double c_inv = std::stod(argv[2]);

60 double c_sigma = std::stod(argv[3]);

61 std::cout << "C_inv: " << c_inv << " and C_sigma: " << c_sigma << "\n";

62

63 //set the integration degree used for assembling Galerkin Matrix and RHS

64 int integration_degree = 15;

65

66 //----------------------PREPARE COEFFICIENTS------------------------

67 // Scalar valued reaction coefficient c

68 auto c_coeff_lambda = [](Eigen::Vector2d x) -> double {

69 return (1 + x[0]) * (1 + x[1]) * (1 + x[1]);

70 };

71 lf::dgfe::MeshFunctionGlobalDGFE m_c_coeff{c_coeff_lambda};

72 //Vector valued advection coefficient b

73 auto b_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Vector2d {

74 return (Eigen::Vector2d{2 - x[0]* x[1] , 2 - x[0]*x[0]});

75 };

76 lf::dgfe::MeshFunctionGlobalDGFE m_b_coeff{b_coeff_lambda};

77 // Scalar valued div of advection coeff

78 auto div_b_coeff_lambda = [](Eigen::Vector2d x) -> double {

79 return -x[1];

80 };

81 lf::dgfe::MeshFunctionGlobalDGFE m_div_b_coeff{div_b_coeff_lambda};

82 // 2x2 diffusion tensor A(x)

83 auto a_coeff_lambda = [](Eigen::Vector2d x) -> Eigen::Matrix<double, 2, 2> {

84 double entry = 1.0 + (std::sin(4.0 * M_PI *(x[0] + x[1]))) * (std::sin(4.0 *

M_PI *(x[0] + x[1])));↪→

85 return (Eigen::Matrix<double, 2, 2>() << entry, 0.0, 0.0, entry).finished();

86 };

87 lf::dgfe::MeshFunctionGlobalDGFE m_a_coeff{a_coeff_lambda};

32

88 //----------------------END PREPARE COEFFICIENTS------------------------

89

90

91 //----------------------PREPARE PRESCRIBED FUNCTIONS------------------------

92 //define eulers number

93 const double E =

2.7182818284590452353602874713526624977572470936999595749669676277;↪→

94 // Scalar valued prescribed function gD

95 auto gD_lambda = [](Eigen::Vector2d x) -> double {

96 return 1.0 + std::sin(M_PI * (1.0 + x[0]) * (1.0 + x[1]) * (1.0 + x[1]) *

0.125);↪→

97 };

98 lf::dgfe::MeshFunctionGlobalDGFE m_gD{gD_lambda};

99

100 auto gN_lambda = [E](Eigen::Vector2d x) -> double {

101 return 0.39269908169872414*std::pow(1 + x[1],2)*

102 std::cos(0.39269908169872414*(1.0 + x[0])*std::pow(1 + x[1],2))*

103 (1.0 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2));

104 };

105 lf::dgfe::MeshFunctionGlobalDGFE m_gN{gN_lambda};

106

107 // Scalar valued prescribed function f

108 auto f_lambda = [](Eigen::Vector2d x) -> double {

109 return 0.7853981633974483*(1 + x[0])*(2 - std::pow(x[0],2))*(1 + x[1])*

110 std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2)) +

111 0.39269908169872414*std::pow(1 + x[1],2)*(2 - x[0]*x[1])*

112 std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2)) -

113 x[1]*(1 + std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))) +

114 (1 + x[0])*std::pow(1 + x[1],2)*

115 (1 + std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))) -

116 19.739208802178716*(1 + x[0])*(1 + x[1])*

117 std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*

118 std::cos(4*M_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -

119 9.869604401089358*std::pow(1 + x[1],2)*

120 std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*

121 std::cos(4*M_PI*(x[0] + x[1]))*std::sin(4*M_PI*(x[0] + x[1])) -

122 0.7853981633974483*(1 + x[0])*

123 std::cos(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*

124 (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2)) +

125 0.6168502750680849*std::pow(1 + x[0],2)*std::pow(1 + x[1],2)*

126 std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*

127 (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2)) +

128 0.15421256876702122*std::pow(1 + x[1],4)*

129 std::sin(0.39269908169872414*(1 + x[0])*std::pow(1 + x[1],2))*

130 (1 + std::pow(std::sin(4*M_PI*(x[0] + x[1])),2));

131 };

132 lf::dgfe::MeshFunctionGlobalDGFE m_f{f_lambda};

33

133 //----------------------END PREPARE PRESCRIBED FUNCTIONS------------------------

134

135 //-----------------------LOOP over Meshes--------------------------

136 //loop over meshes

137 for (int i = 4; i < argc; i++){

138

139 //read number of cells

140 std::string num_cells = argv[i];

141

142 //get mesh

143 std::filesystem::path here = __FILE__;

144 auto mesh_file = here.parent_path().string() +

"/msh_files/unit_square_voronoi_" + num_cells + "_cells.vtk";↪→

145 lf::io::VtkPolytopicReader

reader(std::make_unique<lf::mesh::polytopic2d::MeshFactory>(2), mesh_file);↪→

146 auto mesh_ptr = reader.mesh();

147

148 //write mesh for python drawing

149 //lf::io::writeMatplotlib(*mesh_ptr, "./csvs/" +

std::to_string(mesh_ptr->NumEntities(0)) + ".csv");↪→

150

151 //dgfe space p = 1

152 lf::dgfe::DGFESpace dgfe_space(mesh_ptr, 1);

153 auto dgfe_space_ptr = std::make_shared<lf::dgfe::DGFESpace>(dgfe_space);

154

155 //----------------------PREPARE BOUNDARY EDGE SETS-----------------

156 auto boundary_edge = lf::mesh::utils::flagEntitiesOnBoundary(mesh_ptr, 1);

157 //boundary_N_edge

158 lf::mesh::utils::CodimMeshDataSet<bool> boundary_n_edge(mesh_ptr, 1, false);

159 //boundary_0_edge

160 lf::mesh::utils::CodimMeshDataSet<bool> boundary_0_edge(mesh_ptr, 1, false);

161 //boundary_D_edge

162 lf::mesh::utils::CodimMeshDataSet<bool> boundary_d_edge(mesh_ptr, 1, false);

163 //boundary_minus_edge

164 lf::mesh::utils::CodimMeshDataSet<bool> boundary_minus_edge(mesh_ptr, 1,

false);↪→

165 //boundary_plus_edge

166 lf::mesh::utils::CodimMeshDataSet<bool> boundary_plus_edge(mesh_ptr, 1,

false);↪→

167

168 //setup qr rule for segments

169 const lf::quad::QuadRule qr_s =

lf::quad::make_QuadRule(lf::base::RefEl::kSegment(), integration_degree);↪→

170 // qr points

171 const Eigen::MatrixXd zeta_ref_s{qr_s.Points()};

172 //weights

173 Eigen::VectorXd w_ref_s{qr_s.Weights()};

34

174

175 //BOUNDARY SETS ASSEMBLY

176 for (auto cell : mesh_ptr->Entities(0)){

177 for (auto edge : cell->SubEntities(1)){

178 if (boundary_edge(*edge)){

179 //normal n

180 auto polygon_pair = dgfe_space_ptr->AdjacentPolygons(edge);

181 auto normal =

lf::dgfe::outwardNormal(lf::geometry::Corners(*(edge->Geometry())));↪→

182 //if orientation of edge in polygon is negative, normal has to be

multiplied by -1;↪→

183 normal *= (int)

(cell->RelativeOrientations()[polygon_pair.first.second]);↪→

184

185 lf::dgfe::BoundingBox box(*cell);

186 // qr points mapped to segment

187 Eigen::MatrixXd

zeta_global_s{edge->Geometry()->Global(zeta_ref_s)};↪→

188 // qr points mapped back into reference bounding box to retrieve

values↪→

189 Eigen::MatrixXd zeta_box_s{box.inverseMap(zeta_global_s)};

190 //gramian determinants

191 Eigen::VectorXd

gram_dets_s{edge->Geometry()->IntegrationElement(zeta_ref_s)};↪→

192 auto a_evaluated = m_a_coeff(*cell, zeta_box_s);

193 double boundary_0_sum = 0.0;

194

195 for (int i = 0; i < gram_dets_s.size(); i++){

196 boundary_0_sum += normal.dot(a_evaluated[i] * normal) *

gram_dets_s[i] * w_ref_s[i];↪→

197 }

198 //BOUNDARY 0 #############

199 if (boundary_0_sum > 0){

200 boundary_0_edge(*edge) = true;

201 //HERE DIRICHLET AND NEUMANN ################

202 auto corners = lf::geometry::Corners(*(edge->Geometry()));

203 if(corners(0,0) == 1.0 && corners(0,1) == 1.0){ //whole edge

on side x = 1↪→

204 boundary_n_edge(*edge) = true;

205 } else {

206 boundary_d_edge(*edge) = true;

207 }

208 } else { //BOUNDARY_plus and BOUNDARY_minus ###############

209 auto b_evaluated = m_b_coeff(*cell, zeta_box_s);

210 double boundary_plus_sum = 0.0;

211 for (int i = 0; i < gram_dets_s.size(); i++){

35

212 boundary_0_sum += b_evaluated[i].dot(normal) *

gram_dets_s[i] * w_ref_s[i];↪→

213 }

214 if (boundary_plus_sum < 0){

215 boundary_minus_edge(*edge) = true;

216 } else {

217 boundary_plus_edge(*edge) = true;

218 }

219 }

220 }

221 }

222 }

223 //----------------------END PREPARE BOUNDARY EDGE

SETS------------------------↪→

224

225 //----------------------ASSEMBLE GALERKIN MATRIX &

RHS------------------------↪→

226 //set up discontinuity penalization

227 lf::dgfe::DiscontinuityPenalization disc_pen(dgfe_space_ptr, c_inv, c_sigma);

228 unsigned n_dofs = dgfe_space_ptr->LocGlobMap().NumDofs();

229

230 //galerkin matrix initialization

231 lf::assemble::COOMatrix<double> A(n_dofs, n_dofs);

232 A.setZero();

233 //diffusion assembler

234 lf::dgfe::DiffusionMatrixAssembler<decltype(A), double, decltype(m_a_coeff),

decltype(boundary_edge)>↪→

235 diffusionAssembler(dgfe_space_ptr, m_a_coeff, boundary_edge,

boundary_d_edge, integration_degree, disc_pen);↪→

236 //advection reaction matrix assembler

237 lf::dgfe::AdvectionReactionMatrixAssembler<decltype(A), double,

decltype(m_b_coeff), decltype(m_c_coeff), decltype(boundary_edge),

decltype(m_div_b_coeff)>

↪→

↪→

238 advectionReactionAssembler(dgfe_space_ptr, m_b_coeff,

m_div_b_coeff, m_c_coeff, boundary_edge, boundary_d_edge,

boundary_minus_edge, integration_degree);

↪→

↪→

239 //assemble matrix

240 diffusionAssembler.assemble(A);

241 advectionReactionAssembler.assemble(A);

242

243 //rhs initialization

244 Eigen::VectorXd rhs(n_dofs);

245 rhs.setZero();

246 //RHS Assembler

247 lf::dgfe::AdvectionReactionDiffusionRHSAssembler<double, decltype(m_a_coeff),

decltype(m_b_coeff), decltype(boundary_edge), decltype(m_f), decltype(m_gD),↪→

36

248 decltype(m_gN),

decltype(rhs)>↪→

249 rhsAssembler(dgfe_space_ptr, m_f, m_gD, m_gN,

m_a_coeff, m_b_coeff, boundary_minus_edge,↪→

250 boundary_d_edge, boundary_n_edge, integration_degree,

disc_pen);↪→

251 //assemble rhs vector

252 rhsAssembler.assemble(rhs);

253 //----------------------END ASSEMBLE GALERKIN MATRIX &

RHS------------------------↪→

254

255 //----------------------SOLVE LSE------------------------

256 Eigen::SparseMatrix<double> A_crs = A.makeSparse();

257 Eigen::SparseLU<Eigen::SparseMatrix<double>> solver;

258 solver.compute(A_crs);

259 LF_VERIFY_MSG(solver.info() == Eigen::Success, "LU decomposition failed");

260 Eigen::VectorXd sol_vec = solver.solve(rhs);

261 LF_VERIFY_MSG(solver.info() == Eigen::Success, "Solving LSE failed");

262 //----------------------END SOLVE LSE------------------------

263

264 //----------------------MESH FUNCTION AND ERROR

CALCULATION------------------------↪→

265 lf::dgfe::MeshFunctionDGFE<double> dgfe_mesh_function(dgfe_space_ptr,

sol_vec);↪→

266

267 //calculate L2 error of solution with "overkill" QR

268 double mesh_func_l2_error = lf::dgfe::L2ErrorSubTessellation<double,

decltype(dgfe_mesh_function), decltype(m_gD)>(dgfe_mesh_function, m_gD,

mesh_ptr, 30);

↪→

↪→

269 //----------------------END MESH FUNCTION AND ERROR

CALCULATION------------------------↪→

270

271 //----------------------WRITE ERROR TO FILE------------------------

272 write_error_file(run_name, c_inv, c_sigma, std::stoi(num_cells), "L2",

mesh_func_l2_error);↪→

273

274 std::cout << "L2 Error for " << num_cells << " cells: \t" <<

mesh_func_l2_error << "\n";↪→

275 //---------------------END WRITE ERROR TO FILE------------------------

276

277 }

278 //-----------------------END LOOP over Meshes----------------------------------

279

280 return 0;

281 } //end main

Listing 15: Script example to produce the measurements with p = 1 in figure 9.

37

B. Proposed Changes

Here the proposed changes to the LehrFEM++ library which have been formulated

in the beginning of the project.

38

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,

Master’s thesis and any other degree paper undertaken during the course of studies, including the

respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Implementation of Discontinuous Galerkin Finite Element Method on Polygonal Meshes

Maurer Tarzis

Zurich, 31.07.23

	Introduction
	Overview of changes in LehrFEM++
	Mesh
	Theory
	Mesh Generation
	Implementation

	Discrete Finite Element Space
	Theory
	Implementation

	Boundary Value Problem
	Theory
	Implementation

	Numerical Experiments
	Learnings and Outlook
	Script Example
	Proposed Changes

