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Chapter 1

Extrapolation to zero

In this short chapter we will describe shortly the concept of extrapolation to zero and how
we can apply it. We will follow section 9.4.2 in [2].

1.1 Motivation
Let T :]0, ε[→ R be function and assume that we have

T (h) = T0 + ahn +O(hn+1). (1.1)

for h→ 0. We are interested in computing T0 = limh→0 T (h) up to some desired accurracy.
In order to do that we might have to compute T (h) for very small h. That might not be
feasible since T (h) might be very expensive to compute for small h or even impossible due
to numerical instabilities. Hence we would like to somehow accelerate the convergence of T
to 0. A nice way to do that is the Richardson extrapolation scheme which goes as follows:
Let 0 < r < 1. Plug rh into (1.1). Then we get

T (rh) = T0 + arnhn +O(hn+1). (1.2)

Now multiply (1.1) by rn, subtract it from (??) and divide the result by 1− rn. Then we
get:

R(h) = T0 +O(hn+1)

where
R(h) :=

T (rh)− rnT (h)
1− rn

.

Note that R(h) has O(hn+1) convergence to T0 while T (h) has O(hn), i.e. R(h) converges
asymptotically faster. But what did we actually do? We took the linear polynomial
in tn which goes through (rh, T (rh)) and (h, T (h)) and let R(h) be its value at 0, i.e.
we interpolated the points and then evaluated the interpolation polynomial outside the
interval; hence the term extrapolation. This should serve as a motivation for the sequel.

1.2 The extrapolation table
We always think of T as arising from some numerical scheme e.g. the trapezoidal rule
and then T0 is the integral of some function. Thus we do not require that T is necessarily
defined for all values near 0, but only on a discrete set H which has 0 as an accumulation
point. In what follows, we will thus refer to T as a method for computing T0.

1



2 CHAPTER 1. EXTRAPOLATION TO ZERO

Definition 1.1. Let T be a method for computing T0. We say that T has an asymptotic
expansion in hp up to order pm if there exist constants τp, τ2p, . . . , τmp ∈ R such that

T (h) = T0 + τph
p + τ2ph

2p + · · · τmph
mp +O(h(m+1)p) (1.3)

for h→ 0, h ∈ H.

Let (x1, y1), . . . , (xk, yk) be a collection of points such that x1, . . . , xk are distinct.
Then there exists a uniqe polynomial P of degree k − 1 which interpolates the points, i.e.
P (xi) = yi for all i. We say that P is the interpolation polynomial for the points. Let
p > 0 be an integer and points (xp1, y1), . . . , (x

p
n, yn) such that xpi are distinct, be given.

Let P be the interpolation polynomial for the points. We then call P (hp) the interpolation
polynomial in p for these points.

Let T be a method with asymptotic expansion in p up to pm. The extrapolation process
works as follows: We compute T (h) for some points h1, h2, . . . , hk where k ≤ m. Then we
compute the interpolation polynomial P in hp which goes through (h1, T (h1)), . . . , (hk, T (hk)).
We then hope that P (0) gives a good approximation T0.

In order to compute P (0) we use the Neville scheme. Let Pij(h
p) := P (hp;hpi−j+1, h

p
i ) be

the interpolation polynomial in hp which interpolates (hpi−j+1, T (hi−j+1)), . . . , (h
p
i , T (h

p
i ))

and set Tij := Pij(0). Then according to the Neville scheme we can compute Tij, j ≤ i, in
the following recursive way:

1. Ti1 := T (hi) for i = 1, . . . , k.

2. Tij := Ti,j−1 +
Ti,j−1 − Ti−1,j−1

rp − 1
=

rpTi,j−1 − Ti−1,j−1
rp − 1

for 1 < j ≤ i where r :=

hi−j+1/hi.

If we align Tij to a triangular table, we call that the extrapolation table.

1.3 Convergence

If we have a numerical method or scheme that has an asymptotic expansion as (1.2), then
the error decays polynomially as h→ 0. It is known (see e.g. theorem 9.22 in [2]) that Tij
has polynomial decay of higher degree, as h → 0, than T . Let εk := |Tkk − T |. We want
to analyse how εk behaves as k → +∞, i.e. how εk behaves when we increse the number
of extrapolation steps. Let Nn be some measure of the effort needed to compute Tkk. In
what follows we will test numerically the qualitative hypothesis that the error converges
exponentially with the computational effort i.e.

εk ∼ A exp(−cN q
k ) (1.4)

for constants A, c, q. Note that if εk = A exp(−cN q
k ) then ln εk = b−cN q

k so in order to test
the hypothesis we will do the following: Assume that we have the error εk for k = 1, . . . , n.
Then we will compute

(b∗, c∗, q∗) := argmin(b,c,q)

{
n∑

k=1

| ln εk − (b− cN q
k )|

2

}
(1.5)
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and see whether the points (Nk, ln εk) fit well to the graph of t 7→ b− ctq. Here b = lnA.

We will also test the hypothesis that the error converges exponentially with the number
of extrapolation steps, i.e. whether

εk ∼ A exp(−ckq) (1.6)

for constants A, c, q.

We define the following relative residuals:

ρln :=

∑n
k=1 | ln εk − (b∗ − c∗N q∗

k )|2∑n
k=1 | ln εk|2

and

ρlin :=

∑n
k=1 |εk − A∗ exp(−c∗N

q∗

k )|2∑n
k=1 |εk|2

where A∗ := exp(b∗). We will use these residuals as one measurement of the goodness
of fit.

In addition to that we will do a simple cross validation by fitting the model to subsets of
the data and see whether the parameters vary a lot. If they vary a lot, we conclude that the
fitting is unstable. If they are almost the same we will be more confident in that the model
is actually appropriate. The cross validation strategy we will use goes as follows: Suppose
that we have done a curve fitting on (xk, yk) for k = 0, 1, . . . , n. Let r = max 10, [n/2].
Then we will do the curve fitting for (xk, yk), . . . , (xk+r−1, xk+r−1) for k = 3, . . . , n− r − 1
and compute the relative variance of the parameters. Let ak, k = 1, . . . ,m be numbers.
Then we define their mean value by a := 1

m

∑m
k=1 ak, and the relative variance by

1

ma2

m∑
k=1

(ak − a)2.

In order to visualize the stability of the fit, we will plot all the curves obtained in the
cross validation, on top of each other. We call this plots stack plots.

1.4 Code
The following Python function computes the extrapolation table for some scheme which
has an asymptotic expansion in hp.

#sc (Scheme): The scheme to extrapolate
#prob: The problem to apply the scheme to. We assume that sch is an
# implementation of Scheme which can be applied to prob.
#seq (Sequence): The sequence to use in the extrapolation
#hp (bool): Indicates whether to use high precision arithmetic (true)
# or standard double precision (false).
#returns: The extrapolation table as an np.array of np.arrays.
def extrapolate(sc, prob, seq, hp):

n = len(seq)
X = [[None] * (i+1) for i in range(n)]

#X[i][j] = T_ij
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for i in range(n):
X[i][0] = sc.apply(prob, seq[i])
for j in range(1, i + 1):

#r = h_{i-j} / h_i = seq[i] / seq[i-j]
#rp = r^p.
#Must cast the elements of seq to hp numbers if in hp mode.
rp = ((mpf(’1’) * seq[i]) / (mpf(’1’) * seq[i-j]) if hp else seq[i] / seq[i-j]) ** sc.p
X[i][j] = (rp * X[i][j-1] - X[i-1][j-1]) / (rp - 1)

return np.array([np.array(X_i) for X_i in X])



Chapter 2

Romberg quadrature

2.1 The algorithm

Let f : [a, b]→ R be a function and I :=
∫ b

a
f(x)dx. The trapezoidal rule (see eg. section 9.1

in [2]) is a method for approaching I which works as follows: Let a = t0 < t1 < · · · < tn = b
be a subdivision of [a, b]. On each of the intervals [ti−1, ti] we approximate

∫ ti
ti−1

f(x)dx

by the area of a trapezoid with verticies (ti−1, 0), (ti−1, f(ti−1)), (ti, f(ti)), (ti, 0) i.e. by
1
2
(ti − ti−1)(f(ti−1) + f(ti)). Hence we approximate I by

I =
n∑

i=1

∫ ti

ti−1

f(x)dx ≈
n∑

i=1

1

2
(ti − ti−1)(f(ti−1) + f(ti)).

If ti − ti−1 = 1
n
(b− a) =: h for each i then the above estimate becomes

I ≈ h

(
1

2
(f(a) + f(b)) +

n−1∑
i=1

f(a+ ih)

)
(2.1)

We define Tf (h) as the right hand side in (2.1) for all h ∈ {(b− a)/n | n ∈ Z+ . . .} =: H.

Let F : [0, n] → R be a 2k + 1 times continuously differentiable function, n a positive
integer. Then by Euler’s summation formula (see formula 298 in [3]) we have

n∑
i=0

F (i) =

∫ n

0

F (x)dx+
1

2
(F (0) + F (n)) +

k∑
i=1

B2i

(2i)!
(F (2i−1)(n)− F (2i−1)(0)) +Rk (2.2)

where Rk =
∫ n

0
P2k+1(x)F

(2k+1)(x)dx, Bm are the Bernoulli numbers and Pm the Bernoulli
polynomials. If we let F (x) := f(a + xh) then we get the following asymptotic expansion
for the trapezoidal rule:

Theorem 2.1. Let f : [a, b] → R be 2k + 1 times continuously differentiable and h :=
(b− a)/n. Then

Tf (h) = I +
k∑

i=1

B2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a))h2i + h2k+1Rk(h) (2.3)

where

Rk(h) =

∫ b

a

Pk+1

(
n
x− a
b− a

)
f (2k+1)(x)dx. (2.4)

5



6 CHAPTER 2. ROMBERG QUADRATURE

The following code is a trivial implementation of the trapezoidal rule. The Trapezoidal-
Rule class in an implementation of the abstract class Scheme which represents a numerical
scheme or method, which has asymptotic expansion in hp. The Scheme class has a method
named apply which takes in a problem to which the scheme is applied to. The argument
m in the apply-method is the number of subintervals that should be used.

class TrapezoidalRule(Scheme):
def __init__(self):

super(TrapezoidalRule, self).__init__(2)

def apply(self, inte, m):
(a,b) = inte.interval
h = (b - a) / m
I = 0.5 * (inte.f(a) + inte.f(b))
for i in range(1, m):

I += inte.f(a + i * h)

return I * h

Assume that we have computed the value of Tf (h) for h = h1, . . . , hk and we want
to extrapolate to zero, i.e. we want to compute the value at zero of the interpolation
polynomial in h2 for (h2i , Tf (hi), i = 1, . . . , k. Denote by Tij the value at zero of the
polynomial of degree j − 1 in h2 which goes through (h2i−j+1, T (hi−j+1)), . . . , (h

2
i , T (hi)).

The Neville scheme gives us the following algorithm for computing Tij, 1 ≤ j ≤ i ≤ k,
recursively:

1. Ti1 := Tf (hi) for i = 1, . . . , k.

2. Tij := Ti,j−1 +
Ti,j−1−Ti−1,j−1(

hi−j+1
hi

)2
−1

for 2 ≤ j ≤ i.

2.2 Numerical experiments
In this section we are going to apply Romberg quadrature to various functions and also
try different sequences. We will analyse how different sequences perform in the sense that
we want to measure how many function evaluations we need to attain a prescribed precision.

We will try various functions and the following sequences:

• The harmonic sequence: an = n, n > 0.

• The Romberg sequence: an = 2n−1, n ≥ 1.

• The Bulirsch sequence: a1 = 1, a2 = 2, a3 = 3 and an+2 = 2 · an for n ≥ 2. Its first
elements are

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, . . .

Suppose that we are approximating the integral I :=
∫ b

a
f(x)dx using Romberg quadra-

ture. We will use the stepsizes hk := (b − a)/ak for the extrapolation. Let Tij, i ≥ 0 and
j ≤ i be the extrapolation table we get and εk := |Tkk − I| be the error on the diagnoals.
Let Nk be the number of function evaluations needed to compute Tkk. We will use Nk as
the measurement of computational effort as mentioned in section 1.3 and we will try to fit
the exponential convergence model introduced there. We will also plot the logarithm of
the error against the number of extrapolation steps. Note that Nk =

∑k
i=1(ai + 1) where
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(ai) is our sequence, so in case of the Harmonic sequence, we have Nn = n(n+3)/2 ≈ n2/2
for n large. Hence if εn ∼ A exp(−cN q

n) then

εn ∼ A exp(−c/2qn2q)

for n large. Thus if the error converges exponentially with the number of function evalua-
tions, it will also converge exponentially with the number of extrapolation steps, and the
exponent in the latter fitting will be twice the parameter from the former.

If our sequence is the Romberg sequence then Nk =
∑k

i=1(2
i−1 + 1) = 2k + k − 1 ≈ 2k

for k large, so if εk ∼ A exp(−cN q
k ) then

εk ∼ A exp(−c2kq)

for k large, which is not exponential convergence. Hence possibilities of having exponential
convergence in the number of steps and in the number of evaluations are mutually exclusive
for the Romberg sequence.

For the model fitting we will plot the logarithm of the error against the number of
function evaluations and the number of extrapolation steps. Then we will try to fit the
points on curve of a function of the form t 7→ b − ctq and we will report the mean and
relative variance of A := eb, c and q. We will also provide the plot of the base 10 logarithm
of the error against the number of function evaluations.

We conduct the experiments in Python 3 and use the high precision arithmetic library
mpmath for all the computations. The precision will be set to 500 significant digits so will
not have to worry about numerical instabilities.

Now we will consider the results of the experiments.

2.2.1 Cosine squared

The first function we are going to try is

f : [0, 1]→ R, f(x) := cos2(x)

which is entire.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 8.6[+12] 7.5[+00] 5.8[+00] 4.7[−03] 6.0[−01] 1.7[−04] 1.6[+07] 6.5[−06]
RS-evals 1.1[+73] 6.0[+00] 9.6[+01] 6.7[−02] 1.1[−01] 1.9[−02] 1.1[+07] 3.9[−04]
BS-evals 3.8[+76] 8.0[+00] 8.7[+01] 1.1[−01] 1.6[−01] 3.4[−02] 2.5[+10] 7.9[−04]
HS-steps 8.4[+07] 6.4[+00] 4.0[+00] 3.4[−03] 1.2[+00] 1.1[−04] 2.7[+04] 3.3[−06]
RS-steps 1.3[−02] 6.5[−01] 1.0[+00] 2.4[−03] 1.9[+00] 7.7[−05] 5.9[−01] 1.1[−05]
BS-steps 2.3[−03] 2.2[+00] 9.2[−01] 1.4[−02] 1.8[+00] 4.2[−04] 8.6[−01] 3.9[−05]

We see that the harmonic sequence performes best, then Bulirsch and then Romberg.
In standard double precision arithmetic, we get down to machine level precision using
Romberg or Bulirsch, but we are like 2 digits from there, using the harmonic sequence.

For the Romberg and Bulirsch sequence we clearly have exponential convergence in the
number of steps but not in the number of evaluations.

For the harmonic sequence it is hard to tell. We get very large values of A and we get
large value for ρlin. On the contrary, the stack plots seem stable.

2.2.2 Function with poles

Now we will consider the following function:

ga : [−1, 1]→ R, ga(x) :=
1

a2 + x2
, a > 0

a = 1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 3.8[+00] 2.9[−02] 1.8[+00] 1.4[−04] 5.0[−01] 6.5[−06] 1.0[−01] 3.2[−07]
RS-evals 4.1[+37] 5.2[+00] 4.7[+01] 1.0[−01] 1.3[−01] 3.5[−02] 1.5[+05] 5.7[−04]
BS-evals 8.2[+22] 5.0[+00] 2.4[+01] 1.1[−01] 2.2[−01] 4.5[−02] 3.9[+05] 1.4[−03]
HS-steps 6.6[−01] 4.5[−02] 1.3[+00] 2.6[−04] 9.9[−01] 1.1[−05] 2.6[−01] 1.1[−06]
RS-steps 3.7[+00] 2.9[+00] 4.2[−01] 3.0[−02] 2.1[+00] 8.2[−04] 2.4[−01] 7.7[−05]
BS-steps 1.2[+00] 1.7[+00] 2.0[−01] 1.1[−01] 2.1[+00] 2.5[−03] 3.6[−01] 9.1[−05]

We see that the harmonic sequence performes best, then Bulirsch and then Romberg.
In standard double precision arithmetic, we get down to machine level precision using
Romberg or Bulirsch, but we are like 5 digits from there, using the harmonic sequence.
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Here we clearly have exponential convergence in the number of evaluations for the
Harmonic sequence and hence also in the number of steps. We do not have exponential
convergence in the number of evaluations for Romberg and Bulirsch but the model for
exponential convergence in the number of steps fits moderately well for those sequences.

a = 10−1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 5.2[+00] 7.7[−02] −7.2[−01] 1.8[−03] 5.1[−01] 9.0[−05] 1.6[−02] 8.7[−06]
RS-evals 7.5[+22] 6.0[+00] 1.4[+01] 3.3[−01] 2.0[−01] 7.9[−02] 9.7[+02] 1.4[−03]
BS-evals 9.0[+07] 7.6[+00] 3.0[+00] 1.9[−01] 3.6[−01] 1.3[−02] 3.4[+01] 1.7[−03]
HS-steps 1.1[+01] 5.0[−02] −5.1[−01] 1.5[−03] 1.0[+00] 6.5[−05] 1.2[−02] 6.7[−06]
RS-steps 7.3[+02] 2.1[+00] 6.6[−02] 1.8[−01] 2.6[+00] 5.3[−03] 5.2[−01] 1.7[−04]
BS-steps 3.2[+01] 2.0[+00] 1.4[−02] 7.5[−01] 2.8[+00] 6.5[−03] 5.1[−01] 8.6[−04]

Here we get divergence for the harmonic sequence, but convergence for the other sequences,
fastest for Bulirsch. In standard double precision arithmetic, we get down to machine level
precision using Romberg or Bulirsch. The model for exponential convergence in number
of evaluations does not fit for Bulirsch nor Romberg but it is hard to tell whether we have
exponential convergence in the number of steps.
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a = 10−2
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 1.2[+02] 8.0[−01] −9.6[−01] 7.2[−03] 5.2[−01] 3.7[−04] 7.2[−02] 2.0[−05]
RS-evals 8.9[+10] 5.8[+00] 3.0[+00] 6.3[−01] 2.9[−01] 5.4[−02] 2.3[+00] 2.7[−03]
BS-evals · · 2.9[+03] 4.9[+00] 4.0[−01] 3.7[−01] 7.2[−01] 1.3[−02]
HS-steps 3.2[+02] 5.8[−01] −6.8[−01] 6.8[−03] 1.0[+00] 3.0[−04] 5.5[−02] 1.9[−05]
RS-steps 4.4[+03] 1.5[+00] 5.4[−03] 4.5[−01] 3.4[+00] 1.0[−02] 7.6[−01] 1.1[−03]
BS-steps 1.7[+11] 8.0[+00] 1.5[+00] 6.4[+00] 3.2[+00] 2.7[−01] 8.1[−01] 1.7[−02]

Here the same comments apply as for a = 10−1, except that now the Romberg sequence
performes better than the Bulirsch sequence and the model fitting is worse.

2.2.3 Logarithm

Now we will consider the following function

ha : [0, 1]→ R, ha(x) := ln(a+ x), a > 0.

This function is analytic on neighbourhood about the interval but we have a singularity at
the horizontal ray from −a to −∞.

a = 1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 3.1[+00] 3.6[−01] 4.5[+00] 2.3[−04] 5.0[−01] 1.1[−05] 5.2[−01] 6.3[−07]
RS-evals 1.5[+43] 6.0[+00] 5.7[+01] 6.6[−02] 1.3[−01] 1.6[−02] 4.1[+03] 2.4[−04]
BS-evals 1.5[+31] 7.9[+00] 3.7[+01] 8.1[−02] 2.0[−01] 1.9[−02] 7.4[+03] 3.2[−04]
HS-steps 3.9[−02] 5.5[−01] 3.2[+00] 3.9[−04] 9.9[−01] 1.6[−05] 7.7[−01] 1.6[−06]
RS-steps 2.1[−04] 1.2[+00] 5.4[−01] 9.5[−03] 2.0[+00] 2.6[−04] 9.2[−01] 7.9[−05]
BS-steps 2.3[−05] 3.4[+00] 3.6[−01] 6.8[−02] 1.9[+00] 1.7[−03] 9.9[−01] 2.6[−04]

We see that the harmonic sequence performes best, then Bulirsch and then Romberg.
In standard double precision arithmetic, we get down to machine level precision using
Romberg or Bulirsch, but we are like 2 digits from there, using the harmonic sequence.

Here we clearly have exponential convergence in the number of evaluations for the
harmonic sequence and hence also in the number of steps. For Romberg and Bulirsch we
seem to have exponential convergence in the number of steps though the fitting is not as
nice as in the case of the harmonic sequence.

a = 10−2
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 1.4[−01] 2.5[+00] 6.6[−01] 1.1[−01] 4.3[−01] 4.7[−03] 7.1[−01] 2.0[−04]
RS-evals 3.4[+09] 6.0[+00] 6.7[+00] 2.3[−01] 2.3[−01] 2.6[−02] 7.9[+00] 5.6[−04]
BS-evals 6.9[+00] 2.0[+00] 1.6[+00] 3.1[−02] 3.7[−01] 2.1[−03] 2.0[−01] 1.2[−04]
HS-steps 7.5[−02] 1.8[+00] 4.8[−01] 1.1[−01] 8.6[−01] 4.2[−03] 7.1[−01] 1.9[−04]
RS-steps 5.2[−02] 2.6[−01] 2.3[−02] 1.8[−02] 2.8[+00] 2.7[−04] 7.6[−01] 1.7[−04]
BS-steps 2.1[−02] 1.0[+00] 8.8[−03] 1.1[+00] 2.8[+00] 1.2[−02] 8.8[−01] 1.4[−03]

We see that we can not attain high precision using the harmonic sequence and standard
double precision. It is hard to tell which sequence performes best in the long run, though
we can say that Bulirsch performes better than Romberg.
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For Romberg, we get a moderately goot fit for exponential convergence in the number
of steps. The fitting is quite good for the harmonic sequence but it is quite unstable for
Bulirsch.

a = 10−4
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 1.3[+13] 5.6[+01] 8.1[+00] 5.5[−01] 9.6[−02] 9.4[−02] 1.0[−01] 9.6[−05]
RS-evals 1.1[+02] 5.4[+00] 2.0[+00] 7.3[−01] 2.4[−01] 6.4[−02] 6.1[−01] 1.3[−03]
BS-evals 1.9[+05] 5.4[+00] 6.4[+00] 3.3[−01] 1.4[−01] 1.3[−01] 1.7[−01] 8.8[−04]
HS-steps 1.4[+04] 1.7[+01] 5.3[+00] 2.0[−01] 2.2[−01] 4.7[−02] 4.4[−02] 4.0[−05]
RS-steps 1.4[−01] 2.1[+00] 2.4[−02] 2.5[+00] 3.0[+00] 7.0[−02] 8.6[−01] 4.4[−03]
BS-steps 4.1[−01] 7.0[−01] 9.5[−02] 8.4[−01] 1.7[+00] 5.4[−02] 4.7[−01] 3.6[−03]

Here again, we do not attain high precision when using the Harmonic sequence in double
precision arithmetic. It is hard to say which sequence performes best. We get reasonably
good fit for the harmonic sequence but not for Romberg and Bulirsch.

2.2.4 Area of half circle

Now we will try the following function:

i : [−1, 1]→ R, i(x) :=
√
1− x2.

This function is analytic inside the interval of definition but not at the endpoints. Its
derivative has singularities at the endpoints.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals · · 5.4[+04] 3.9[−03] 2.2[−05] 3.5[−03] · 2.5[−04]
RS-evals · · 7.3[+04] 5.7[−03] 2.1[−05] 5.1[−03] · 2.2[−04]
BS-evals · · 5.8[+04] 3.2[−04] 2.6[−05] 2.4[−04] · ·
HS-steps · · 6.7[+04] 2.4[−04] 3.4[−05] 2.5[−04] · 1.4[−05]
RS-steps 1.6[+00] 5.1[−04] 1.0[+00] 5.4[−05] 1.0[+00] 5.0[−06] 1.2[−01] 1.4[−04]
BS-steps 3.7[−01] 3.1[−02] 5.6[−01] 8.4[−03] 9.8[−01] 6.3[−04] 2.8[−01] 7.0[−04]

We see that we do not get high precision using double precision arithmetic, independent
of sequence. The Romberg and Bulirsch sequence seem to perform similarly well but the
harmonic sequence seems to be slowest.

For the harmonic sequence we reject the fitting because we get unreasoable values of
the parameters. The model for exponential convergence in the number of steps fits well in
the case of the Romberg sequence and Bulirsch.

If we plot the logarithm of the error agains the logarithm of the evaluations we see that
the points seem to fit on a line. Hence, the error seems to converge algebraically with the
number of evaluations.

2.2.5 Gaussian

Finally we will consider the Gaussian function

j : [0, 1]→ R, k(x) :=
2√
π
e−x

2

.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
HS-evals 1.0[+09] 5.5[+00] 4.3[+00] 2.1[−02] 5.8[−01] 7.3[−04] 2.5[+02] 6.2[−06]
RS-evals 1.4[+55] 6.0[+00] 6.8[+01] 8.3[−02] 1.2[−01] 2.3[−02] 1.5[+05] 4.2[−04]
BS-evals 1.4[+51] 8.0[+00] 5.0[+01] 1.2[−01] 1.9[−01] 3.0[−02] 7.9[+06] 8.2[−04]
HS-steps 6.9[+05] 5.4[+00] 2.9[+00] 2.2[−02] 1.2[+00] 6.6[−04] 2.0[+00] 4.7[−06]
RS-steps 3.9[−03] 1.5[−01] 6.6[−01] 8.3[−04] 2.0[+00] 2.4[−05] 8.5[−01] 2.6[−05]
BS-steps 4.0[−04] 1.5[+00] 4.7[−01] 2.5[−02] 1.9[+00] 7.1[−04] 9.5[−01] 7.7[−05]

In double precision arithmetic we get down to machine level precision using Romberg
or Bulirsch, but we get down to like 2 digits from there, using the harmonic sequence. The
harmonic sequence performes best, then Bulirsch and then Romberg.

For the Harmonic sequence it is hard to tell whether we have exponential convergence
because we get very large value for A. For Romberg we seem to have exponential conver-
gence in the number steps and also for Bulirsch.

2.3 Summary
When the integrand is entire, we have exponential convergence for the Romberg and Bu-
lirsch sequence in the number of steps. The results are not as clear for the harmonic
sequence in those cases. It is interesting how fast convergence we get using the harmonic
sequence.

When the integrand has a pole, which is not so close to the interval of integration, we
have exponential convergence for the harmonic sequence. For the Romberg and Bulirsch,
the fitting is not as clear. When we move closer to the pole, the model fails in all cases.

When the integrand is not analytic on a neighbourhood around the interval of integra-
tion, we seem to have exponential convergence in the number of steps for the Romberg
and Bulirsch sequence, but the fitting fails for the harmonic sequence as we get either very
big or small parameters. In this case, it the error seems to follow algebraically with the
number of evaluations and steps.

It should be mentioned that in all cases, we used the length of the interval as initial
step size. However, whether the methods converge or not may depend on the initial step
size.
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Chapter 3

Extrapolation of difference quotients

3.1 The algorithm

Let a ∈ R, ε > 0 and f :]a − ε, a + ε[→ R be differentiable at a. We are interested in
estimating f ′(a). Assume that f is 2k + 1 times differentiable at a. Then by Taylor’s
theorem we have

f(a+ h) = f(a) + f ′(a)h+
f ′′(a)

2
h2 + · · ·+ f (2k)(a)

(2k)!
h2k +

f (2k+1)(ξ)

(2k + 1)!
h2k+1 (3.1)

where a < ξ < a+ h. Now plug −h instead of h in (3.1):

f(a− h) = f(a)− f ′(a)h+
f ′′(a)

2
h2 − · · ·+ f (2k)(a)

(2k)!
h2k − f (2k+1)(η)

(2k + 1)!
h2k+1 (3.2)

where a− h < η < a. If we subtract (??) from (3.1) and divide by 2h we get:

f ′(a) = Df (h) +
f ′′′(a)

3!
h2 + · · ·+ f (2k−1)(a)

(2k − 1)!
h2k−2 +

f (2k+1)(ξ) + f (2k+1)(η)

2 · (2k + 1)!
h2k (3.3)

where

Df (h) :=
f(a+ h)− f(a− h)

2h
(3.4)

is the symmetric difference quotient of f at a. Note that 1
2
(f (2k+1)(ξ)+ f (2k+1)(η)) is in the

image of f (2k+1) so we can rewrite (??) as

f ′(a) = Df (h) +
f ′′′(a)

3!
h2 + · · ·+ f (2k−1)(a)

(2k − 1)!
h2k−2 +

f (2k+1)(ζ)

(2k + 1)!
h2k (3.5)

where a − h < ζ < a + h. Formula (??) tells us that the symmetric difference quotient
method has asymptotic expansion in h2 of order 2k − 2 if f is 2k + 1 times differentiable.
Thus we can use the following scheme to extrapolate the symmetric difference quotient
method:

1. Di1 := Df (hi) for i = 1, . . . , k.

2. Dij := Di,j−1 +
Di,j−1−Di−1,j−1(

hi−j+1
hi

)2
−1

for 2 ≤ j ≤ i.

25
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3.2 Numerical experiments

In this section we are going to extrapolate the symmetric difference quotient for ap-
proximating the derivative of a function at a given point. Let h > 0 be some number,
f :]a− ε, a+ ε[→ R a function differentiable at a and n1 < n2 < · · · a sequence of integers.
Let hi := h/ni. Let Dij be the extrapolation table that we get from extrapolating in h2

using the points (h21, Df (h1)), (h
2
2, Df (h2)), . . ., as we described in the first chapter. We let

εi := |Xii− f ′(a)|. We want to analyse how εi as i increases and we also want to do similar
efficiency analysis as in the chapter on Romberg quadrature and check whether we have
exponential convergence. We will do the computations with precision up to 500 significant
digits and also using standard double precision arithmetic.

Now we will consider the results of the experiments.

3.2.1 The exponential function

We begin by considering the derivative of the exponential function at zero.
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Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 3.7[−02] 2.6[+00] 4.0[−01] 4.0[−03] 1.9[+00] 6.7[−05] 7.8[−01] 3.0[−06]
HS 1.1[+05] 3.3[+00] 1.7[+00] 7.2[−03] 1.3[+00] 2.4[−04] 1.5[+02] 1.2[−05]

In standard floating point arithmetic, we get down to machine level precision using
both sequences. The Romberg sequence works beter. The model seems to fit well in all
cases.

3.2.2 Logarithm

Now we will consider the dervative at zero of the function

g(x) := ln(x+ 1).



28 CHAPTER 3. EXTRAPOLATION OF DIFFERENCE QUOTIENTS

Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 9.1[−03] 9.8[−01] 2.0[−01] 1.4[−03] 2.0[+00] 2.1[−05] 7.5[−01] 2.1[−06]
HS 2.8[+01] 9.6[−01] 1.1[+00] 3.5[−03] 1.3[+00] 1.2[−04] 1.7[+00] 4.5[−06]

We get down to machine level precision using both sequences, Romberg performes
better. The model fits well in all cases.

3.2.3 Square root

Now we shall consider the derivative at zero of the following function:

h(x) :=
√
1 + x
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Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 8.3[−04] 1.3[+00] 2.1[−01] 1.8[−03] 2.0[+00] 2.7[−05] 8.4[−01] 2.9[−06]
HS 2.6[+00] 8.2[−01] 1.2[+00] 2.7[−03] 1.3[+00] 8.9[−05] 5.0[−01] 2.5[−06]

In standard double precision floating point arithmetic we get down to machine level
precision using any sequence. The model fits well in all cases.

3.2.4 Smooth but not analytic function

Now we will consider the derivate at zero of the following function:

r(x) :=

{
e−1/x if x > 0

0 else

which is smooth but not analytic.
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Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 7.3[+03] 1.3[+01] 6.0[−02] 2.3[−02] 2.2[+00] 2.1[−04] 1.7[+00] 2.2[−05]
HS 2.9[+02] 4.8[+00] 8.2[−01] 4.8[−01] 9.8[−01] 2.3[−02] 3.1[−01] 1.2[−03]

Romberg performes better.

The model seems to fit reasonably well for the Romberg sequence but the fitting is not
so nice for the harmonic sequence.

3.2.5 Another smooth but not analytic function

Now we will consider the derivative at zero of the following function:

i(x) :=

{
xe−1/x

2 if x 6= 0

0 else

which is smooth but not analytic.
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Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 9.2[−03] 1.7[+00] 1.2[−01] 7.0[−03] 2.1[+00] 9.6[−05] 2.0[−01] 4.4[−06]
HS 2.1[+16] 1.3[+01] 1.5[+00] 1.0[+00] 1.2[+00] 3.7[−02] 1.3[+01] 1.8[−04]

Here the Romberg sequence performes better.

We seem to have nice fit for the Romberg sequence but not so good for the harmonic
sequence.

3.2.6 Only once differentiable function

Finally we will consider the derivate at zero of the following function which is only once
differentiable at that point:

j(x) :=

{
x2 sin 1

x
if x 6= 0

0 else
.



32 CHAPTER 3. EXTRAPOLATION OF DIFFERENCE QUOTIENTS

Sequence A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS 2.0[+27] 1.3[+01] 6.1[+00] 3.8[+00] 8.1[−01] 4.0[−01] 7.1[−01] 4.5[−03]
HS 4.0[−01] 1.7[+00] −3.7[−01] 6.7[+00] 1.3[+00] 9.3[−02] 9.3[−02] 1.5[−02]

Here the model simply does not fit. Note that we do not have the asymptotic expansion
for the derivate here, since the function is only once differentiable.

3.3 Summary
We the function is analytic we get exponential convergence. When the function is infinitely
differentiable but not analytic, we get exponential convergence for the Romberg sequence
but not for the harmonic sequence. When the function is only once differentiable, we do
not get any fitting.

It is worth mentioning that the Romberg sequence works better in all cases.



Chapter 4

Initial Value Problems

4.1 The explicit midpoint rule
Let f : R× Rn → Rn be a smooth mapping and consider the initial value problem

y′(t) = f(t, y(t)), y(a) = ya, t ∈ [a, b]. (4.1)

The explicit midpoint method (see e.g. section 4.3.3 in [1]) is a method for computing an
approximation to the solution of (4.1), and it goes as follows: Let n ≥ 1 be an integer and
h := (b− a)/2n. We then define recursively

ξh(a) := ya, ξh(a+ h) := ξh(a) + hf(a, ξh(a))

and
ξh(a+ (i+ 1)h) := ξh(a+ (i− 1)h) + 2hf(a+ ih, ξ(a+ ih)).

Then ξh is an approximate solution to (4.1) defined at a, a+ h, . . . , b. We are interested in
the value Xf (h) := ξh(b). It is shown in section 4.3.3. in [1] that Xf (h) has an asymptotic
expansion in h2. We have the following implementation in Python of the explicit midpoint
rule for computing Xf (h).

class ExplicitMidpointRule(Scheme):

def __init__(self):
super(ExplicitMidpointRule, self).__init__(2)

def apply(self, ivp, n):
h = (ivp.b - ivp.a) / (2 * n)
y_sl = ivp.y0
y_l = ivp.y0 + h * ivp.f(ivp.a, ivp.y0)

for i in range(1, 2 * n):
tmp = y_l
y_l = y_sl + 2 * h * ivp.f(ivp.a + i * h, y_l)
y_sl = tmp

return y_l

4.2 Numerical experiments
In this section we are going to extrapolate the explicit midpoint rule and analyze the con-
vergence of the approximations as we extrapolate more often. Consider the initial value

33
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problem (4.1). Let n1 < n2 < · · · be some sequence of integers and hi := (b − a)/ni.
Let Xij the extrapolation table which we get from extrapolating in h2, using the points
(hi, Xf (hi)). Let εi := |Xii − y(b)| be the absolute error. We are going to do the same
convergence and efficency analysis as in the two previous chapters. We will both do the
computations using high precision arithmetic with 500 correct digits and also in standard
double precision.

In those cases where we do not have an analytic solution to the equations, we com-
puted a reference solution up to high precision. We did that by using extrapolation with
the harmonic sequence and estimating the error as the difference between successive terms
in the sequence of approximations.

Now we will consider the results of the experiments.

4.2.1 Exponential growth

First we will consider the following initial value problem:

y′(x) = y(x), y(0) = 1, x ∈ [0, 1] (4.2)

whose solution is the analytic function y(x) = ex.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 6.2[+65] 6.0[+00] 7.2[+01] 1.2[−01] 1.2[−01] 3.1[−02] 1.4[+08] 6.9[−04]
HS-evals 1.2[+09] 6.4[+00] 3.3[+00] 5.2[−03] 6.1[−01] 1.7[−04] 8.4[+04] 5.6[−06]
RS-steps 8.7[−02] 2.2[−01] 8.4[−01] 9.2[−04] 1.9[+00] 2.8[−05] 3.3[−01] 4.5[−06]
HS-steps 3.8[+07] 6.0[+00] 3.3[+00] 4.5[−03] 1.2[+00] 1.4[−04] 1.6[+04] 4.5[−06]

The Harmonic sequence performes better. We get down to machine level precision using
either sequence in double precision arithmetic.

We clearly have exponential convergence in the number of steps for the Romberg se-
quence and the fitting for the Harmonic sequence seems nice but we though have very big
values for A.

4.2.2 Logistic curve

Then we will consider the following initial value problem

y′(x) = y(x)(1− y(x)), y(0) = 1/2, x ∈ [0, 1] (4.3)

whose solution is the sigmoid function

σ(x) =
1

1 + e−x

which is analytic.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 8.8[+63] 6.0[+00] 7.1[+01] 2.0[−01] 1.2[−01] 6.4[−02] 6.4[+05] 6.1[−04]
HS-evals 2.5[+03] 9.4[+00] 4.2[+00] 3.6[−03] 5.1[−01] 1.3[−04] 1.9[+01] 1.3[−05]
RS-steps 1.0[−02] 1.9[+00] 8.1[−01] 3.1[−02] 1.9[+00] 1.1[−03] 8.4[−01] 4.6[−05]
HS-steps 2.6[+02] 9.2[+00] 4.3[+00] 3.5[−03] 1.0[+00] 1.3[−04] 9.3[+00] 1.3[−05]

The harmonic sequence performes better and we get down to machine level precisision
using either sequence, in double precision.

We seem to have exponential convergence in the number of steps for the Romberg se-
quence and the models fit well for the harmonic sequence.

4.2.3 Tangens

Now we will consider the following equation

y′(x) = 1 + y(x)2, y(0) = 0, x ∈ [0, 1] (4.4)

whose solution is
y(x) := tan(x)

which is meromorphic and we are quite far from singularites.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 9.5[+36] 6.0[+00] 3.3[+01] 1.7[−01] 1.5[−01] 3.6[−02] 1.1[+06] 9.5[−04]
HS-evals 3.6[+02] 5.7[−01] 2.0[+00] 2.5[−03] 5.1[−01] 1.1[−04] 2.8[+01] 5.9[−06]
RS-steps 3.5[−01] 1.1[−01] 3.0[−01] 1.0[−03] 2.2[+00] 2.6[−05] 6.7[−02] 1.3[−06]
HS-steps 1.2[+02] 5.4[−01] 2.0[+00] 2.3[−03] 1.0[+00] 1.0[−04] 2.0[+01] 5.3[−06]

The harmonic sequence performes better and we get down to machine level precision
in double precision arithmetic, using either sequence.

Here we clearly have exponential convergence in the number of steps for the Romberg
sequence and the fit is also very nice for the harmonic sequence.

4.2.4 The logarithm

Now we will consider the following initial value problem:

y′(t) = exp(−y(t)), y(0) = ln(a), t ∈ [0, 1]. (4.5)

whose solution is

y(t) = ln(a+ t).

The solution is analytic on but with a singularity on the closed horizontal ray from −a
to −∞.
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a = 1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 4.9[+42] 6.0[+00] 4.5[+01] 1.2[−01] 1.4[−01] 2.8[−02] 5.2[+05] 6.0[−04]
HS-evals 2.1[+01] 4.2[−02] 3.0[+00] 6.2[−05] 5.0[−01] 2.7[−06] 1.3[+00] 2.9[−07]
RS-steps 7.5[−03] 4.1[−01] 4.8[−01] 3.3[−03] 2.1[+00] 9.1[−05] 6.0[−01] 2.1[−05]
HS-steps 4.9[+00] 3.5[−02] 3.0[+00] 4.9[−05] 1.0[+00] 2.1[−06] 6.7[−01] 1.9[−07]

Here the harmonic sequence works better.

We have exponential convergence in the number of evaluations and the number of steps
for the harmonic sequence and we have exponential convergence in the number of steps for
the Romberg sequence.

a = e−1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.3[+34] 6.0[+00] 3.0[+01] 1.6[−01] 1.5[−01] 3.4[−02] 4.9[+05] 9.1[−04]
HS-evals 3.1[+01] 3.6[−02] 1.8[+00] 1.3[−04] 5.0[−01] 5.8[−06] 1.9[+00] 9.4[−07]
RS-steps 4.2[−01] 2.5[−02] 2.7[−01] 1.9[−04] 2.2[+00] 4.2[−06] 1.0[−01] 1.7[−06]
HS-steps 1.3[+01] 3.1[−02] 1.8[+00] 1.1[−04] 1.0[+00] 4.9[−06] 1.3[+00] 7.4[−07]

Here the same comments apply as when a = 1.

a = e−2
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 6.7[+26] 6.0[+00] 1.9[+01] 2.2[−01] 1.8[−01] 4.1[−02] 2.9[+05] 1.4[−03]
HS-evals 5.3[+01] 1.5[−02] 9.9[−01] 1.4[−04] 5.0[−01] 6.0[−06] 5.0[+00] 7.7[−06]
RS-steps 1.4[+01] 5.1[−01] 1.4[−01] 1.0[−02] 2.4[+00] 2.2[−04] 7.7[−01] 2.1[−05]
HS-steps 3.2[+01] 1.3[−02] 9.9[−01] 1.2[−04] 1.0[+00] 5.1[−06] 4.2[+00] 7.1[−06]

Here the same comments apply as when a = 1.

a = e−4
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.8[+15] 5.9[+00] 6.1[+00] 5.2[−01] 2.6[−01] 1.1[−01] 7.0[+03] 3.9[−03]
HS-evals 3.1[+13] 2.8[+01] 1.0[+00] 2.4[+00] 5.5[−01] 1.8[−01] 3.3[+00] 3.3[−03]
RS-steps 1.7[+03] 1.0[+00] 2.1[−02] 3.7[−01] 3.0[+00] 1.3[−02] 1.1[+01] 7.5[−04]
HS-steps 1.4[+13] 2.8[+01] 1.0[+00] 2.4[+00] 1.1[+00] 1.8[−01] 3.1[+00] 3.3[−03]

Here we get much slower convergence than in the previous cases and the model does not
fit in any case.
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a = e−6
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.1[+04] 5.8[+00] 1.7[−01] 2.5[+00] 6.3[−01] 1.7[−01] 6.6[+00] 6.1[−03]
HS-evals 6.7[+00] 9.2[−04] 4.1[−03] 1.5[−01] 6.0[−01] 9.7[−03] 3.4[−04] 1.0[−04]
RS-steps 5.4[+01] 3.3[+00] 2.9[−05] 3.8[+00] 6.4[+00] 6.7[−02] 6.6[−01] 2.1[−03]
HS-steps 6.6[+00] 8.8[−04] 4.1[−03] 1.5[−01] 1.2[+00] 9.4[−03] 3.4[−04] 1.0[−04]

Here we do simply not get convergence towards the solution and all the models fail.

4.2.5 Equation with singularity

Now we will consider the following initial value problem:

y′(t) = y2(t), y(0) = 1/(1 + a), t ∈ [0, 1] (4.6)

whose solution is

y(t) =
1

1− (t− a)
.

The solution is meromorphic with a pole at 1 + a.

a = 1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.4[+42] 6.0[+00] 4.2[+01] 1.4[−01] 1.4[−01] 3.2[−02] 1.7[+06] 7.7[−04]
HS-evals 4.4[+02] 5.2[−01] 2.7[+00] 1.3[−03] 5.1[−01] 5.5[−05] 5.2[+01] 3.6[−06]
RS-steps 4.2[−02] 3.0[−02] 4.3[−01] 3.0[−04] 2.1[+00] 8.2[−06] 2.8[−01] 4.7[−06]
HS-steps 1.0[+02] 4.9[−01] 2.8[+00] 1.2[−03] 1.0[+00] 5.0[−05] 3.4[+01] 3.2[−06]

The harmonic sequence performes better and we get almost down to machine level preci-
sion using standar double precision floating point arithmetic, with either sequence.

We have very nice fit for the exponential convergence in the number of steps for the
Romberg sequence and also for the harmonic sequence.

a = 10−2
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.2[+12] 6.0[+00] 2.8[+00] 7.7[−01] 3.1[−01] 8.3[−02] 4.0[+02] 3.6[−03]
HS-evals 1.7[+02] 1.2[−01] 4.0[−02] 8.6[−02] 6.5[−01] 2.4[−03] 9.8[−03] 1.0[−04]
RS-steps 3.5[+03] 2.9[+00] 5.2[−03] 6.3[−01] 3.5[+00] 9.4[−03] 1.5[+00] 5.0[−04]
HS-steps 1.7[+02] 1.1[−01] 4.0[−02] 8.2[−02] 1.3[+00] 2.2[−03] 8.5[−03] 9.5[−05]

Here Romberg works better and we do not attain as high precisison using the harmonic as
when using Romberg, in standard double precision arithmetic.

Here the model fits moderately well for Romberg sequence, when considering expo-
nential convergence in the number of steps. We also have moderate fit for the harmonic
sequence.
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a = 10−4
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.5[+04] 2.3[−01] 4.3[−03] 2.3[+00] 7.4[−01] 4.2[−02] 1.1[−01] 3.0[−03]
HS-evals 1.0[+04] 5.5[−09] 1.7[−04] 5.8[−05] 7.5[−01] 1.2[−06] 4.2[−10] 4.8[−12]
RS-steps 1.1[+04] 2.2[−02] 2.0[−08] 3.2[+00] 7.6[+00] 6.3[−03] 1.8[−02] 8.8[−04]
HS-steps 1.0[+04] 3.3[−10] 1.7[−04] 5.3[−06] 1.5[+00] 1.2[−07] 2.1[−10] 2.2[−12]

Here we clearly do not have exponential convergence in the number of evaluations for the
Romberg sequence. We have not so good fit for exponential convergence in the number of
steps.

Regarding the harmonic sequence, we note that we have extremely slow convergence,
so the x and y values differ by many orders of magnitude, so the results are maybe not so
reliable.

4.2.6 Equation with moderate singularity

Now we will consider the following initial value problem

y′(t) = − 1

2y
, y(0) =

√
1 + a, t ∈ [0, 1] (4.7)

whose solution is
y(t) =

√
1− (t− a)

a = 1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 8.3[+41] 6.0[+00] 4.7[+01] 1.1[−01] 1.3[−01] 2.6[−02] 1.5[+05] 4.9[−04]
HS-evals 4.5[−01] 3.6[−02] 3.1[+00] 3.8[−05] 5.0[−01] 1.6[−06] 6.8[−02] 7.0[−08]
RS-steps 2.8[−04] 7.4[−01] 5.1[−01] 5.8[−03] 2.0[+00] 1.6[−04] 7.9[−01] 4.0[−05]
HS-steps 1.0[−01] 4.1[−02] 3.1[+00] 4.4[−05] 1.0[+00] 1.9[−06] 1.3[−01] 1.2[−07]

Here the harmonic sequence works better than Romberg and we get down to machine level
precision using either sequence, in standard double precision floating point arithmetic.

Here we clearly have exponential convergence in the number of steps and evaluations
for the harmonic sequence. Regarding Romberg, we seem to have exponential convergence
in the number of steps.

a = 10−2
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 3.1[+09] 6.0[+00] 4.5[+00] 4.3[−01] 2.5[−01] 4.6[−02] 1.7[+02] 1.4[−03]
HS-evals 9.3[−02] 5.5[−02] 2.6[−01] 1.1[−02] 4.8[−01] 4.5[−04] 2.3[−01] 5.1[−05]
RS-steps 2.1[−01] 1.2[+00] 1.4[−02] 1.1[−01] 3.0[+00] 1.3[−03] 1.7[−01] 5.7[−05]
HS-steps 8.3[−02] 5.0[−02] 2.6[−01] 1.1[−02] 9.6[−01] 4.4[−04] 2.3[−01] 5.1[−05]

Here Romberg performes better and we do not attain as high precision using the harmonic
sequence in standard double precision floating point arithmetic.

For the Romberg sequence, the model seems to fit moderately well when considering
exponential convergence in the number of evaluations. We also have reasonably good fit
for the harmonic sequence.
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a = 10−4
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.4[−01] 4.8[−01] 2.5[−01] 4.6[−01] 3.5[−01] 1.9[−02] 1.7[−01] 4.5[−04]
HS-evals 1.3[+00] 3.4[+00] 1.3[+00] 3.9[−01] 1.6[−01] 5.5[−02] 1.2[−02] 4.9[−05]
RS-steps 4.3[−02] 5.1[−01] 1.8[−03] 3.8[+00] 4.0[+00] 4.4[−02] 4.7[−01] 1.8[−03]
HS-steps 8.1[−01] 1.7[+00] 1.1[+00] 3.1[−01] 3.3[−01] 4.6[−02] 7.4[−03] 3.5[−05]

Here, we do not have any clear fit.

4.2.7 Circular rotation

Now we will consider the following system of equations:

(y1(t), y2(t))
′ = (−y2(t), y1(t)), y(0) = (1, 0), t ∈ [0, π/2] (4.8)

whose solution is

(y1(t), y2(t)) = (cos t, sin t)

which is entire.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.2[+60] 6.0[+00] 6.1[+01] 1.4[−01] 1.3[−01] 3.5[−02] 2.3[+08] 8.6[−04]
HS-evals 9.0[+09] 6.8[+00] 2.6[+00] 7.9[−03] 6.2[−01] 2.5[−04] 4.4[+05] 8.9[−06]
RS-steps 1.1[+00] 1.0[−04] 6.7[−01] 5.0[−07] 2.0[+00] 1.5[−08] 2.9[−03] 2.0[−08]
HS-steps 4.3[+08] 6.5[+00] 2.7[+00] 6.9[−03] 1.2[+00] 2.2[−04] 9.5[+04] 7.5[−06]

The harmonic sequence works better then Romberg and we get down to machine level
precision using either sequence when using standard floating point arithmetic.

We clearly have exponential convergence in the number of steps for the Romberg se-
quence. For the harmonic sequence, we seem to have exponential convergence, but though
we must note that the mean value of the A coefficient is quite large.

4.2.8 Mathematical pendulum

Now we will consider the mathematical pendulum equation:

y′′(t) + sin y(t) = 0, y(0) = 0, y′(0) = 1, t ∈ [0, 1]. (4.9)
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Here we computed a reference solution up to 500 digits which can be found in the code.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 3.2[+52] 6.0[+00] 5.7[+01] 1.4[−01] 1.3[−01] 3.9[−02] 1.4[+06] 5.6[−04]
HS-evals 4.7[+0] 2.7[−01] 3.7[+00] 2.6[−04] 5.0[−01] 1.1[−05] 9.6[+00] 1.1[−06]
RS-steps 1.4[−02] 3.3[−01] 6.3[−01] 2.1[−03] 2.0[+00] 6.2[−05] 6.7[−01] 2.8[−05]
HS-steps 7.3[+01] 2.5[−01] 3.7[+00] 2.3[−04] 1.0[+00] 9.9[−06] 5.2[+00] 9.2[−07]

Here the harmonic sequence works better and we get down to machine level precision
in standard double precision floating point arithmetic, using either sequence.

We have nice fit for the exponential convergence in the number of steps for the Romberg
sequence. We also have very nice fit for the harmonic sequence.

4.2.9 Federpendel

Now we will consider the equation of motion for das Federpendel or the spring pendulum:

p′ = −(|q| − 1)
q

|q|
−
(
1

0

)
, q′ = p

where p and q are two dimensional vectors. We will consider it with the initial condition
q(0) = (1, 0) and p(0) = (0, 1) and try to both estimate the solution at times t = 1, t = 2
and t = 10.

In the first two cases we use precomputed solutions with accurracy of 500 digits and in
the third case we use a solution with accurracy of 250 digits. The solutions can be found
in the code.
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t = 1

Here we use a reference solution which was computed
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 8.2[+40] 6.0[+00] 4.4[+01] 1.2[−01] 1.4[−01] 2.8[−02] 3.1[+05] 5.4[−04]
HS-evals 5.1[−01] 2.5[−01] 2.6[+00] 3.4[−04] 5.0[−01] 1.5[−05] 2.7[−01] 1.8[−06]
RS-steps 2.8[−03] 3.7[−01] 4.6[−01] 3.3[−03] 2.1[+00] 8.9[−05] 6.5[−01] 3.7[−05]
HS-steps 1.5[−01] 2.5[−01] 2.6[+00] 3.5[−04] 9.9[−01] 1.5[−05] 3.2[−01] 2.0[−06]

Here the harmonic sequence works better and we get down to machine level precision
in standard double precision floating point arithmetic, using either sequence.

We have nice fit for exponential convergence in the number of steps for the Romberg
sequence. We also have nice fit for exponential convergence for the harmonic sequence.

t = 2

Here we use 1 as initial step length.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 6.5[+39] 6.0[+00] 4.2[+01] 1.2[−01] 1.4[−01] 2.7[−02] 4.0[+05] 6.0[−04]
HS-evals 4.2[−01] 3.7[−01] 2.4[+00] 5.1[−04] 4.9[−01] 2.2[−05] 1.8[−01] 1.3[−06]
RS-steps 5.0[−03] 4.6[−01] 4.4[−01] 4.0[−03] 2.1[+00] 1.1[−04] 5.6[−01] 2.2[−05]
HS-steps 1.3[−01] 3.6[−01] 2.4[+00] 5.2[−04] 9.9[−01] 2.2[−05] 2.3[−01] 1.5[−06]

Here the harmonic sequence also works better and we attain high precision using either
sequence in standard double precision floating point arithmetic.

We seem to have very nice fit for exponential convergence in the number of steps for the
Romberg sequence. We also have very nice fit for exponential convergence for the harmonic
sequence.
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t = 10

Here we use 1 as initial step length. When too big initial step length was used, the
convergence failed. Hence the results are dependent upon the initial step length.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.9[+50] 6.0[+00] 4.3[+01] 2.0[−01] 1.4[−01] 3.0[−02] 6.4[+05] 7.4[−04]
HS-evals 3.9[+00] 3.9[+00] 1.9[+00] 1.1[−02] 4.9[−01] 4.6[−04] 6.0[−01] 1.2[−05]
RS-steps 9.7[−01] 4.8[+00] 4.4[−01] 4.0[−02] 2.1[+00] 1.1[−03] 4.4[−01] 2.7[−05]
HS-steps 1.6[+00] 3.9[+00] 1.9[+00] 1.1[−02] 9.8[−01] 4.6[−04] 6.3[−01] 1.2[−05]

Here we still have exponential convergence in the number of steps for both sequences.

4.2.10 Lorenz equations

The Lorenz equations are the following system:

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz

where σ, ρ and β are constants. In our experiment, the constants are set to σ = 10, ρ = 28
and β = 8/3. The initial condition we will consider is (x(0), y(0), z(0)) = (1, 1, 1).

We use precomputed reference solutions with accurracy of 500 digits which can be found
in the code.

t = 0.1
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 1.5[+73] 6.0[+00] 6.6[+01] 2.6[−01] 1.3[−01] 7.3[−02] 5.8[+08] 1.2[−03]
HS-evals 2.6[+07] 6.8[+00] 4.2[+00] 1.8[−03] 5.1[−01] 7.2[−05] 9.2[+05] 2.2[−05]
RS-steps 8.9[+03] 2.3[+00] 7.2[−01] 6.4[−02] 2.0[+00] 2.0[−03] 4.0[+00] 3.6[−05]
HS-steps 2.9[+06] 6.6[+00] 4.2[+00] 1.8[−03] 1.0[+00] 7.1[−05] 5.4[+05] 2.1[−05]

Here the harmonic sequence works better and we get down to machine level precision in
standard double precision arithmetic.

The model for exponential convergence in the number of steps fits moderately well
for the Romberg sequence. We get nice fit for exponential convergence for the harmonic
sequence.
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t = 0.2

Here we use 0.1 as initial step length.
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Plot A-mean A-var c-mean c-var q-mean q-var ρlin ρln
RS-evals 3.8[+53] 6.0[+00] 5.0[+01] 1.6[−01] 1.4[−01] 3.8[−02] 2.0[+08] 1.1[−03]
HS-evals 6.3[+08] 7.6[+00] 4.0[+00] 1.5[−02] 5.0[−01] 5.8[−04] 9.5[+05] 2.3[−05]
RS-steps 6.1[+01] 1.6[−01] 5.2[−01] 1.3[−03] 2.1[+00] 3.8[−05] 1.5[+00] 7.0[−06]
HS-steps 7.3[+07] 7.5[+00] 4.0[+00] 1.5[−02] 1.0[+00] 5.7[−04] 6.0[+05] 2.2[−05]

Here we also get down to machine level precision in standard double precision floating
point arithmetic. The harmonic sequence performes better.

The model for exponential convergence in the number of steps fits moderately well for
the Romberg sequence. We get moderate fit for exponential convergence for the harmonic
sequence.

4.3 Summary
When the solutions are entire we seem to have exponential convergence in the number of
steps for both the Romberg sequence and the harmonic sequence. The same holds when
the solutions are analytic and we are not too close to a singularity. When we move closer
to the singularities, the fitting becomes worse and the convergence begins to fail.

It is interesting how fast convergence we get with the harmonic sequence when com-
puting nicely behaved solutions.

It would be interesting to analyze further how the convergence depends on the initial
step size.
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Code

All the code for the numerical experiments can be found at
https://github.com/hjaltithorisleifsson/extrapolation.
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https://github.com/hjaltithorisleifsson/extrapolation
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