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1 Introduction

In times, where it is impossible to read the newspaper without stumbling over news
about finance markets and their situation, it can be worthwhile to deal with certain
aspects of them, for example trading of derivatives. Derivatives are contracts for
buying or selling underlying assets in the future to a specified price. The asset can
be a stock title, a currency or another tradable good. These contracts itself can
be traded.[2]

Options are a special kind of derivatives, that give the buyer the possibility to
sell or buy the asset at a special date, called the date of expiry, to a certain price,
called the strike price. This was mainly intended to give people the possibility to
insure them against fluctuating stock prices[5]. For example a company wants to
takeover another enterprise in the future, by buying then a certain amount of stock
titles. By buying an option the company can insure itself to not pay more than
the strike price. This is also called hedging against fluctuations. Another example
is that someone has to pay a bill in a foreign currency in the future, so again
he can buy an option with the currency as asset. A second way to use options
is for speculating, instead of speculating in stock titles itself. This can be more
interesting, because the profit margin can be much higher, but one has to consider
that the risk is also higher, then one can easily loose 100% of the investment.
This will be easily seen after reading section 2.1. When traders are only interested
in the profit, often the asset is not exchanged and only the according difference
between market price and strike price is paid out[5].

Knowing the motivation for buying options, it rises the questions why and who
sells them. Firstly every owner of an option can resell it, when he thinks he can
make a profit out of it. But secondly there are the option writers, who have to
deliver or buy the asset on the expiry date, when the option is exercised. They have
similar motivations like the speculators, they bet on rising or sinking prices. Their
hope is that the option is not exercised and then they have the money for which
they have sold the option as profit. Now we have seen, there are buyer and seller
of options. Where those two fraction meet there is a market and a price is built
for the good, in this case the option. Now the question is what is a good and fair
price for it, and for this Black and Scholes have made a mathematical construct
to quantify it: the famous Black-Scholes equation[1]. The price calculated from it
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often reflects the market equilibrium. But it can also be used, where no equilibrium
happens due to lag of participants[5].

The purpose of this work is to have a standalone solver for the Black-Scholes
equation, which will be presented and tested. This work is structured in the fol-
lowing way: in chapter 2 a short introduction to the Black-Scholes equation will be
given, then in chapter 3 how it can be discretized and solved numerically. After-
ward in chapter 4 the implementation in Diffpack and the graphical user interface
will be presented. In chapter 5 various results and performance measurements will
be shown. Finally in chapter 6 the whole work will be concluded.
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2 Black-Scholes equation

In the previous chapter was already mentioned, that Black and Scholes found a
equation to compute a good and fair price for an option. Before this is shown,
first some variables and assumptions have to be introduced.

Only European options are considered, they give the right to buy or sell an
asset, after the time of expiry T , to a strike price K. The value of this options is
denoted with V and depends on time t and the price of the underlying asset S.
The asset is most often a stock title, so in this work S will also be called stock
price. When the asset is bought at the time of expiry, the option is called call
option. If the asset is sold, then the option is called put option.

To derive the equation certain assumptions have to be made. Although the
derivation will not be given here, it is important to know the assumption for not
misusing the result of the Black-Scholes equation.

The first assumption is very practical, all variables have to be continuous in time
and the assets have to be tradable in fractions. This means amongst others, that
one cannot model stock crashes.

The next assumption is, if the underlying asset is a stock title, it is not allowed
to pay dividend. Another assumption concerning the underlying asset is that it
behaves like a geometric Brownian motion with a constant drift and volatility.
Furthermore the market has to be frictionless, which means that financial trans-
action have no costs, there are no taxes on the profits. The market has also to
be free of arbitrage, thus no-one can make profit from a transaction without risk.
It is also assumed, that it is possible to invest money and get a certain constant
interest rate r0.

When these assumption are fulfilled, on can show, that the option price obeys
the Black-Scholes equation

∂V

∂t
= r0V − r0S

∂V

∂S
− 1

2
(σS)2∂

2V

∂S2
, (2.1)

the derivation can be read in the book of Hull[5].
Here σ, which has to be greater than zero, denotes the volatility, which is a

measure for the strength of fluctuations of the the underlying asset. It is the
only value, which cannot directly determined in practice, normally it has to be
estimated from historical data.
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2.1 Initial- and boundary conditions

To solve the partial differential equation (2.1), one needs also initial- and boundary
conditions. The value of the option at time T can be easily calculated, making
following consideration.

For a call option: if the stock price is higher then the strike price, one exercises
the option, buys therefor the stock for the price K and immediately sells it on the
market for the price of S. The profit is then S − K. If the stock price is lower
than the strike price, one does not exercise the option and makes no profit. In the
sense of arbitrage one is not allowed to make risk less profit, therefore the value of
the option is equal to its profit. Thus, the option value can be written as,

V (S, T ) = max(S −K, 0) . (2.2)

The same consideration applies for put options, which leads to

V (S, T ) = max(K − S, 0) . (2.3)

This can be used as initial conditions at t = T . Because one is interested in
the option value at t = 0 one has to calculate backwards in time from this initial
condition.

One should use the boundaries at Smin = 0 and Smax = ∞, but for computa-
tions this is not possible, so one has to settle for Smax big enough, such that the
boundary conditions have only a small influence in the area of the strike price
and the expected area of possible stock prices. At the boundaries following linear
conditions are used,

∂V

∂t
= r0V − r0S

∂V

∂S
, (2.4)

assuming that the second derivative of the option price is zero at the boundary.
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3 Discretization

In this chapter the discretization of the Black-Scholes formula is given. In the
first part the discretization in time is considered and in the following two parts the
spatial discretization is explained for finite difference and finite element method.

3.1 Time-stepping

Starting from the Black-Scholes formula (2.1):

∂V

∂t
= r0V − r0S

∂V

∂S
− 1

2
(σS)2∂

2V

∂S2︸ ︷︷ ︸
:=f(V (S,t),S)

,

implicit and explicit Euler [3] is used, which gives following two equations:

V (S, tn−1)− V (S, tn)

∆t
= −f(V (S, tn−1), S) and (3.1)

V (S, tn−1)− V (S, tn)

∆t
= −f(V (S, tn), S) . (3.2)

From now on V n = V (S, tn) is used, with the definition of tn = n∆t, where n
goes from 0 to nmax = T

∆t
.

Note that the calculation is done, like already mentioned backwards, in time.
That is why a minus sign comes into play on the right hand side, moreover the
option price at tn−1 depends on the option price of tn.

Equation (3.1) is multiplied with θ and equation (3.2) with (1− θ), where θ has
to be between zero and one. Adding these two equations, gives rise to

V n−1 − V n

∆t
= −θf(V n−1, S)− (1− θ)f(V n, S) (3.3)

Note that in this work for all computations θ = 1
2

is used, which corresponds to
Crank-Nicolson time-stepping[4].
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3.2 Finite difference method

For discretizing equation (3.3) also in space, finite differences are used. Namely
second order central differences for the second derivative of V and first order
forward finite differences for the first derivative. For the right hand side function
f(V, S) one gets

f(V n
i , Si) = r0V

n
i − r0Si

V n
i − V n

i+1

∆S
− 1

2
(σS)2V

n
i−1 − 2V n

i + V n
i+1

∆S2
, (3.4)

where V n
i is equal to V (Si, t

n), the stock price coordinate is equidistant discretized
with ∆S, such that Si = Smin+ i∆S. The index i goes from zero to I = Smax−Smin

∆S
.

Combining equation (3.3) and (3.4) gives,

V n−1
i − V n

i

∆t
= +

1

2

(σSi)
2

∆S2

(
θV n−1

i−1 + (1− θ)V n
i−1

)
−
(

(σSi)
2

∆S2
− r0Si

∆S
+ r0

) (
θV n−1

i + (1− θ)V n
i

)
+

(
1

2

(σSi)
2

∆S2
− r0Si

∆S

) (
θV n−1

i+1 + (1− θ)V n
i+1

)
. (3.5)

For the boundary conditions (2.4) the same approach leads to

V n−1
0 − V n

0

∆t
=−

(
r0Smin

∆S
+ r0

) (
θV n−1

0 + (1− θ)V n
0

)
+
r0Smin

∆S

(
θV n−1

1 + (1− θ)V n
1

)
, (3.6)

at S0 = Smin, and for SI = Smax one gets

V n−1
I − V n

I

∆t
=

(
r0Smax

∆S
− r0

) (
θV n−1

I + (1− θ)V n
I

)
− r0Smax

∆S

(
θV n−1

I−1 + (1− θ)V n
I−1

)
. (3.7)
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3.3 Finite element method

For the weak formulation, equation (3.3) is multiplied with the test function U(S)
and integrated over the domain Ω = [Smin, Smax]. This gives∫

Ω

(V n−1 − V n)UdS = −∆t

∫
Ω

(
θf(V n−1, S) + (1− θ)f(V n, S)

)
UdS (3.8)

Note, that the test function is zero on the boundaries, the boundary conditions
will be discussed separately in the end of this section.

For computing
∫

Ω
f(V, S)UdS, first the function f(V, S) is manipulated. Namely

the product rule is used for the second derivative term, which gives an additional
term:

f(V, S) = r0V − r0S
∂V

∂S
− ∂

∂S

(
1

2
(σS)2∂V

∂S

)
+

∂

∂S

(
1

2
(σS)2

)
∂V

∂S

= r0V −
(
r0S − σ2S

) ∂V
∂S
− ∂

∂S

(
1

2
(σS)2∂V

∂S

)
. (3.9)

Now equation (3.9) is multiplied with the test function and integrated over the
domain,

∫
Ω

f(V, S)UdS =

∫
Ω

r0V UdS−
∫

Ω

(
r0 − σ2

)
S
∂V

∂S
UdS−

∫
Ω

∂

∂S

(
1

2
(σS)2∂V

∂S

)
UdS .

(3.10)

For the last term of the previous equation(3.10), integration by parts is used:∫
Ω

f(V, S)UdS =

∫
Ω

r0V UdS −
∫

Ω

(
r0 − σ2

)
S
∂V

∂S
UdS

− 1

2
(σS)2∂V

∂S
U

∣∣∣∣
∂Ω︸ ︷︷ ︸

=0

+

∫
Ω

1

2
(σS)2∂V

∂S

∂U

∂S
dS . (3.11)

Now basis function Ni(S) will be used, which will not be specified here, because
they can be easily changed in the Diffpack implementation, but note that for the
computation in this work first order continuous finite elements on a equidistant grid
are used. The function of option value is approximated by V n(S) =

∑
i v

n
i Ni(S)

and test functions Nj for all j are used.
So equation (3.8) becomes:
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∫
Ω

(∑
i

vn−1
i Ni −

∑
i

vni Ni

)
NjdS =

−∆t

∫
Ω

(
θf(
∑
i

vn−1
i Ni, S) + (1− θ)f(

∑
i

vni Ni, S)

)
NjdS . (3.12)

Ordering the unknown terms to the left and the known terms to the right leads
to,

∫
Ω

(
∑
i

vn−1
i NiNjdS + ∆tθ

∫
Ω

f(
∑
i

vn−1
i Ni, S)NjdS =

∫
Ω

∑
i

vni NiNjdS + ∆t(1− θ)
∫

Ω

(
f(
∑
i

vni Ni, S)

)
NjdS . (3.13)

Using the discrete function space on equation (3.11), one gets

∫
Ω

f(
∑
i

vni Ni, S)NjdS =

∫
Ω

r0

∑
i

vni NiNjdS−
∫

Ω

(
r0 − σ2

)
S
∂

∂S
(
∑
i

vni Ni)NjdS

+

∫
Ω

1

2
(σS)2 ∂

∂S
(
∑
i

vni Ni)
∂Nj

∂S
dS . (3.14)

Because all terms are linear, one gets from equation (3.13) and (3.14) a linear
equation system:

Avn−1 = b(vn) , (3.15)

where b is depending on the previous time step. The system matrix A is given
by

Aij =

∫
Ω

NiNjdS + ∆tθ

[
r0

∫
Ω

NiNjdS −
(
r0 − σ2

) ∫
Ω

S
∂Ni

∂S
NjdS

+

∫
Ω

1

2
(σS)2∂Ni

∂S

∂Nj

∂S
dS

]
. (3.16)

And the right hand side is

bj =
∑
i

vni

∫
Ω

NiNjdS −∆t(1− θ)
[
r0

∑
i

vni

∫
Ω

NiNjdS

−
(
r0 − σ2

)∑
i

vni

∫
Ω

S
∂Ni

∂S
NjdS +

∑
i

vni

∫
Ω

1

2
(σS)2∂Ni

∂S

∂Nj

∂S
dS

]
. (3.17)
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Note, that in the implementation Gauss quadrature[6] is used for evaluating the
integrals.

The boundary conditions(2.4) are not treated in the weak formulation, so addi-
tional equations for the boundary nodes are needed. Instead the equation (2.4)
are treated with finite differences, which leads to following entry in the system
matrix,

Aii = Ni

∣∣∣∣
Smin /max

+ θ∆t

[
r0Ni

∣∣∣∣
Smin /max

− r0Smin /max
∂Ni

∂S

∣∣∣∣
Smin /max

]
. (3.18)

The according entry in the right hand side vector, is

b(i) = vni Ni

∣∣∣∣
Smin /max

−(1−θ)∆t

[
r0v

n
i Ni

∣∣∣∣
Smin /max

− r0Smin /max

∂
∑

j v
n
jNj

∂S

∣∣∣∣
Smin /max

]
.

(3.19)
These expressions are only valid when Ni is a boundary node.

11



4 Implementation

In this chapter, the implementation of the discretization introduced in the previous
chapter, will be shown. In the first part the numerical solvers are shown in the
later part the graphical user interface is presented.

4.1 Solvers

In Diffpack to set up a simulation, the MenuSystem is used. It handles classes
of type SimCase, and is therefor a flexible interface between console, input file or
GUI class and the actual solver.

The self programmed solver has to implement the interface SimCase 4.1. The
MenuSystem has two functions, which one has to use: init() and multipleLoop().
The top level code for a simulation could look like this:

menu.init ("", "");

SimCase *p; p = new Solver ***();

menu.multipleLoop (*p);

Note in this text Solver*** is used, when a code fragment is or can be used by
SolverFDM or SolverFEM.

The init() method sets up the MenuSystem and gives it a title. The function
mutlipleLoop() does the main work, namely it calls adm() and solveProblem()

on its SimCase, so they have to be implemented in the self written solver class.
Furthermore the mutlipleLoop() makes it possible to run the solver for various
input parameter and there combination, which is very pleasant for example for
convergence studies, because one has to handle only one input file and run the code
only once. In case of this work adm() is the same for SolverFDM and SolverFEM.

void Solver ***:: adm(MenuSystem& menu) {

attach(menu);

define(menu);

scan();
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SimCase

adm()

attach(MenuSystem*)

solveProblem()

...

FDM

...

FEM

...

SolverFDM

adm()

define()

scan()

solveProblem()

timeloop()

solveAtThisTimeStep()

...

TimePrm tip;

FieldLattice u,u prev;

...

SolverFEM

adm()

define()

scan()

solveProblem()

timeloop()

solveAtThisTimeStep()

...

TimePrm tip;

FieldFE u,u prev;

...

MenuSystem

init()

multipleLoop(SimCase*)

...

Figure 4.1: Class diagram of Solver classes: the blue classes are implemented for solv-
ing the Black-Scholes equation (2.1); the gray ones are provided by Diff-
pack. The dashed lines corresponds to has-a relation and the continuous
line show inheritance relations.
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}

attach() links the SimCase with the MenuSystem, whereas define(), creates
different entries in the MenuSystem with their names and default values.
scan() gets the simulation parameter from the MenuSystem, according to the

defined values in the defined() function, and initials the data members accord-
ingly.

The solveProblem() routine is called afterward, it is separately implemented in
the SolverFDM and SolverFEM, although it is almost the same. It can be excerpt
as:

void Solver ***:: solveProblem () {

// ...

timeLoop ();

// ...

}

Also the timeloop() function is more or less the same for both classes, and can
be summarized as:

void Solver ***:: timeloop () {

// ...

tip ->initTimeLoop ();

// ...

while( !tip ->finished () ) {

// ...

tip ->increaseTime ();

solveAtThisTimeStep ();

*u_prev = *u;

// ...

}

// ...

}

The crucial differences in the two solver classes is in the implementation of
SolveAtThisTimeStep(), which will discussed separately in the next 2 subsections.
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4.1.1 Finite difference solver

SolverFDM

adm()

define()

scan()

solveProblem()

timeloop()

solveAtThisTimeStep()

...

GridLattice grid

FieldLattice u,u prev

MatTri(dpreal) A

ArrayGen(dpreal) b

...

FDM

Figure 4.2: Class Diagram of SolverFDM, the gray functions, were already discussed
in the previous section.

For better understanding it is worthwhile to have a look at the underling used
data members: GridLattice is used, and gives access to the underlying asset
variable, it is initialized in the scan() function. For the field, which one wants to
compute the according FieldLattice is used. For the tridiagonal system matrix
with the according right hand side vector MatTri and ArrayGen are used, they are
initialized at every time-step in the solveAtThisTimeStep() routine, according
to the equations (3.5), (3.6) and (3.7):

void SolverFDM :: solveAtThisTimeStep () {

// ...

A(1,0) = 1 + ∆tθ
(
r0 + roSi

∆S

)
;

A(1,1) = −∆tθ
(
r0Si
∆S

)
;

b(1) = u_prev ->values ()(1) *
(
1− ∆t(1− θ)

(
r0 + r0Si

∆S

))
- u_prev ->values ()(2) * ∆t(1− θ)

(
−r0Si

∆S

)
;

for(i = 2; i <= n-1; i++) {

A(i,-1) = - ∆tθ 1
2

(
σSi
∆S

)2
;
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A(i,0) = 1 + ∆tθ
((

σSi
∆S

)2
+ r0 + roS1

∆S

)
;

A(i,1) = −∆tθ
(
1
2

(
σSi
∆S

)2
+ r0S1

∆S

)
;

b(i) = - u_prev ->values ()(i-1) * ∆t(1− θ)
(
−1

2

(
σSi
∆S

)2)
+ u_prev ->values ()(i) *(

1− ∆t(1− θ)
((

σSi
∆S

)2
+ r0 + r0Si

∆S

))
- u_prev ->values ()(i+1) * ∆t(1−θ)

(
−1

2

(
σSi
∆S

)2 − r0Si
∆S

)
;

}

A(n,-1) = ∆tθ
(
r0Sn
∆S

)
;

A(n,0) = 1 + ∆tθ
(
r0 − r0Sn

∆S

)
;

b(n) = - u_prev ->values ()(n-1) *∆t(1− θ)
(
r0Sn
∆S

)
+ u_prev ->values ()(n) *

(
1− ∆t(1− θ)

(
r0 − r0Sn

∆S

))
;

// ...

A.factLU ();

A.forwBack(b, u->values ());

}

Afterwards the matrix A is factorized in its LU-decomposition, which is used to
solve the linear system of equation by forward backward substitution, thereby the
solution is also transferred to the lattice field u. Note that a tridiagonal matrix
MatTri is used, because in section 3.2, it has been seen that discretization leads to
a tridiagonal matrix. This matrix implementation is is very efficient in storage and
solving. The first index denotes the row, and the second index has to be between
minus one and one, denoting the sub- and main diagonals.
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4.1.2 Finite element solver

SolverFEM

adm()

define()

scan()

solveProblem()

timeloop()

solveAtThisTimeStep()

integrands(...)

constraintModification(...)

...

FieldFE u,u prev

GridFE grid

DegFreeFE dof

LinEqAdmFE lineq

...

FEM

Figure 4.3: Class Diagram for SolverFEM, the gray functions were already discussed
in the previous section.

The SolverFEM class uses a lot of routines, which are implemented in the base
class FEM, therefore it is worthwhile to have a look in the book of Langtangen [6],
and see also their implementation. Here only a rough overview will be given.

void SolverFEM :: solveAtThisTimeStep () {

// ...

makeSystem (*dof ,* lineq);

// ...

constraintModification(VecLinEqConstr , lineq ->b(),

essential_dof , lineq ->A());

lineq ->solve(); // solve linear system

dof ->vec2field(linsol , *u); // load linsol into the

field u

}

17



The first step in the solveAtThisTimeStep() is assembling of the system matrix
and its right hand side vector. It is done in the function makeSystem(), which is
inherit by the base class FEM. It contains the loop over the elements, for computing
the system matrix. For this a object DegFreeFE is used, which has access to
the GridFE and FieldFE and so maps the finite elements to the entries of the
linear system of equations and vice versa. It uses the calcElmMatVec() routine,
which calculates the element matrix and vector by numerical integration. For
the numerical integration a loop over the integration points are done. For every
integration point the function integrands() is called. This one is overwritten in
the SolverFEM class, for simplicity and illustration purpose only one dimension is
shown:

void SolverFEM :: integrands(ElmMatVec& elmat , const

FiniteElement& fe) {

dpreal detJxW = fe.detJxW ();

const int nbf = fe.getNoBasisFunc ();

Ptv(dpreal) gradup_pt;

dpreal up_pt;

dpreal S;

ElmItgRules rules1 (GAUSS_POINTS , -1);

fe.getGlobalEvalPt(S);

// u and grad(u) at the previous time level at the

current itg.pt:

up_pt = u_prev ->valueFEM (fe);

u_prev ->derivativeFEM (gradup_pt , fe);

for(i = 1; i <= nbf; i++) {

for(j = 1; j <= nbf; j++) {

elmat.A(i,j) = fe.N(i) ∗ fe.N(j) ∗ detJxW;
elmat.A(i,j) += ∆tθ ∗ 1

2
σ2S ∗ fe.dN(i) ∗ fe.dN(j) ∗ detJxW;

elmat.A(i,j) += -∆tθ∗(r0∗S−σ2S)∗fe.N(i)∗fe.dN(j)∗detJxW ;

elmat.A(i,j) += ∆tθ ∗ r0 ∗ fe.N(i) ∗ fe.N(j) ∗ detJxW;
}

elmat.b(i) = up pt ∗ fe.N() ∗ detJxW;
elmat.b(i) += -∆t(1− θ) ∗ r0 ∗ up pt ∗ fe.N(i) ∗ detJxW;
elmat.b(i) += ∆t(1−θ)∗ (r0 ∗S−σ2S)∗gradup pt∗fe.N()∗detJxW;
elmat.b(i) += -∆t(1− θ) ∗ 1

2
σ2S ∗ gradup pt ∗ fe.dN(i) ∗ detJxW;

}
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}

The functions integrands4side() and fillEssBC() are empty implemented
to not interfere with the boundary conditions (3.18), (3.19). For the boundary
condition the function constraintModification() is called after the assembling
procedure, which erases the entries of the equation for the boundary nodes and
inserts the values according to (3.18) and (3.19) instead.

Afterwards the linear equation is solved by Gauss elimination and the solution
is transferred by the dof object back to the field u.

Note that for all computation linear finite elements in one dimension are used
(ElmB2n1D).
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4.2 Graphical user interface

SolveGUI

comp();

...

QPushButton solve;

QDoubleSpinBox ...;

QVTKWidget vtkWidget;

...

QMainWindow

MenuSystem

SolverFEMGUISolverFDMGUI

SolvePAR

Figure 4.4: Class Diagram for SolveGUI. Here the gray class is implemented by QT
or Diffpack. For clearness the has relation between SolverFEMGUI and
SolveGUI is not drawn, then it is the same as for SolverFDMGUI.

The graphical user interface(abbr. GUI), which can be seen in figure 4.5, is
implemented in Qt. The main purpose of it is to calculate the solution of the
Black-Scholes equation for European options, therefore one has an interface, where
one can change all necessary parameters(q.v. chapter 2), choose between the finite
element and finite difference method.

The main class is SolveGUI(cf. figure 4.4), here all Qt objects are initialized
and controlled, for example the QDoubleSpinBox, QPushButton, QVTKWidget and
many more.

When the button solve is pressed the function comp() is called. There a local
MenuSystem is initialized which then uses SolverFDMGUI or SolverFEMGUI for
computing the solution of the Black-Scholes equation. The Solver***GUI classes
are derived from Solver*** and add responsibility for plotting their result in the
vtkWidget, because they know best, how to plot their underlying data.

Further more the user has the opportunity to save and load the parameters
shown in the GUI. For this the serializable class SolvePAR is used. After this one
has the opportunity to save the plot to a JPEG file.
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Figure 4.5: This is the graphical user interface.
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5 Results

In this chapter, some examples solutions are presented and then the performance
of the solvers is examined in terms of convergence and computation time.

5.1 Examples

The parameters used for these example cases are extracted from the book of
Günther[2]. The two different implementations FDM and FEM lead to the same
results. For all the following examples the expiration date of the option is given by
T = 1 and for the time discretization ∆t = 0.01 is used. The spatial discretization
parameter ∆S = 1 and h = 1 are used. Due to clearness, the option price V is
shown only at t = 0 and t = T as a function of the underlying stock price S.
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Figure 5.1: Put-option price at t = 0 and t = T computed with FDM and FEM, using
K = 6, r0 = 0.04 and σ = 0.3.
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Figure 5.2: Put-option price for with K = 100, r0 = 0.04, σ = 0.3.
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Figure 5.3: Call-option price considering K = 100, r0 = 0.04 and σ = 0.3.

23



0 50 100 150 200
Stock Price

0

20

40

60

80

100
O

p
ti

on
P

ri
ce

FDM, t = 0

FEM, t = 0

FDM, t = T

FEM, t = T

Figure 5.4: Put-option price for K = 100, r0 = 0.1 and σ = 0.4. The result agrees
nicely with the solution from the book[2]
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Figure 5.5: Call-option price computed with K = 100, r0 = 0.1 and σ = 0.4. Also this
result agrees with the solution from the book[2].
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5.2 Convergence

Now the performance of the two different solvers will be compared. For this the
convergence is examined. The analytical solution for equation (2.1) with the initial
conditions (2.2) considering a call option is given in the book of Hull[5]:

V (S, 0) = SΦ(d1)−K exp(−rT )Φ(d2) , (5.1)

where Φ is the cumulative probability distribution function for a standardized
normal distribution, and

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
T

σ
√
T

, (5.2)

d2 =
ln
(
S
K

)
+
(
r − σ2

2

)
T

σ
√
T

. (5.3)

This solution is used to calculate the error e(S) = V 0(S)−V (S, 0). To measure
the error, the L∞-, L2-norm and the H1-semi-norm[4] are used. As test case, the
same parameters are considered as in the previous section for figure 5.5.

The L∞-norm is defined as

||e||L∞ := sup
S∈Ω
||e(S)|| . (5.4)

The result for this error norm for various grid sizes h can be seen in figure 5.6.
Algebraic convergence is archived with a measured order of 1.015 for FDM and for
FEM it is 1.023.

Following definition is used for the L2-norm,

||e||L2 :=

(∫
Ω

||e(S)||2dS

) 1
2

. (5.5)

For evaluating this integral, an adaptive Gauss quadrature rule is used. The result
can be observed in figure 5.7. Here the orders are 0.989 for FDM and for FEM, it
is 0.999.

The H1-semi-norm is given by:

||e||H1 :=

(∫
Ω

∣∣∣∣de(S)

dS

∣∣∣∣2 dS

) 1
2

. (5.6)

For evaluating this norm the analytical derivative of the solution (5.1) is used,
and for integration Simpson quadrature rule is used. Which leads to the result in
figure 5.8. The orders are 1.825 for FDM and 2.030 for FEM.

As overall observation one can conclude, that the error in general for FEM is
slightly higher but therefor the order is a little bit better, which can be especially
seen in the H1-semi-norm.
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Figure 5.6: Here the dots corresponds to the measured error norm, and the dotted line
corresponds to their fit. The measured order is 1.015 for FDM. For FEM,
it is 1.023.
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Figure 5.7: The measured order is 0.989 for FDM and for FEM, it is 0.999.
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Figure 5.8: Here the measured order is 1.825 for FDM. For FEM, it is 2.030.
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5.3 Timing

For further comparison of the two solvers, the computation times are compared.
The same test case is used as for the convergence, with various system sizes,
quantized by the number of degrees of freedom. For every amount of degrees of
freedom the computation is done several times and only the minimum time is
considered. The result of this can be see in figure 5.9.
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Figure 5.9: Here the computation time in seconds can be seen depending of the amount
of degrees of freedom.

Obviously the FDM is much faster than the FEM. This has mainly two reasons.
The first reason is that the assembly step in the FEM does a lot more work than
the FDM. Furthermore the FDM uses a tridiagonal matrix format, which suits
very good for this problem and has a very efficient implementation of solving the
system of equation.

In favor of FEM, one has to mention that its code is much more flexible and can
change the system solver to iterative solver at run-time. Also one has much more
flexibility by changing the order of finite element. The computation time grows
only linear nevertheless.

As general remark one can add, that the performance could be increased by
assembling the system matrix only once and not at every time step.
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6 Conclusion

In this work, we could mange to make a Diffpack solver to stand alone, having
a nice graphical interface. For this purpose SolverFEM and SolverFDM were
extended to get the same MenuSystem, which builds the interface for the GUI.

The GUI is endued with different features, for example the possibility to change
the parameters, choose between the two solver methods, save and load the param-
eters to files. Event the result is plotted in the GUI. The plot can also be save to
a JPEG file.

All this is done with the aid of Qt and Vtk libraries, that after being linked
correctly work very smoothly together with Diffpack.

Performance studies were made, leading to the result that the convergence
rates are almost the same for both solvers, but that the computation time for
SolverFDM is much smaller than for SolverFEM. So SolverFDM can be seen as
method of choice for these simple set ups. But if one is interested to extend the
solver for example to higher dimensional asset spaces, the SolverFEM has many
advantages.

As outlook in the future, one could also implement a progress bar, with the
possibility to abort a computation. Furthermore including three dimensional vi-
sualization could be considered. Moreover computation times and efficiency could
be improved. Also studies of SolverFEM doing p-refinement would be of interest.
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