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Abstract

It has been demonstrated that significant improvements in accuracy can be gained if

a properly chosen anisotropic mesh is used in the numerical solution of problems that

exhibit anisotropic features. However, it is also known that such anisotropic meshes

cause the system matrix to be ill-conditioned. So far, investigations have been confined

to affine meshes and bounds on the condition number have been established.

In this thesis, we derive a bound on the condition number for non-affine meshes. The

bound is solely based on mesh properties and its quality is investigated in numerical

experiments. Moreover, the effect of Diagonal- and Incomplete Cholesky precondition-

ers in combination with the Conjugate Gradient algorithm is experimentally studied.

Numerical results show that the Incomplete Cholesky preconditioner performs very well

on non-affine meshes.

Finally, an element-wise mesh quality measure is derived which can be used to compare

the quality of different elements in the same mesh.
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Introduction

1.1 Overview

The Finite Element Method (FEM) is a popular and widely used technique to solve

boundary value problems for partial differential equations numerically. The FEM re-

quires that the spatial domain, on which the partial differential equation is posed, is

subdivided into smaller, disjoint elements. In 3D, tetrahedra, prisms or hexahedra are

often used for this. In order to discretize complex domains, these elements must be

transformed in an affine or even non-affine way to approximate the domain well. This

transformation can be described by a mapping FK : K̂ → K which is defined on the

reference element K̂ and maps it to the transformed element K. For each element type

there is exactly one reference element. For hexahedral elements this is the unit-cube.

In engineering applications, these elements are often highly deformed to resolve the

underlying physics better. An example are boundary flows where the velocity varies

strongly in normal direction but not in tangential direction (w.r.t. the surface). When

simulating such flows using e.g. the Finite Volume Method the computational elements

are therefore often stretched along the boundary and very thin in the normal direction. If

the fluid solver is coupled to a FEM solver (e.g. for electromagnetic field computations),

these anisotropic or even non-affine elements can cause the linear system to be ill-

conditioned.

1.2 Motivation

A mesh element K that can be described by an affine mapping FK : K̂ → K is called

affine and a mesh element where all side-lengths are roughly the same is called isotropic.
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Introduction 2

In particular a mesh element is anisotropic if it has high aspect ratio. A mesh in which

all elements are affine/isotropic is called an affine/isotropic mesh. Moreover, a mesh is

uniform if all elements have comparable volumes. Finally, we call a mesh non-affine if

it contains non-affine elements

If all mappings FK are affine, one can give bounds on the condition number κ in terms

of mesh parameters (see e.g [1], [4]). In particular one can show that non-uniform or

anisotropic meshes are generally more ill-conditioned than comparable isotropic, uniform

meshes. However, as shown in Kamenski et al. [4], a diagonal preconditioner can

reduce the effects of the anisotropy/non-uniformity of the mesh on the condition number

κ. In practice, it has been observed, that Incomplete Cholesky/Incomplete LU (ILU)

preconditioners also perform very well on anisotropic meshes (see [3]).

To the authors knowledge, the effect of non-affine meshes on the condition number has

not been extensively studied yet and it is not known if diagonal preconditioners or ILU

offer a remedy for the bad condition number. It’s also not known whether estimates

similar to those provided in [1] or [4] still apply.

1.3 Scope of this work

The goal of this work is to study the effect of non-affine meshes on the condition number.

We are going to experimentally investigate whether the already mentioned precondition-

ers (Diagonal, ILU) still remedy the high condition number of ill-conditioned systems.

In the theoretical part, the existing bounds for affine meshes are generalized to non-affine

meshes. This extension provides an a priori mesh quality measure, which can be used

during the mesh generation process to locate problematic mesh elements.

In a later chapter, the results of numerical experiments are presented. We conduct

numerical experiments to compare our bound for the condition number with the actual

condition number and we study the effect of different preconditioners.

1.4 Structure of the thesis

The remainder of this thesis is structured as follows:

• Chapter 2 gives a short summary of existing bounds for affine meshes. After-

wards, our more general bound is derived.
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• Chapter 3 provides some details about the implementation.

• Chapter 4 presents numerical experiments performed on different meshes.

• Chapter 5 shows a real-world application.

• Chapter 6 presents the conclusion of this thesis.



General theory

2.1 Boundary Value Problem

We consider the following elliptic boundary value problem posed on a three-dimensional,

bounded, connected domain Ω ⊂ R3.

Problem description.

−∆u = f in Ω,

u = g on ΓD, (2.1)

n · gradu = 0 on ΓN .

Here, u is a scalar valued function and ΓD and ΓN are separate parts of the domain

boundary with ΓD∪ΓN = ∂Ω and the function g specifies the Dirichlet data. We assume

that ΓN 6= ∂Ω.

Variational formulation.

The variational formulation for the above boundary value problem is

Find u ∈ H1(Ω), u|ΓD
= g s.t. a(u, v) = l(v) ∀v ∈ V0, (2.2)

where V0 := {v ∈ H1(Ω) | v|ΓD
≡ 0},

a(u, v) =

∫
Ω

gradu · grad v dx, l(v) =

∫
Ω
fv dx.

The discretization is based on a fully hybrid mesh which involves first order tetrahedra,

hexahedra, prism as well as pyramids. Let T h be such a triangulation of the domain Ω

4



General theory 5

and let FK : K̂ → K be the mapping from the reference element to a particular trans-

formed element K ∈ T h. We construct the standard finite element space V h
0 ⊂ V0 using

first order Lagrangian shape functions and denote the number of elements and interior

vertices by N and Nvi , respectively. We assume that the vertices are ordered such that

the first Nvi vertices do not lie in ΓD. Choosing a basis V h
0 = span{φ1, . . . , φNvi

}, we

can write any uh ∈ V h as a linear combination uh =
∑Nvi

j=1 ujφj + ũh where φj is the

basis function associated with the jth vertex and ũh ∈ V h is such that ũh|ΓD
= g. By

plugging this expansion into (2.2) we get the equation in matrix form and the definition

of the stiffness matrix,

Au = ϕ with

Aij =
∫

Ω gradφi · gradφj dx,

ϕi =
∫

Ω fφi dx−
∫

Ω grad ũh · gradφi dx.

Hereafter, we will use the shorthand notation

∑
j

=

Nvi∑
j=1

.

2.2 Affine meshes

Bounds for the condition number of the stiffness matrix A have been developed by

Kamenski et al. [4] for arbitrary, non-uniform but affine meshes. They improved existing

bounds significantly and presented stronger bounds for both, the smallest and the largest

eigenvalue of the mass matrix, as well as the stiffness matrix. Note that the bounds in

this form are only valid for linear finite elements and meshes containing only tetrahedra.

2.2.1 Bound on the largest eigenvalue of the stiffness matrix

Lemma 2.1 (Lemma 4.1 [4], Largest eigenvalue). The largest eigenvalue of the stiffness

matrix A = (Aij) of the BVP (2.1) is bounded by

λmax(A) ≤ (d+ 1)Cφ̂ max
j

∑
K∈ωj

|K|
∥∥∥J−1

K J−TK

∥∥∥
2
.

The factor (d + 1) equals the number of vertices of a d-dimensional simplex and the

constant Cφ̂ depends only on the basis functions defined on the reference element and

not the triangulation itself. In the following we will denote the Jacobian of FK on the



General theory 6

element K by JK . In the given case of an affine mapping FK , JK is constant on the

element K.

2.2.2 Bound on the smallest eigenvalue of the stiffness matrix

The bound for the smallest eigenvalue has a more complex form.

Lemma 2.2 (Lemma 5.1 [4], Smallest eigenvalue). The smallest eigenvalue of the stiff-

ness matrix A = (Aij) of the BVP (2.1) is bounded from below by

λmin ≥ CdminN−1


1, for d = 1,(

1 + ln |K̄|
|Kmin|

)−1
, for d = 2,(

1
N

∑
K∈Th

(
|K̄|
|K|

) d−2
2

)− 2
d

, for d ≥ 3.

In the three-dimensional case, the second factor already reveals the bad influence of the

non-uniformity on the smallest eigenvalue.

2.2.3 Bound on the condition number of the stiffness matrix

Combining the two lemmas above, one receives a bound on the condition number of the

stiffness matrix.

Theorem 2.3 (Theorem 5.2 [4], Condition number of the stiffness matrix). The con-

dition number of the stiffness matrix of the linear finite element approximation of the

BVP (2.1) is bounded by

κ(A) ≤ CN
2
d

N1− 2
d

dmin
max
j

∑
K∈ωj

|K|
∥∥∥J−1

K J−TK

∥∥∥
2



×


1 + ln |K̄|

|Kmin| , for d = 2,(
1
N

∑
K∈Th

(
|K̄|
|K|

) d−2
2

) 2
d

for d ≥ 3.

Remarks: This bound consists of three independent factors. The first factor N
2
d corre-

sponds to the condition number on a uniform mesh.
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The second factor
N1− 2

d

dmin
max
j

∑
K∈ωj

|K|
∥∥∥J−1

K J−TK

∥∥∥
2

can be understood as a volume-weighted equidistribution quality measure. It combines

the effect of the element size and the aspect ratio.

The third factor 
1 + ln |K̄|

|Kmin| , for d = 2,(
1
N

∑
K∈Th

(
|K̄|
|K|

) d−2
2

) 2
d

, for d ≥ 3.

reflects the influence of non-uniformity on the condition number.

We are now going to consider similar estimates for non-affine meshes. The derivation is

based on the approach of Kamenski et al.[4].

2.3 Non-affine meshes

2.3.1 Bound on the largest eigenvalue of the stiffness matrix

We will first derive a bound on the largest eigenvalue that depends on the diagonal

entries of the stiffness matrix. Afterwards, we will derive a bound on the diagonal

entries of the stiffness matrix to get a bound which depends only on mesh parameters.

The final bound is presented in Lemma 2.5.

Lemma 2.4 (Largest eigenvalue). Let T h be a possibly non-affine mesh in which all

elements are of the same type. Then the largest eigenvalue of the stiffness matrix A =

(Aij) of the BVP (2.1) in three dimensions is bounded by

max
i
Aii ≤ λmax ≤ nv max

i
Aii, (2.3)

where nv denotes the number of vertices per element.

Proof. For this proof we first recall, that for symmetric, positive-semidefinite matrices

we have the inequality1

1This follows directly from

0 ≤ (x− y)TM(x− y) = xTMx− 2xTMy + yTMy

⇒ 2xTMy ≤ xTMx+ yTMy.
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xTMy ≤ 1

2
(xTMx + yTMy), ∀x,y ∈ Rd. (2.4)

The idea of the proof is now to rearrange the sum of integrals over an element as a

sum over all vertices and an integral over the respective vertex patches. For this reason

we define the patch ωj as the support of the basis function φj associated with the jth

vertex.

uTAu =

∫
Ω

graduh · graduh dx

=
∑
K∈Th

∫
K

graduh · graduh dx

=
∑
K∈Th

∫
K

 nv∑
iK=1

uiKh gradφiK

 ·
 nv∑
jK=1

ujKh gradφjK

dx

=
∑
K∈Th

∫
K

nv∑
iK=1

nv∑
jK=1

uiKujKgradφiK · gradφjK dx

(2.4)

≤
∑
K∈Th

∫
K

nv∑
iK=1

nv∑
jK=1

1

2

(
u2
iK

gradφiK · gradφiK + u2
jK

gradφjK · gradφjK
)

dx

= nv
∑
K∈Th

∫
K

nv∑
iK=1

u2
iK

gradφiK · gradφiK dx

= nv
∑
K∈Th

∫
K

nv∑
iK=1

u2
iK
‖gradφiK‖

2
2 dx

= nv
∑
i

u2
i

∫
ωi

‖gradφi‖22 dx

= nv
∑
i

u2
iAii

≤ nv max
i
Aii ‖u‖22 .

Here nv denotes the number of vertices per element (e.g. 8 for a hexahedron). We

assumed to have a mesh containing only one element type. However, this bound would

also be valid for hybrid meshes by setting nv = max
K∈Th

n(K), where n(K) is the number

of vertices of element K.

Additionally we also get a lower bound for the largest eigenvalue by using the canonical

basis vectors ej:

λmax(A) ≥ ej
TAej = Ajj , j = 1, . . . , Nvi .
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The bound on the largest eigenvalue doesn’t involve the solution u directly but still

depends on the maximal diagonal entry of the stiffness matrix. In the next step, we are

going to derive a bound on the diagonal entries in terms of mesh properties.

Bound on the diagonal entries of the stiffness matrix

By a transformation back to the reference element and the substitution rule for integrals,

we get a bound on the diagonal entry of the stiffness matrix.

Aii =

∫
ωi

gradφi · gradφi dx

=
∑
K∈ωi

∫
K

gradφi · gradφi dx

=
∑
K∈ωi

∫
K̂

(
J−TK grad φ̂i

)
·
(
J−TK grad φ̂i

)
det JK dx̂

=
∑
K∈ωi

∫
K̂

grad φ̂i
T [J−1

K J−TK ] grad φ̂i det JK dx̂

=
∑
K∈ωi

∫
K̂

grad φ̂i
T [J−1

K J−TK ] grad φ̂i

grad φ̂Ti grad φ̂i
||grad φ̂i||

2

2 det JK dx̂

≤
∑
K∈ωi

∫
K̂

max
x∈Rd

xT J−1
K J−TK x

xTx
||grad φ̂i||

2

2 det JK dx̂

=
∑
K∈ωi

∫
K̂
||J−1

K J−TK ||2 · ||grad φ̂i||
2

2 det JK dx̂

≤ Cφ̂
∑
K∈ωi

∫
K̂
||J−1

K J−TK ||2 det JK dx̂

= Cφ̂

∫
ωi

||J−1
K J−TK ||2 dx.

Where Cφ̂ = max
iK=1,...,nv

max
x̂∈K̂
||grad φ̂iK (x̂)||22 corresponds to the norm of the largest basis

function gradient on this element.

Altogether we get a bound on the largest eigenvalue of the stiffness matrix depending

only on mesh properties.

Lemma 2.5 (Largest eigenvalue). Let T h be a possibly non-affine mesh in which all

elements are of the same type. Then the largest eigenvalue of the stiffness matrix A =

(Aij) of the BVP (2.1) in three dimensions is bounded by
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λmax ≤ nv Cφ̂ max
i

∫
ωi

||J−1
K J−TK ||2 dx. (2.5)

2.3.2 Bound on the smallest eigenvalue of the stiffness matrix

Lemma 2.6 (Smallest eigenvalue). Let T h be a possibly non-affine mesh in which all

elements are of the same type. Then the smallest eigenvalue of the stiffness matrix

A = (Aij) of the BVP (2.1) in three dimensions is bounded from below by

λmin ≥
CPCSCK̂pmin

1 + CP

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3

.

Here CP and CS only depend on the domain Ω while CK̂ depends only on the type of

shape functions being used and the reference element type (which is assumed to be the

same for all elements in the mesh). pmin is the smallest number of elements in a patch

ωj .

The proof of the lower bound on the smallest eigenvalue is a bit more involved than

the proof for the largest eigenvalue. We are going to use Sobolev’s [2, Theorem 7.10],

Poincaré’s and Hölder’s inequality.

Proof.

uTAu =

∫
Ω

graduh · graduh dx

= |uh|2H1(Ω)

P.I.
≥ CP

1 + CP
‖uh‖2H1(Ω)

S.I.
≥ CPCS

1 + CP
‖uh‖2L6(Ω)

=
CPCS
1 + CP

∑
K∈Th

‖uh‖6L6(K)

 1
3

=
CPCS
1 + CP

∑
K∈Th

α
3
2
K

− 2
3
∑
K∈Th

α
3
2
K

 2
3
∑
K∈Th

‖uh‖6L6(K)

 1
3
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H.I.
≥ CPCS

1 + CP

∑
K∈Th

α
3
2
K

− 2
3 ∑
K∈Th

αK ‖uh‖2L6(K)

=
CPCS
1 + CP

∑
K∈Th

α
3
2
K

− 2
3 ∑
K∈Th

αK

(∫
K̂
û6
h det JK dx̂

) 2
6

≥ CPCS
1 + CP

∑
K∈Th

α
3
2
K

− 2
3 ∑
K∈Th

αK ·
(

min
x̂∈K̂

det JK

) 1
3

‖ûh‖2L6(K̂)

≥
CPCSCK̂
1 + CP

∑
K∈Th

α
3
2
K

− 2
3 ∑
K∈Th

αK ·
(

min
x̂∈K̂

det JK

) 1
3

‖uK‖22 .

In the last step we used the equivalence of the ‖·‖6
L6(K̂)

and ‖·‖2 norm on the reference

element.

With the choice αK :=
[
minx̂∈K̂ det JK

]− 1
3 we get:

uTAu ≥
CPCSCK̂
1 + CP

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3 ∑
K∈Th

‖uK‖22 (2.6)

=
CPCSCK̂
1 + CP

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3 ∑

j

u2
j

∑
K∈ωj

1 (2.7)

≥
CPCSCK̂pmin

1 + CP

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3 ∑

j

u2
j . (2.8)

2.3.3 Bound on the condition number of the stiffness matrix

By combining the two lemmas above we get an upper bound on the condition number

of the stiffness matrix.

Theorem 2.7 (Condition number of the stiffness matrix). Let T h be a possibly non-

affine mesh in which all elements are of the same type. Then the condition number of
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the stiffness matrix A = (Aij) of the BVP (2.1) in three dimensions is bounded by

κ(A) ≤ C(Ω, V h
0 )

pmin

max
i

∫
ωi

||J−1
K J−TK ||2 dx

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3

,

where C(Ω, V h
0 ) =

nvCφ̂(1 + CP )

CPCSCK̂
.

It is not important to note that this estimate does not solely depend on the domain Ω

but also on the triangulation T h and the finite element space being used. The constants

CS and CP only depend on the domain Ω. CK̂ and Cφ̂ depend only on the type of shape

functions being used and the reference element type (which is assumed to be the same

for all elements in the mesh). Moreover, pmin is the smallest number of elements in a

patch ωj and therefore depends on the triangulation.



Implementation

The numerical experiments are implemented in C++ and are based on the HyDi frame-

work used by ABB Corporate research. HyDi is a finite element library standing for

Hybrid Discontinuous Finite Elements.

3.1 Condition number estimator

The implementation of the estimator for the condition number derived in Theorem 2.7

consists of two separate parts for the numerator and the denominator. The numerator

requires the evaluation of ∫
ωi

||J−1
K J−TK ||2 dx.

HyDi already provides the necessary functionality for numerical integration so that only

the two-norm of the matrix J−1
K J−TK is to be computed at each quadrature point. The

latter is achieved by a simple SVD decomposition.

The evaluation of the denominator∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3

is more involved due to the element-wise minimum. Finding the minimum of the de-

terminant inside the reference element turns out to be more complex; A simple minded

Quasi-Newton approach does not work very well and efficiently, so we decided to use

the third-party library CppNumericalSolvers1 which provides a solver for box-constraint

minimization problems. This library applies a variation of the Quasi-Newton algorithm

that is tuned for efficiency and accuracy.

1https://github.com/PatWie/CppNumericalSolvers

13
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3.2 Mesh quality measure

In this section we introduce an element-wise mesh quality measure that can be used to

identify ”bad” elements in the mesh. Our final result from Theorem 2.7 provides an

estimate for the condition number solely based on mesh properties. Unfortunately, this

estimate is not localized in the way that it directly provides an estimate for the quality

of an individual mesh element. However, we can further derive the following bound:

κ(A) ≤ C(Ω, V h
0 )

pmin

max
i

∫
ωi

||J−1
K J−TK ||2 dx

∑
K∈Th

[
min
x̂∈K̂

det JK

]− 1
2

− 2
3

≤ C(Ω, V h
0 )
pmax
pmin

max
K∈T h

∫
K
||J−1

K J−TK ||2 dx

N−
2
3 min
K∈T h

[
min
x̂∈K̂

det JK

] 1
3

.

Here, pmax denotes the largest number of elements in a patch ωj . If we now define the

element-wise mesh quality measure βK as

βK := max

{∫
K
||J−1

K J−TK ||2 dx ,

[
min
x̂∈K̂

det JK

]− 1
3

}
,

then the condition number can be bounded by

κ(A) ≤ C(Ω, V h
0 )
pmax
pmin

N2/3 max
K∈T h

β2
K . (?)

For this reason we think βK is a sensible choice as a mesh quality measure. It is directly

integrated into the HyDi framework and can e.g. be used for visualization purposes like

in section 5.1.

Remark: The mesh quality measure βK should only be used to compare elements of

the same mesh. Comparing elements between two different meshes based on βK is

meaningless because of the constants in (?).

3.3 Computation of condition number

For the numerical experiments in chapter 4, we also need to calculate the exact condition

number of the stiffness matrix in order to compare it to our estimate. Since the condition

number κ = λmax
λmin

, this task is reduced to finding the extremal eigenvalues of the stiffness

matrix. Since we are dealing with large, sparse matrices the power method is the natural

choice for computing the largest eigenvalue of the stiffness matrix A. Applied to A−1 the

power method yields the largest eigenvalue of A−1, i.e. the smallest eigenvalue of A. This
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variation is called inverse power method. However, the straightforward implementation

doesn’t work well because the smallest eigenvalues are not well separated from each

other. Therefore, we resort to using the more sophisticated implementation provided by

the third-party library Spectra2.

2https://github.com/yixuan/spectra

https://github.com/yixuan/spectra


Numerical experiments

In this chapter we are going to investigate how good the bounds which we developed

in the previous section behave in practice. For simplicity we look only at hexahedral

meshes.

Besides the quality of the bounds, we are also going to investigate the effect of different

preconditioners on the number of iterations needed by an iterative solver (Conjugate

Gradient) for meshes with varying degree of non-affinity and/or non-isotropy. In par-

ticular we consider the diagonal- and ILU preconditioners. For a stable and reliable

implementation of the ILU preconditioner, we switched to MATLAB. In MATLAB we

used the built-in ichol function for the incomplete Cholesky factorization.

Note that the constants in bound (2.7) depend on the domain Ω. Therefore we had to

deal with the difficulty of creating meshes of arbitrary non-affinity without changing the

actual domain.

4.1 Cube with a thin layer

In these experiments the unit cube was meshed with hexahedral elements, containing a

thin layer in one direction. By changing the thickness of that thin layer, we can study

the effect of high aspect ratios. The mesh is still affine since the elements are only

stretched/compressed in one direction. This allows us to verify the correctness of our

bound and the implementation by comparing it to the existing bounds for affine meshes.

The cube with the thin layer is depicted in Figure 4.1.

16
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O(N2/3) compressed elements. Side view.

Figure 4.1: Unit cube with a thin layer.

4.1.1 Varying the number of elements

In the first experiment, only the dependence on the number of elements is investigated.

We refined the mesh uniformly while keeping the aspect ratio of the elements in the thin

layer fixed at 25:25:1. The condition number and the CG iterations for different number

of elements N is presented in the following figure.
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104

(A)

(A) estimate

N 2/3

(a) Condition number for varying num-
ber of elements. The aspect ratio is

fixed at 25:25:1.
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None
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(b) Number of CG (Conjugate Gradi-
ent) iterations for different precondi-

tioners.

Figure 4.2: Results for different number of elements N for the mesh covering the unit
cube, containing a thin layer.

In Figure 4.2 a), one can see that our estimate is able to predict the dependence on

the number of elements N correctly for affine meshes. The dashed line corresponds to

an algebraic growth of N2/d, where d is the dimension (d = 3 in our case). This term

corresponds to the dominating factor in the condition estimate 2.3 that captures the

dependence on the number of elements.

In Figure 4.2 b), the number of CG iterations needed for convergence is plotted for dif-

ferent number of elements. The diagonal preconditioner performs poorly and is not able
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to significantly remedy the effect of the high condition number. The ILU preconditioner

can reduce the effect almost completely.

4.1.2 Varying the aspect ratio

In a second experiment, we analyze the dependence on the aspect ratio. The second

factor in estimate 2.3 already gives an idea, how the condition number behaves when the

aspect ratio of the elements is changed. We accomplished this by fixing the number of

elements in the mesh and changing the height of the thin layer. The resulting condition

number and the number of CG-iterations needed for different aspect ratios is shown in

the following two figures.
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(a) Exact and estimated condition
number for varying aspect ratio.
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(b) Number of CG iterations using dif-
ferent preconditioners.

Figure 4.3: Results for varying aspect ratios of the elements in the thin layer. The
number of elements is fixed at N = 313 = 29791.

As before, our estimate predicts the condition number for different aspect ratios very

well. For the number of iterations of the solver we get a similar result as before. Although

the diagonal preconditioner performs better than CG without a preconditioner, it is not

able to really reduce the number of iterations. On the contrary, the ILU preconditioner

is able to completely remedy the effect of elements with high aspect ratios.

These results underpin the incomplete Cholesky preconditioner as a valuable choice for

affine meshes.

4.2 Cylinder with rotated layers

In this numerical experiment, we look at the spatial discretization of a cylinder. As

in the previous experiment, the mesh contains only hexahedral elements. The mesh is
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generated by Gmsh. We first meshed the circular base area with quadrilaterals and later

extruded it to a cylinder consisting of several layers. In contrast to the cube with the

thin layer, the elements in this mesh are no longer affine. The mesh is depicted in Figure

4.4.

As in the previous section, we conduct three separate tests for the cylindrical mesh to

investigate different effects separately.

(a) Undeformed cylinder. (b) Cylinder with a total rotation of π3 .

Figure 4.4: Cylindrical mesh (left) consisting of five layers and the same mesh with
rotated layers (right).

4.2.1 Varying the number of elements

In a first step, we refined the unrotated mesh uniformly to investigate the dependence

on the number of elements.
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(b) Number of CG iterations using dif-
ferent preconditioners.

Figure 4.5: Results for cylindrical mesh with different number of elements, using
uniform refinement.
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The result for the condition number looks in principle the same. It seems like the non-

affinity of the elements itself doesn’t significantly change the dependence on the number

of elements when using uniform refinement. It still shows a growth of N2/3 as before for

the cube with the thin layer.

Similarly, the results for the number of CG iterations exhibit the same behavior as the

previous mesh. Only the ILU preconditioner is able to reduce the number of iterations

notably.

4.2.2 Varying the aspect ratio

For this mesh, as before, we also analyze the effect of elements with high aspect ratios.

In analogy to the cube with the thin layer, we change the height of one layer in the

cylindrical mesh.
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(b) Number of CG iterations using dif-
ferent preconditioners.

Figure 4.6: Result for varying aspect ratios of the elements in one layer. The number
of elements is fixed at N = 2590.

As before, the ILU preconditioner is able to completely remedy the high aspect ra-

tios of the elements. The diagonal preconditioner does not significantly improves the

convergence.

4.2.3 Varying the rotation angle

In this experiment we want to analyze the effect of extremely distorted, non-affine el-

ements. For this reason, we rotate each layer around the center point and look at the

dependence on the rotation angle between the bottom and the top layer. Figure 4.4

shows such a mesh for the angle π/3, i.e. the top and bottom layer have been rotated
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against each other by π/3 rad. The rotation angle for the layers in-between is linearly

interpolated.
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Figure 4.7: Results for cylindrical mesh with the layer rotated around the center axis.
N = 2590

In Figure 4.7 a) one can see that our estimate isn’t as good as before but qualitatively

it still shows the correct behavior. The reason for this is probably the bound for the

smallest eigenvalue, which involves the term min det JK (see section 2.6). For highly

non-affine elements, where the determinant varies a lot inside the element, this estimate

gets worse and worse.

In Figure 4.7 b) the number of CG-iterations for different rotation angles is plotted.

In this experiment, the diagonal preconditioner clearly outperforms CG without a pre-

conditioner. However, the ILU preconditioner is, even in the case of highly non-affine

elements, able to remedy this effect and keep the number of iterations more or less

constant.

Remark: Strictly speaking, the domain covered by the cylindrical mesh slightly changes

when rotating the layers and thus the constant in our bound does not remain the same.

Nevertheless, we assume that this effect is negligible for our experiment. A proper

analysis would be out of the scope of this thesis.



Industrial use

In this chapter we apply the mesh quality measure 3.2 to an industrial sample mesh

provided by ABB Corporate research. The mesh consists of three different materials

which model two conductors (white) surrounded by an insulator (blue) with a small gap

in-between filled with a plasma (red). On the right of the following figure the separated

conductors and the insulator without the surrounding plasma is depicted.

(a) Top view of the cylindrical mesh. (b) Two contacts, the conductor (gray)
and the insulator (blue).

Figure 5.1: Two views of the mesh. The materials are colored differently.

The mesh consists only of hexahedral elements. Moreover, all the elements except for

the conductor are symmetric around the center. The conductor itself consists of a finer

mesh similar to the cylindrical mesh presented in Figure 4.4. These elements are also

no longer affine (cf. Figure 5.2).
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5.1 Mesh quality measure β

To see our mesh quality measure in action, we apply it on the mesh from above. In

Figure 5.2 we visualize the result for the cross-section of the conductor which contains

the non-affine elements. Apparently, the stretched elements on the outside seem to be

less problematic then non-affine elements which are not stretched.

Figure 5.2: Close up of the conductor center (cf. Figure 5.1). Mesh quality measure
β (cf. 3.2) evaluated on the cross-section of the conductor.

5.2 Different preconditioners

For this mesh, we solve the Poisson’s equation for the electric potential. The electric

potential on one end of the conductor is set to u = 1 and u = 0 on the other. The

conductivity of the insulator is set to 0 and is excluded from the domain whereas the

conductivity of the surrounding plasma is set to 10−4.

Likewise, we solve the resulting linear system with different preconditioners and the con-

jugate gradient algorithm. The number of iterations for each preconditioner is depicted

in Figure 5.3.
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Figure 5.3: Conjugate gradient iterations for solving the Poisson’s equation on the
above mesh.

In this case, both preconditioners are able to significantly reduce the number of itera-

tions. The diagonal preconditioner reduces the number of iterations around factor 35.

Nevertheless, the ILU preconditioner performs once more even better than the diagonal

preconditioner and is able to reduce the number of iterations by the factor 140.



Conclusion

We have extended Theorem 2.3, which is due to Kamenski et al. and only holds for

affine, simplical meshes, to non-affine meshes in Theorem 2.7. This theorem gives an

upper bound on the condition number κ of the BVP 2.1 that depends only on mesh char-

acteristics and the domain Ω. We transformed this estimate to an element-wise measure

which helps to identify ”bad elements” during mesh creation. This mesh quality measure

was directly integrated into the HyDi FEM framework to guide the mesh development

process. Numerical experiments show that Theorem 2.7 is quite sharp for meshes which

are not highly non-affine. The bound still remains valid for highly non-affine meshes

like in subsection 4.2.3 but the predicted condition number can be too high. A tighter

bound on the smallest eigenvalue would improve the estimate in such cases.

The performance of different preconditioners in combination with the conjugate gradient

algorithm is also experimentally studied. Our results are consistent with the observations

already made in [3]: the ILU preconditioner performs exceptionally well for most of the

meshes. The ILU preconditioner is able to completely remedy the effect of anisotropic

meshes i.e. meshes with high aspect ratios. The diagonal preconditioner on the other

side does not show significant improvements. Only for the highly non-affine, cylindrical

mesh of section 4.2.3 it is able to reduce the number of CG iterations. This might qualify

the diagonal preconditioner as a good and computationally cheap choice for highly non-

affine meshes. Overall the ILU preconditioner outperforms the diagonal preconditioner

by far and seems to be the method of choice. This was once more confirmed in 5 where

the ILU preconditioner also yielded the best result.
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