
Term Project/Semesterarbeit
(Computational Science & Engineering)

Gian-Marco Baschera / Nicolas Hodler
Supervisor: Prof. Dr. R. Hiptmair (SAM, D-MATH)

Numerical Simulation of Harmonic Map Heat
Flow

1

Contents

1 Introduction 3

2 Governing equations 3

3 Discretization 4

3.1 Timestepping . 4

3.2 Mixed variational formulation . 4

3.3 Finite element Galerkin discretization . 5

3.4 Mesh . 6

3.5 Nonlinear system of equations . 7

3.6 Boundary conditions . 9

4 Solution of the discrete system 10

4.1 Linearization . 10

4.2 Newton Iteration . 10

5 Convergence 11

5.1 Initial condition and analytical solution . 11

5.2 The forcing term . 11

5.3 Error norms . 12

5.4 Simulation results . 13

6 Parallelization 16

6.1 SuperLU . 16

6.2 Domain decomposition . 17

6.2.1 Idea . 17

6.2.2 Implementation . 17

6.2.3 Splitting up the domain . 18

6.2.4 Performance results . 18

A Program code 20

A.1 MATLAB . 20

2

1 Introduction

In this term project we present a simulation of the temporal evolution of vector fields of
unit length governed by the harmonic map heat flow equation ∂m

∂t
= m×(∆m×m). In the

first part (sections 2-4), we show the discretization of the equation with a finite element
method which leads us to the sequential simulation code. We then study the convergence
of the discretization method (section 5), and finally, we show how the simulation can be
efficiently parallelized (section 6).

2 Governing equations

Harmonic map heat flow refers to the gradient flow of the Dirichlet functional for vector
fields of unit length. On a given computational domain Ω ⊂ R

2 and for a given period of
time]0, T [, T > 0, this results in the evolution equations for m = m(t,x) :]0, T [×Ω 7→ R

3:

∂m

∂t
= m × (∆m × m) in]0, T [×Ω ,

m(0) = m0 in Ω ,

∂m

∂n
= 0 on]0, T [×∂Ω .

(1)

The underlying energy is

E(m) = 1
2

∫

Ω

|∇m|2 dx , (2)

where ∇m designates the Jacobi matrix of m and |∇m| gives its Frobenius norm. Thanks
to the boundary condition on m, we find

dE(m)

dt
=

∫

Ω

∇m : ∇∂m

∂t
dx = −

∫

Ω

∆m · ∂m

∂t
dx

= −
∫

Ω

∆m · (m × (∆m × m)) dx = −
∫

Ω

|∆m × m|2 dx .

(3)

This reveals that harmonic map heat flow is a dissipative process with respect to the
energy from (2). Moreover,

d|m|2
dt

= 2m · ∂m

∂t
= 2m · (m × (∆m × m)) = 0 , (4)

which shows that |m(t,x)| = |m0(x)| for all (t,x) =]0, T [×Ω. If we fix |m0| = 1 almost
erverywhere in Ω, which is usually done, then |m| = 1 almost everywhere for all times.

In the sequel, let us assume that |m(t,x)| = 1 for all (t,x) =]0, T [×Ω (“saturation”).

3

3 Discretization

3.1 Timestepping

For the temporal discretization of (1) the method of Heun can be employed. We use an
equidistant grid in time and try to compute m(t) for instances tn := nk, k = T/M. We
introduce the notations

mn ≈ m(tn) , δtm
n+1/2 ≈ mn+1 − mn

k
, mn+1/2 ≈ 1

2
(mn+1 + mn) .

Then the discrete evolution can be stated as

δtm
n+1/2 = mn+1/2 × (∆mn+1/2 × mn+1/2) , m0 = m0 in Ω . (5)

Multiplying (5) with mn+1/2 we find

|mn+1|2 − |mn|2 = 0 ⇒ |mn| = |m0| ∀n , (6)

which means that the conservation of modulus carries over to the semi-discrete problem
(5). Further,

E(mn+1) − E(mn) = 1
2

∫

Ω

(∇mn+1 + ∇mn) : (∇mn+1 −∇mn) dx

= −k

∫

Ω

∆mn+1/2 · δtm
n+1/2

= −k

∫

Ω

∆mn+1/2 ·
(

mn+1/2 × (∆mn+1/2 × mn+1/2)
)

dx

= −k

∫

Ω

|∆mn+1/2 × mn+1/2|2 dx .

(7)

3.2 Mixed variational formulation

Let us focus on the problem to be solved in each timestep of (5): introducing new unknown
j := ∇mn+1/2 we end up with

δtm
n+1/2 = mn+1/2 × (div j

n+1/2 × mn+1/2) ,

jn = ∇mn .

These equations can be cast in weak form: seek mn+1 ∈ (L2(Ω))3 ∩ L∞(Ω)3 and jn+1 ∈
(H0(div; Ω))3 such that

(

δtm
n+1/2,v

)

0
=

(

div j
n+1/2 × mn+1/2,v × mn+1/2

)

0
∀v ∈ (L2(Ω))3 ,

(jn+1,q)0 = − (div q,mn+1)0 ∀q ∈ (H0(div; Ω))3 .
(8)

Here (·, ·)0 stands for the L2(Ω) inner product.

4

Now, let us consider an abstract spatial Galerkin discretization based on the finite-
dimensional spaces Qh ⊂ (L2(Ω))3, vh ∈ (H0(div; Ω))3: seek mn+1

h ∈ Qh, jn+1
h ∈ Vh

such that
(

δtm
n+1/2
h ,vh

)

0
=

(

div j
n+1/2 × m

n+1/2
h ,v × m

n+1/2
h

)

0
∀vh ∈ Qh ,

(

div qh,m
n+1
h

)

0
= −

(

jn+1
h ,qh

)

0
∀qh ∈ Vh .

(9)

The discrete energy at time tn is given by

En := 1
2

∫

Ω

|jnh|2 dx . (10)

It decays according to

En+1 − En = 1
2

∫

Ω

|jn+1
h |2 − |jnh|2 dx = 1

2

(

jn+1
h + jnh, j

n+1
h − jnh

)

0

=
(

jn+1
h − jnh, j

n+1/2

h

)

0
= −k

(

div j
n+1/2

h , δtm
n+1/2

)

0

= −k
∥

∥

∥div j
n+1/2

h × m
n+1/2
h

∥

∥

∥

2

L2(Ω)
.

So, regardless of the Galerkin spaces chosen, we obtain a stable method.

Remark. Recall the identity

a × (b × c) = b(a · c) − c(a · b) ∀a,b, c ∈ R
3 . (11)

This implies

m × (∆m × m) = ∆m|m|2 − m(∆m · m) . (12)

We thus may recast (9) as

(

δtm
n+1/2
h ,vh

)

0
=

(

div j
n+1/2
h · vh, |mn+1/2

h |2
)

0
−
(

div j
n+1/2
h · mn+1/2

h ,m
n+1/2
h · vh

)

0
∀vh ∈ Qh

(

div qh,mn+1
h

)

0
= −

(

jn+1
h ,qh

)

0
∀qh ∈ Vh

(13)

Remark. The rationale behind the introduction of the mixed formulation (8) is to relax the
demands on the regularity of the unknown function m. In the eventual mixed problem we
merely seek m in (L2(Ω))3 so that discretization by means of discontinuous finite elements
is feasible. This turns out to be crucial for the preservation of the modulus of m.

3.3 Finite element Galerkin discretization

We assume that Ω is covered by a triangular mesh M. The following conforming finite
element trial spaces will be employed:

for (L2(Ω))3 : space of M-piecewise constant vectorfields on Ω,
for H(div; Ω) : lowest order Raviart-Thomas finite element space

5

The local shape functions for the Raviart-Thomas finite element space on a triangle with
vertices a1, a2, a3 are given by

be(x) =
|e|

2|T |(x − ae) , e = 1, 2, 3 (14)

where |e| is the length of edge opposite to the vertex ae. If ne designates the exterior unit
normal vector to that edge, these local shape functions are dual to the local degrees of
freedom:

∫

e

bi · ne dS = |e|δie ; i, e = 1, 2, 3 . (15)

By fixing global degrees of freedom of the form (15) we can enforce the tangential conti-

nuity of the piecewise polynomial vector-fields contained in the finite element space. This
amounts to conformity in H(div; Ω).

The key observation is that the choice of Qh allows a local testing of the first equation in
(9). In particular, we may choose vh := χKm

n+1/2
h , χK the characteristic function of a cell

K. This converts the first equation of (9) to

1

2τ
(mn+1

h|K − mn
h|K)(mn+1

h|K + mn
h|K) =

1

2τ
|mn+1

h|K |2 − |mn
h|K |2 = 0 . (16)

Obviously, the norm of mh is strictly conserved during timestepping.

3.4 Mesh

We choose Ω = [0, 1]2 as our computational domain and cover it by a regular mesh of
triangles of width h.

1

10

h

h

Figure 1: computational domain

With the choice of the Mesh M we can now write down our local shape functions. With
m ∈ Qh and Qh discretized with the space of M-piecewise constant vector fields, we write
m =

∑

k,i mkibki, where mki is the coefficient and bki the local shape function on triangle
k of the i-component of the vector field. Obviously

bki(x) =

{

~ei x ∈ Ωk

0 elsewhere
. (17)

6

Likewise with j ∈ Vh and Vh discretized with the lowest order Raviart-Thomas finite
element space, we write j =

∑

e,i jeiBei, as a sum over all edges e and components i.
Because we use a 2D vector to describe each component of our 3D vector field, we end
up with a 2 × 3 tensor for Bei. For our regular mesh we can now write down the three
different kinds of local shape functions: If e is a vertical edge of Ωk

Bei(x) =

{

sk

h

(

x−x0−h
y−y0

)

⊗ ~ei x ∈ Ωk

0 elsewhere
, (18)

with (x0, y0) being the position of the lower left vertex of the square holding Ωk. We
introduced sk which we define as 1 if Ωk is a lower triangle and −1 if Ωk is an upper
triangle. The introduction of sk ensures the continuity of the normal component of B

between neighboring triangles. If e is a horizontal edge of Ωk

Bei(x) =

{ sk

h

(

x−x0

y−y0−h

)

⊗ ~ei x ∈ Ωk

0 elsewhere
, (19)

and if e is a diagonal edge of Ωk, then

Bei(x) =











√
2

h

(

x−x0

y−y0

)

⊗ ~ei x ∈ Ωk, Ωk lower triangle
√

2
h

(

x0+h−x
y0+h−y

)

⊗ ~ei x ∈ Ωk, Ωk lower triangle

0 elsewhere

. (20)

Note that the divergence of of lowest order Raviart-Thomas local shape functions is always
constant. On our mesh we get

div Bei(x) =

{

sk
|e|
|Ωk|~ei x ∈ Ωk

0 elsewhere
;

|e|
|Ωk|

=

{ 2
h

e horizontal or vertical
2
√

2
h

e diagonal
.

If we now use these local shape functions to describe our unknown vector field m and its
gradient j := ∇m on a mesh of mesh width h = 1/N, we can describe our solution with
15N2 + 6N coefficients, 6N 2 of which describing m and the rest describing j.

3.5 Nonlinear system of equations

In this section we fully discretize our so far time discrete system (13) with the finite
element space described in section 3.3 i.e. the local shape functions derived in the previous
section. This will lead us to a nonlinear system of equations which we can write down in a
vector form A(x) = 0, where x holds the unknown coefficients of the finite element basis
functions. Later we will solve this system for every timestep using a Newton Iteration.

Let us recall the time discrete system (13)
(

δtm
n+1/2
h ,vh

)

0
−
(

div j
n+1/2
h · vh, |mn+1/2

h |2
)

0
+
(

div j
n+1/2
h · mn+1/2

h ,m
n+1/2
h · vh

)

0
= 0 ∀vh ∈ Qh

(

div qh,mn+1
h

)

0
+
(

jn+1
h ,qh

)

0
= 0 ∀qh ∈ Vh

7

With vh =
∑

k,i vkibki and qh =
∑

k,e,i qkeiBkei and since (13) is linear in v and q respec-

tively, demanding (13) for all vh ∈ Qh and for all qh ∈ Vh is equivalent to demanding

(

δtm
n+1/2
h ,bki

)

0
−
(

div j
n+1/2 · bki, |mn+1/2

h |2
)

0
+
(

div j
n+1/2 · mn+1/2

h ,m
n+1/2
h · bki

)

0
= 0 ∀k, i

(

div Bei,m
n+1
h

)

0
+
(

jn+1
h ,Bei

)

0
= 0 ∀e, i

(21)

We now replace mh with
∑

k,i mkibki and jei with
∑

e,i jeiBei and simplify each of the
terms of (21) separately. Because of the local support of the bki’s it is sufficient to integrate
the first line over Ωk only. For the first term we get

(

δtm
n+1/2
h ,bki

)

0

=

∫

Ωk

δtm
n+1/2
ki bki · bkidΩ

=δtm
n+1/2
ki

∫

Ωk

bki · bkidΩ

=
h2

2
δtm

n+1/2
ki .

Likewise the second term becomes

−
(

div j
n+1/2 · bki, |mn+1/2

h |2
)

0

= −
∫

Ωk

div(
∑

e∈Ek

j
n+1/2

ei Bei) · bki ·
3
∑

l=1

(m
n+1/2
kl bkl)

2
dΩ

= −
∑

e∈Ek

j
n+1/2

ei ·
3
∑

l=1

|mn+1/2
h |2

∫

Ωk

(div Bei · bki) · (bkl · bkl)dΩ

= − sk

∑

e∈Ek

|e|jn+1/2

ei ·
3
∑

l=1

|mn+1/2
kl |2 .

Again, because of the local support of bki we only sum over the Raviart-Thomas shape
functions belonging to edges of cell k, e ∈ Ek. Similarly the third term can be written as

(

div j
n+1/2 · mn+1/2

h ,m
n+1/2
h · bki

)

0

=

∫

Ωk

∑

e∈Ek

(
3
∑

l=1

div(j
n+1/2

el Bel) · mn+1/2
kl bkl) · (mn+1/2

ki bki · bki)dΩ

=
∑

e∈Ek

3
∑

l=1

j
n+1/2

el m
n+1/2
kl m

n+1/2
ki

∫

Ωk

(div Bel · bkl) · (bki · bki)dΩ

=
∑

e∈Ek

3
∑

l=1

sk|e|jelm
n+1/2
kl m

n+1/2
ki .

8

Now we look at the second line of (21). Because a local shape function belonging to edge
e has a support in both neighboring cells k|e ∈ Ek, we integrate only over these two
triangles. The first term becomes

(

div Bei,m
n+1
h

)

0

=
∑

k|e∈Ek

∫

Ωk

div Bei · mn+1
ki bikdΩ

=
∑

k|e∈Ek

mn+1
ki

∫

Ωk

div Bei · bikdΩ

=
∑

k|e∈Ek

sk|e|mn+1
ki ,

and the second term can be written as
(

jn+1
h ,Bei

)

0

=
∑

k|e∈Ek

∫

Ωk

∑

e′∈Ek

(jn+1
e′i Be′i) · BeidΩ

=
∑

k|e∈Ek

∑

e′∈Ek

jn+1
e′i

∫

Ωk

Be′i : BeidΩ .

The Integral Iee′ :=
∫

Ωk
Be′i : BeidΩ can be directly calculated with our local shape

functions obtained in the last section, it evaluates to h2

3
if e′ = e, −h2

6
if one of e and e′

is a horizontal and the other a vertical edge and 0 in any other case. Now we can write
down our fully discretized system of equations.

A(xn+1,xn) = 0 ; xn+1 =

(

mki

jei

)n+1

, (22)

A(xn+1,xn) =











h2

2
δtm

n+1/2
ki − sk

∑

e∈Ek

|e|jn+1/2

ei ·
3
∑

l=1

|mn+1/2
h |2 + sk

3
∑

l=1

|e|jn+1/2

el m
n+1/2
kl m

n+1/2
ki

∑

k|e∈Ek

(

sk|e|mn+1
ki +

∑

e′∈Ek

jn+1
e′i Iee′

)











(23)

3.6 Boundary conditions

Since the coefficients of the Raviart-Thomas local shape functions directly determine the
normal component of j over the edges of the triangles, we can easily satisfy our boundary
condition

∂m

∂n
= j · n = 0 on ∂Ω ,

if all coefficients belonging to edges on ∂Ω are zero at all times. Thus these 12N coefficients
are no longer degrees of freedom and can be eliminated from the global solution vector x,
which leaves us with 15N 2 − 6N unknowns.

9

4 Solution of the discrete system

4.1 Linearization

We now know that our simulation must satisfy the fully discrete system of equations
A(xn+1,xn) = 0 for every time step. To perform a time step, the task of our program
is solving this non linear system of equations i.e. from a given xn finding xn+1. We will
solve A(xn+1,xn) = 0 using Newtons Method, for this purpose we first need to find the
Jacobian DA := ∂Ai

∂xn+1

j

Using the calculations of A from the last section we get the following entries of DA:

∂Aki

∂mn+1
k′i′

=























h2

2κ
+ sk

2

3
∑

l=1

l6=i

∑

e∈Ek

|e|jn+1/2

el m
n+1/2
kl

k′=k,
i′=i

−sk

∑

e∈Ek

|e|jn+1/2

ei m
n+1/2
ki′ + sk

2

∑

e∈Ek

|e|jn+1/2

ei′ m
n+1/2
ki

k′=k,
i′ 6=i

0 otherwise

∂Aki

∂jn+1
e′i′

=



















− sk

2
|e′|

3
∑

l=1

l6=i

|mn+1/2
kl |2 e′∈Ek,

i′=i

− sk

2
|e′|mn+1/2

ki m
n+1/2
ki′

e′∈Ek,
i′ 6=i

0 otherwise

∂Aei

∂jn+1
e′i′

=











2
3
h2 e′=e,

i′=i

−1
6
h2 ∃k|e ∈ Hk, e′ ∈ Vk or e ∈ Vk, e′ ∈ Hk,

i′ = i

0 otherwise

∂Aei

∂mn+1
k′i′

=

{

sk|e| i′=i,
e∈Ωk

0 otherwise

Obviously DA is very sparse. It has 12 non-zero entries for each of the 6N 2 lines corre-
sponding to coefficients of m, and 4 or 5 non-zero entries for the lines corresponding to j

coefficients, 4 for diagonal edges and 5 for the other ones.

Because the mesh does not move with time, the structure of DA stays constant during
the whole simulation. Even more, most of entries of DA stay constant and only depend
on the mesh width h. These properties can be used to considerably speed up the assembly
of DA in our program code.

4.2 Newton Iteration

At a given time our program must assemble A and DA to then find the solution of the
next time by solving A(xn+1,xn) = 0. One Newton step is done by iterating the iterated
solution xi

xi+1 = xi − DA(xi,xn)\A(xi,xn) .

As initial guess we can use the solution of the last timestep.

x0 = xn .

10

Besides computing A and assembling DA, finding the solution of the linear system of
equations DA\A for every Newton step is the crucial part of the simulation. In our first
MATLAB implementation of the simulation we simply use the MATLAB \-operator.

5 Convergence

5.1 Initial condition and analytical solution

In order to measure the discretization error of the numerical method we need to find an
exact solution of our governing equations (1) for given initial conditions. We can then run
the simulation with the same initial conditions and compare the results of the simulation
with the exact solution to measure the error.

We have to find an analytical solution of our system of equation (1), we know it must
satisfy both |m| = 1 and the boundary condition ∂m

∂n
= 0 at all times. We intuitively

choose

mf =





cos(e−λt cos(πx) cos(πy))
sin(e−λt cos(πx) cos(πy))

0



 ; . (24)

One can use Mathematica to verify that this indeed is a solution of (1) if simply

λ = 2π2 .

Thus, to check the convergence of our simulation we will use the initial condition

m0 =





cos(cos(πx) cos(πy))
sin(cos(πx) cos(πy))

0



 . (25)

5.2 The forcing term

When we started working on this term project, we did not know that there is a simple
analytical solution of (1). Since we still wanted to measure the convergence rate somehow,
we forced the simulation to follow a given analytical solution by adding a so called forcing
term. This procedure was quite instructive we will shortly explain it here although in the
end non of this could be used in the simulation and is more of theoretical concern.

First of all we choose a analytical function mf (x, t) we want our simulation to follow.
Then, to force our simulation to follow mf , our governing equations are modified by
adding the forcing term f(x, t), ie. by rewriting (1) as

∂m

∂t
= m × (∆m × m) + f(x, t) in]0, T [×Ω ,

m(0) = m0 in Ω ,

∂m

∂n
= 0 on]0, T [×∂Ω .

(26)

11

f(x, t) can directly be calculated when we assume m = mf in this equation. Because we
introduce the forcing term, equation (4) also has to be modified to

d|m|2
dt

= 2m · ∂m

∂t
= 2m · (m × (∆m × m) + f) . (27)

Note that the norm of m is only conserved if f ·m = 0 for all t. After temporal discretization
with the method of Heun we get

δtm
n+1/2 = mn+1/2 × (∆mn+1/2 × mn+1/2) + f

n+1/2
, (28)

where f
n+1/2

= 1
2
f(x, tn+1) + f(x, tn). Multiplying (28) with mn+1/2 yields

|mn+1|2 − |mn|2 =
k

4
(fn+1 · mn + fn · mn+1) , (29)

thus, in the time discrete form, the modulus of m is only conserved if the right hand side
of equation (29) is zero. This means, that we can force our simulation to follow any given
analytical function mf as long as

fn+1 · mn + fn · mn+1 = 0 ,

but finding such a m can be as hard as finding a solution to (1).

Assuming we found such a m, we could discretize the resulting forcing term in the same
way as we discretized equation (13) and end up with an additional term contributing to
A(x) of the form

∫

Ωk

f(x, t)dΩk . (30)

The integral (30) could be calculated over every cell of the mesh. In our simulation this
could be done with a numerical quadrature formula which matches the expected conver-
gence rate. Hence a quadrature rule of order 3 would be sufficient.

5.3 Error norms

Fortunately we know an exact analytical solution and we can directly examine the L2 and
H1 error norms to measure the convergence rate of the simulation with

‖msol − m‖2
L2(Ω) =

∫

Ω
(msol − m)2 dΩ

=
∑

k

∑

i

∫

Ωk
(msol,i − mki)

2 dΩk
(31)

and

|msol − m|2H1(Ω) =
∫

Ω
(∇msol −∇m)2 dΩ

=
∑

k

∑

i

∫

Ωk

(

∇msol,i −
∑

e∈Ek
jei

)2
dΩk.

. (32)

The integrals are computed over each cell with a quadrature rule. Since we use piece-
wise constant basis functions to discretize m, our L2 error will be dominated by linear
terms. Likewise, since for ∇m we use piecewise linear basis function, our H1 error will be
mainly quadratic, thus using a quadrature rule of order 3 to estimate both errors will be
sufficiently accurate.

12

5.4 Simulation results

We can now run the simulation with the initial condition (25) and compute the error at
given time with the analytical solution and the norms described in the previous sections.

We measured the convergence of the numerical scheme at four different times for h- and κ-
refinement. The results obtained are plotted in figure 5.4 and 5.4. The errors that resulted
from the simulation are plotted with circles and fitted by algebraic dotted curves. Note
the algebraic convergence rates printed in the legends.

For the h-refinement we computed nice h1 rates at all four times for both the L2 and
H1 norm. Because we simulated with a very small time step, the error from the time
discretization is not observable, even at relatively large N .

The results of the κ-refinement show a clear κ2 dependence resulting from the second
order method of Heun. For small κ the error of the time discretization starts deviating
from the κ2 because the O(h1) error of the spacial discretization starts dominating.

13

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

t=0, kappa=0.06/32

h

E
rr

or

L
2

∝ h0.999

H
1

∝ h0.997

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

t=0.015, kappa=0.06/32

h

E
rr

or

L
2

∝ h0.999

H
1

∝ h0.997

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

t=0.03, kappa=0.06/32

h

E
rr

or

L
2

∝ h0.999

H
1

∝ h0.999

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

t=0.06, kappa=0.06/32

h

E
rr

or

L
2

∝ h1.001

H
1

∝ h1.001

F
igu

re
2:

con
vergen

ce
for

h
-refi

n
em

en
t

14

10
−2

10
−1

10
−3

10
−2

10
−1

t=0.06, N=160

κ

E
rr

or

L
2

∝ k1.982

H
1

∝ k2.045

Figure 3: convergence for k-refinement

15

6 Parallelization

There are several ways to parallelize our simulation, we decided to implement two of them.
The first one (section 6.1) simply uses a parallel solver, while the second one(section 6.2)
splits the computational domain up into subdomains and parallelizes everything from
assembling to solving.

We ran these two parallel versions of our simulation on ETH’s Hreidar, which is a Beowulf
class computing cluster. In the current version, it consists of 128 dual-CPU compute
nodes, two login nodes and two file servers. Each compute node has two AMD Opteron
244 processors, 4 GB memory and ca. 100 GB disk storage.

6.1 SuperLU

When we rewrote our program in C, we found that in contrast to the MATLAB version, the
assembly of A and DA only makes up a small part of the runtime and the program spends
most of the time solving the system of equations. This acceleration of the assembling was
made possible by utilizing the known structure of the Matrix DA. Therefore it was obvious
to parallelize the solver. Owing to the ability to speedup a program on one node and also
parallelize it on multiple nodes, we decided to use the SuperLU-library [2] for this purpose.

On a single node we gained a speedup around 2 only from using a more efficient way
to assemble the matrix and the SuperLU-library instead of the MATLAB \-operator.
The bottleneck of this implementation was the enormous need of memory. Despite of the
column preordering before the LU-factorization there’s still a remarkable fill-in, see table
6.1

N entries in DA entries in L+U fill-in factor
20 44’000 440’000 10
40 180’000 2’800’000 15.5
80 700’000 15’000’000 21.5
160 2’800’000 80’000’000 28.5

Table 1: SuperLU fill-in

For this reason we were looking forward to see the results of the distributed version
running on the Hreidar cluster. where we had around 2GB memory on each node. Since
SuperLU distributes the storage of L and U, the memory problem seemed to be solved
by increasing the amount of nodes. In fact the DA matrix is not distributed and also
still computed sequentially but the memory requirements are vanishing and the nearly
inappreciable costs of the assembling saves us the time for distributing the hole matrix.
Additionally we expected a speedup while raising the number of cpus. But unfortunately
exactly the opposite happened. Table 6.1 shows that using more than one node slowed
the program down up to a factor over 10.

This unpleasant phenomenon can be explained by the Hreidar-network. It is simply to
slow and it does not make any sense to compute huge matrices on Hreidar. So, we were
not running out of memory anymore, but because we couldn’t use Hreidar just for us, the

16

N 1 proc 4 proc 16 proc
10 0.24 sec 34.6 sec 35.6 sec
160 5360 sec 10200 sec 6200 sec

Table 2: SuperLU performance

job size was limited now by the runtime. Finally we could run simulations with N = 320,
which was disappointing, knowing that N = 160 is already possible in MATLAB and
additionally the computation is also slower on Hreidar.

6.2 Domain decomposition

The results form our first simple parallelization attempt made clear that a useful paral-
lel version of our simulation must address two problems: It should reduce the memory
required, i.e. ideally require only memory to store the solution vectors and the sparse
Matrix DA, and it should reduce the amount of communication between the nodes.

6.2.1 Idea

The key idea to our second parallelization approach, which takes these two points into
account, is to use the conjugate gradient squared method [3] without preconditioner to
solve DA\A. The advantage of this method is that it only uses the DA · x operation to
iteratively find the solution of the linear system of equations posed at every newton step,
thus, in contrast to a standard CG method, DAT · x must not be calculated.

We can split up the computational domain into subdomains and distribute the unknowns
corresponding to those subdomains on the different nodes of the network. Because of the
local support of the FEM basis functions, the assembly of A and DA and the computation
of DA · x can now be done locally, as long as we exchange the coefficients lying on the
subdomain borders between the nodes.

6.2.2 Implementation

Once again we rewrote our program, this time we converted it into a C++ Version that
uses MPI to parallelize Vector and Matrix Classes for x and DA. We then used the
CGS algorithm implemented in the Iterative Template Library [1]. All we had to do is to
implement the abstract interface that is used by ITL with our vector and matrix classes.

Each parallel vector holds the coefficients of its subdomain plus a copy of all border coef-
ficients, while each parallel matrix holds the rows corresponding to the local coefficients
only. Most operations needed by CGS like adding, subtracting and scaling vectors can be
done purely local, the dot product can be done in a simple MPI_Allreduce statement.
Finally, the assembly of DA, the computation of A and the DA · x operation are also
done locally but need the copies of the border coefficients, so before these methods can
be called, the border coefficients must be exchanged and updated.

17

6.2.3 Splitting up the domain

There are several ways to split up our domain into np subdomains, three of which are
illustrated in figure 6.2.3. The first one and the one we actually implemented simply splits
the domain into horizontal stripes, it is the most simple version to code, but produces most
communication between nodes. Additional to the 15N 2/np local coefficients, each Vector
then holds 9N copies of neighbors and before every DA·x operation 9N ·(np−1) unknowns
must be exchanged. This amount of communication can be reduced to 18N · (√np − 1)if

we split both horizontally and vertically and to 24N · (
√

np/2 − 1) with an additional
diagonal split which would probably be the fastest but most complicated version.

Figure 4: splitting up the domain

6.2.4 Performance results

We ran our domain decomposition program on the Hreidar cluster and compared the
results with the SuperLU version. Even with our domain split only vertically, which pro-
duces an np instead of an

√
np dependent amount of communication, our simulation

scaled beautifully with increasing number of processors. The results are plotted in figure
6.2.4. The solid line is the 1/np curve for a perfect parallelization without communica-
tion. Obviously the ability to make use of knowing exactly how DA is assembled from
the underlying FEM basis functions proved to be a huge advantage for our simulation,
the SuperLU package of course does not know anything about DA.

18

0 2 4 6 8
0

100

200

300

400

500

600

700

800

900

1000
N=80, κ=0.005, steps=4

np

tim
e

[s
]

itl−mpi
1/np

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
N=160, κ=0.01, steps=3

np

tim
e

[s
]

itl/mpi
1/np
superLU

d
ist

F
igu

re
5:

cp
u

tim
e

over
in

creasin
g

n
u
m

b
er

of
n
o
d
es

n
p

19

A Program code

A.1 MATLAB

fem.m

function [mov,energy,err]=fem(N,t_end,Nt)

% Main method, runs simulation with specified parameters

%

% N system length and witdh

% t_end simulation time, run from t=0 until t_end

% Nt number of time steps to be performed

format compact;

format long;

h = 1/N;

kappa = t_end/Nt;

x = project_initial_condition(N);

time(1,1) = 0;

err(1,1) = get_err_abs_m(x);

%err(1,2) = get_err_l2(x,0); %use appropriate initial condition

%err(1,3) = get_err_h1(x,0); %use appropriate initial condition

energy(1,1) = get_energy(x);

plot_solution(x);

mov(1) = getframe;

for t=1:Nt

disp(’’);

disp(strcat(’step’));

disp(int2str(t));

xNew = newton(kappa,h,x);

if (xNew==0)

disp(’Newton Iteration did not converge’)

return

end

x = xNew;

tn=t*kappa;

time(t+1,1) = tn;

err(t+1,1) = get_err_abs_m(x);

%err(t+1,2) = get_err_l2(x,tn); %use appropriate initial condition

%err(t+1,3) = get_err_h1(x,tn); %use appropriate initial condition

energy(t+1,1) = get_energy(x);

plot_solution(x);

mov(t+1) = getframe;

end

format loose;

20

project initial conditions.m

function x0 = project_initial_condition(N)

% Projects the function specified by get_m_gradm_0 into FE space

% and returns the corresponding vector of coefficients

x0 = -ones(15*N*N+6*N,1);

h = 1/N;

% for each row and column

for j = 1:N

for i = 1:N

% set coordinates of the right-top of this to cells

x = i*h;

y = j*h;

% get & save the m-vector from the center of the lower cell

[m,gradm] = get_m_gradm_0(x-2*h/3,y-2*h/3);

x0(6*N*(j-1) + 6*(i-1) + 1) = m(1);

x0(6*N*(j-1) + 6*(i-1) + 2) = m(2);

x0(6*N*(j-1) + 6*(i-1) + 3) = m(3);

% get & save the m-vector from the center of the upper cell

[m,gradm] = get_m_gradm_0(x-h/3,y-h/3);

x0(6*N*(j-1) + 6*(i-1) + 4) = m(1);

x0(6*N*(j-1) + 6*(i-1) + 5) = m(2);

x0(6*N*(j-1) + 6*(i-1) + 6) = m(3);

%get the j-matrix from the

% middle of the left edge and save the -x - direction

[m,gradm] = get_m_gradm_0(x-h,y-h/2);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 1) = -gradm(1,1);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 2) = -gradm(2,1);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 3) = -gradm(3,1);

%get the j-matrix from the

% middle of the bottom edge and save the -y - direction

[m,gradm] = get_m_gradm_0(x-h/2,y-h);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 4) = -gradm(1,2);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 5) = -gradm(2,2);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 6) = -gradm(3,2);

% Get the j-matrix from the middle of the right/top edge

% and save the 1/sqrt(2)*(x+y) - direction

[m,gradm] = get_m_gradm_0(x-h/2,y-h/2);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 7) = 1/sqrt(2)*(gradm(1,1)+gradm(1,2));

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 8) = 1/sqrt(2)*(gradm(2,1)+gradm(2,2));

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 9) = 1/sqrt(2)*(gradm(3,1)+gradm(3,2));

%if we are at right border

if i==N

[m,gradm] = get_m_gradm_0(x,y-h/2);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 10) = -gradm(1,1);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 11) = -gradm(2,1);

x0(6*N*N + (j-1)*(9*N+3) + (i-1)*9 + 12) = -gradm(3,1);

end

end

%if we are at top border

if j==N

for i=1:N

% set coordinates of the right-top of this to cells

x = i*h;

y = j*h;

[m,gradm] = get_m_gradm_0(x-h/2,y);

x0(15*N*N + 3*N + (i-1)*3 + 1) = -gradm(1,2);

x0(15*N*N + 3*N + (i-1)*3 + 2) = -gradm(2,2);

x0(15*N*N + 3*N + (i-1)*3 + 3) = -gradm(3,2);

end

end

end

21

newton.m

function xi = newton(kappa,h,x0)

% Finds the solution of non-linear system of equations A(x)=0

% through newton iteration

%

% kappa time step width

% h cell width

% x0 solution at previous timestep (n) which serves as initial

% guess for newton iteration

% xi solution at next timestep (n+1), newton iterated solution

L = length(x0);

i = 0;

imax = 50;

tol = 1e-6;

dx = ones(L,1);

xi = zeros(L,1);

normA = 1;

%while iteration has not converged to solution

while normA > tol

%if iterations does not converge stop

if i >= imax

xi = 0;

return

end

%update counter

i = i+1;

%calculate A and DA

[A,DA] = get_A(kappa,h,x0,xi);

%do newton step

dx = DA\A;

xi = xi-dx;

normA = sqrt(A’*A);

disp(normA);

end

22

get A.m

function [A,DA] = get_A(kappa,h,x0,xi)

% Assembles A(x0;xi) and the Jacobian DA from local contributions of A

% computed by get_Aloc

%

% kappa time step width

% h cell width

% x0 solution at previous timestep (n) which also serves as

% initial guess for newton iteration

% xi newton iterated solution

% set true to force boundary conditions

forcebound = true;

% calculate parameters

N = 1/h;

nc = 2*N*N;

nc3 = 3 * nc;

L = length(x0);

A = zeros(L,1);

entries = 72 * nc - 36 * N;

iarray = zeros(entries,1);

jarray = zeros(entries,1);

valuearray = zeros(entries,1);

arrayindex = 1;

% for all cells of mesh

for ic = 0:N-1

for jc = 0:N-1

for kc = 0:1

% calculate index of current cell and indices of edges of current

% cell in global system of equations. Set indices so that e1 points

% to the diagonal edge

k = 6*(jc*N+ic)+3*kc+1;

e1 = 6*N*N + (9*N+3)*jc + 9*ic + 7;

if kc == 0

e2 = 6*N*N + (9*N+3)*jc + 9*ic + 1;

e3 = 6*N*N + (9*N+3)*jc + 9*ic + 4;

else

e2 = 6*N*N + (9*N+3)*jc + 9*(ic+1) + 1;

if jc~=N-1

e3 = 6*N*N + (9*N+3)*(jc+1) + 9*ic + 4;

else

e3 = 6*N*N + (9*N+3)*(jc+1) + 3*ic + 1;

end

end

% check if e2 or e3 are indices of boundary basis functions

e2isboundary = (ic==0 && kc == 0) || (ic==N-1 && kc==1);

e3isboundary = (jc==0 && kc == 0) || (jc==N-1 && kc==1);

% set sign of thomas raviart basis functions

if kc == 0

sk = 1;

else

sk = -1;

end

% calculate local A and DA

[Aloc,DAloc] = get_Aloc(kappa,h,k,e1,e2,e3,sk,x0,xi);

% assemble global A from local contributions

for i=0:2

A(k+i) = A(k+i) + Aloc(1+i);

end

for i=0:2

A(e1+i) = A(e1+i) + Aloc(4+i);

end

23

if e2isboundary && forcebound

for i=0:2

A(e2+i) = xi(e2+i);

end

else

for i=0:2

A(e2+i) = A(e2+i)+ Aloc(7+i);

end

end

if e3isboundary && forcebound

for i=0:2

A(e3+i) = xi(e3+i);

end

else

for i=0:2

A(e3+i) = A(e3+i) + Aloc(10+i);

end

end

% assemble global DA from local contributions

for i=0:2

for j = 0:2

iarray(arrayindex) = k+i;

jarray(arrayindex) = k+j;

valuearray(arrayindex) = DAloc(1+i,1+j);

arrayindex = arrayindex + 1;

iarray(arrayindex) = k+i;

jarray(arrayindex) = e1+j;

valuearray(arrayindex) = DAloc(1+i,4+j);

arrayindex = arrayindex + 1;

iarray(arrayindex) = k+i;

jarray(arrayindex) = e2+j;

valuearray(arrayindex) = DAloc(1+i,7+j);

arrayindex = arrayindex + 1;

iarray(arrayindex) = k+i;

jarray(arrayindex) = e3+j;

valuearray(arrayindex) = DAloc(1+i,10+j);

arrayindex = arrayindex + 1;

end

end

for i=0:2

iarray(arrayindex) = e1+i;

jarray(arrayindex) = k+i;

valuearray(arrayindex) = DAloc(4+i,1+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e1+i;

jarray(arrayindex) = e1+i;

valuearray(arrayindex) = DAloc(4+i,4+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e1+i;

jarray(arrayindex) = e2+i;

valuearray(arrayindex) = DAloc(4+i,7+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e1+i;

jarray(arrayindex) = e3+i;

valuearray(arrayindex) = DAloc(4+i,10+i);

arrayindex = arrayindex + 1;

end

if e2isboundary && forcebound

for i=0:2

iarray(arrayindex) = e2+i;

jarray(arrayindex) = e2+i;

valuearray(arrayindex) = 1;

arrayindex = arrayindex + 1;

end

else

for i=0:2

iarray(arrayindex) = e2+i;

jarray(arrayindex) = k+i;

24

valuearray(arrayindex) = DAloc(7+i,1+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e2+i;

jarray(arrayindex) = e1+i;

valuearray(arrayindex) = DAloc(7+i,4+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e2+i;

jarray(arrayindex) = e2+i;

valuearray(arrayindex) = DAloc(7+i,7+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e2+i;

jarray(arrayindex) = e3+i;

valuearray(arrayindex) = DAloc(7+i,10+i);

arrayindex = arrayindex + 1;

end

end

if e3isboundary && forcebound

for i=0:2

iarray(arrayindex) = e3+i;

jarray(arrayindex) = e3+i;

valuearray(arrayindex) = 1;

arrayindex = arrayindex + 1;

end

else

for i=0:2

iarray(arrayindex) = e3+i;

jarray(arrayindex) = k+i;

valuearray(arrayindex) = DAloc(10+i,1+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e3+i;

jarray(arrayindex) = e1+i;

valuearray(arrayindex) = DAloc(10+i,4+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e3+i;

jarray(arrayindex) = e2+i;

valuearray(arrayindex) = DAloc(10+i,7+i);

arrayindex = arrayindex + 1;

iarray(arrayindex) = e3+i;

jarray(arrayindex) = e3+i;

valuearray(arrayindex) = DAloc(10+i,10+i);

arrayindex = arrayindex + 1;

end

end

end

end

end

DA = sparse(iarray,jarray,valuearray,L,L);

25

get Aloc.m

function [Aloc,DAloc] = get_Aloc(kappa,h,k,e1,e2,e3,sk,x0,xi,t0,t1)

% Calculates contribution to A and to the Jacobian DA for a given cell K

%

% kappa time step width

% h cell width

% x0 global coefficient vector at t=n

% xi newton-iterated global coefficient vector,

% should eventually converge to global solution at t=n+1

% k index of the coefficient in the global coefficient vector

% corresponding to the x-direction basis function on cell K,

% k+1, k+2 then correspond to the y and z direction basis

% functions on cell K.

% e1, e2, e3 indices of the coefficients in the global coefficient

% vector corresponding to the x-direction basis functions on

% the edges of K. en+1, en+2 with n=1,2,3 then correspond to

% the y and z directions basisfunction indices on these

% edges. e1 denotes the diagonal edge.

% sk holds the sign of the thomas raviart fe which is

% 1 if the cell is a lower triangle and

% -1 if the cell is a upper triangle

%

% Aloc = [A_kx]

% [A_ky]

% [A_kz]

% [A_e1x]

% [A_e1y]

% [A_e1z]

% [A_e2x]

% [A_e2y]

% [A_e2z]

% [A_e3x]

% [A_e3y]

% [A_e3z]

%

% DAloc = [dA_ki/dmu_kj dA_ki/dpi_e1j dA_ki/dpi_e2j dA_ki/dpi_e3j]

% [dA_e1i/dmu_kj dA_e1i/dpi_e1j dA_e1i/dpi_e2j dA_e1i/dpi_e3j]

% [dA_e2i/dmu_kj dA_e2i/dpi_e1j dA_e2i/dpi_e2j dA_e2i/dpi_e3j]

% [dA_e3i/dmu_kj dA_e3i/dpi_e1j dA_e3i/dpi_e2j dA_e3i/dpi_e3j]

%

% debugging flags

mterm1 = true; %(d/dt(m),v)

mterm2 = true; %(div(j),v,m*m)

mterm3 = true; %(div(j)*m,m*v)

jterm1 = true; %(div(q),m)

jterm2 = true; %(j,q)

dAflag = true; %calculate DF

% intialize local f and DF

Aloc = zeros(12,1);

DAloc = zeros(12);

% precalculate some values

hsq2k = h^2/(2*kappa);

skh = sk*h;

skh2 = sk*h/2;

sksqrt2h = sk*sqrt(2)*h;

hsq3 = h^2/3;

hsq6 = h^2/6;

mpi = 0.5 * [(sqrt(2)*(xi(e1) + x0(e1)) + xi(e2) + x0(e2) + xi(e3) + x0(e3)) ; ...

(sqrt(2)*(xi(e1+1) + x0(e1+1)) + xi(e2+1) + x0(e2+1) + xi(e3+1) + x0(e3+1)) ; ...

(sqrt(2)*(xi(e1+2) + x0(e1+2)) + xi(e2+2) + x0(e2+2) + xi(e3+2) + x0(e3+2))] ;

mmu = 0.5 * [(x0(k) + xi(k)) ; ...

(x0(k+1) + xi(k+1)) ; ...

(x0(k+2) + xi(k+2))] ;

26

dtmu = hsq2k * [(xi(k) - x0(k)) ; ...

(xi(k+1) - x0(k+1)) ; ...

(xi(k+2) - x0(k+2))] ;

% assemble local A

if mterm1

for i=1:3

Aloc(i) = Aloc(i) + dtmu(i);

end

end

if mterm2

for i=1:3

Aloc(i) = Aloc(i) - skh * mpi(i) * (mmu(1)^2 + mmu(2)^2 + mmu(3)^2);

end

end

if mterm3

for j=0:2

i=j+1;

ii=mod(j+1,3)+1;

iii=mod(j+2,3)+1;

Aloc(i) = Aloc(i) + skh * ((mpi(i)*mmu(i) + mpi(ii)*mmu(ii) + mpi(iii)*mmu(iii)) * mmu(i));

end

end

if jterm1

for i=0:2

%rows corresponding to edge 1

Aloc(4+i) = sksqrt2h * xi(k+i);

%rows corresponding to edge 2

Aloc(7+i) = skh * xi(k+i);

%rows corresponding to edge 3

Aloc(10+i) = skh * xi(k+i);

end

end

if jterm2

for i=0:2

%rows corresponding to edge 1

Aloc(4+i) = Aloc(4+i) + hsq3 * xi(e1+i);

%rows corresponding to edge 2

Aloc(7+i) = Aloc(7+i) + hsq3 * xi(e2+i) - hsq6 * xi(e3+i);

%rows corresponding to edge 3

Aloc(10+i) = Aloc(10+i) + hsq3 * xi(e3+i) - hsq6 * xi(e2+i);

end

end

% assemble local DA

if dAflag

% rows corresponding to basisfunctions on cells

% df_ki/dmu_ki:

DAloc(1,1) = hsq2k + skh2 * (mpi(2)*mmu(2) + mpi(3)*mmu(3)) ;

DAloc(2,2) = hsq2k + skh2 * (mpi(1)*mmu(1) + mpi(3)*mmu(3)) ;

DAloc(3,3) = hsq2k + skh2 * (mpi(1)*mmu(1) + mpi(2)*mmu(2)) ;

% dA_ki/dmu_kj:

DAloc(1,2) = skh2 * mpi(2)*mmu(1) - skh * mpi(1)*mmu(2);

DAloc(1,3) = skh2 * mpi(3)*mmu(1) - skh * mpi(1)*mmu(3);

DAloc(2,1) = skh2 * mpi(1)*mmu(2) - skh * mpi(2)*mmu(1);

DAloc(2,3) = skh2 * mpi(3)*mmu(2) - skh * mpi(2)*mmu(3);

DAloc(3,1) = skh2 * mpi(1)*mmu(3) - skh * mpi(3)*mmu(1);

DAloc(3,2) = skh2 * mpi(2)*mmu(3) - skh * mpi(3)*mmu(2);

% dA_kx/dpi_eax

dA = -skh2 * (mmu(2)^2 + mmu(3)^2);

DAloc(1,4) = sqrt(2) * dA;

DAloc(1,7) = dA;

27

DAloc(1,10) = dA;

% dA_ky/dpi_eay

dA = -skh2 * (mmu(1)^2 + mmu(3)^2);

DAloc(2,5) = sqrt(2) * dA;

DAloc(2,8) = dA;

DAloc(2,11) = dA;

% dA_kz/dpi_eaz

dA = -skh2 * (mmu(1)^2 + mmu(2)^2);

DAloc(3,6) = sqrt(2) * dA;

DAloc(3,9) = dA;

DAloc(3,12) = dA;

% dA_kx/dpi_eay , dA_ky/dpi_eax

dA = skh2 * mmu(1)*mmu(2);%

DAloc(1,5) = sqrt(2) * dA;

DAloc(2,4) = sqrt(2) * dA;

DAloc(1,8) = dA;

DAloc(2,7) = dA;

DAloc(1,11) = dA;

DAloc(2,10) = dA;

% dA_kx/dpi_eaz , dA_kz/dpi_eax

dA = skh2 * mmu(1)*mmu(3);%

DAloc(1,6) = sqrt(2) * dA;

DAloc(3,4) = sqrt(2) * dA;

DAloc(1,9) = dA;

DAloc(3,7) = dA;

DAloc(1,12) = dA;

DAloc(3,10) = dA;

% dA_ky/dpi_eaz , dA_kz/dpi_eay

dA = skh2 * mmu(2)*mmu(3);%

DAloc(2,6) = sqrt(2) * dA;

DAloc(3,5) = sqrt(2) * dA;

DAloc(2,9) = dA;

DAloc(3,8) = dA;

DAloc(2,12) = dA;

DAloc(3,11) = dA;

% rows corresponding to basisfunctions on edges

% dA_e1i/dmu_ki

for i=0:2

DAloc(4+i,1+i) = sksqrt2h;

end

% dA_e2i/dmu_ki

for i=0:2

DAloc(7+i,1+i) = skh;

end

%dA_e3i/dmu_ki

for i=0:2

DAloc(10+i,1+i) = skh;

end

% dA_e1i/dpi_e1i

for i=0:2

DAloc(4+i,4+i) = hsq3;

end

% dA_e2i/dpi_e2i

for i=0:2

DAloc(7+i,7+i) = hsq3;

end

% dA_e3i/dpi_e3i

for i=0:2

DAloc(10+i,10+i) = hsq3;

end

% dA_e2i/dpi_e3i

28

for i=0:2

DAloc(7+i,10+i) = -hsq6;

end

% dA_e3i/dpi_e2i

for i=0:2

DAloc(10+i,7+i) = -hsq6;

end

end

References

[1] Iterative template library. http://www.osl.iu.edu/research/itl/.

[2] X. S. Li and J. W. Demmel, Superlu dist: A scalable distributed-memory sparse direct solver for unsymmetric linear

systems, ACM Trans. Mathematical Software, 29 (2003), pp. 110–140.

[3] P. Sonneveld, Cgs: A fast lanczos-type solver for nonsymmetric linear systems, SIam J. Sci. Comput., 10 (1989),
pp. 36–52.

29

	Introduction
	Governing equations
	Discretization
	Timestepping
	Mixed variational formulation
	Finite element Galerkin discretization
	Mesh
	Nonlinear system of equations
	Boundary conditions

	Solution of the discrete system
	Linearization
	Newton Iteration

	Convergence
	Initial condition and analytical solution
	The forcing term
	Error norms
	Simulation results

	Parallelization
	SuperLU
	Domain decomposition
	Idea
	Implementation
	Splitting up the domain
	Performance results

	Program code
	MATLAB

