Fast solvers for Eulerian convection schemes Semester Thesis FS 2010

Andreas Hiltebrand
Supervisor: Holger Heumann
Professor: Ralf Hiptmair
Seminar for Applied Mathematics
ETH Zürich

23.12.10

Goal and discretization

- Goal:
solve quickly pure advection and advection dominated problems
- Discretization:
finite elements
discontinuous Galerkin upwind formulation

Permuted block triangular systems

$\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$

Block triangular systems

Block triangular systems

Solution of lower block triangular systems

- lower block triangular systems
\Longrightarrow easily solvable
by block-wise forward substitution
- for $i=1, \ldots, n_{B}$
$\boldsymbol{u}_{i}^{B}=\left(\boldsymbol{D}_{i}^{B}\right)^{-1}\left(\boldsymbol{b}_{i}^{B}-\sum_{j=1}^{i-1} \boldsymbol{L}_{i, j}^{B} \boldsymbol{u}_{j}^{B}\right)$
$\left(\begin{array}{ccccc}\boldsymbol{D}_{1}^{B} & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ \boldsymbol{L}_{2,1}^{B} & \boldsymbol{D}_{2}^{B} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \boldsymbol{D}_{n_{B}-1}^{B} & \mathbf{0} \\ \boldsymbol{L}_{n_{B}, 1}^{B} & \cdots & \cdots & \boldsymbol{L}_{n_{B}, n_{B}-1}^{B} & \boldsymbol{D}_{n_{B}}^{B}\end{array}\right)\left(\begin{array}{c}\boldsymbol{u}_{1}^{B} \\ \boldsymbol{u}_{2}^{B} \\ \vdots \\ \boldsymbol{u}_{n_{B}-1}^{B} \\ \boldsymbol{u}_{n_{B}}^{B}\end{array}\right)=\left(\begin{array}{c}\boldsymbol{b}_{1}^{B} \\ \boldsymbol{b}_{2}^{B} \\ \vdots \\ \boldsymbol{b}_{n_{B}-1}^{B} \\ \boldsymbol{b}_{n_{B}}^{B}\end{array}\right)$

Advection problems \leftrightarrow block triangular systems

- pure advection problem
- finite elements
- discontinuous Galerkin
- upwind formulation
\Longrightarrow permutation of block triangular system

Advection problems \leftrightarrow block triangular systems

- pure advection problem
- finite elements
- discontinuous Galerkin
- upwind formulation
\Longrightarrow permutation of block triangular system

Advection problems \leftrightarrow block triangular systems

- pure advection problem
- finite elements
- discontinuous Galerkin
- upwind formulation
\Longrightarrow permutation of block triangular system
- advection dominated problem
\Longrightarrow permutation of almost block triangular system, use block Gauss-Seidel method
- construction of permutation?
(1) Introduction
- Goal and discretization
- Solution of lower block triangular systems
- Relationship between advection problems and block triangular systems
(2) Construction of permutation
- Matrix graph
- Consistent ordering
- Cycles and strongly connected components
- Tarjan's algorithm
(3) Problems and results
- Advection-diffusion equation
(4) Conclusions

Matrix graph

capturing the dependencies \Longrightarrow matrix graph

Matrix graph

capturing the dependencies \Longrightarrow matrix graph

Consistent ordering

Find an ordering π such that

$$
(i, j) \in E \Rightarrow \pi(i)<\pi(j) \quad \forall i, j \in V
$$

Cycles and strongly connected components

- No cycles \Longrightarrow no problem (Topological sorting)
- Cycles \Longrightarrow no consistent ordering

Condensate strongly connected components

\Longrightarrow consistent ordering possible

Tarjan's algorithm

- Determination of strongly connected components: Tarjan's algorithm
- depth first search
- $\Theta(|V|+|E|)$
- here: $\Theta(n)$
\Longrightarrow construction of ordering: $\Theta(n)$

Steady state advection-diffusion equation in 2D/3D

$$
-\epsilon \Delta u+\boldsymbol{b} \cdot \nabla u=f
$$

- on the unit square $[0,1]^{2} /$ unit cube $[0,1]^{3}$
- Dirichlet boundary conditions
- b velocity field
- f source term
- ϵ diffusivity coefficient
- u unknown scalar function

Fast solvers for Eulerian convection schemes

Compared methods

Krylov solver:
Biconjugate gradient stabilized method (BiCGSTAB)

Preconditioner:

- SOR: SSOR
- SORTSOR: sorting the system and then SSOR
- BLOCKGS: implicitly sorting the system and then block Gauss-Seidel method

4ロ - \& 踣

Comparison of different parts

Conclusions

- pure advection problems (with this discretization): permuted lower block triangular system
- permutation can be found in $\Theta(n)$ using Topological sorting and Tarjan's Algorithm
- advection dominated problems (with this discretization): permuted almost lower block triangular system
- solve system with block Gauss-Seidel preconditioner: only few iterations
- the more dominating the advection the more efficient

Appendix

Topological sorting
Tarjan's algorithm

Topological sorting

Algorithm 1: Topological sorting
input : graph $G=(V, E)$
output: ordering π
for $v \in V$ do $\operatorname{attr}(v)=C$
for $v \in V$ do $\operatorname{Set} \operatorname{Attr}(v)$
for $v \in V$ do
if $\operatorname{attr}(v)=C$ then $\pi($ first $)=v$
end
Procedure SetAttr(v)
if $\operatorname{attr}(v)=C$ then $\operatorname{SetF}(v)$;
if $\operatorname{attr}(v)=C$ then $\operatorname{SetL}(v)$;

Topological sorting

Procedure SetF(v)

if $\forall w \in \operatorname{pred}(v): \operatorname{attr}(w)=F$ then
$\operatorname{attr}(v)=F$;
$\pi($ first $)=v$;
for $w \in \operatorname{succ}(v)$ do if $\operatorname{attr}(w)=C$ then $\operatorname{SetF}(w)$ end

Procedure SetL(v)

if $\forall w \in \operatorname{succ}(v): \operatorname{attr}(w)=L$ then
$\operatorname{attr}(v)=L ;$
$\pi($ last $)=v$;
for $w \in \operatorname{pred}(v)$ do if $\operatorname{attr}(w)=C$ then $\operatorname{SetL}(w)$ end

Tarjan's algorithm

Algorithm 2: Tarjan's Algorithm
input : graph $G=(V, E)$
output: strongly connected components components
index $=1$
$S=\{ \}$
components $=\{ \}$
for $v \in V$ do
if index (v) is undefined then $\operatorname{tarjan}(v)$
end

Tarjan's algorithm

Procedure tarjan(v)

```
index(v) = index
lowlink(v) = index
index = index +1
S.push(v)
for (v, v})\inE d
    if index( }\mp@subsup{v}{}{\prime})\mathrm{ is undefined then
        tarjan(v')
        lowlink(v) = min(lowlink(v),lowlink(v'))
    end
        else if }\mp@subsup{v}{}{\prime}\inS\mathrm{ then
        lowlink(v)=min(lowlink(v), index (v'))
    end
end
```


Tarjan's algorithm

Procedure tarjan(v)

if $\operatorname{lowlink}(v)=\operatorname{index}(v)$ then
$c=\{ \}$
repeat
$v^{\prime}=S . p o p()$
$c=c \cup\left\{v^{\prime}\right\}$
until $v^{\prime}=v$
components $=$ components $\cup\{c\}$
end

Tarjan's algorithm

v	index (v)	lowlink (v)	S	c
1	1	1	$\{1\}$	
5	2	2	$\{1,5\}$	
7	3	3	$\{1,5,7\}$	
7	3	1	$\{1,5,7\}$	
5	2	1	$\{1,5,7\}$	
1	1	1	$\{1,5,7\}$	
			$\}$	$\{7,5,1\}$
2	4	4	$\{2\}$	
4	5	5	$\{2,4\}$	
3	6	6	$\{2,4,3\}$	
3	6	4	$\{2,4,3\}$	
8	7	7	$\{2,4,3,8\}$	
			$\{2,4,3\}$	$\{8\}$

Tarjan's algorithm

v	index(v)	lowlink(v)	S	c
4	5	4	\{2, 4, 3\}	
2	4	4	\{2, 4, 3\}	
			\{\}	$\{3,4,2\}$
6	8	8	\{6\}	
			\{\}	\{6\}

