Fast solvers for Eulerian convection schemes Semester Thesis FS 2010

Andreas Hiltebrand Supervisor: Holger Heumann Professor: Ralf Hiptmair

Seminar for Applied Mathematics ETH Zürich

23.12.10

Introduction Construction of permutation •00000 0000 Problems and results

Conclusions

App en dix

Goal and discretization

Goal:

solve quickly pure advection and advection dominated problems

 Discretization: finite elements discontinuous Galerkin upwind formulation Introduction Construction of permutation 00000 0000 Problems and results

Con clu sion s

Appendix

Permuted block triangular systems

Au = b

Introduction	Construction	permutation
00000	0000	

Problems and results

Conclusions

Appendix

Block triangular systems

Introduction	Construction	permutation
00000	0000	

Problems and results

Conclusions

Appendix

Block triangular systems

Introduction Construction of permutation Problems and results Conclusions Appendix OOOO●
O
Construction of permutation Problems and results Conclusions Appendix OOOOOO
O
Construction of permutation Problems and results Conclusions Appendix

- pure advection problem
 - finite elements
 - discontinuous Galerkin
 - upwind formulation
 - \implies permutation of block triangular system

Fast solvers for Eulerian convection schemes

Introduction Construction of permutation Problems and results Conclusions Appendix OOOO●
O
Construction of permutation Problems and results Conclusions Appendix OOOOOO
O
Construction of permutation Problems and results Conclusions Appendix

- pure advection problem
 - finite elements
 - discontinuous Galerkin
 - upwind formulation
 - \implies permutation of block triangular system

Fast solvers for Eulerian convection schemes

- pure advection problem
 - finite elements
 - discontinuous Galerkin
 - upwind formulation

 \implies permutation of block triangular system

• advection dominated problem

 \implies permutation of almost block triangular system,

use block Gauss-Seidel method

• construction of permutation?

Introduction 00000●	Construction of permutation	Problems and results 000000	Conclusions	A pp en dix
Outline				

- Goal and discretization
- Solution of lower block triangular systems
- Relationship between advection problems and block triangular systems
- 2 Construction of permutation
 - Matrix graph
 - Consistent ordering
 - Cycles and strongly connected components
 - Tarjan's algorithm
- Operation of the second sec
 - Advection-diffusion equation

capturing the dependencies \implies matrix graph

capturing the dependencies \implies matrix graph

Introduction 000000	Construction of permutation ○●○○	Problems and results 000000	Conclusions	App en di×
Consistent	ordering			

Find an ordering π such that

$$(i,j) \in E \Rightarrow \pi(i) < \pi(j) \quad \forall i,j \in V$$

Introduction Construction of permutation Problems and results Conclusions Appendix OCOCOCO Conclusion of permutation Problems and results Conclusions Appendix OCOCOCO Conclusions Concl

- No cycles \implies no problem (Topological sorting)
- Cycles \implies no consistent ordering

Condensate strongly connected components

 \implies consistent ordering possible

Introduction 000000	Construction of permutation ○○○●	Problems and results	Conclusions	App en di×
Tarjan's a	gorithm			

- Determination of strongly connected components: Tarjan's algorithm
- depth first search
- $\Theta(|V| + |E|)$
- here: $\Theta(n)$
- \implies construction of ordering: $\Theta(n)$

$-\epsilon\Delta u + \boldsymbol{b}\cdot\boldsymbol{\nabla} u = f$

- \bullet on the unit square $[0,1]^2/$ unit cube $[0,1]^3$
- Dirichlet boundary conditions
- **b** velocity field
- f source term
- ϵ diffusivity coefficient
- u unknown scalar function

Fast solvers for Eulerian convection schemes

Compared methods

Krylov solver: Biconjugate gradient stabilized method (BiCGSTAB)

Preconditioner:

- SOR: SSOR
- SORTSOR: sorting the system and then SSOR
- BLOCKGS: implicitly sorting the system and then block Gauss-Seidel method

Fast solvers for Eulerian convection schemes

Andreas Hiltebrand

Introduction 000000	Construction of permutation	Problems and results 000000	Conclusions	App en dix
Conclusio	ns			

- pure advection problems (with this discretization): permuted lower block triangular system
- permutation can be found in Θ(n) using Topological sorting and Tarjan's Algorithm
- advection dominated problems (with this discretization): permuted almost lower block triangular system
- solve system with block Gauss-Seidel preconditioner: only few iterations
- the more dominating the advection the more efficient

Introduction 000000	Construction of permutation	Problems and results 000000	Conclusions	App en dix
Appendix				

Topological sorting

Tarjan's algori<u>thm</u>

Fast solvers for Eulerian convection schemes

イロト イロト イヨト イヨト

Introduction 000000	Construction of permutation	Problems and results	Conclusions	App en dix
Topologica	al sorting			

Algorithm 1: Topological sorting

```
input : graph G = (V, E)
output: ordering \pi
for v \in V do attr(v) = C
for v \in V do SetAttr(v)
for v \in V do
if attr(v) = C then \pi(first) = v
end
```

Procedure SetAttr(*v*)

if attr(v) = C then SetF(v); if attr(v) = C then SetL(v);

Introduction 000000	Construction of permutation 0000	Problems and results 000000	Conclusions	App en dix
Topologica	al sorting			

Procedure SetF(v)

if
$$\forall w \in pred(v) : attr(w) = F$$
 then
 $attr(v) = F;$
 $\pi(first) = v;$
for $w \in succ(v)$ do if $attr(w) = C$ then $SetF(w)$
end

Procedure SetL(v)

if
$$\forall w \in succ(v) : attr(w) = L$$
 then
 $attr(v) = L;$
 $\pi(last) = v;$
for $w \in pred(v)$ do if $attr(w) = C$ then $SetL(w)$
end

Introduction 000000	Construction of permutation 0000	Problems and results 000000	Conclusions	App en di×
Tarjan's a	gorithm			

Algorithm 2: Tarjan's Algorithm

occoccoccion	Construction of permutation	OOOOOO	Conclusions	Appendix
Tarjan's a	lgorithm			
Proced	ure tarjan(v)			
index(v) = index			
lowlink((v) = index			
index =	index $+1$			
S.push(v)			
for (v, v)	$(\mathbf{v}') \in E$ do			
if in	dex(v') is undefined t	hen		
t	$\operatorname{arjan}(v')$			
Ι	lowlink(v) = min(lowlin	nk(v), lowlink(v'))		
end				
else	if $v' \in S$ then			
Ι	lowlink(v) = min(lowlin	nk(v), index(v'))		
end				
end				

Introduction 000000	Construction of permutation	Problems and results 000000	Con clusion s	App en dix
Tarjan's	algorithm			

Procedure tarjan(v)

if lowlink(v) = index(v) then $c = \{\}$ repeat v' = S.pop() $c = c \cup \{v'\}$ until v' = vcomponents = components $\cup \{c\}$ end Introduction 000000 Construction of permutation

Problems and results

Conclusions

App en dix

Tarjan's algorithm

$1 \leftarrow 2 \leftarrow 3$ $\downarrow \checkmark \qquad \uparrow \checkmark$ $6 5 \rightarrow 7 4 8$				
v	index(v)	lowlink(v)	5	с
1	1	1	{1}	
5	2	2	{1,5}	
7	3	3	$\{1, 5, 7\}$	
7	3	1	$\{1, 5, 7\}$	
5	2	1	$\{1, 5, 7\}$	
1	1	1	$\{1, 5, 7\}$	
			{}	$\{7, 5, 1\}$
2	4	4	{2}	
4	5	5	{2,4}	
3	6	6	{2,4,3}	
3	6	4	$\{2, 4, 3\}$	
8	7	7	{2, 4, 3, 8}	
			{2,4,3}	{8}

Fast solvers for Eulerian convection schemes

< 三→

Introduction 000000 Construction of permutation

Problems and results

Conclusions

App en dix

Tarjan's algorithm

Fast solvers for Eulerian convection schemes

ৰ≣► ≣ পণ্ণ Andreas Hiltebrand

< □ > < 同 >

→ Ξ →