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Chapter 1. Introduction

1 Introduction

1.1 Subject and motivation

Advection-di�usion problems with a dominating di�usion can be handled well by standard �nite
elements. But in case of small or even vanishing di�usion special schemes are needed. We use
here discontinuous Galerkin methods with penalty terms and upwinding. The solution of the
corresponding linear system can then be speeded up by methods tailored to these problems.

The goal of this work is to implement and test a certain idea: Advection dominated problems
introduce a �ow of information. By ordering the degrees of freedom accordingly one can utilize
this and construct a fast solver. More exactly the sorted system is (almost) lower block triangular.
This implies that a block Gauss-Seidel method works well.

1.2 Outline of the thesis

Chapter 2 introduces the theoretical background for this work. First the main idea of ordering
the degrees of freedom and then solving the easier block triangular system is illustrated. The
rest of the chapter deals with the construction of orderings, especially how to reduce the size of
blocks in the sorted linear system.

The goal of chapter 3 is to show the main structure of the code. In particular the classes and
their most important functions are discussed. First the construction of orderings is in focus and
then the preconditioners that approximatively solve the system. The last point is a discussion
of the complexity of the algorithms.

In chapter 4 the test cases are de�ned and the results are discussed. The advection-di�usion
equation and a generalized convection-di�usion problem are studied (in 3D). The performance
of di�erent preconditioners are compared and their dependency on the di�usion coe�cient is
investigated.

The last chapter 5 summarizes the work and draws the conclusions.
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Chapter 2. Ordering of the degrees of freedom

2 Ordering of the degrees of freedom

In order to solve a linear di�erential equation numerically a discretization has to be applied. It
leads to a linear system

Au = b , (2.1)

where A ∈ Rn×n is the system matrix, b ∈ Rn is the right-hand side and u ∈ Rn is the solution
vector with n degrees of freedom.

We investigate pure advection and advection dominated problems. The discretization is done
using discontinuous Galerkin methods with penalty terms and upwinding (see [1]). The goal of
this work is to solve the resulting linear systems e�ciently. We therefore introduce an ordering of
the degrees of freedom that corresponds to the �ow of information in the problem and solve the
sorted system. The numerical solvers often depends on the ordering of the degrees of freedom;
using a good ordering can signi�cantly improve their performance.

An ordering of the degrees of freedom π is a permutation of the indices of the degrees of freedom
{1, . . . , n}. It maps the index in the sorted system to the index in the original system.

The corresponding permutation matrix P ∈ Rn×n has the entries

Pi,j =
{

1, i = π(j)
0, otherwise

(2.2)

The sorted matrix is then Ã = PAP T, the sorted right-hand side is b̃ = Pb and the sorted
solution vector is ũ = Pu. Out of the original linear system we get

PAP TPu = Pb (2.3)

by multiplication of P from the left side and using the property of a permutation matrix P TP =
I, where I is the identity matrix. Then we use these de�nitions to obtain the equivalent system

Ãũ = b̃ . (2.4)

The various steps for solving the original system are summarized in algorithm 1.

Note that the permutation matrix P does not need to be constructed explicitly. It would be more
e�cient to sort the rows and columns directly according to π. We also do not really want to sort
the matrix A for e�ciency reasons.1 Therefore this algorithm is avoided and our preconditioners
work directly on the original matrix A. But it is much easier to develop algorithms based on the

1One to could try to construct the ordering without assembling the original matrix and then directly assemble
the sorted matrix.
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2.1. Solution of the sorted system

Algorithm 1: Solution of linear system by sorting it

input : matrix A, right-hand side b
output: u solution to Au = b
construct ordering π, the corresponding permutation matrix is P

sort matrix Ã = PAP T

sort right-hand side b̃ = P b

solve Ãũ = b̃

invert sorting of solution u = P Tũ

sorted matrix, which is the reason why this approach is presented here. Working on the original
matrix then just adds some index transformations on top. However, from the cache e�ciency
point of view, this is not optimal too, because it leads to many jumps within the memory.

2.1 Solution of the sorted system

To justify the additional e�ort in sorting the matrix, the sorted system should be much easier to
invert. For pure advection problems the sorted matrix Ã will typically be lower block triangular,
for a suitable de�nition of the ordering of the degrees of freedom. Hence, it is easy to invert the
system, i.e. a quick numerical solver can be constructed. The original system could be solved
in the same way, but it is not as apparent as for the lower block triangular system that this is
possible.

If Ã is lower block triangular we can write

Ã =



DB
1 0 · · · · · · 0

LB
2,1 DB

2
. . .

...
...

. . .
. . .

. . .
...

...
. . . DB

nB−1 0
LB
nB ,1

· · · · · · LB
nB ,nB−1 DB

nB


, (2.5)

where DB
i ∈ Rni×ni for i = 1, . . . , nB are the blocks on the diagonal with size ni and LB

i,j ∈ Rni×nj

for 1 ≤ j < i ≤ nB are the blocks on the lower part.

The right-hand side and the solution vector are partitioned accordingly

b̃ =

 bB1
...

bBnB

 , ũ =

 uB1
...

uBnB

 (2.6)

with bBi ,u
B
i ∈ Rni .
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2.1. Solution of the sorted system

The linear system is then equivalent to

i−1∑
j=1

LB
i,ju

B
j + DB

i uBi = bBi , i = 1, . . . , nB (2.7)

Note that each uBi only depends on uBj with j < i. This implies that we can solve for uB1 , then

for uB2 and so on. We summarize this in algorithm 2.

Algorithm 2: Solution of block triangular system

input : block triangular matrix Ã, right-hand side b̃
output: ũ solution to Ãũ = b̃
Ã, b̃, ũ are partitioned as described above

for i = 1, . . . , nB do

uBi =
(
DB
i

)−1
(
bBi −

∑i−1
j=1 LB

i,ju
B
j

)
end

The solution of the whole system splits into the solution of systems corresponding to each diagonal
block DB

i . The smaller the blocks the easier it is to solve each block and also to solve the whole
system. So the �rst goal of our ordering is to generate blocks that are as small as possible.

In order to compute the solution of the block-wise systems one can use direct or iterative methods.
In section 3.5 an implementation is presented that uses both methodologies. If iterative methods
are used, the solution will typically be less exact and therefore errors will accumulate. But since
the system is in general not block triangular, there will be a few iterations over the whole system
anyway, so the error will decrease more and more.

That the small systems are invertible whenever A is invertible can be seen from

det A = det(P TÃP ) = det(P T) det(Ã) det(P ) = det(P TP )︸ ︷︷ ︸
det(I)=1

·
nB∏
i=1

det(DB
i ) . (2.8)

The systems for advection dominated problems will not really be block triangular (we consider
just one big block as not block triangular). But it is typically possible to �nd an ordering such
that the part above the diagonal is small.

For advection dominated problem this can be done in the following way: We split the matrix

A = Aadv + Adiff (2.9)

into Aadv corresponding to the advection operator and Adiff corresponding to the di�usion
operator. Adiff is assumed to be small. (The in�ow boundary conditions are included in the
advection part; the remaining boundary conditions are accounted for in the di�usion part.) To
construct the ordering we use only the advection part, which can be brought in lower block
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2.1. Solution of the sorted system

triangular form. The di�usion part is typically symmetric and hence no matter how we order
the degrees of freedom the corresponding matrix will not be block triangular; thus it leads to
some non-zero entries in the upper part, but they are small if the assumption is true.

We partition the matrix Ã as follows

Ã =



DB
1 UB

1,2 · · · · · · UB
1,nB

LB
2,1 DB

2
. . .

...
...

. . .
. . .

. . .
...

...
. . . DB

nB−1 UB
nB−1,nB

LB
nB ,1

· · · · · · LB
nB ,nB−1 DB

nB


, (2.10)

where DB
i ∈ Rni×ni for i = 1, . . . , nB are the blocks on the diagonal with size ni and LB

i,j ∈ Rni×nj

for 1 ≤ j < i ≤ nB are the blocks on the lower part as before. The new parts are the blocks on
the upper part: UB

i,j ∈ Rni×nj for 1 ≤ i < j ≤ nB. Note that for a given matrix Ã there is in

general no unique partitioning, unless the sizes of the blocks ni are speci�ed. The blocks UB
i,j

should contain only small elements and as few non-zero elements as possible. The construction
of the ordering should take care of this.

We partition the right-hand side and the solution accordingly (as before). The linear system is
equivalent to

i−1∑
j=1

LB
i,ju

B
j + DB

i uBi +
nB∑

j=i+1

UB
i,ju

B
j = bBi , i = 1, . . . , nB . (2.11)

Assuming the entries in UB
i,j to be small, it is natural to propose an algorithm similar to algo-

rithm 2.

Algorithm 3: Solution of almost block triangular system

input : almost block triangular matrix Ã, right-hand side b̃, initial guess ũ
output: ũ improved solution to Ãũ = b̃
Ã, b̃, ũ are partitioned as described above

for i = 1, . . . , nB do

uBi =
(
DB
i

)−1
(
bBi −

∑i−1
j=1 LB

i,ju
B
j −

∑nB
j=i+1 UB

i,ju
B
j

)
end

The algorithm can also be iterated a few times to improve the solution. Note the following: If
we de�ne L as the strictly lower block triangular part, D as the block diagonal part and U as
the strictly upper block triangular part, then algorithm 3 is equivalent to

ũ = (L + D)−1(b−Uũ) , (2.12)

i.e. a block Gauss-Seidel method.
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2.2. Construction of orderings

The necessary and su�cient condition that the error always vanishes if the number of iterations is
increased, is, as usual, that the spectral radius ρ of the iteration matrix −(L + D)−1U satis�es

ρ
(
− (L + D)−1U

)
< 1 . (2.13)

Because it can be estimated by

ρ
(
− (L + D)−1U

)
≤
∥∥∥(L + D)−1

∥∥∥ ‖U‖ (2.14)

using a sub-multiplicative matrix norm ‖ · ‖, the solution of the algorithm converges at least if
the upper part U is small enough.

2.2 Construction of orderings

In order to construct a suitable ordering of the degrees of freedom let us have a look at the
matrix graph.

To motivate the matrix graph consider the i-th equation of a linear system with the matrix A:

n∑
k=1

Ai,kuk = bi . (2.15)

If the diagonal element is non-zero Ai,i 6= 0, we can solve for ui and get

ui =
1
Ai,i

bi − n∑
k=1
k 6=i

Ai,kuk

 =
1
Ai,i

bi −
n∑
k=1
k 6=i

Ai,k 6=0

Ai,kuk

 . (2.16)

ui depends on all uk with k such that Ai,k 6= 0 and k 6= i. This dependency is captured in the
matrix graph: The matrix graph G = (V,E) of a matrix A ∈ Rn×n is a directed graph and
composed of the following: The nodes V = {1, . . . , n} are the indices of the degrees of freedom
and the edges are

E = {(i, j) ∈ V × V : i 6= j, |Aj,i| > tol} . (2.17)

In principle we would like to use tol = 0, but because of rounding errors in the matrix a small
tolerance is useful.

An ordering of the degrees of freedom can be seen as a numbering of the vertices of the matrix
graph. This is true because the nodes correspond the degrees of freedom. We would like to �nd
an ordering π which is consistent with the edges in the following way:

(i, j) ∈ E ⇒ π(i) < π(j) ∀i, j ∈ V . (2.18)

Then we could solve successively for uπ(1), uπ(2),. . . ,uπ(n) and nothing would (strongly) depend
on anything that is not already available. Put into the framework of the last section: The sorted
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2.3. Topological sorting

matrix Ã will then be lower triangular (up to some small entries, if tol>0) and we see that the
linear system will be (approximately) solvable by a forward substitution.

If the graph G is acyclic, this is indeed possible. In section 2.3 we give an algorithm to construct
a suitable ordering for this setting.

Unfortunately, the graphs G for our problems are not acyclic (for a small choice of tol, which
we assume in the following). But with some modi�cations we can get to a related graph that is
acyclic at least for simple cases.

We notice that for discontinuous �nite elements each degree of freedom is assigned to a certain
element and that the degrees of freedom of a certain element typically all depend on each other,
i.e. they form cycles. Therefore, we condensate the graph G into an element-wise graph Gelem =
(Velem, Eelem) . The degrees of freedom of one element form a new vertex, i.e. each element index
is a node: Velem = {1, ..., nelem}, where nelem is the number of elements. Two vertices of the
condensation graph are connected with an edge if there is any edge between degrees of freedom
of the elements represented by these vertices. We denote by melem

dof the mapping

melem
dof : {1, ..., n} → {1, ..., nelem} (2.19)

that assigns each index of a degree of freedom the index of the element the degree of freedom is
assigned to. Then the edge set of the condensation graph is

Eelem =
{

(i, j) ∈ Velem × Velem : i 6= j,∃(k, l) ∈ E : i = melem
dof (k), j = melem

dof (l)
}
. (2.20)

For simple pure advection problems this graph will be acyclic. We can then construct a consistent
ordering for the elements πelem as above. This implies that we can solve for all the degrees of
freedom of the element πelem(1), then for those of the element πelem(2) and so on. Their will
be no (strong) dependencies between degrees of freedom of di�erent elements that are broken.
In terms of the last section: the sorted matrix will be (almost) lower block triangular and each
block corresponds to one element.

2.3 Topological sorting

The construction of consistent orderings for acyclic graphs is typically called topological sorting
or ordering. There are di�erent algorithms, we refer here to [2] (Hackbusch calls it downwind
numbering, but it is essentially the same). Note that except for simple cases the ordering is
not unique. Di�erent algorithms will produce di�erent orderings; the outcome of the algorithms
might even depend on the primal ordering of the vertices.

According to Hackbusch, the basic procedure to construct a consistent ordering works as follows:
Each node v gets an attribute attr(v) ∈ {F,C, L}. F stand for �rst and indicates that all
predecessors of this node are already included in the ordering with a low index and that they
also have the �ag F . Similarly, if a node is assigned L (last) then all successors of this node have
been included in the ordering with a high index and they have been assigned L. In the beginning
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2.3. Topological sorting

each node gets C. If it is not in a cycle or between two cycles, it will get either an F or an L in
the running of the algorithm. Those that keep the C-�ag, are �nally inserted in the middle of
the ordering π in the original order.

Algorithm 4: Simple ordering

input : graph G = (V,E)
output: ordering π
for v ∈ V do attr(v) = C
for v ∈ V do SetAttr(v)
for v ∈ V do

if attr(v) = C then π(first) = v
end

first stands for the �rst entry in π that is not yet assigned.

Procedure SetAttr(v)

if attr(v) = C then SetF(v);
if attr(v) = C then SetL(v);

SetAttr tries to assign the �ag F to the node v and its direct and indirect successors unless v
has already got an attribute F or L. Then it tries to assign L to it.

Procedure SetF(v)

if ∀w ∈ pred(v) : attr(w) = F then

attr(v) = F ;
π(first) = v;
for w ∈ succ(v) do if attr(w) = C then SetF(w)

end

Only if all the predecessors of v pred(v) already have the attribute F , also v gets F by SetF and
it is included in the ordering π at the �rst still unde�ned place. The search continues with v's
successors succ(v).

SetL works analogously but it uses the �ag L and the role of successors and predecessors is
swapped. last stands for the last entry in π that is yet unde�ned.

If there are no cycles in the graph G then all nodes get either F or L and the returned ordering
π is consistent (compare eq. 2.18). If the graph contains cycles the ordering is only consistent
for the nodes that do not have the C-�ag. That is not surprising, because a consistent ordering
does not exist in this case. But most of the time we can still construct a better ordering; this is
treated in the next section.
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2.4. Cyclic case

Procedure SetL(v)

if ∀w ∈ succ(v) : attr(w) = L then

attr(v) = L;
π(last) = v;
for w ∈ pred(v) do if attr(w) = C then SetL(w)

end

SetAttr is called once for each node. SetF is called at most once for each node by SetAttr.
Additionally for a node v SetF(v) might be called by each of v's predecessors. Similarly SetL(v)
may be called once by SetAttr and at most once by each of v's successors. This leads to a total
complexity of this algorithm of Θ( |V | + |E| ) .

2.4 Cyclic case

If the graph G is not acyclic we will not get a consistent ordering. But the goal is to �nd an order-
ing such that the resulting blocks in the lower triangular system are as small as possible.

Once we note that there is a link between blocks and strongly connected components in the graph
it is rather easy and fast to �nd an optimal ordering that leads to the smallest possible blocks.
Therefore we reintroduce strongly connected components: A graph is strongly connected if and
only if there exists a directed path from each vertex to each vertex. A subgraph GS of G is a
strongly connected component of graph G if and only if it is strongly connected and there is no
larger subgraph containing GS that is strongly connected. The condensation of G is the graph
that is obtained if each strongly connected components of G is condensed into one vertex.

Whenever there is a nontrivial strongly connected component in our matrix graph we will get a
block in the sorted matrix that contains at least the degrees of freedom in this component, no
matter how we order them. This is a consequence of the fact that each vertex in a strongly con-
nected component is reachable by each vertex in the same component and therefore each degree
of freedom depends on all the degrees of freedom in the same component. So the smallest blocks
that we might achieve are those corresponding to the strongly connected components.

We will see that this is indeed possible: A simple but useful fact for this purpose is that the
condensation of a graph is always acyclic. (Assume that there was a cycle in the condensed
graph. Then obviously there would have been a cycle in the original graph that contains vertices
from di�erent strongly connected components, which leads to a contradiction with the de�nition
of strongly connected components.) This implies that we can order the strongly connected
components consistently. The degrees of freedom can then be ordered only according to this
component ordering (the ordering in the component is not important here) and the ordering will
be consistent except for some relations inside the strongly connected components.

An e�cient algorithm for computing the strongly connected components is Tarjan's Algorithm
(see [4] or [3]):

9



2.4. Cyclic case

Algorithm 5: Tarjan's Algorithm

input : graph G = (V,E)
output: strongly connected components components
index = 1
S = {}
components = {}
for v ∈ V do

if index(v) is unde�ned then tarjan(v)
end

Procedure tarjan(v)

index(v) = index
lowlink(v) = index
index = index+ 1
S.push(v)
for (v, v′) ∈ E do

if index(v′) is unde�ned then

tarjan(v′)
lowlink(v) = min(lowlink(v), lowlink(v′))

end

else if v′ ∈ S then

lowlink(v) = min(lowlink(v), index(v′))
end

end

if lowlink(v) = index(v) then
c = {}
repeat

v′ = S.pop()
c = c ∪ {v′}

until v′ = v
components = components ∪ {c}

end

The algorithm performs a depth-�rst search. Each node v gets an index index(v) that is in-
creasing in the order of appearance. Additionally each node is kept in a stack S until we have
identi�ed its components. In order to determine the components we have an additional property,
called lowlink, for each node. lowlink(v) contains the smallest index of a node discovered so
far that is reachable from v (and that is not contained in an already identi�ed component).
lowlink(v) is initialised by the index and then we update it using the values of the successors.
If after all this updating lowlink(v) = index(v) holds, this means that v is the node with the
smallest index of a strongly connected component. All nodes in this component are on the stack
S and we only have to pop elements from it until we get v. We can store all those elements in

10



2.4. Cyclic case

a list and add this list to the list of components. Fig. 2.1 illustrates the algorithm applied to a
small graph.

The algorithm is e�cient: the procedure tarjan is called once for each node. For the update of
the lowlinks each edges is considered once. If the test whether v′ is in S is done in constant time
(by using a �ag for each node), this leads to a complexity of Θ( |V | + |E| ) .

11



2.4. Cyclic case

1 2 3

45

6

7

8

v index(v) lowlink(v) S c

1 1 1 {1}
5 2 2 {1, 5}
7 3 3 {1, 5, 7}
7 3 1 {1, 5, 7}
5 2 1 {1, 5, 7}
1 1 1 {1, 5, 7}

{} {7, 5, 1}
2 4 4 {2}
4 5 5 {2, 4}
3 6 6 {2, 4, 3}
3 6 4 {2, 4, 3}
8 7 7 {2, 4, 3, 8}

{2, 4, 3} {8}
4 5 4 {2, 4, 3}
2 4 4 {2, 4, 3}

{} {3, 4, 2}
6 8 8 {6}

{} {6}

7, 5, 1 3, 4, 26 8

Figure 2.1: Illustration of Tarjan's algorithm. Top: Example graph. Centre: Summary of the
changes of index(v) and lowlink(v) of the node v in the running of the algorithm,
together with the stack S and the identi�ed strongly connected components c. Bottom:
Component-wise condensation.
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Chapter 3. Implementation

3 Implementation

The Implementation is done in the Fenics/Dol�n framework.1 The code language is C++, but the
classes can also be used through a python interface. This chapter should give a brief introduction
to the code. There are two general notes to be made.

We use PETSc as the linear algebra backend.2 Mostly we do not explicitly use the PETSc data
types, but sometimes it is not avoidable or we need access to the underlying data structure to
e�ciently implement the algorithms.

Although, we have used 1-based indices in the last chapter (e.g. for the degrees of freedom), we
will switch here to the 0-based convention of C++.

3.1 Ordering

The class Ordering is the base class for all orderings. The ordering should be created in the
constructer of the sub class and then be stored in the �eld ordering. The size of the graph
for which the ordering is constructed is stored in the variable size. blocks contains the blocks
that the ordering algorithm has identi�ed. It contains the start and the end indices of the blocks
as pairs and they should be sorted. (When working with blocks one must not assume that the
sorted matrix is lower block triangular with those blocks, but rather assume that this is a good
block partitioning.) Blocks of size one are usually omitted.

The member variables are:

dolfin::uint size;

std::vector<dolfin::uint> ordering;

std::vector<std::pair<dolfin::uint,dolfin::uint> > blocks;

they are declared as protected, to be accessible by the sub classes.

The constructor

Ordering(dolfin::uint size)

just gets the size of the graph and does some initialisation.

The methods

void get_ordering(std::vector<dolfin::uint> & o)

void get_inverse_ordering(std::vector<dolfin::uint> & io)

1The FEniCS Project: http://www.fenics.org/
2Portable, Extensible Toolkit for Scienti�c Computation (PETSc): http://www.mcs.anl.gov/petsc/
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3.2. SimpleOrdering

can be used to get copies of the ordering (permutation) or its inversion.

The methods

void sort_matrix(const dolfin::Matrix& A, dolfin::Matrix& As )

void sort_rhs(const dolfin::GenericVector& b, dolfin::GenericVector& bs)

void unsort_unknowns(const dolfin::GenericVector& xs, dolfin::GenericVector& x)

can be used to sort the system and then to get the solution back in the original order. The two
arguments should never be the same. For e�ciency reason the sorting of the matrix is done as
follows: First the sparsity pattern of the sorted matrix is constructed and only then the entries
in the sorted matrix are stored.

3.2 SimpleOrdering

The class SimpleOrdering is derived from Ordering and it implements the ordering as described
in algorithm 4 (topological sorting).

The constructors

SimpleOrdering(const dolfin::Matrix& A,bool verbose=false);

SimpleOrdering(const double A[],int size,bool verbose=false);

take a matrix A and construct an ordering based on its matrix graph. If verbose is true more
output is generated.

SimpleOrdering(std::vector<std::vector<dolfin::uint> >& pred,

std::vector<std::vector<dolfin::uint> >& succ,bool verbose=false);

The last constructor gets the graph directly via a list of the predecessors and successors of each
node (pred and succ).

The predecessors and successors are stored in

std::vector<std::vector<dolfin::uint> >* ppred;

std::vector<std::vector<dolfin::uint> >* psucc;

The variables are lists of the predecessors and successors for each degree of freedom.

The methods

void get_predecessors(std::vector<dolfin::uint>& pred, const dolfin::Matrix& A,

dolfin::uint idx);

void get_successors(std::vector<dolfin::uint>& succ, const dolfin::Matrix& At,

dolfin::uint idx);

void get_predecessors(std::vector<dolfin::uint>& pred, const double A[],

dolfin::uint idx);

void get_successors(std::vector<dolfin::uint>& succ, const double A[],

dolfin::uint idx);

14



3.3. CycleOrdering

are used to construct those. idx is the index of the node for which the predecessors or successors
are extracted.

Once the information of the graph is construced, all constructors call

void create_ordering();

This procedure directly implements the algorithm 4 (simple ordering) using the functions from
section 2.3

void set_F(dolfin::uint i);

void set_L(dolfin::uint i);

void set_attr(dolfin::uint i);

The attribute of each node is stored in an array

std::vector<flag> flags;

where the type flag is de�ned as follows:

enum {Fflag,Cflag,Lflag};

typedef dolfin::uint flag;

During the construction of the ordering one has to know which index the next node that gets an
F -�ag would get (first in the algorithm) and similar the new index of the next node that gets
the attribute L (last in the algorithm). This is stored in

dolfin::uint next_F;

dolfin::uint next_L;

and increased or decreased whenever a new node with the corresponding �ag is inserted in the
ordering.

3.3 CycleOrdering

CycleOrdering is based on SimpleOrdering (but it does not inherit from it). Everything is the
same except that the routines for the dense matrices are left away and that create_ordering
also orders the nodes with the attribute C.

It determines the strongly connected components of the subgraph of the C-nodes using algorithm
5 (Tarjan's algorithm). For e�ciency reasons and to avoid a stack over�ow the recursion is
replaced by explicitly using a stack of the nodes that have to be considered.

Then the condensation of the graph is constructed by looping over all edges and testing whether
they link di�erent components. This part has to be implemented carefully in order not to destroy
the order of complexity. In principle one could get lists of predecessors and successors of the
components of order O(n) in some cases. Doing a sort on those would then lead to O(n log(n)) .
Using a �ag whether a certain edge is already included one can avoid the overhead. The resulting
lists are no longer sorted, but this is not required in the following part.
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3.4. ElementOrdering

SimpleOrdering is then used to determine the ordering of the components. The component-wise
predecessors and successors (condensation graph) are passed.

In the end, the ordering is constructed. Component by component in the computed ordering,
all their nodes are inserted. Inside the components (that correspond to the blocks in the sorted
matrix) the nodes are not further ordered.

3.4 ElementOrdering

ElementOrdering implements an ordering based on the element-wise matrix graph as de�ned in
last part of section 2.2.

ElementOrdering(const dolfin::Matrix& A, const dolfin::DofMap& dofm,

const dolfin::Mesh& m,bool verbose=true);

The constructor takes a matrix A and computes its matrix graph (we need here only the prede-
cessors).

Next the condensation is computed. We need to know which degree of freedom corresponds to
which element, that is why we need the degree of freedom map dofm and the mesh m.

Once we have the predecessor and the successors in this element-wise graph, CycleOrdering is
used to construct an ordering of the elements.

The last step is then to construct a suitable ordering of the degrees of freedom. Element by
element in the just computed ordering, all indices to the corresponding degrees of freedom are
inserted into the ordering.

Apart from a few procedures to compute the predecessors and successors (not all of them are
used), there is nothing more in this class.

3.5 Preconditioners

There are two new preconditioners. Both of them are derived from dolfin::PETScPreconditioner

that they can be used in the corresponding Krylov solver. The �rst is

class MySORPreconditioner : public dolfin::PETScPreconditioner

It performs Successive Over-Relaxation (SOR) on the sorted matrix implicitly. It works directly
on the original matrix and uses the ordering via additional index transformations.

The constructor

MySORPreconditioner(const dolfin::Matrix& A,const Ordering& o,

unsigned int itermax, double omega,

bool backwardToo, bool zeroInitialGuess);
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3.5. Preconditioners

needs to get the original matrix A and the ordering o that should be used. Additionally it gets the
number of SOR-iterations itermax that should be done in each step and the relaxation parameter
omega. If backwardToo is true not only forward sweeps are done. Instead a forward and backward
sweep is performed in each iteration (symmetric SOR). zeroInitialGuess indicates that in the
beginning the solution vector should �lled with zero values. For both �ags the default values is
true.

The only method that needs to be implemented is

virtual void solve(dolfin::PETScVector& x, const dolfin::PETScVector& b);

which returns an approximate solution to the system A*x=b. This is a straightforward imple-
mentation of the SOR iteration.

The second preconditioner is MyBlockGSPreconditioner. It performs a block Gauss-Seidel itera-
tion as described in algorithm 3. Since the smaller blocks are dense anyway, a dense direct solver
based on LU-decomposition is used for those. For the bigger blocks SOR is used. Convergence
is not guaranteed then, but it has basically worked well in our cases. Blocks are considered to
be small if they are not larger than the constant MAXSIZELU de�ned in the code. This should be
at least the number of degrees of freedom per element.

As the �rst preconditioner it works implicitly on the sorted matrix, but it uses the original matrix
and additional index transformations corresponding to the ordering.

The constructor

MyBlockGSPreconditioner(const dolfin::Matrix& A,const Ordering& o,

unsigned int itermax, double omega,

bool backwardToo, bool zeroInitialGuess);

has the same form as the constructor for MyBlockGSPreconditioner. But note that the number
of iterations itermax and the relaxation parameter omega only correspond to the SOR-iterations
for the systems due to the bigger blocks. Globally, the function

virtual void solve(dolfin::PETScVector& x, const dolfin::PETScVector& b);

performs only one iteration. If backwardToo is set, in deviation from the algorithm not only
forward sweeps but also backward sweep are done. This holds true for the global iteration as
well as for the SOR-iterations of the bigger blocks systems.

As the most costly part in the solution of a linear system is the LU-decomposition, it is only
computed when solve is called the �rst time and is afterwards reused.

Because of stability we do column pivoting. The column pivoting has to be stored too. Hence,
we de�ned the following two variables

std::vector<std::vector<double> > LUblocks;

std::vector<std::vector<dolfin::uint> > pivots;

and use them to store the computed LU-decomposition together with the pivoting informa-
tion.

17



3.6. Remaining code

To solve the small systems we then permute the right hand side and do a forward and backward
substitution.

3.6 Remaining code

The remaining code consists mainly of the de�nitions of the di�erent problems that are de�ned in
the next chapter. Because it is a direct implementation of these problems, we do no concentrate
longer on this code.

But to get an overview, the base structure is typically as follows: The solution and the velocity
�eld are de�ned. The mesh is generated. The boundary conditions are de�ned and later on
imposed. The bilinear and the linear forms are de�ned and the corresponding matrices and
vectors are assembled. The ordering is constructed, based on the advection part. The linear
system is solved and �nally errors and error rates are computed.

3.7 Complexity

We discuss here the complexity of some of the algorithms applied to the sparse linear system in
the �nite element context.

For the construction of orderings with ElementOrdering we have get the (element-wise) matrix
graph. When we assume that shape regular meshes are used, there exists a constant, such that
each element has less neighbouring elements. The number of matrix entries due to one element is
at most its number of degrees of freedom times the number of degrees of freedom of its neighbours.
Unless we use p-adaptivity this is then also bounded by a constant. All in all, the number of
matrix entries and therefore the number of edges in the matrix graph is O(n) .

The element-wise condensation graph has therefore also O(n) nodes and O(n) edges. It can be
computed e�ciently in O(n) .

Using the topological sorting and then Tarjan's algorithm needs therefore also onlyO(n) (because
both of them are linear in the number of edges and nodes). The condensation into the component-
wise graph can also be done in linear time; the number of nodes and edges is not bigger than
in the original graph. Hence, also the component-wise ordering can be constructed e�ciently in
O(n) .

This results in a complexity of O(n) for the complete algorithm, which is the optimal order that
one can hope for.

Sorting the matrix and the right hand side is O(n) . It is not O(n log(n)) because we do not
sort the entries, but we do only rearrange them in the ordering already computed. (It depends
on the framework, whether this is really achieved, but in principle it is doable.)

Concerning the preconditioners, each iteration of MySORPreconditioner has a complexity in the
order of the number of the matrix elements, which is O(n) . The block Gauss-Seidel iteration
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3.7. Complexity

of MyBlockGSPreconditioner needs O(n) to apply all the non-block-diagonal elements of the
matrix. The solution of the block-wise systems costs as follows: The size of the blocks for which
the LU-decomposition is used is �xed. Therefore the complexity of the solution of the small
systems is linear in the number of degrees of freedom contained in small blocks. For the big
blocks a �xed number of SOR-iterations is done, this results in costs linear to the number of
degrees of freedom in big blocks. Together, this implies a complexity of O(n) for each iteration
of this preconditioner.
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Chapter 4. Problems and Results

4 Problems and Results

We have used di�erent problem cases to test and validate the code.

4.1 Advection-di�usion equation in 3D

First we consider the scalar advection di�usion equation

−ε∆u+ b ·∇u = f (4.1)

on the unit cube [0, 1]3. u is the unknown scalar function, b is the velocity �eld and f is the
source term. ε ≥ 0 is the di�usivity coe�cient. The smaller it gets relative to |b| the more
dominating is the advection term.

We use a source term f and Dirichlet boundary conditions such that solution is given by

u(x, y, z) = y(1− y)(1− x)(1− z) (4.2)

Three di�erent �ow �elds are used:

1. a constant �ow (we will refer to it as CONST)

b(x, y, z) = (0.6, 0.8,−0.3) T , (4.3)

2. a smooth perturbation of the constant �ow (SIN)

b(x, y, z) = (0.6, 0.8 + 2 sin(4πx),−0.3 + 0.2 sin(4πy)) T , (4.4)

3. a U-turning �ow (UTURN)

b(x, y, z) =
{

(−r sin(φ), r cos(φ),−0.1)T, x > 1/2
(−(y − 1/2), 0,−0.1)T, otherwise

(4.5)

where φ = atan2(y − 1/2, x− 1/2) and r =
√

(x− 1/2)2 + (y − 1/2)2.

We use the BiCGSTAB Krylov solver. For the preconditioners we distinguish three di�erent
methods: SOR corresponds to using the default PETSc-SOR preconditioner on the original
system. For SORTSOR we sort the system according to the element-wise ordering and use then
Krylov solver with again the default PETSc-SOR preconditioner. For the last method BLOCKGS
we construct an element-wise ordering too, but we do not explicitly sort the system. Instead
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4.1. Advection-di�usion equation in 3D

the block Gauss-Seidel preconditioner described in section 3.5 that directly works on the original
system is used.

The default PETSc-SOR preconditioner does a symmetric SOR (SSOR): a forward and a back-
ward substitution. The value used for ω is 1.0, which means that it does two Gauss-Seidel sweeps.
In principle, the default PETSc-SOR preconditioner would do a block SOR by combining suc-
cessive lines with the same non-zero structure. But to do a meaningful comparison we have
bypassed this behaviour. For the block Gauss-Seidel preconditioner omega is 1.0 and itermax

is 10, but for almost all systems all blocks are small and these parameters are not important,
because only LU-decomposition is then used.

The total time we consider here is the time that is needed to solve the system once it is assem-
bled. For all three methods this implies that the time that the Krylov solver needs is included.
Additionally for SORTSOR and BLOCKGS the time that is spent to construct the ordering is
also included. As we need to sort the matrix in SORTSOR this is also part of the time measure-
ment there. The timing are done on a AMD Opteron Quad-Core processor with 2300 MHz, but
only one core is used.

The meshes are uniform and regular, linear elements are used (but a higher polynomial degree
would be possible). The stopping criterions for the Krylov solver are (among others) a relative
tolerance of 10−8 and a maximum number of iterations of 1000.

We study the e�ect of di�erent values for the di�usivity constant ε. We therefore use four
di�erent values: 0, 10−6, 10−3, 0.1.

For the case where there is no di�usion (ε = 0), we expect that the block Gauss-Seidel precon-
ditioner is quite fast. Indeed it is the fastest method in all three di�erent �ows (top left of �g.
4.1, 4.2 and 4.3). As illustrated in �g. 4.4 only one iteration is needed in the CONST case. The
reason is that there are no cycles in the element-wise graph and the resulting matrix is lower
block triangular with blocks of size 4 (the number of degrees of freedom per element) as it can
be seen in table 4.1. For the other two �ows there are some cycles in the element-wise graph but
as soon as the �ow is well resolved the blocks get small (compare table 4.2 and 4.3). Because we
use LU-decomposition up to a block size of MAXSIZELU= 12, also there the solver converges in
one step.

block size n=3000 n=24000 n=192000 n=648000 n=1536000

4 750 6000 48000 162000 384000

Table 4.1: Number of blocks of a certain size for the CONST case.

For a small ε of 10−6 the block Gauss-Seidel preconditioner performs still quite well (top right
of �g. 4.1, 4.2 and 4.3). Due to the di�usion the upper part of the matrix is no longer zero and
the Krylov solver needs more than just one iteration until it converges. But the e�ect is small
and BLOCKGS is still the fastest solver.

For higher values of ε the block Gauss-Seidel preconditioner gets slower and slower (bottom of �g.
4.1, 4.2 4.3). For ε = 10−3 BLOCKGS is approximatively as fast as SOR, but for ε = 0.1 SOR is
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Figure 4.1: Total time to solve the linear system in dependence of the number of degrees of freedom
n for di�erent values of the di�usivity coe�cient ε for the CONST case.
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Figure 4.2: Total time to solve the linear system in dependence of the number of degrees of freedom
n for di�erent values of the di�usivity coe�cient ε for the SIN case.
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Figure 4.3: Total time to solve the linear system in dependence of the number of degrees of freedom
n for di�erent values of the di�usivity coe�cient ε for the UTURN case.
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Figure 4.4: Number of iterations needed to the linear system in dependence of the number of degrees
of freedom n for di�erent values of the di�usivity coe�cient ε for the CONST case.
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4.1. Advection-di�usion equation in 3D

block size n=3000 n=24000 n=192000 n=648000 n=1536000

4 272 3824 38364 131285 320490
8 20 238 1278 12839 21918
12 5 260 1800 1679 6558
16 5
24 5
28 20
36 20 80
48 80
52 1
60 24
120 20

Table 4.2: Number of blocks of a certain size for the SIN case.

block size n=3000 n=24000 n=192000 n=648000 n=1536000

4 504 5802 47202 160202 380802
8 53 99 399 899 1599
12 10
16 5
24 5
48 5

Table 4.3: Number of blocks of a certain size for the UTURN case.

faster. BLOCKGS needs clearly less iterations for ε = 10−3 and about as many iterations for the
case ε = 0.1 (see �g. 4.4). We expect that with some implementation improvements BLOCKGS
could beat SOR in �rst case because of the big di�erence in the number of iterations.

Concerning SORTSOR for ε = 0 and ε = 10−6 in all cases (top of �g. 4.1, 4.2 and 4.3) it needs
about as much time as SOR. Even worse, although the preconditioned residuum reduces during
the solution process in these cases, the �nal residuum is still big because it starts with a very high
value. The true residuum is signi�cantly enlarged in the �rst iteration and only then reduced.
In these cases SORTSOR is therefore useless.

For higher values of the di�usion coe�cient (bottom of �g. 4.1, 4.2 and 4.3) we do no longer
observe this problems or only in a very reduced form. But SORTSOR does not lead to a signi�cant
improve compared to SOR.

To conclude: For the pure advection case BLOCKGS is the fastest. When the di�usivity is
increased BLOCKGS remains the best preconditioner up to a certain value. For even bigger dif-
fusion SOR takes the lead. SORTSOR leads to some convergence problems especially for a small
di�usion coe�cient. Only sorting the system does not yield a fast preconditioner, but combined
with a block Gauss-Seidel approach it performs very well for a small di�usion coe�cient.
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Figure 4.5: Time needed for the di�erent parts of the BLOCKGS approach for the CONST �ow
(left) and the UTURN �ow (right) with ε = 0 together with the time that an explicit
sorting of the matrix would need.

The last thing done in this section is an investigation, where the algorithm spend their time.
We use the BLOCKGS case and compare how much time the construction of the ordering and
the solution of the system take (see �g. 4.5). We include also the time a sorting of the system
takes. For ε = 0 the Krylov solver needs for both the CONST and the UTURN case only one
iteration. Hence, this part is small here. The construction of the ordering takes in general at
most as much time as a few Krylov iterations. Indeed, in the considered cases it is the part with
the lowest costs. Sorting of the system would take about as much time as solution of the system
takes. So here it is not worth to sort the system explicitly. But as the di�usion increases we
need more iterations and the solution of the system needs more and more time. A sorting would
then become almost negligible and would even lead to an increased performance of the block
Gauss-Seidel iterations because the memory would be accessed more linearly. So a block Gauss-
Seidel preconditioner based on the explicitly sorted system would be faster for at least moderate
di�usion, but due to the bounded time of this work it has not yet been implemented.

4.2 Generalized di�usion-convection problem in 3D

We consider now a non-scalar di�usion-convection problem. The equation that we study is

ε∇×∇× u− b×∇× u + ∇(u · b) = f (4.6)

on the unit cube [0, 1]3. u is the unknown vector �eld. b is the known velocity �eld and f is the
source term.

The boundary conditions and the source term are adjusted such that the solution is given by

u(x, y, z) =
(

sin(πz), (1− y2)(1− x2), sin(πy)
)T

. (4.7)
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4.2. Generalized di�usion-convection problem in 3D

For the velocity a constant �ow is used (CONST)

b(x, y, z) = (0.5, 0.25, 0.75) T (4.8)

or a slightly more complicated �ow (NORMAL)

b(x, y, z) =
(
0.66(1− y2)(1− x2), 0.4(1− z2)(1− x2), 0.2 + sin(πz) sin(πx)

)T
. (4.9)

For the di�usivity coe�cient we use 0 or 10−6. For higher values the solver did no longer converge
for big systems.

The rest of the setting is the same. In particular we investigate the same preconditioners: SOR,
SORTSOR and BLOCKGS. (The relative tolerance used in the stopping criterion is here set to
its default value of 10−6.)

The total time and the number of iterations needed to solve the system is depicted in �g. 4.6
(CONST) and in �g. 4.7 (NORMAL). BLOCKGS is the fastest method in all cases. For the
CONST case only one Krylov iteration is needed, because without di�usion the sorted system is
lower block triangular with each block corresponding to one element. For the NORMAL �ow a
few iterations are needed, especially when n is small and the therefore the �ow is not yet well
resolved. But also in this case without di�usion the sorted system is lower block triangular (see
table 4.4). The reason that nevertheless more than one iteration is needed is that the blocks are
not considered to be small and therefore SOR instead of LU is used to solve the corresponding
systems. One could increase MAXSIZELU or the number of iterations in one block and it would
be solvable in one iteration.

block size n=4608 n=36864 n=294912

12 227 2292 21249
24 30 246 1399
36 23 74 135
48 1 1
72 4 11 20

Table 4.4: Number of blocks of a certain size for the NORMAL case.

SOR converges, but needs more time and iterations in all cases. The number of iterations
increases as the system grows, therefore it is to be expected to perform worse for even bigger
systems. Sorting the system and then performing SOR does not help here too. It leads to the
same convergence problems as described in the previous section.

This supports the conclusions of the last section that sorting alone does not lead to a fast solver,
but together with the block Gauss-Seidel approach advection problems with small di�usion can
be solved quickly.

28



4.2. Generalized di�usion-convection problem in 3D

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

14

16

n

to
ta

l t
im

e

ε=0

 

 

SOR
SORTSOR
BLOCKGS

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

14

16

ε=1e−006

n

to
ta

l t
im

e

0 0.5 1 1.5 2 2.5

x 10
5

5

10

15

20

ε=0

n

nu
m

be
r 

of
 it

er
at

io
ns

0 0.5 1 1.5 2 2.5

x 10
5

5

10

15

20

ε=1e−006

n

nu
m

be
r 

of
 it

er
at

io
ns

Figure 4.6: Total time and number of iterations needed for the CONST �ow with ε = 0 (left) and
ε = 10−6 (right).
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4.2. Generalized di�usion-convection problem in 3D
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Figure 4.7: Total time and number of iterations needed for the NORMAL �ow with ε = 0 (left)
and ε = 10−6 (right).

30



Chapter 5. Conclusions

5 Conclusions

Our goal is to solve quickly the linear systems resulting of discontinuous Galerkin methods applied
to pure advection and advection dominated problems. When upwinding is used we have shown
experimentally that the system matrix is a permutation of a lower block triangular matrix in
the cases without di�usion. To exploit this feature an ordering has to be explicitly constructed.
Hence, we look at the matrix graph or at its element-wise condensation. If we are lucky, it is
acyclic and a topological sorting su�ces to determine an optimal ordering. In case there are
cycles Tarjan's algorithm is used to identify the strongly connected components and further to
deduce an ordering that leads to blocks that are as small as possible. In the cases with di�usion
the sorted system matrix is almost lower block triangular, the upper part will be non-zero, but
small. To construct the ordering in this case, we work only on the advection part.

Once the ordering is determined one can do a block Gauss-Seidel method on the sorted system to
solve the problem approximatively. To avoid sorting the matrix one can also only implicitly work
on the sorted system, but use the original system and additional index transformations.

The results show that BiCGSTAB together with the block Gauss-Seidel method converges fast
if the di�usion is missing or small. Sorting alone does not help, only the combination of sorting
and using a block Gauss-Seidel method yields a fast solver.

The complexity of the ordering algorithm is linear in the number of degrees of freedom, in other
words the order is optimal. Each iteration of the introduced block Gauss-Seidel method is as
well linear in the number of degrees of freedom, which is also con�rmed by the results.

Questions that remain are: Up to which strength of di�usion is the block Gauss-Seidel approach
appropriate in general? How much faster would the block Gauss-Seidel approach with an explicit
sorting of the system be? Does an additional mass term that enters for the non-steady problems
hurt, in contrast to what we have seen so far?
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