
Extended DOF-Handler for BETL2

Bachelor Thesis

F. Hillebrand

June 19, 2017

Advisor: Prof. Dr. R. Hiptmair

Seminar for Applied Mathematics, ETH Zürich





Abstract

This thesis provides implementations for BETL2 that allows for vary-
ing sets of degrees of freedom for entities with the same reference ele-
ment type. This functionality is among others used in hp-finite element
methods.

The new implementations provide documentation using Doxygen and
are outlined again in this thesis. Furthermore, their correctness has
been tested using an example of linear and quadratic Lagrangian finite
elements as well as hp-Lagrangian based on the results of the Bache-
lor’s Thesis ‘Dirichlet Boundary Value Problem on Deformed Domains’
by Christian Baumann [10].

A small performance assessment in comparison to the previous imple-
mentation is also given.
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Chapter 1

Introduction

1.1 Motivation

Different variants of the finite element method, such as hp-FEM, necessitate
the functionality that cells of the same type may differ in their local set
of degrees of freedom. In BETL2 [1], the task of handling the degrees of
freedom is taken care of by the classes DofHandler, FESpace and FEBasis.
None of which support this functionality.

The task of this Bachelor’s thesis is to extend BETL2 such that cells of the
same type may also differ in their local set of degrees of freedom. How-
ever, old classes are not replaced since they provide a more efficient data
layout. Furthermore, the new classes are tested using different examples
(based on Lagrangian finite elements) and a in-line documentation for them
is provided using Doxygen [4].

1.2 Remarks

BETL2 provides finite element spaces for H(curl, Ω) and H(div, Ω) besides
Lagrangian finite elements for H1(Ω). In this thesis only functionalities for
Lagrangian finite elements have been considered and tested.

Plots appearing in this thesis were created using Python [9] and Mat-
plotlib[8]. Most of the code was written in C++11 [2] and as a reference [3]
was used. BETL2 heavily relies on the linear algebra library Eigen [5] (ver-
sion 3.2.7). CMake is used for easy compilation.

The code for this thesis can be found on GitLab at https://gitlab.ethz.
ch/hifabian/Code_DofHandler. It includes an instruction on how to com-
pile the programs. However, this code does not include BETL2 itself.
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Chapter 2

Implementation

As mentioned in the introduction, the management of the degrees of free-
dom, both locally and globally, is primarily handled by the classes DofHandler,
FESpace and FEBasis. The classes DofHandler and FEBasis are directly cre-
ated respectively defined by the user while FESpace is created internally by
the DofHandler.

In order to understand the working principle of an implementation of a fi-
nite element method using BETL2, the three classes are briefly explained
and an example to retrieve an instance of the class FESpace is shown in
Listing 2.1 for the previous implementation and in Listing 2.2 for the imple-
mentation provided by this thesis.

Listing 2.1: How to access a FESpace object in BETL2 in the old implementation

1 [...]

2

3 // Using Lagrangian finite element space with piecewise linear basis

functions

4 using febasis_t = betl2::fe::FEBasis< betl2::fe::Linear,

betl2::fe::FEBasisType::Lagrange >;

5

6 // Creating dofHandler object

7 using dofHandler_t = betl2::fe::DofHandler< febasis_t,

betl2::fe::FESContinuity::Continuous, gridViewFactory_t >;

8 dofHandler_t dh;

9

10 dh.distributeDofs(gridVewFactory);

11

12 // Retrieving fespace

13 const auto& fespace = dh.fespace();

Listing 2.2: How to access a FESpace object in BETL2 in the new implementation

3
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2. Implementation

1 [...]

2

3 // Creating febasis

4 using febasis_t = betl2::fe::ex::FEBasis< gridViewFactory_t >;

5 febasis_t febasis(gridViewFactory);

6

7 // Setting febasis as in the linear Lagrangian case

8 // Default value for a multiplicity is 0

9 for( auto& e : gridView.template entities<codimVertex>( ) )

10 febasis.setMult(e, 1);

11

12 // Alternatively in this case use:

13 // using febasis_t = betl2::fe::ex::FEBasisWrapper<

betl2::fe::Linear, betl2::fe::FEBasisType::Lagrange,

gridViewFactory_t >;

14 // febasis_t febasis;

15

16

17 // Creating dofHandler object

18 using dofHandler_t = betl2::fe::ex::DofHandler< febasis_t,

gridViewFactory_t >;

19 dofHandler_t dh;

20

21 dh.distributeDofs(gridViewFactory, febasis);

22

23 // Retrieving fespace

24 const auto& fespace = dh.fespace();

The purpose of the class DofHandler is to distribute the degrees of freedom
on a grid and give access to an instance of the class FESpace. The class
FEBasis determines the number of degrees of freedom associated with a
given reference element type of an entity for the old implementation and for
the new implementation associated with an entity. The FESpace, after being
created by the DofHandler, is used in the code to traverse the grid and to
access degrees of freedom.

The next sections will discuss the purposes and functionalities of these
classes and their replacements in more detail. One main reason why varying
sets of local degrees of freedom are not supported lies with the FEBasis. It
will be explained first followed by the DofHandler then FESpace.

2.1 Finite Element Basis

As mentioned, in the previous implementation the class FEBasis provides
access to the degrees of freedom for any given reference element type. Its
specific implementation in BETL2 provides in addition access to basis func-
tions and the corresponding differential operator applied to them. List-
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2.1. Finite Element Basis

ing 2.3 shows a possible implementation of a class for a finite element basis
in BETL2 based on the previous implementations.

Listing 2.3: Generic form of a valid FEBasis

1 class GenericFEBasis {

2 public:

3 typedef eth::base::unsigned_t size_type;

4

5 // Type of finite element space

6 static const betl2::fe::FEBasisType feBasisType( );

7

8 // Number of degrees of freedom associated

9 // with a reference type

10 template< eth::base::RefElType RET >

11 static constexpr size_type multiplicity( );

12

13 // Number of degrees of freedom associated

14 // with a reference type including its subentities

15 template< eth::base::RefElType RET >

16 static constexpr size_type numDofs( );

17

18 // Runtime support for multplicity

19 static size_type multiplicity( const eth::base::RefElType );

20 // Runtime support for numDofs

21 static size_type numDofs( const eth::base::RefElType );

22 };

The fact that it is the reference type of an entity that decides the number of
degrees of freedom and not the entity itself, is one of the reason BETL2 did
not support a varying set of degrees of freedom for entities with the same
reference element type. A generic replacement for the class FEBasis is given
by 2.4.

Listing 2.4: Generic form of a valid new FEBasis

1 class GenericFEBasis {

2 public:

3 typedef eth::base::unsigned_t size_type;

4

5 // A way to set the number of degrees of freedom

6 template< int CODIM >

7 void setMult( const entity_t<CODIM>&, size_type );

8

9 // Type of finite element space

10 static const betl2::fe::FEBasisType feBasisType( );

11

12 // Number of degrees of freedom associated with an entity

13 template< int CODIM >

14 size_type multiplicity( const entity_t<CODIM>& ) const;

5



2. Implementation

Entities: std::vector

RefElType: std::tuple

Figure 2.1: Illustration of the storage of the number degrees of freedom. The std::tuple stores
all reference element types while the std::vector stores the number of degrees of freedom for
each entity of that reference type.

15

16 // Number of degrees of freedom associated with an element

including its subentities

17 size_type numDofs( const element_t& ) const;

18 };

This thesis provides two default implementations: FEBasis in the namespace
ex and FEBasisWrapper in the same namespace.

2.1.1 FEBasis

The class FEBasis in the namespace ex provides a function setMult for sett-
ting the degrees of freedom associated with an entity. It stores the number of
degrees of freedom using a class NumDofDataSet whose structure is similar
to DataSet discussed in 2.2.1. Figure 2.1 provides an illustration.

An entity is identified using the index set provided by the grid view. Deter-
mining the index can, however, be quite slow due to the function lexical cast

called from asserts. This can be remedied by setting the macro NDEBUG. This
effect is again discussed in chapter 3.

It should be noted that the function numDofs is only supported for elements
and not all entities. This is done because it saves some memory and because
the function is only used for elements internally. The computation for the
total number of degrees of freedom of elements can be done on the fly.

2.1.2 FEBasisWrapper

The class FEBasisWrapper provides a wrapper for the original class FEBasis.
It provides both member functions listed in 2.3 and in 2.4 and provides an
interface for FEBasis in the new implementation while also supporting old
functionalities.

There is one key difference in the implementation of FEBasisWrapper and
the old FEBasis connected with how BETL2 handles a piece-wise constant
basis. In the previous implementation in the case of constant Lagrangian
elements the degree of freedom belonging to an element is associated with
every entity within that element. As later discussed in section 2.2, BETL2
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2.2. Degree-of-Freedom-Handler

handles this case differently while the new implementation does not. Be-
cause of this, FEBasisWrapper uses a specialization for the constant case
where it associates the degree of freedom solely with the element (entity
with co-dimension 0) but not its sub-entities.

2.2 Degree-of-Freedom-Handler

In BETL2, the class DofHandler is responsible for distributing the degrees of
freedom, represented by a class Dof, on the elements of a grid and giving ac-
cess to a finite element space object. It differentiates between a continuous
and discontinuous space. In most cases only the continuous case is used
since it allows for elements to share degrees of freedoms. In the discontinu-
ous case all degrees of freedom are associated with only one element. This
is de facto a special case of the continuous space where degrees of freedom
solely lie on entities with co-dimension 0. Because of this, in the new imple-
mentation only the continuous space is implemented. This, however, leads
to some complications already discussed in 2.1.2.

The class DofHandler inherits from a class called DofDistributionPolicy

which differentiates between the continuous and discontinuous space. The
continuous case first distributes degrees of freedom on vertices, followed
by all other entities. After having distributed the degrees of freedom on all
entities, they are associated with elements via pointers.

The classes DofHandler and DofDistributionPolicy in the namespace ex

replace their counterparts. The distribution of the degrees of freedom is
handled as in the continuous case of the old implementation. The only
difference is that the storage is no longer fixed size and has to be adjusted
for the number of degrees of freedom on each entity as well as for each
element.

2.2.1 Containers for Degrees of Freedom

Figure 2.2 shows the storage layout. On the left side is the container for the
degrees of freedom. It is first divided manually by co-dimension, then in the
DataSet further by reference element type, followed by a list of entities and
lastly an array for the degrees of freedom on an entity represented by the
object Dof. On the right side we have the pointers for the elements. This time
we only have entities of co-dimension 0 (triangles and quadrilaterals for 2
dimensions) which are stored in std::vectors. For each entity, or element,
we then have again an array but this time with pointers to the container of
the degrees of freedom. It is done this way to account for shared degrees of
freedom. A concrete example is given in Figure 2.3.
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2. Implementation

std::vector
Dof/Dof*: std::array or

Entity: std::vector

RefElType: std::tuple

Codim: std::tuple

DofDataSet

Figure 2.2: Illustration of the storage for the new and the old continuous case

In the case of a varying set of local degrees of freedom one could remove
the lowest layer of DataSet but this leads to various problems connected to
the index set of the grid view. This index set is used to identify an entity.
However, it is based on reference element types and not co-dimension, i.e.
only entities that share the same reference element type belong to one index
set.

The storage for the degrees of freedom was originally handled using the
class GridDataSet provided by ethGenericGrid. This class uses something
it calls MultiplicityPair to determine the number of degrees of freedom
for a given reference type. Due to the homogeneous number of degrees of
freedom, it can use fixed-size array for storage of specific entities.

These fixed-size array do not work in the extended case and are replaced
with dynamically allocated arrays (using std::vector) in the class DataSet.
No special function is provided to resize the arrays but they can be resized
by retrieving the array itself and then manually employing a resize. This
works well since they are only resized while distributing degrees of freedom.
2.5 outlines the functionalities supported by DataSet. The implementation
is mostly identical to ethGenericGrid’s GridDataSet.

Listing 2.5: An outline of DataSet

1 template< class DATA_TYPE, class GRID_VIEW_FACTORY_T,

eth::base::RefElType... REFS >

2 class DataSet {

3 public:

4 // Some typedefs

5 [...]

6

7 // Constructor

8 DataSet(gridViewFactory_t gridViewFactory);

9

10 // Data at index i of entity e

11 template< int CODIM >

8



2.2. Degree-of-Freedom-Handler

0

1

2

3 4

5

Faces Edges Vertices

∅∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅∅ 0 1 2 3 4 5

Element Types

Figure 2.3: Concrete example of the storage for the degrees of freedom. Only vertices have
degrees of freedom and each vertex has exactly one thereof. ∅ indicates an empty container.

12 dataType& data( const entity_t< CODIM >& e, size_type i );

13 template< int CODIM >

14 const dataType& data( const entity_t< CODIM >& e, size_type i )

const;

15

16 // Data at index i of a subentity with index subIndex within entity

e

17 template< int CODIM >

18 dataType& data( const entity_t< CODIM >& e, size_type subIndex,

size_type i );

19 template< int CODIM >

20 const dataType& data( const entity_t< CODIM >& e, size_type

subIndex, size_type i ) const;

21

22 // Data of entity e (can employ resize() here)

23 template< eth::base::RefElType RET >

24 std::vector<dataType_t>& data( const entity_t< dimMesh -

eth::base::ReferenceElement<RET>::dimension >& e );

9



2. Implementation

25 };

The classes GridDataSet and DataSet just provide general containers suit-
able for a grid. The concrete definitions of the data sets used for the degrees
of freedoms are determined via classes DofDataSetFactory. Their explana-
tions are omitted because they do not add much.

2.3 Finite Element Space

The class FESpace is the workhorse of solving a finite element problem using
BETL2. Besides the afore-mentioned use to traverse the mesh and to access
the degrees of freedom, it also stores the degrees of freedom and provides
filter functions to access indices for degrees of freedom lying on intersec-
tions. An outline of the functions provided by the class FESpace is given
by 2.6.

Listing 2.6: Functions provided by FESpace

1 template< class FE_BASIS_T, class GRID_VIEW_FACTORY_T, class

LINEAR_COMBINATION >

2 class FESpace {

3 [...]

4 public:

5

6 // Returns container of stored dofs

7 const dofDataSet_t& dofsOnElements( ) const;

8 // Returns the grid factory

9 const GRID_VIEW_FACTORY_T& gridFactory( ) const

10

11 // Returns the space’s linear combination

12 const linearCombination_t& linearCombination( ) const;

13 linearCombination_t& linearCombination( );

14

15 // Returns true if the space is continuous

16 constexpr static bool isContinuous( );

17

18 // Iterator to beginning of element collection

19 inline const_element_iterator begin( ) const;

20 // Iterator to end of element collection

21 inline const_element_iterator end( ) const;

22

23 // Iterator to beginning of degrees of freedom on an element

24 inline const_dof_iterator begin( const element_t& ) const;

25 inline dof_iterator begin( const element_t& );

26 // Iterator to end of degrees of freedom on an element

27 inline const_dof_iterator end( const element_t& ) const;

28 inline dof_iterator end( const element_t& );

29

10
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2.3. Finite Element Space

30 // Global index of a degree of freedom

31 inline size_type globalIndex( const const_dof_iterator& ) const;

32 // Local index of a degree of freedom

33 inline size_type localIndex( const const_dof_iterator&, const

element_t& ) const;

34

35 // Renumber a degree of freedom

36 void renumberDof( const element_t&, const IndexPair<size_type>&,

size_type );

37

38 // Filter local indices of degrees of freedom given an intersection

index

39 // Only entities with codimension CODIM are filtered

40 template< int CODIM >

41 inline std::vector< int > filter( const element_t&, int ) const;

42 // Filter all entities

43 inline std::vector< int > filterIndices( const element_t&, int )

const;

44

45 // Filter degrees of freedom of all entities given an intersection

index

46 std::vector< Dof* > filterAll( const element_t& e, int );

47 std::vector< const Dof* > filterAll ( const element_t&, int ) const;

48

49 // Get pairs of local-global indices for an element

50 std::vector< IndexPair<size_type> > indices( const element_t& e )

const;

51 // Get pairs of local-global indices for an element given an

intersection index

52 std::vector< IndexPair<size_type> > indices( const element_t& e,

const int ) const;

53

54 // Number of degrees of freedom

55 size_type numDofs( ) const;

56 // Number of elements

57 size_type numElements( ) const;

58 };

The class itself did not change much. The new implementation FESpace in
the namespace ex simply provides an extra function getFEBasis that gives
access to the FEBasis object. However, classes used by some of its member
functions needed to be adjusted: FilterDofs and DefaultLinearCombination.
Both will be discussed in the following subsections.

BETL2 provides ways to only access constrained finite element spaces with
the class ConstrainedFESpace. This class should be able to be used in place
of FESpace but due to this new function will not be. Because of this, dummy
replacements have been provided for it and for its dependent classes (which
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2. Implementation

do not change) in the namespace ex.

2.3.1 Filtering Degrees of Freedom

The class FilterDofs provides an operator() that takes as an input an ele-
ment, an intersection index and a constant reference to a finite element space
and returns an array of local indices of degrees of freedom belonging to the
intersection. In order to find the local indices of the degrees of freedom, it
needs to count up to the entities associated with the intersection. In the old
implementation the reference type of an entity determined the number of
degrees of freedom and therefore they could easily be summed up for an
offset. In the new implementation every entity needs to be inspected and
added separately to an offset. The change is quite simple but still necessi-
tates a new class in the namespace ex.

2.3.2 Linear Combination

The term linear combination here refers to the enforcement of the linear-
ity of basis functions across edges or faces and is here only discussed for
Lagrangian finite elements.

For Lagrangian finite elements, this is a problem that only arises for cubic
or higher order polynomials. Figure 2.4 illustrated what is happening: The
edge between the two triangles is orientated differently within each triangle
causing that the ordering of local indices does not match up, i.e. the global
indices are swapped with respect to both triangles. However, note that only
the ordering of local indices determines which basis function are associated
with which degrees of freedom (the finite element basis class solely stores
the number of degrees of freedom). Due to this, the local element matrix
and the local element vector need to be permuted to match.

This is done by the class DefaultLinearCombination which creates a permu-
tation matrix and can be applied to local element matrices and element vec-
tors using the in BETL2 provided classes ImposeLinearCombinations and
ImposeLinearCombination respectively.

BETL2 provides this in the Lagrangian case only for cubic polynomials in 2
dimensions. To generalize this (but still only for 2 dimensions), a new class
DefaultLinearCombination was created in the namespace ex that permutes
any edge that has the wrong orientation regardless of the number of degrees
of freedom on it. Of course, in the case of none or one degree of freedom
nothing changes.

Currently BETL2 does not allow a user to set the linear combination class
for a constrained finite element space and is instead forced to use the default
implementation. Since the constrained finite element already has a dummy

12
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Figure 2.4: The edge between the triangles is orientated differently for the two triangles causing
the local indices to be increasing in one triangle and decreasing in the other

replacement due to the missing function, this bug does not show. Neverthe-
less, the dummy replacement implements a proposed, simple fix. The fix
necessitates however that any passed finite element space object provides a
type definition linearCombination t.
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Chapter 3

Examples

Three examples were looked at to test the correctness of the implementation:
Linear Lagrangian finite elements, quadratic Lagrangian finite elements and
hp-Lagrangian finite elements. The former two are compared to the previ-
ous implementation in BETL2 using the specialised versions. The latter is
compared to the results of [10].

In addition to correctness, performance of the new implementations are as-
sessed for the former two cases. To that end, the sparse matrix solver was
omitted as it adds a constant time to both implementation and can heavily
depend on the algorithm used. In addition, the creation of the gridFactory

object is also ignored. The only parts considered are the creation of the the
classes FEBasis, DofHandler, FESpace and the assembly of both the Galerkin
matrix and the right-hand-side vector. This is done to emulate a realistic
implementation. However, it should be noted that the assembly of local ele-
ment matrices and vectors also add a constant time which can dominate the
performance assessment.

Everything has been run on a Lenovo laptop 64 bits with Intel R©CoreTMi5-
4210U CPU @ 1.70GHz.

All meshes used here where either created using Gmsh[6] version 2.10.1 or
converted to a Gmsh-like file.

3.1 Linear Lagrangian Finite Elements

3.1.1 Problem Description

For linear Lagrangian finite elements the boundary value problem (BVP)
given by

u(x)− ∆u(x) = 1, x ∈ Ω
∇u(x) · n + u(x) = 0, x ∈ ∂Ω

15
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Figure 3.1: Relative performance using different compiler flags averaged over 6 runs (Compiler:
g++ (5.4.0) -std=c++11)

where Ω ⊂ R2 is solved. This equivalent to the weak form

u ∈ H1(Ω) :
∫

Ω
uv +∇u · ∇vdx +

∫
∂Ω

uvdS =
∫

Ω
vdx, ∀v ∈ H1(Ω)

which is taken from exercise 7 problem 2 and 4 from the lecture [11].

In the case of a piecewise linear approximations for v and u on a triangular
mesh, we can solve these integrals analytical as shown in [11, 3.6.5.1].

3.1.2 Validation

The new implementation does not change the order of the degrees of free-
dom compared to the old implementation thanks to their similarity in dis-
tributing the degrees of freedom. Because of this, the resulting vectors can di-
rectly be subtracted. This shows that results of both implementation match
up to machine precision validating that the implementation is correct for the
case of one degree of freedom per vertex.

3.1.3 Performance

Figure 3.1 shows the ratio of averaged (using the arithmetic mean over 6
runs) runtime of the different implementations. The lines using the dots are
for the class FEBasis while the stars are for the class FEBasisWrapper.
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3.2. Quadratic Lagrangian Finite Elements

As hinted at in an earlier section, there is a significant difference in the ratio
of runtime when the macro NDEBUG is set (-N) compared to when not (-D).
An in-depth analysis using Gprof [7] revealed that this is due to calls to
the boost function lexical cast that is performed by asserts in the new
implementation of FEBasis among others.

Without debugging and no optimization both implementation perform equally
well. However, setting optimization on improves the old implementation bet-
ter than the new albeit not much ending with a ratio of around 1.25. This is
not significantly slower than the previous implementation.

The difference disappears almost completely when using the wrapper finite
element basis indicating that it is mainly the implementation of the new
class FEBasis that slows down the code and not the class DataSet.

3.2 Quadratic Lagrangian Finite Elements

3.2.1 Problem Description and Correctness

For quadratic Lagrangian finite elements the same BVP

u(x)− ∆u(x) = 1, x ∈ Ω
∇u(x) · n + u(x) = 0, x ∈ ∂Ω

where Ω ⊂ R2 and with the weak form

u ∈ H1(Ω) :
∫

Ω
uv +∇u · ∇vdx +

∫
∂Ω

uvdS =
∫

Ω
vdx, ∀v ∈ H1(Ω)

is solved.

In the case of piecewise quadratic approximations of u and v on a trian-
gular mesh, the integrals are solved using a quadrature rule provided by
BETL2. This is more compute intensive than the previous example where
the integrals are solved analytically over the triangles. In addition, more
basis-functions and thus more entries have to be computed.

3.2.2 Validation

Again the difference between the two resulting vectors can directly be com-
puted and the error is around machine precision. Thus, we conclude that
the implementation is correct.

3.2.3 Performance

Again we look at the performance. It still hold that the dots represent the
finite element basis using the class FEBasis in the namespace ex while the
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Figure 3.2: Relative performance using different compiler flags averaged over 6 runs (Compiler:
g++ (5.4.0) -std=c++11)

stars are for FEBasisWrapper. -N stands for the macro NDEBUG while -D
stands for DEBUG. Two different optimization settings are compare: None
and O3.

Similar behaviour as to 3.2 is observed but the difference is slightly lower.
This can be attributed to the already mentioned higher computational in-
tensive local element matrix and vector which add a larger constant time
factor.

It also appears that in the case of -D with O3 the new implementation out-
performs the previous one. This is most likely due to some skips of asserts
in DataSet and thus calling lexical cast less.

3.3 hp-Lagrangian Finite Elements

3.3.1 Problem Description

In this example the Dirichlet boundary value problem as described by [10]
is solved. For convenience it is restated here:

−∆u(x) = 0, x ∈ Ω
u(x) = g(x), x ∈ ∂Ω

18



3.3. hp-Lagrangian Finite Elements

where g ∈ H1(Ω) is a given function.

The domain Ω is described by its boundary as

∂Ω :=
{

r(ϕ)
(

sin ϕ, cos ϕ
)T ⊂ R2, 0 ≤ ϕ ≤ 2π

}
where r : [0, 2π] → R is a continuous functions given by the real Fourier
series

r(ϕ) := 1 +
N

∑
j=1

(
cjyj cos(jϕ) + sjzj sin(jϕ)

)
with parameters −1 ≤ yj, zj ≤ 1 and

∞

∑
j=1

(
|cj|+ |sj|

)
≤ 1

2

Using a mapping approach this problem can be transformed to the unit disc
B1 ⊂ R2 using the diffeomorphism Φ : B1 → Ω defined as

Φ(x̂) := x̂ + w(x̂)

and by the auxiliary problem

−∆w(x̂) = 0, x̂ ∈ B1

w(x̂) =
((

r(ϕ)− 1
)

cos ϕ(
r(ϕ)− 1

)
sin ϕ

)
, x̂ ∈ ∂B1

with ϕ being the polar coordinate on ∂B1.

The weak forms of these two BVPs are given by

u ∈ H1(Ω) :
∫

Ω
∇u · ∇vdx = 0, ∀v ∈ H1

0(Ω)

u = g on ∂Ω

and

w1 ∈ H1(B1) :
∫

B1

∇w1 · ∇vdx = 0, ∀v ∈ H1
0(B1)

w2 ∈ H1(B1) :
∫

B1

∇w2 · ∇vdx = 0, ∀v ∈ H1
0(B1)

w =

(
w1
w2

)
=

((
r(ϕ)− 1

)
cos ϕ(

r(ϕ)− 1
)

sin ϕ

)
on ∂B1

A derivation can be found in [10].
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3. Examples

3.3.2 Meshes

[10] also provides meshes. These meshes are defined using the classes mesh,
element and a matrix nodes. In order to use these meshes in BETL2, a
converter file meshConverter.cpp was created that takes a mesh object and
a node matrix and writes as a Gmsh-like file.

The original meshes store the order p of an element as well as if a degree
of freedom is missing or not (m ∈ {0, 1}). This is replaced using a physical
tag given by p2 − m. Furthermore, the meshes are structured such that a
missing degree of freedom is located on the first edge. This is also true in
the converted mesh. This last property is especially useful for determining
the basis-functions and building the local element matrices.

3.3.3 Solving the BVP

The first problem concerning the displacement w is solved in a similar
fashion as the previous two examples. The final problem however uses
isoparametric elements which are given by the displacement w and the basis-
functions.

BETL2 does not support isoparametric elements but one can easily pass the
displacements as arguments to the local assemblers and then explicitly in-
corporate it into the computations. The implementation of the local stiffness
matrix is shown in Listing 3.1.

Listing 3.1: Local stiffness matrix

1 // RET Reference element type of the element

2 // POINTS Number of interpolation points on the element (dofs)

3 // BUILDER_DATA Class that provides extra information (for the

displacements)

4 // ELEMENT_T Class of the element

5 template< eth::base::RefElType RET, int POINTS, typename

BUILDER_DATA, class ELEMENT_T >

6 struct LocStiffMatIso

7 {

8 static const int size = POINTS; // Size of matrix

9 static const int quad = 16; // Quadrature rule

10 static const int dim = 2; // Dimension of mesh

11

12 // Returns the local stiffness matrix

13 inline static matrix_t<size, size> eval(const BUILDER_DATA& data,

const ELEMENT_T& el)

14 {

15 // Get geometry object and element area

16 const auto& geom = el.geometry();

17

18 // Get displacements of dofs of this element
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3.3. hp-Lagrangian Finite Elements

19 const auto& w = data.w_;

20

21 // Result via integration

22 matrix_t<size,size> result;

23 result.setZero();

24

25 // Get quadrature rule

26 typedef betl2::quad::Quadrature< RET, quad > quadRule_t;

27 // Get quadrature points and weights (scaled)

28 const auto& xi = quadRule_t::getPoints();

29 const auto& wi = quadRule_t::getWeights() *

quadRule_t::getScale();

30

31 // Get graident basis function evaluation at quadrature points

32 using gradFuncts = GradFun< RET, size >;

33 const auto gradEval = gradFuncts::Eval( xi );

34

35 // Transformed interpolation points (dofs)

36 Eigen::MatrixXd nodes = geom.global(detail::ReferencePoints<

RET, POINTS >::get());

37 nodes += w.transpose(); // Shift nodes

38

39 // Determinants of Jacobians at quadrature points: Dphi’ = sum(

(dof)*gradBasis.transpose() )

40 matrix_t<1,quad> detJi;

41 // Jacobians transposed

42 matrix_t<dim,dim*quad> JT; JT.setZero();

43 // Compute Jacobians and their determinants:

44 // Loop over all xi

45 for( int i = 0; i < quad; ++i ) {

46 // Loop over dofs

47 for( int d = 0; d < size; ++d) {

48 JT.template block<dim,dim>(0, i*dim) +=

49 (nodes.col(d) * gradEval.template

block<1,dim>(d,i*dim)).transpose();

50 }

51 detJi(i) = (JT.template block<dim,dim>(0,

i*dim)).determinant();

52 }

53

54 // Compute coefficients

55 const auto coeff = detJi.cwiseProduct( wi );

56

57 for( int i = 0; i < xi.cols(); ++i ) {

58 // Get gradient of basis function for current xi_i

59 const matrix_t<size,dim> g_i = gradEval.template block<

size,dim >(0, i*dim)

60 * (JT.template block< dim,dim >(0,

dim*i)).transpose().inverse();
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Table 3.1: Results of uTAu

Results from [10] Results from this thesis Error

4.11729656262623 4.11729656326183 6.356 · 10−10

4.81167689406564 4.81294668956745 1.270 · 10−3

61 // Add to result

62 result += coeff(i) * g_i * g_i.transpose();

63 }

64 // Return result

65 return std::move(result);

66 }

67 }; // end struct LocStiffMatIso

Because of the varying degrees of freedom and varying order of polynomi-
als, basis-functions have to be determined and implemented. Unlike [10],
this implementation only supports up to cubic polynomials. The basis-
functions were determined by solving a linear system of equations if BETL2
did not provide them already. [10] lists analytical formulas for both the
basis-functions and their gradients. However, one should keep in mind that
BETL2 uses a different convention for both the reference elements and the
numbering the degrees of freedom.

3.3.4 Validation

In order to validate the results, only small deformation ([10, 5.2.1]) were
looked at and only the first two meshes were used. Unlike in the previous
two examples, the vectors cannot directly be subtracted. Instead, the energy
norms (computed as uTAu where A is the Galerkin matrix and u is the
solution vector) are compared. These are not direct results presented in [10]
but can easily be computed by the provided code.

The obtained norms are compared against each other in Table 3.1. The dif-
ferences arise from the different quadrature rules that were used. This the-
sis uses a very high but constant quadrature rule compared to the ones
used in [10] where an adaptive choice was made. Higher or lowering either
quadrature rules will yield the same results.
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Chapter 4

List of Classes and Files

This chapter provides a list of files and classes that have been implemented
in this thesis.

• dof distribution policy extended.hpp
– DofDistributionPolicy

• ex data set.hpp
– DataSet

– DataSetTraits

• ex dof data set factories.hpp
– DofDataSetFactory

• ex dof handler.hpp
– DofHandler

• ex febasis.hpp
– FEBasis

– FEBasisTraits

• ex fespace.hpp
– FESpace

• ex filter dofs.hpp
– FilterDofs

• ex linear combination.hpp
– DefaultLinearCombination

• febasis wrapper.hpp
– FEBasisWrapper

– FEBasisWrapperTraits

• num dof data set.hpp
– NumDofDataSet

• num dof data set factories.hpp
– NumDofDataSetFactory
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Chapter 5

Conclusion

This chapter will briefly repeat the most important results of this thesis and
provide an outlook for further work.

Implementations to extend BETL2 to allow for varying sets of local degrees
of freedom have been successfully provided for the Lagrangian case. They
have been tested using 2 dimensional linear, cubic and hp-Lagrangian finite
element spaces. The new implementations while still being slower than the
optimised versions for fixed numbers of degrees of freedom can still keep
up with them.

A documentation for these new implementations has been provided in-line
using Doxygen. However, the rest of BETL2 still lacks most of its documen-
tation.

In addition, various functionalities provided by BETL2 are not supported
for these new implementations. To name a few important ones:

• betl2::DofInterpolator

• betl2::InterpolationGridFunction

• Support for Div, Curl, LagrangeHierachical
• Access to basis functions and reference interpolation points
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