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1 Introduction

The computation of the electric field scattered by a body is a typical problem in
electromagnetism. The space can be considered as divided into two regions: the
scatterer ⌦s and the free space ⌦0. Moreover we have the surface � = @⌦. The
analytical solution is known only for very simple geometries, therefore for more
realistic cases it is strictly necessary to use computationally intensive numerical
methods. We use the Boundary Element Method, which allows to compute the
electric field in the whole space, by discretizing only the surface of the scatterer.
We deal with time-harmonic quantities, which are of the form

F̃(x, y, z, t) = F(x, y, z)ei!t
.

In this case, the Maxwell’s equations can be simplified resulting in
8
>>>><

>>>>:

divE = ⇢

"
,

divH = 0,

curlE = �i!tH,

curlH = "i!tE.

Moreover, if we consider a scatterer which is a Perfect Electric Conductor (PEC)
hit by an electromagnetic wave (Ei

,H
i) and if we impose the Sommerfeld radi-

ation conditions, we obtain the following boundary value problem:
8
>><

>>:

curlcurlE� 
2
E = 0 in ⌦s [ ⌦0

,

�tE = ��tE
i on �,

kcurlE⇥
x
|x| + i!"Ek2 = O

⇣
1

kxk2

⌘
for |x| ! 1,

with  = !
p
"µ.

In section 2 we report some useful tools from functional analysis for the deriva-
tion of the Boundary Integral Equations (BIEs), which can be found in section
3. We focus on the indirect approach, which is known to lead to an instable for-
mulation when ! 0. Therefore, we use an augmented formulation that is not
a↵ected by the low-frequency instability. In section 4 we provide the Boundary
Element Spaces used to discretize the BIEs and we show that the discretization
leads to simple linear systems. In section 5 we prove that both the continuous
and the discrete versions of the augmented formulation are well-posed, using the
theory for the saddle-point problems. Finally, in section 6 we report the results
we get from our C++ implementation, using the BETL library. We focus on the
validation of the code in the simple case of a sphere hit by a plane wave. In this
case the Electric field has an analytical form, known as Mie Solution. Moreover,
we show that the augmented formulation is stable even when the classical one is
not. To conclude, we report also the results of the scattering by a cube, which
is a more critical scenario, given that the surface is not smooth.
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2 Function Spaces and Traces

The tools from functional analysis are fundamental to derive and analyze the
equations which arise in electromagnetic scattering problems. In this section we
give a brief overview of the function spaces and the traces used in the following
sections. All the results from this section have been more rigorously analyzed
and proved in [3].

2.1 Sobolev spaces in the domain and on the boundary

We use the Sobolev spaces Hs

loc and H
s

loc for scalar and vector-valued functions
respectively, as defined in [5]. Moreover, given a domain ⌦ ✓ R3 and a first
order di↵erential operator d, we define the spaces

H
s

loc(d,⌦) = {u 2 H
s

loc(⌦) : du 2 H
s

loc},

H
s

loc(d0,⌦) = {u 2 H
s

loc(⌦) : du = 0}.

In case ⌦ is bounded, we can drop the loc sub-fix and the H
s(⌦) spaces are

endowed with the norm

kuk
2
Hs(d,⌦) :=kuk

2
Hs(⌦) +kduk

2
Hs(⌦)

and the seminorm

|u|
2
Hs(d,⌦) := |u|

2
Hs(⌦) +|du|

2
Hs(⌦) .

Moreover, the notion of Sobolev space can be extended to spaces of functions
defined on �. This can be done by using local charts of the manifold �. Those
spaces are denoted byH

s(�), s 2 [�1, 1], withH
�s(�) being the dual ofHs(�).

2.2 Traces

When deriving the BIEs for electromagnetic scattering, a crucial role is played
by the trace functions. Among all of them, we will only use the tangential trace,
the normal trace and the Neumann trace:

�tu = n⇥ u|�,

�tu = n · u|�,

�N = curl u� ⇥ n.

A more complete list of traces can be found in [11].
Having in mind the goal of deriving BIEs, we need to identify a proper trace
space ”X(�)” of H(curl,⌦).
According to [3], X(�) has to meet two requirements:

1. The inner product on X(�) has an intrinsic definition that does not rely
on the embedding of � into R3, i.e. X(�) should have an interpretation
as sections of the tangent bundle to T� of �.

2. �t
: H(curl,⌦) ! X(�) is continuous and surjective.
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An important remark is that for the rest of this section we rely on the bound-
edness of ⌦, but the results remain valid also for unbounded ⌦.
In order to be as general as possible, we consider the case of � being a piece-
wise smooth domain. It is easy to understand that this case inherently poses
additional di�culties, since even if u 2 C

1(⌦) we do not have �t 2 H
1
2 , as the

tangential trace is discontinuous across edges of �. To tackle these issues, we
introduce a new class of Hilbert spaces (as defined in [3]) which play a central
role in the definition of the trace space:

Definition 1. We introduce the Hilbert space H
s

⇥(�) := �t(Hs+ 1
2 (⌦)), s 2

(0, 1), equipped with an inner product that renders �t
: H

s+ 1
2 (⌦) ! H

s

⇥(�)
continuous and surjective. Its dual space with respect to the pairing

hµ,⌘i⌧ ,� =

Z

�
(µ⇥ n) · ⌘dS

is denoted by H
�s

⇥ (�)

As stated in [3] this definition solves the problem of the tangential trace since

it can be proved that �t
: H(curl,⌦) ! H

� 1
2

⇥ (�) is a linear and continuous
mapping. Unfortunately, we still do not have surjectivity, so we have to develop
further this theory.
We can define for u 2 C

1(⌦):

div��tu :=

(
divj(�tu)

j on �j�
(�tu)

j
· ⌫

ij + (�tu)
i
· ⌫

ij
�
�ij , on �j \ �i,

where �ij is the is the delta distribution whose support is the edge �j \�i, divj
denotes the 2D-divergence computed on the face �j and ⌫ij is the outer normal

to �i restricted to the edge �j\�i. This definition can be extended by a density

argument to functionals on H
� 1

2
⇥ . Now by defining

H
� 1

2
⇥ (div�,�) := {µ 2 H

� 1
2

⇥ (�), div�µ 2 H
� 1

2 (�)}

we can state the final theorem stated in [3] which shows that this is exactly the
space we were looking for:

Theorem 1. The operator �t
: H(curl,�) ! H

� 1
2

⇥ (div�,�) is continuous,

surjective and possesses a continuous right inverse.

Proof. The proof in the general case of Lipschitz domains can be found in [2,
Theorem 4.1].

Besides H
� 1

2
⇥ (div�,�), it is useful to define one more trace space:

H
� 1

2
? (curl�,�) := {µ 2 H

� 1
2 (�), curl�µ 2 H

� 1
2 (�)}.

This space is linked to H
� 1

2
⇥ (div�,�) by a precise relation, which is summarized

by the next theorem
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Theorem 2. The mapping

R : H
� 1

2
⇥ (div�,�) �! H

� 1
2

? (curl�,�),

defined as Ru = u⇥ n, is bijective and isometric.

The usefulness of H
� 1

2
? (curl�,�) and R will be clear in subsection 4.3.
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3 EFIE and Augmented EFIE

In this section we derive the Electric Field Boundary Integral Equation (EFIE).
Given that this BIE is unstable for low frequencies, we report an augmented
formulation which is solvable also for ! 0. The section is structured as follows:
first we show the main representation formula for a Maxwell solution, then we
introduce the necessary Boundary Integral Operators (BIOs) and, finally, we
derive the EFIE.

3.1 Representation Formula

First of all, we define a Maxwell solution.

Definition 2. A distribution e 2 Hloc(curl
2
,⌦) is called a Maxwell solution

on some generic domain ⌦, if it satisfies the Electric Wave Equation

curlcurle � 
2
e = 0 in ⌦ and the Silver-Müller radiation conditions at 1, if

⌦ is not bounded.

Now, we need to define the potentials related to the Maxwell problem. To
do so we will use the fundamental solution of the Helmoltz equation

E(x) :=
exp(i|x|)

4⇡|x|
for x 6= 0.

Definition 3. The scalar and vectorial Helmoltz single layer potentials are re-

spectively denoted by  

V
and  



V
and they are defined as

 

V
(�)(x) :=

Z

�
�(x)E(x� y)dS(x),

 


V
(µ)(x) :=

Z

�
µ(x)E(x� y)dS(x),

for x /2 �.

Moreover, we need to define some layer potentials which are used exclusively
for the case of the Maxwell equations.

Definition 4. The Maxwell single layer and double layer potentials are respec-

tively denoted by  


SL
and  



DL
and they are defined as

 


SL
(µ)(x) :=  



V
(µ)(x) +

1


gradx 



V
(div�µ)(x)

 


DL
(µ)(x) := curlx 



V
(µ)(x)
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Now, following, for example, the derivation in [3, section4] it is possible to
formulate the famous Stratton-Chu representation formula.

Theorem 3 (Stratton-Chu representation formula). Any Maxwell solution u

in ⌦s possesses the representation

u =  

DL
(��t ) + 

SL
(��

N
) in Hloc(curl

2
,⌦s).

If u is a Maxwell solution in ⌦0
that satisfies the Silver-Müller radiation condi-

tions, it can be written as

u = � 


DL
(�+t )� 

SL
(�+

N
) in H(curl2,⌦0).

Where we indicated with the superscripts +/� the traces from the inside and
the outside of �.

3.2 Boundary Integral Operators

In this section we define the BIOs related to the Maxwell problem and we
analyze some of their properties which we will use in order to prove that the
augmented EFIE is well-posed.
The classical way of building the BIOs is to compose averaging of traces and
layer potentials. In the following, we will use the notation {�⇤}� = 1

2

�
�
+
⇤ + �

�
⇤
�

to indicate the averaging of any trace �⇤ at the interface �.
Although in other contexts four BIOs originate, here the relations

curl � 


SL
=  DL,

curl � 


DL
=  SL,

imply

�
±
N
 



SL
= �

±
t  



DL
,

�
±
N
 



DL
= �

±
t  



SL
.

Then we reduce to have only the two following BIOs:

S := {�t}� � 


SL
= {�N}� � 



DL

C := {�t}� � 


DL
= {�N}� � 



SL

According to [3, Section 5] we have the continuity of both of the operators.

Corollary 1. The operators S,S : H
� 1

2
⇥ (div�,�) ! H

� 1
2

⇥ (div�,�) are con-

tinuous.

Following the same procedure we can also define the two single layer BIOs

V := {�}� � 

V

V := {�t}� � 


V

which are also continuous.

Corollary 2. The operators V : H� 1
2 (�) ! H

� 1
2 (�) and V : H

� 1
2

⇥ (�) !

H
� 1

2
⇥ (�) are continuous.
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Both S and C allow a variational formulation, for two tangential vector
fields µ, ⇠ 2 L

1(�)

hSµ, ⇠i⌧,� = �

Z

�

Z

�
E(x� y)µ(y) · ⇠(x)dS(y,x)+

+
1



Z

�

Z

�
E(x� y)div�µ(y)div�⇠dS(y,x),

hCµ, ⇠i⌧,� = �

Z

�

Z

�
gradxE(x� y) · (µ(y)⇥ ⇠(x))dS(y,x).

We conclude this section showing some useful properties of the single layer BIOs.

Lemma 1. The integral operators �V = V � V0 : H� 1
2 (�) ! H

1
2 (�) and

�V = V �V0 : H
� 1

2
⇥ (�) ! H

1
2
⇥(�) are compact.

Proof. See proof of Lemma 3.2 in [8]

Lemma 2. The operators V0 and V0 are continuous, selfadjoint with respect

to the bilinear pairings h·, ·i 1
2 ,�

and h·, ·i⌧ ,� , respectively, and satisfy

hµ, V0µ̄i 1
2 ,�

� Ckµk
2

H
� 1

2 (�)
8µ 2 H

� 1
2 (�)

hµ,V0µ̄i⌧ ,� � Ckµk
2

H
� 1

2
⇥ (�)

8µ 2 H
� 1

2
⇥ (div�0,�)

with constants C > 0 depending on �.

Proof. A proof can be found, for example, in Theorem 6.2 of [7].

The typical strategy now would be to derive some jump relations and then
use them together with the definition of BIOs by averaging of traces and the
representation formula. This approach results in the so called direct BIEs. An
extended explanation of how to derive the direct BIE for the electromagnetic
scattering can be found in [3]. In the following we will proceed di↵erently and
we will find an indirect BIE.

3.3 Boundary Integral Equations

As usual in BEM, we can formulate di↵erent kinds of BIE. Here we focus on the
indirect approach. First, we define E

t = Es + Einc, where Einc is the incident
field and Es is the scattered field. Then we call jt the jump of the Neumann
trace of Et, that is the surface current on �,

j
t =

⇥
�NE

t
⇤
�
= �N (Et

|⌦0)� �N (Et

|⌦s
).

Since we will work with a scatterer which is a Perfectly Electric Conductor, we
can now impose E|⌦s

= 0 and we simply write

j
t = �N (Et

|⌦0).

The idea, now, is to impose a representation of the electric field of the form

Es = � SL(j
t) in Hloc(curl

2
,⌦s [ ⌦

0),
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If we apply the exterior Dirichlet trace �+
t

to Es, keeping in mind the boundary
condition �+

t
Es = ��

+
t
Ei, we get the Boundary Integral Equation

Sj
t = ��

+
t
Ei in H

� 1
2

⇥ (div�,�),

which can be cast in the following variational weak form: find j
t
2 H

� 1
2

⇥ (div�,�)
such that

hSj
t
,µi⌧ ,� = �h�

+
t
Ei,µi⌧ ,� 8µ 2 H

� 1
2

⇥ (div�,�).

This equation and its boundary element discretization can be proved to be well-
posed when 2 is not an interior electric eigenvalue as it has been done in [3].
Unfortunately this formulation encounters problems when  ! 0 due to the 1



term in

hSkj
t
,µi⌧ ,� = �hVdiv�j

t
, div�µi 1

2 ,�
+

1


hVj

t
,µi 1

2 ,�
.

In order to overcome this instability, an augmented formulation as been intro-
duced which is proved to be stable also for small . For the details one can
see for example [11]. The main idea is to introduce the surface charge ⇢t� and
explicitly impose in the formulation the continuity equation in weak form

hVdiv�j
t
, vi 1

2 ,�
= �

2
hV⇢

t

�, vi 1
2 ,�

8v 2 H(�)�
1
2 ,

The obtained augmented variational formulation is: find (jt, ⇢t�) 2 H
� 1

2
⇥ (div�,�)⇥

H
� 1

2 (�) such that for any (µ, v) 2 H
� 1

2
⇥ (div�,�)⇥H

� 1
2 (�)

(
hVj

t
,µi 1

2 ,�
+ hV⇢

t

�, div�µi 1
2 ,�

= �h�tei,µi⌧ ,�,

hVdiv�jt, vi 1
2 ,�

+ 
2
hV⇢

t

�, vi 1
2 ,�

= 0,
(1)
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4 Discretization

In this section we aim at discretizing problem 1 so that it can be rewritten as a
linear system. In order to obtain the discretized problem, we need to define the

boundary element spaces which will substitute the spaces H
� 1

2
⇥ (div�,�) and

H
� 1

2 (�). After having defined the discrete spaces, it will be easy to apply a
Galerkin discretization to our system.

4.1 Boundary Element Spaces

First, we introduce a triangular mesh �h on the piecewise smooth surface �
with a perfect resolution, that is � = K̄1 [ · · · [ K̄N where K = {K1, ...,KN}

is the set of the cells of the triangulation. Furthermore, we assume that no cell
straddles the edges of �. Now we can define a di↵eormorphism �k : K̂ ! K̄

from the unit triangle to any cell K which allows us to define the boundary
element spaces on the reference triangle and lift them to the triangulation via

pull-back. To discretize H
� 1

2
⇥ (div�,�) we will use the zeroth order triangular

Raviart-Thomas element space, defined as (see [3]):

Definition 5. For  2 N0, we define the k-th order Raviart-Thomas boundary

element space by

RT
k

K = {µ 2 H
� 1

2
⇥ (div�,�),µ|K 2 FK(RT

k(K̂)), 8K 2 K}

where FK is the Piola transform

(FKµ)(x) =
p

detGG�1
D�

T

K
(x̂)µ(x̂),

G = D�
T

K
(x̂)D�K(x̂), x = �(x̂), x 2 K,

and

RT
k(K̂) : = (Pk(K̂))2 � (x̂P̃k(K̂))

= {x̂ ! p(x̂) + q(x̂)x̂, x̂ 2 K̂, p 2 (Pk(K̂))2, q 2 P̃k(K̂)},

and Pk(K̂) contains all the multivariate polynomials of total degree k 2 N0 on

K̂ and P̃k(K̂) represents all the homogeneous multivariate polynomials of degree

k 2 N0.

In the following we indicate Q = RTK
0. Moreover, keeping in mind Theo-

rem 2, we discretize the space H
� 1

2
? (curl�,�) by a rotated version of Q, which

we call E = RQ. On the other hand, we discretize H
� 1

2
⇥ (�) using the space

spanned by the Lagrangian piecewise constant basis functions, V.

In the rest of the section we will use the following notations for the global
basis functions:

Boundary Element Space Global Basis Function
Q �i

E �
i

V �i
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On the reference triangle T̂ = {(x̂1, x̂2)|0 < x̂2 < x̂1 < 1}, the local basis
functions of RT

0
K are:

�̂12 =


x̂1 � 1
x̂2 � 1

�
�̂23 =


x̂1

x̂2

�
�̂31 =


x̂1 � 1
x̂2

�
.

The subscripts ij indicate that the function is associated with the edge joining
the nodes i and j.

4.2 Discretization of the EFIE

We use the previously defined Boundary Element Spaces to build the linear
systems corresponding to the two formulations of the EFIE. We can define the
discretized functions:

j
t

N
=

NQX

i=1

mi�i, ��tEiN
=

NQX

i=1

µi�i.

Exploiting the bilinearity of the forms hV·, ·i 1
2 ,�

, hV·, ·i 1
2 ,�

and h·, ·i⌧,� and
the linearity of div�, we obtain the discretized version of the EFIE

NQX

i=1

mihV�i,�ji 1
2 ,�

�
1

2

NPWX

i=1

 ihVdiv��i, div��ji 1
2 ,�

=
NQX

i=1

µih�i,�ji⌧,�,

It is useful to introduce the following matrices and vectors

[A]i,j = hV�i,�ji 1
2 ,�

2 RNQ⇥NQ ,

[Ṽ]i,j = hVdiv��i, div��ji 1
2 ,�

2 RNQ⇥NQ ,

[M]i,j = h�i,�ji⌧,� 2 RNQ⇥NQ ,

[m]i = mi 2 RNQ ,

[µ]i = µi 2 RNQ .

To assemble the mass matrix we use �i = �i ⇥ n and we get

[M]i,j = h�i,�ji⌧,� = h�i ⇥ n,�ji 1
2 ,�

= h�
i
,�ji 1

2 ,�
.

Therefore, the discretized EFIE becomes

✓
A�

1

k2
Ṽ

◆
m = Mµ
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4.3 Discretization of the Stabilized Formulation

For the stabilized formulation we need to introduce the discretized version of
⇢
t

N

⇢
t

N
=

NVX

i=1

 i�i.

Then by the same arguments used in the previous subsection we can rewrite (1)
as
(P

NQ
i=1 mihV�i,�ji 1

2 ,�
+
P

NPW

i=1  ihV�i, div��ji 1
2 ,�

=
P

NQ
i=1 µih�i,�ji⌧,�,P

NQ
i=1 mihVdiv��i,�ji 1

2 ,�
� 

2
P

NQ
i=1  ihV�i,�ji 1

2 ,�
= 0.

If we now write

[V]i,j = hV�i,�ji 1
2 ,�

2 RNV⇥NV ,

[Q]i,j = hV�i, div��ji 1
2 ,�

2 RNV⇥NV ,

[ ]i =  i 2 RNV ,

the discretized version can be compactly rewritten as

"
A Q

Q
T


2
V

# 
m

 

�
=


Mµ

0NV⇥1

�
.

4.4 The Divergence Matrix

In this subsection we characterize the matrices Ṽ and Q, in order to simplify
their implementation, by showing that they can be written as products of sim-
pler matrices. All the ideas here presented are extensively discussed in [10].
First of all, we show that in our Boundary Element Spaces div� can be replaced
by a matrix D. To see this it is useful to recall that the surface divergence is a
linear and surjective transformation as a mapping

div� : Q �! V
⇤
.

where V
⇤ is space of the functions in V with zero mean. This is shown, for

example, in Lemma 5.4 of [1]. Then for any basis function of Q we can write:

div��i =
NVX

j=1

dij�j ,

and, thus, we can associate the matrix [D]
ij

= dij 2 RNQ⇥NV to the surface

divergence. Now it is easy to derive the factorizations of Ṽ and Q. First, we
have

[Q]
ij
= hV�i, div��ji 1

2 ,�
= hV�i,

NVX

i=1

djl�li 1
2 ,�

=
NVX

i=1

djlhV�i,�li 1
2 ,�

,
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which means Q = DV
T
.

Moreover,

[Ṽ]ij = hVdiv��i, div��ji 1
2 ,�

= hV

NVX

l=1

dil�l,

NVX

t=1

djt�ti 1
2 ,�

=

=
NVX

l=1

dil

NVX

t=1

djthV�l,�ti 1
2 ,�

=
NVX

l=1

dil[V]jl

,

that is
[Ṽ] = DQ

T = DVD
T
.
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5 Well-Posedness of Augmented EFIE (Continuous and

Discrete)

In this section we aim at proving existence and uniqueness of the saddle point
problem (1) both in continuous and discrete form. First, we report some general
results from [1] and then we show that (1) satisfies the necessary and su�cient
conditions for well-posedness.

5.1 Saddle Point Problems

In this subsection we use the same notation as [1], thus every symbol should be
read independently from its meaning in the other sections.
We start by defining a saddle point problem with penalty term.

Definition 6. Suppose that X and M are two Hilbert spaces, given a bilinear

form a(·, ·) : X ⇥ X ! R such that a(v, v) � 0 8v 2 X and a bilinear form

b(·, ·) : X ⇥M ! R, the problem to find (u,�) 2 X,M such that

a(u, v)+b(v,�)=hf, vi 8v 2 X,

b(u, µ) =hg, µi 8µ 2 M,

is a saddle point problem.

The saddle point problem defines a mapping

L : X ⇥M �! X
0
⇥M

0

L : (u,�) 7�! (f, g)

Therefore, we need to show that L is an isomorphism in order two prove that the
inverse mapping L

�1 associates to every (f, g) couple one and only one (u,�)
couple. In order to do this it is useful to define the space

V := {v 2 X : b(v, µ) = 0 8µ 2 M}

Now we are ready to report the main result about saddle point problems from
[1].

Theorem 4. For a saddle point problem the mapping L defines an isomorphism

if and only if the following conditions are satisfied:

1. a is V-elliptic, i.e.

��a(v, v)
�� � ↵kvk

2
V

8v 2 V,

where ↵ > 0

2. The bilinear form b satisfies the inf-sup condition;

sup
v2X

b(v, µ)

kvk
X

� �kµk
M

8µ 2 M,

with � > 0;
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5.2 Inf-sup Conditions

Using the abstract results from the previous section we can prove the well-
posedness of problem (1).
First it is important to recall that the BIOs V and V can be obtained by
adding a compact perturbation to V0 and V0 (see lemma 1). Now we consider

the problem to find (jt, ⇢t�) 2 H
� 1

2
⇥ (div�,�)⇥H

� 1
2 (�) such that for any (µ, v) 2

H
� 1

2
⇥ (div�,�)⇥H

� 1
2 (�)

(
hV0j

t
,µi 1

2 ,�
+ hV0⇢

t

�, div�µi 1
2 ,�

= h�tei,µi 1
2 ,�

,

hV0div�jt, vi 1
2 ,�

= 0.
(2)

Problem 1 and 2 respectively define the two operators L and L0. Given lemma
1, it can also be shown, as it has been done in section 5.2 of [4], that the operator
�L = L � L0 is compact. This point is really important because, having the
compactness of �L, if we prove that L0 is an isomorphism then also Lk will
be, by Fredholm’s Alternative, if it is injective. Thus, we can focus on problem
2 and use Theorem 4 to prove that L0 is an isomorphism.
An important step is to observe that the equation hV0div�jt, vi 1

2 ,�
= 0 8v 2

H
� 1

2 (�) implies div�jt = 0 in H
� 1

2 (�) and, therefore, it is su�cient to consider
j
t
2 H

� 1
2 (div�0,�). Lemma 2 gives the coercivity of V in H

� 1
2 (div�0,�) and

of V in H
� 1

2 (�). Therefore, by theorem 4, if the bilinear form hV0⇢, div�◆i 1
2 ,�

satisfies the inf-sup condition L0 is an isomorphism. The following theorem,
which has been proved in [10], gives us the desired inf-sup condition.

Theorem 5. There exists a constant C � 0 such that

sup
0 6=�2H

� 1
2 (div�,�)

hVdiv��, vi 1
2 ,�

k�k
H

� 1
2 (div�,�)

� Ckvk
H

� 1
2
(�)

holds for all v 2 H
� 1

2⇤⇤ (�) = {u 2 H
� 1

2 : hu, V1i = 0}.

Moreover, it is necessary to prove that problem 1 is also well-posed when
using the discrete spaces Q and V. This can be easily shown using the same
reasoning as before, which makes it necessary to find a discrete inf-sup condition.
The rigorous derivation can be found in [6], we again only report the main result.

Theorem 6. There exists a constant C � 0 such that

sup
0 6=�h2Q

hVdiv��h, vhi 1
2 ,�

k�hk
H

� 1
2 (div�,�)

� Ckvhk
H

� 1
2
(�)

holds for all vh 2 V.

Therefore, also the discretized version of 1 is well-posed.
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Fig. 1: Comparison of the real part of the Mie Solution (left) and the real part
of the numerical solution (right).

Fig. 2: Comparison of the imaginary part of the Mie Solution (left) and the
imaginary part of the numerical solution (right) with 2048 elements and
 = 1.

6 Numerical Results

In this section we show the results of the C++ implementations based on the
BETL2 library [9] of the two versions of the EFIE. We considered the two test
cases of a sphere and a cube hit by a plane wave.
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6.1 Scattering by a Sphere

The case of a sphere hit by a plane wave is called Mie Scattering and the
analytical solution is known (it can be found in the appendix), thus we can
compare the numerical solution to the theoretical one, in order to validate of
the code. The following tables report the refinement results obtained running
the standard version of the EFIE for decreasing values of .

Elements kj
t

h
� j

t

mie
k2 kj

t

h
k2 kj

t

mie
k2

kjt
h�j

t
miek2

kjt
miek2

Order

 = 1
32 6.590e-1 2.057 2.373 2.776e-1 /
128 2.597e-1 2.257 2.333 1.112e-1 1.3433
512 1.215e-1 2.312 2.331 5.212e-2 1.0956

 = 0.01
32 2.065e-3 1.535e-4 2.212e-3 9.337e-1 /
128 1.980e-3 1.972e-4 2.173e-3 9.337e-1 0.0606
512 1.966e-3 2.094e-4 2.170e-3 9.057e-1 0.0105

 = 0.0001
32 2.065e-5 1.535e-6 2.122 e-5 9.337e-1 /
128 1.980e-5 1.972e-6 2.173e-5 9.114e-1 0.0607
512 1.966e-5 2.094e-6 2.170e-5 9.057e-1 0.0105

As expected we have first order convergence for  = 1, but convergence is lost
when using a small . Fortunately, when using the stabilized version, first order
convergence is recovered also for  ! 0. The following table shows the results,
when the same numerical experiments are carried out using the augmented
version.

Elements kj
t

h
� j

t

mie
k2 kj

t

h
k2 kj

t

mie
k2

kjt
h�j

t
miek2

kjt
miek2

Order

 = 1
32 6.590e-1 2.057 2.373 2.776e-1 /
128 2.597e-1 2.257 2.333 1.112e-1 1.3433
512 1.215e-1 2.312 2.331 5.212e-2 1.0732

 = 0.001
32 5.837e-4 1.973e-3 2.212e-3 2.638e-1 /
128 2.382e-4 2.118e-3 2.173e-3 1.096e-1 1.2930
512 1.140e-4 2.157e-3 2.170e-3 5.254e-2 1.0621

 = 0.00001
32 5.846e-6 1.973e-5 2.122e-5 2.642e-1 /
128 2.433e-6 2.119e-5 2.119e-5 1.119e-1 1.2647
512 2.073e-6 2.164e-5 2.170e-5 9.550e-2 0.2309

Furthermore, it is also interesting to check that the stabilized formulation is not
e↵ected by instabilities when ! 0, di↵erently from the classical version. This
can be seen by checking the condition number of the system matrices

Ac = A�
1

2
Ṽ As =

"
A Q

Q
T


2
V

#
,

defined as

cond(A) =
maxi|�i|

mini|�i|
,
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where �i are the eigenvalues of A.
As shown in figure 3, the condition number explodes for the classical formu-
lation, while it does not for the stabilized version, hence the low-frequency
instability has been e↵ectively solved.

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

classical

stabilized

Fig. 3: Condition number of the two formulations for decreasing values of the
wavenumber  on a 128 elements mesh.

Moreover, it is interesting to observe the behavior of the condition number
when the mesh is refined. The following table shows the condition number of
Ac for di↵erent wavenumbers and refining the mesh.

32 128 512
 = 1 2.034e+1 3.541e+1 7.352e+2

 = 0.001 1.896e+6 3.139e+6 1.602e+6
 = 0.00001 2.487e+6 2.010e+6 5.994e+6

On the other hand, the following table shows the results for the condition num-
ber of As

32 128 512
 = 1 4.159e+1 3.401e+1 2.152e+3

 = 0.001 2.112e+1 7.050e+1 3.528e+2
 = 0.00001 2.112e+1 7.050e+1 3.528e+2

We see that the condition number increases when we refine the mesh. This
behavior can cause numerical issues when refining even more the mesh, therefore
it should be compensated using some e↵ective preconditioner.

6.2 Scattering by a cube

We also test the code on a cube with unitary length edges. The numerical solu-
tion can be qualitatively observed in figure 4. In this case there is no numerical
solution available, therefore we compute the di↵erence of the L2 norms of the
solutions computed on two consecutive meshes. The results can be found in the
following table.
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Elements kj
t

h
k2 |kj

t

h
k2 � kj

t
h
2
k2|

 = 1
24 3.265 /
96 3.446 1.810e-1
384 3.534 8.760e-2

 = 0.001
24 2.880e-3 /
96 2.913e-3 3.356e-5
384 2.956e-3 4.200e-5

 = 0.001
24 2.881e-5 /
96 2.914e-5 3.275e-7
384 2.962e-5 4.797e-7

In this case we see that the norm update does not seem to decrease with mesh
refinement. We can infer that, given the low number of elements used for these
simulations, we are not in asymptotic regime yet, except for the  = 1 case,
therefore we don’t observe the expected convergence.

Fig. 4: Numerical solution for the surface current on a unitary cube. The com-
putation has been performed using the standard EFIE with  = 1 and
a 1536 elements. mesh
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7 Conclusions

The numerical results show that we correctly implemented both of the versions
of the EFIE. Unfortunately, as it was expected, the convergence is only of first
order. To increase the order it would be su�cient to use higher order finite
element spaces. On the other hand, our simple implementation is really stable
for low frequencies, while the increase in stability does not cause an increase
in the error. A noticeable issue is that with the augmented formulation the
dimensions of the linear system double. Given that the system matrix is dense,
the computational cost of the simulations then becomes considerably higher.
Indeed, the increase in the condition number with mesh refinement, which we
have observed in subsection 6.1, contributes to making the solution of the system
even more burdensome.
One more thing to consider is that we used an indirect formulation, therefore, if
the goal was to compute the electric field in the space, we would have to apply
the Maxwell Single Layer potential to j

t. This can be easily done in BETL,
using the single layer potential matrices.
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8 Appendix

8.1 Mie Solution

A well known study case for electromagnetic scattering is the one of a spherical
conductor hit by a plane wave. We consider a PEC sphere, although the solution
is known also for the case of with finite conductivity. The solution is valid
only for an incident wave with polarization d = [0, 0,�1]T and direction p =
[1, 0, 0]T .
The expression of the incident electric field associated with the plane wave is

E
i = pe

ix·d
.

Moreover, by formal computation it can be shown that

curl E
i = id⇥E

i
,

which is useful to compute the Neumann trace of the plane wave. The scattered
field is

E
s =

1X

n=1

i
n

2n+ 1

n(n+ 1)
(anm

(3)
o1n � ibnn

(3)
e1n)

and

curl E
s = i

1X

n=1

i
n

2n+ 1

n(n+ 1)
(iann

(3)
o1n + bnm

(3)
e1n)

where

an = �
jn(⇢)

h
(1)
n (⇢)

, bn = �
[⇢jn(⇢)]0

[⇢h(1)
n (⇢)]0

,

m
(3)
e1n = �

1

sin ✓
h
(1)
n

(R)P 1
n
(cos ✓) sin� e2 � h

(1)
n

(R)
@P

1
n

@✓
(cos ✓) cos� e3,

n
(3)
o1n =

n(n+ 1)

R
h
(1)
n

(R)P 1
n
(cos ✓) sin� e1 +

1

R
[Rh

(1)
n

(R)]0
@P

1
n

@✓
(cos ✓) sin� e2+

1

R sin ✓
[Rh

(1)
n

(R)]0P 1
n
(cos ✓) cos� e3,

m
(3)
o1n =

1

sin ✓
h
(1)
n

(R)P 1
n
(cos ✓) cos� e2 � h

(1)(R)
@P

1
n

@✓
(cos ✓) sin� e3,

n
(3)
e1n =

n(n+ 1)

R
h
(1)
n

(R)P 1
n
(cos ✓) cos� e1 +

1

R
[Rh

(1)
n

(R)]0
@P

1
n

@✓
(cos ✓) cos� e2�

1

R sin ✓
[Rh

(1)
n

(R)]0P 1
n
(cos ✓) sin� e3,

⇢ = a,

a is the radius of the sphere, (R, ✓,�) are the spherical coordinates, jn is the

n-th order spherical Bessel function, h(1)
n is the n-th order Henkel function of

the first kind and (e1, e2, e3) is the standard basis of R3.
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Betl2

...

Applications

...

efie verification mie

aug efie

main.cpp

system matrix.hpp

diagonal preconditioner.hpp

grids

std efie

main.cpp

system matrix.hpp

diagonal preconditioner.hpp

condnum.m

maxwell mie solution PEC.hpp

maxwell mie solution total field.hpp

...

...

Fig. 5: Structure of Betl2 Gitab repository

8.2 GitLab Repository

In this appendix we describe the structure of our GitLab repository.
The principal folder of our application can be found following the path

Betl2/Applications/efie verification mie,
as depicted in figure 5. In this folder we find the sub-folders aug efie and std efie
corresponding to the two versions implemented. Moreover, we have some com-
mon files which are used by both of the versions:

• the grids folder, which contains the meshes for the sphere and the cube
used to obtain our numerical results;

• the C++ header file maxwell mie solution PEC.hpp, containing the class in
which we implemented the Mie Solution for a PEC sphere;

• the C++ header file maxwell mie solution total field.hpp, which contains
an auxiliary class to return the sum of a plane wave (implemented in
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Betl2/Library/analytical functions/maxwell plane wave.hpp) and the Mie So-
lution for a PEC sphere;

• the Matlab script condnum.m, which allows to compute the condition num-
ber of the two versions of the discretized EFIE;

The std efie and aug efie directories have the same structure. They contain:

• the main.cpp;

• the system matrix.hpp header which contains the class for the assembly of
the linear system induced by the BEM discretization;

• the diagonal preconditioner.hpp header which contains a class for a simple
preconditioner used in the solution of the linear system;

The symmetry in the structure of these two folders means that probably we could
have implemented the application using C++ abstract classes and allowing code
reuse.
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