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“If you can meet with triumph and disaster and treat those impostors just the same.”
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Introduction

The scattering of acoustic and electromagnetic waves is a topic of research which
has been intensively studied by physicists, mathematicians and engineers over the
last 150 years. The modelling of these phenomena involve partial differential equa-
tions whose solutions vary considerably depending on the geometry of the scatterer.
Except in very few cases, it is too hard to derive analytic solutions to the scattering
problems, therefore a big effort has been put in building numerical methods, which
are able to approximate these solutions. For interior problems, in which case the
domain is limited, Finite Element Method (FEM) is a really valid tool and its math-
ematical properties and practical applicability have been studied deeply. On the
other hand, in many realistic scenarios scattering problems are actually posed in the
whole space and FEM is not a suitable choice any more, as, in principle, its appli-
cation would require the discretization of the whole R

d space (d = 2, 3). Boundary
Element Method (BEM), is instead much more attractive as it allows to reconstruct
the solution in the whole space basing only on its traces on the boundary of the
scatterer. As a result, to apply BEM one only needs to mesh the boundary of the
scatterer. Moreover, given that only a discretization of the boundaries is required,
the dimensionality of the problem is lowered, which is an attractive feature because
the complexity of the algorithms is reduced.

From a mathematical point of view, BEM is a very interesting field of research, since
a lot of effort is needed to prove its suitability when dealing with non-smooth ge-
ometries. In the beginning, the method has been derived for the case of smooth
shapes but the mathematical justification of its extension to non-smooth or complex
geometries is still one of the biggest challenges. Nowadays, the theoretical frame-
work for the application of BEM to scattering by bodies with Lipschitz boundaries
is well established [4] and the attention has moved towards complex geometries,
such as composite objects or screens. In this thesis, in particular, we focus on the
study of screen geometries, in which the thickness of the scatterer is much smaller
than the other dimensions. The first applications of BEM to screen problems date
back to the second half of the last century [13] but the issues related to non-smooth
geometries have been solved at a much later time [2, 3]. In this thesis, we focus on
a particular class of shapes, to which we refer as multi-screens. These geometries
are composed by many smooth screens which intersect at junctions. At these points
multi-screens are not locally-Lipschitz and not locally-orientable, for which reason
the theory for Lipschitz screens cannot be applied. Moreover, at the junctions the
screens have more than two sides, and, therefore, it is not clear how to practically
define the jumps of the traces, which play a key role in the Boundary Integral Equa-
tions (BIE).
All these problems have been solved through a theory which considers the multi-
screen as an infinitesimally thick bodies [6, 5]. This theoretical framework gives an
abstract definition of the jumps, which can be shown to correspond with the stan-
dard definitions when considering simple geometries. On the other hand, it may
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seem inconvenient for discretization purposes the presence of really abstract def-
inition, but we show that the jumps do not show up in the equations which we
discretize.
Our contribution to this theory is the discretization through a Galerkin approach of
the BIE related to acoustic and electromagnetic scattering by complex screens in two
and three dimensions. Moreover, we implement these ideas and report the numeri-
cal results for our experiments. The outline of the thesis is the following:

• Chapter 1: In the first chapter we summarize the theoretical background for
the scattering of scalar fields by multi-screens and we show how to apply a
Galerkin discretization to the BIEs which arise.

• Chapter 2: We test the ideas of BEM on multi-screens in the case of acoustic
scattering in 2D, for the implementation we use a MATLAB code. The testing
part also involves the comparison to a reference solution.

• Chapter 3: We implement a 3D C++ code using the BETL2 library [7] and we
carry out the same discussion as in the previous chapter.

• Chapter 4: This chapter is devoted to recapitulate the theory for electromag-
netic scattering at multi-screens. The BIE which arises, the so called Electric
Field Integral Equation (EFIE), is again discretized using a Galerkin approach.

• Chapter 5: Using BETL2, we implement in C++ the Galerkin discretization of
the EFIE and we discuss the obtained results.
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Chapter 1

Theory for Acoustic Scattering by
Complex Screens

In this chapter we discuss the mathematical background needed to deal with the
Helmholtz equation in presence of complex screens. All the results exposed in this
chapter are entirely derived in [6], to which we refer for the proofs and more detailed
explanations. To begin with, in section 1.1 we introduce the function spaces which
are useful for the formulation of the Boundary Integral Equations (BIE). In section
1.2, we present the Boundary Value Problems (BVP) which we want to tackle and
enunciate the BIEs that can be used to solve those BVPs. Finally, in section 1.3 we
show how to carry out a Galerkin discretization of our BIEs.
Remark: Throughout this chapter we will consider R

d with d = 2 or 3.

1.1 Function Spaces

First of all, it is fundamental to derive a suitable functional analysis framework to
make sense of concepts like traces and jumps across a multi-screen. The standard
definition of traces and jumps for screen problems cannot be directly extended to
the case of complex screens, but we will enunciate some abstract definition, which in
the case of a Lipschitz screen correspond to the classic definitions [2]. Interestingly,
whenever considering a smooth surface most of the spaces have an interpretation as
quotients of functions spaces defined on the domain. This observation plays a key
role in the development of a functional analysis framework for complex screens, as
it offers an alternative way to local chart mapping functions (which would do not
work on complex screens) for the construction of spaces on the screen.

1.1.1 Geometry

In this paragraph we rigorously define the notion of a Complex Screen. Sloppily
speaking, we consider geometries which are generated by gluing together many
simple screens at a junction, and we refer to this class of shapes as multi-screens. For
the definition of a multi-screen, it is useful to give the following auxiliary concept.

Definition 1 (Lipschitz Partition [6, Definition 2.2]). A Lipschitz partition of R
d is a

finite collection of Lipschitz open sets
�
Wj
�

j=0...n such that R
d = [

n
j=0Wj and Wj \Wk = ∆,

if j 6= k.

Now we are ready to define a multi-screen

Definition 2 (Multi-screen [6, Definition 2.3]). A multi-screen is a subset G ⇢ R
d such

that there exists a Lipschitz partition R
d denoted

�
Wj
�

j=0...n satisfying G ⇢ [
n
j=0Wj and
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such that for each j = 0 . . . n, we have G \ ∂Wj = Gj where Gj ⇢ ∂Wj is some Lipschitz
screen in the sense of Buffa-Christiansen [2, section 1.1].

It can be shown that multi-screens are a generalization of Lipschitz screens, which
means that Lipschitz screens fit the definition of multi-screens (see the MÃűbius
strip example in [6]).
Multi-screens pose two great difficulties: they are not necessarily locally orientable
(alike Lipschitz screens) and, additionally, junction points where the screen is not
two sided are admitted. At these points, It is not clear how to define jumps of traces,
and this will require us to define more abstract trace spaces and trace operators than
in the Lipschitz screen case.

1.1.2 Standard Trace Spaces

First of all, we summarize the standard functional analysis framework in which in-
stead of G we consider traces on ∂W, the boundary of a domain W. This will help us
to find a new strategy for the construction of trace spaces.
To begin with, we have spaces of functions defined on the domain W:

• H1(W) = {v 2 L2(W) : kvk2
H1(W) :=

R
W|v|

2 + |rv|2dx < •} ;

• H1
0,∂W(W) is the closure of C•

0,∂W := {j 2 C•(W) : j = 0 in a neighbourhood of ∂W}

with respect to the k kH1(W) norm;

• H(div, W) = {q 2 L2(W)d : kqk2
H(div,W) =

R
W|q|

2 + |div(q)|2dx < •};

• H0,∂W(div, W) is the closure of C•
0,∂W

�
W
�d with respect to the k kH(div,W) norm.

Standard Dirichlet traces

We can define the Dirichlet trace of a function in H1(W) as its restriction to G tD,G :
v 7! v|G. Now the standard Dirichlet trace spaces are the following:

H
1
2 (∂W) := {u|G : u 2 H1(W)} = Range(tD,∂W).

We note that H 1
2 (G) can be alternatively identified as a quotient space. This is pos-

sible thanks to the fact that H1
0,∂W(W) = Ker(tD,∂W). As a result, tD,∂W defines an

isomorphism from H1(W)/H1
0,∂W(W) to H 1

2 (∂W) which allows the identification

H
1
2 (∂W) = H1(W)/H1

0,∂W(W), (1.1)

as stated in [6, Equation 3].

Standard Neumann Traces

Also for the Neumann trace, it is possible to define a point trace operator. If we de-
note by n the normal vector to ∂W (which is well-defined as now we are considering
W to be a Lipschitz domain), we can define the normal component trace operator
tN,G : q 7! q · n. It can be seen that this operator induces a continuous and surjective
mapping from H(div, W) onto H�

1
2 (∂W) = (H 1

2 (∂W))0. Now we are ready to define
the standard spaces

H�
1
2 (∂W) := {q|∂W : q 2 H�

1
2 (∂W)},
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Also in this case, we can give a quotient space interpretation of H�
1
2 (∂W). By ob-

serving that H0,G(div, W) = Ker(tN,G), we have the identification

H�
1
2 (G) = H(div, W)/H0,∂W(div, W) = H(div, R

d
\W)/H0,∂W(div, R

d
\W). (1.2)

For both H 1
2 (∂W) and H�

1
2 (∂W) it is possible to use the quotient space norms in-

duced by the previously identifications.
Equation (1.1) and (1.2) suggest a strategy to define trace spaces on a multi-screen
without using local chart mapping functions, and we will see that this approach
works also on non locally orientable and non locally Lipschitz manifolds, like the
multi-screens. Therefore, we will first define suitable spaces of functions defined on
R\G, where G is a multi-screen, and successively we will define the trace spaces as
quotient spaces of these domain based function spaces.

1.1.3 Domain Based Function Spaces

In light of the previous discussion we concentrate on defining function spaces de-
fined on R\G, where G is a multi-screen.
First of all, we concentrate on H1(Rd

\G). This space is the set of all functions
u 2 L2(Rd) such that there exists a p 2 L2(Rd)d for which

Z

Rd\G
udiv(q)dx = �

Z

Rd\G
p · qdx 8q 2 D(Rd

\G),

where for an open set w ⇢ R
d

D(w) = {j 2 C•(w)|supp(j) ⇢ w}.

It is important to notice that we can write p = ru|
Rd\G in the sense of distribu-

tions on R
d
\G but we have p 6= ru in the sense of distributions on R

d. We equip
H1(Rd

\G) with the scalar product

(u, v)H1(Rd\G) :=
Z

Rd\G
uvdx +

Z

Rd\G
(ru|

Rd\G) · (rv|
Rd\G)dx,

which renders H1(Rd
\G) a Hilbert space. Now we can endow this space with the

norm induced by the (u, v)H1(Rd\G) scalar product, which is

kuk2
H1(Rd\G) := kuk2

L2(Rd) + kpk2
L2(Rd) with p = ru|

Rd\G.

The difference between H1(Rd
\G) and H1(Rd) is that functions belonging to the for-

mer are allowed to jump across G, while functions belonging to the latter are not.
Accordingly, it can be shown that H1(Rd

\G) strictly contains H1(Rd) as a non-trivial
closed subspace.
In a very similar way, we can define the space H1(div, R

d
\G) with analogous scalar

product and norm (obtained by simply replacing the gradients with divergences).
We can observe that, like in the previous case, H1(div, R

d
\G) strictly contains H1(div, R

d)
as a non-trivial closed subspace.
We also discuss spaces for functions that vanish in the neighbourhood of G. Notice
that such functions are not allowed to jump across G.
In particular we define:

• H1
0,G(R

d) to be the closure in H1(Rd
\G) of the set D(Rd

\G);
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• H0,G(div, R
d) to be the closure in H1(div, R

d
\G) of the set D(Rd

\G);

The definitions of this section result in the two following chains of inclusions

H1
0,G(R) ⇢ H1(R) ⇢ H1(R\G),

H0,G(div, R) ⇢ H(div, R) ⇢ H(div, R\G).

which make the quotient spaces in the next sections meaningful.

1.1.4 Multi-Trace Spaces

Having defined proper domain based function spaces, we are now ready to define
trace spaces by taking quotients of them. Two types of trace spaces will arise: the
multi-traces, which are allowed to have different values depending which side of the
multi-screen is considered; the single-traces, which are special multi-traces taking
the same value on each side of the screen.
In this section we concentrate on the first kind of traces and we leave the discussion
about the single-traces to the next section.

Definition 3 (Multi-Trace Spaces). The Dirichlet and Neumann multi-trace spaces are,
respectively, defined as follows:

H
+ 1

2 (G) := H1(Rd
\G)/H1

0,G(R
d),

H
�

1
2 (G) := H(div, R

d
\G)/H0,G(div, R

d).
(1.3)

We will tag the elements of these spaces with a˙(e.g. u̇, ṗ). This is done to empha-
size the fact that elements of quotient spaces are classes of equivalence. Moreover,
we equip the multi-trace spaces with the usual quotient space norms k k

H
±

1
2
.

By virtue of the definition of multi-trace spaces as quotient spaces, it is easy to define
trace-like operators for functions in H1(Rd

\G) and H(div, R
d
\G) using the canonical

surjections

pD : H1(Rd
\G) ! H

1
2 (G) and pN : H(div, R

d
\G) ! H

�
1
2 (G). (1.4)

We can now build a special pairing with respect to which H
1
2 (G) and H

�
1
2 (G) are

dual to each other. We start with the observation that Green’s formula does not
necessarily hold for functions in H1(Rd

\G) and H(div, R
d
\G). Indeed, for any u 2

H1(Rd
\G) and any p 2 H(div, R

d
\G) we have

Z

Rd\G
p ·ru + udiv(p)dx 6= 0.

On the other hand, adding any function which vanishes on the screen to p and v
does not change the value of the integral:

Z

Rd\G
(p + q) ·r(u + v) + (u + v)div(p + q)dx =

Z

Rd\G
p ·ru + udiv(p)dx

8v 2 H1
0,G(R

d), 8q 2 H0,G(div, R
d).

This suggests that this formula represents a good bilinear pairing between the quo-
tient spaces H

1
2 (G) and H

�
1
2 (G).

For any u̇ 2 H
1
2 and ṗ 2 H

�
1
2 we choose u 2 H1(R\G) and p 2 H(div, R\G) such
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FIGURE 1.1: Infinitesimally thick screen

that pD(u) = u̇ and pN(p) = ṗ and construct the pairing

⌧ u̇, ṗ �=
Z

Rd\G
p ·ru + udiv(p) dx. (1.5)

Observation 1. The bilinear form (1.5) is closely related to the usual L2-pairing h·, ·i on
the surface of a Lipschitz body. As a matter of fact, the right-hand side in equation (1.5)
computes via integration by parts an integral on the boundary of the domain R

d
\G. We will

see that we only consider radiating solutions, which satisfy decay conditions, and, as a result,
the ⌧ ·, · �-pairing depends only on their value on the part of boundary neighboring the
screen. It can be seen that computing ⌧ u̇, ṗ � is equivalent to computing hu̇, ṗi on the
boundary of an imaginary infinitesimally thick screen, as depicted in figure 1.1. In order to
convey this idea, we will use a special notation to indicate the integration on the boundary of
the infinitesimally thick screen:

Z

[G]
u̇ ṗds =

Z

Rd\G
p ·ru + udiv(p) dx.

This notation is not theoretically rigorous and the integral should not be read as if it was
with respect to the Lebesgue measure on G, however, it emphasizes the idea of the integration
on the boundary of an infinitesimally thick screen [G] which will be of practical use for the
Galerkin discretization.

We observe immediately that the choice of the ⌧ ·, · �-pairing is particularly
appropriate as, analogously to what happens for H±

1
2 (∂W) on smooth boundaries,

we have that H
±

1
2 (G) are dual to each other via this pairing.

Proposition 1 ([6, Proposition 5.1]). The pairing ⌧ , �: H
+ 1

2 (G)⇥H
�

1
2 G ! C defined

by
⌧ v̇, q̇ �=

Z

[G]
q̇v̇ ds 8v̇ 2 H

+ 1
2 (G), 8q̇ 2 H

�
1
2 (G)

induces and isometric duality between H
+ 1

2 (G) and H
�

1
2 (G).

The last result of this section follows directly from the duality between H
+ 1

2 (G)
and H

�
1
2 (G) .
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Corollary 1 ([6, Corollary 5.2]). Let u 2 H1(Rd
\G) and p 2 H(div, R

d
\G). We have

the following characterizations

u 2 H1
0,G(R

d) ()
R

Rd\G q ·ru + udiv(q)dx = 0 8q 2 H(div, R
d
\G),

p 2 H0,G(div, R
d) ()

R
Rd\G p ·rv + vdiv(p)dx = 0 8v 2 H1(Rd

\G).

This result shows that, through the ⌧ , � duality pairing, H1(Rd
\G) and H0,G(div, R

d)
are polar to each other, as well as H1

0,G(R
d) and H(div, R

d
\G).

1.1.5 Single-Trace Spaces

The multi-trace spaces we described in the previous section allow the traces to have
different values on opposite sides of the screen. Therefore, we can think of the two
sides of the panel as independent surfaces on which the functions are free to assume
different values. It is now possible to single out subspaces of H

1
2 (G) and H

�
1
2 (G)

that contain traces of single-valued functions. These spaces are obtained by simply
replacing "Rd

\G" with "Rd" in (1.3), so we take the quotient of functions that are
continuous across the screen.

Definition 4 (Single-trace spaces). We define the single-trace spaces as the quotient spaces

H+ 1
2 ([G]) := H1(Rd)/H1

0,G(R
d),

H�
1
2 ([G]) := H(div, R

d)/H0,G(div, R
d).

(1.6)

The name "single-trace" is due to the fact that traces in those spaces either agree
on opposite sides of G (in the case of H

+ 1
2 (G)) or they have opposite sign (in the

case of H
�

1
2 (G)). As desired, the single-trace spaces are subspaces of the multi-trace

spaces.

Corollary 2 ([6, Proposition 6.2]). The space H+ 1
2 ([G]) (resp. H�

1
2 ([G])) is a closed sub-

space of H
+ 1

2 (G) (resp- H
�

1
2 (G)).

Although H±
1
2 ([G]) ⇢ H

±
1
2 (G), H±

1
2 ([G]) are not dual to each other with respect

to the ⌧ , � pairing, they are polar.

Proposition 2 ([6, Proposition 6.3]). For u̇ 2 H
+ 1

2 and ṗ 2 H
�

1
2 it holds true

u̇ 2 H+ 1
2 ([G]) ()

R
[G] u̇q̇ ds = 0 8q̇ 2 H�

1
2 ([G]),

ṗ 2 H�
1
2 ([G]) ()

R
[G] v̇q̇ ds = 0 8v̇ 2 H+ 1

2 ([G]).

1.1.6 Jump Spaces

As we have seen in the previous sections, the multi-traces are allowed to jump across
a multi-screen. In this section we define the spaces to which these jumps belong as
duals of the single-trace spaces.

Definition 5 (Jump Spaces). We introduce respectively the Dirichlet and Neumann jump
spaces as the dual spaces

eH+ 1
2 ([G]) = (H�

1
2 ([G]))0,

eH�
1
2 ([G]) = (H+ 1

2 ([G]))0.
(1.7)
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We endow these spaces with the dual norms

kjk eH+ 1
2 ([G])

:= sup
q̇2H�

1
2 ([G])

q̇ 6=0

|hj, q̇i|
kq̇k

H
�

1
2 (G)

and kyk eH�
1
2 ([G])

:= sup
v̇2H+ 1

2 ([G])
v̇ 6=0

|hy, v̇i|
kv̇k

H
+ 1

2 (G)

Now we can define jump operators as mappings between multi-trace functions and
elements of the jump spaces.

Definition 6. We define continuous jump operators [ ] : H
+ 1

2 (G) ! eH+ 1
2 ([G]) and [ ] :

H
�

1
2 (G) ! eH�

1
2 ([G]) as follows: for any u̇ 2 H

+ 1
2 (G) (resp. any ṗ 2 H

�
1
2 (G)), let [u̇]

(resp. [ ṗ]) be the unique element of eH+ 1
2 ([G]) (resp. eH�

1
2 ([G])) satisfying

h[u̇], q̇i :=
R
[G] u̇q̇ ds 8q̇ 2 H�

1
2 ([G]),

hv̇, [ ṗ]i :=
R
[G] v̇ ṗ ds 8v̇ 2 H+ 1

2 ([G]).
(1.8)

where h , i denotes the duality pairing either between H+ 1
2 ([G]) and eH�

1
2 ([G]), or between

eH+ 1
2 ([G]) and H�

1
2 ([G]).

We have precise information about the kernels and the ranges of the jump op-
erators. To understand the kernels, we can observe that single-valued traces do not
jump so they have to belong to the kernel of the jump operators.

Corollary 3. (Kernels of jump operators, [6, Corollary 6.2]) For v 2 H
+ 1

2 (G) and q 2

H
�

1
2 (G) it holds

v 2 H+ 1
2 ([G]) , [v] = 0,

q 2 H�
1
2 ([G]) , [q] = 0.

(1.9)

On the other hand, multi-trace functions must be associated with an element in
the jump spaces via the jump operators.

Proposition 3. (Range of jump operators, [6, Proposition 6.7]) The jump operators [] :
H

+ 1
2 (G) ! eH+ 1

2 ([G]) and [] : H
�

1
2 (G) ! eH�

1
2 ([G]) from Definition 6 are surjective.

We conclude this section by giving an interpretation of the newly introduced
jump spaces as quotient spaces.

Proposition 4. [6, Proposition 6.8] The jump operators induce isometric isomorphisms

eH+ 1
2 ([G]) ⇠= H

+ 1
2 (G)/H+ 1

2 ([G]) and eH�
1
2 ([G]) ⇠= H

�
1
2 (G)/H�

1
2 ([G])

1.2 Boundary Integral Equations for acoustic scattering

Throughout this whole thesis we will consider time-harmonic fields. In the scalar
case they are of the form

ũ(x, t) = u(x)eiwt.

We consider the acoustic wave equation

Dxũ(x, t)�
1
c2

∂2

∂t2 ũ(x, t) = 0,
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with c being the speed of light, and, via the harmonic time dependence, we obtain
the well known Helmholtz equation

� Du(x)� k2u(x) = 0, (1.10)

in which k = w
c is the wavenumber. As usual, we can build BVPs by prescribing a

Dirichlet or a Neumann data to (1.10). This requires the formal definition of the right
Dirichlet and Neumann traces. Given that we deal with exterior problems, we will
require the solution to satisfy suitable decay conditions. In the following, two more
function spaces will be of use:

• H1(D, R
d
\G) = {u 2 H1(R\G) : ru 2 H(div, R\G)}

• H1
loc(D, R

d
\G) = {u 2 L2

loc(R
d) : ju 2 H1(D, R

d
\G)8j 2 D(Rd

\G)}

1.2.1 Trace Operators

The first trace operator we introduce is the Dirichlet trace, which corresponds to the
restriction of a function to the screen G:

gD(u) = pD(u),

where pD is the Dirichlet canonical surjection we defined in (1.4).
We have that gD : H1

loc(D, R
d
\G) ! H

+ 1
2 (G) is continuous and if u, v 2 H1

loc(D, R
d
\G)

coincide in a neighbourhood of G then gD(u) = gD(v), as pointed out in [6, section
7.1].
The second trace operator we consider is the Neumann trace operator, defined in the
following way:

gN(u) = pN(ru),

where pN is the Neumann canonical surjection from (1.4).
The Neumann trace operator has the same properties as the Dirichlet trace: gN :
H1

loc(D, R
d
\G) ! H

�
1
2 (G) is continuous and if u, v 2 H1

loc(D, R
d
\G) coincide in a

neighbourhood of G then gN(u) = gN(v) (see again [6, section 7.1]).
Together with the trace operators we can define their formal adjoints g0

D : H
�

1
2 !

H1
loc(D, R

d
\G) and g0

N : H
+ 1

2 ! H1
loc(D, R

d
\G)

hg0

D ṗ, ji =⌧ ṗ, gD j � 8j 2 D(Rd),
hg0

Nv̇, ji =⌧ v̇, gD j � 8j 2 D(Rd).

1.2.2 Layer Potentials and Representation Formula

The goal of this section is to find a representation formula for the solutions of our
BVPs, as it is usually done in BEM. In order to do this, we first need to introduce
two layer potentials called respectively the single layer potential and the double layer
potential:

SLk(q̇)(x) = Gk ⇤ g0

D(q̇) =
R
[G] gD(Gk,x)q̇ ds 8q̇ 2 H

�
1
2 (G),

DLk(v̇)(x) = Gk ⇤ g0

N(v̇) =
R
[G] gN(Gk,x)v̇ ds 8v̇ 2 H

+ 1
2 (G).
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where the convolution refers to a "
R
[G]" integral and

Gk,x(y) = Gk(x � y)

with Gk being the radiating fundamental solution of the Helmholtz equation:

Gk(x) =

(
i
4H

1
0(k|x|) if d = 2,

eikx

4px if d = 3,

where H
1
0 is the zeroth order Hankel function of the first kind.

Before giving the representation formula we recall some important properties of the
layer potentials. First of all, we have a continuity result.

Proposition 5 ([6, Propositions 8.3 and 8.4]). The operator SLk continuously maps H
�

1
2 (G) !

into H1
loc(D, R

d
\G) \ H1

loc(R
d) and the operator DLk continuously maps H

+ 1
2 (G) ! into

H1
loc(D, R

d
\G).

In a similar manner as the standard layer potentials, also the layer potentials for
multi-screens satisfy some jump conditions, we summarize them in the following
propositions.

Proposition 6 ([6, Proposition 8.5]).

[gD] · DLk(u̇) = [u̇] [gN ] · DLk(u̇) = 0 8u̇ 2 H
+ 1

2 (G)

[gD] · SLk( ṗ) = 0 [gN ] · SLk( ṗ) = [ ṗ] 8 ṗ 2 H
�

1
2 (G)

Interestingly, on the right-hand sides of the jump relations for multi-screens we
find [u̇] and [ ṗ] instead of u̇ and ṗ as we would have with the standard geometries.
Another important property of the layer potentials for multi-screens is that they are
not injective when understood as mapping between multi-trace spaces:

Lemma 1 ([6, Lemma 8.6]). We have SLk ṗ = 0 8 ṗ 2 H�
1
2 ([G]) and DLk v̇ = 0 8v̇ 2

H 1
2 ([G]).

As anticipated, solutions of the Helmholtz equation satisfy a representation for-
mula in which the layer potentials play a key role, as shown in the following propo-
sition.

Proposition 7 ([6, Lemma 8.1]). For any u 2 H1(D, R
d
\G) with bounded support, if

f = �Du � k2u in the sense of distributions in R
d
\G, we have the following formula

u = Gk ⇤ f + SLk · gN(u) + DLk · gD(u) in R
d
\G.

1.2.3 BIOs and BIEs

Now that we have a representation formula we are able to derive BIEs by applying
the trace operators to it. Let us first consider the exterior Helmholtz-Dirichlet BVP

8
>><

>>:

�Du(x)� k2u(x) = 0 in R
d
\G,

gDu = gD on G,
limr!• r

⇣
∂u
∂r (x)� iku(x)

⌘
= 0, r = kxk.
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If we plug the known Dirichlet trace in the representation formula, apply the Neu-
mann trace and rearrange, we find

gD · SLk · gN(u) = g := gD � gDDLkgD.

Now we can define the weakly singular BIO as

V = gD · SLk,

and we can find the unknown Neumann trace gN(u) 2 H
�

1
2 (G) by solving

VgN(u) = g. (1.11)

Then, by plugging gNu into the representation formula it is possible to retrieve u in
the whole space. The derived BIE can be cast in variational form as follows

Find f = gNu 2 H
�

1
2 (G) such that ⌧ Vf, y �=⌧ g, y � 8y 2 H

�
1
2 (G).

(1.12)
Formulation (1.12) can be discretized using, for example, a Galerkin approach.
We can proceed in a similar way for the Helmholtz-Neumann BVP

8
>><

>>:

�Du(x)� k2u(x) = 0 in R
d
\G,

gNu = hN on G,
limr!• r

⇣
∂u
∂r (x)� iku(x)

⌘
= 0, r = kxk.

Indeed, if we take the Neumann trace of the representation formula and rearrange
in the same way as before, we find

gN · DLk · gD(u) = h := hN � gNSLkhN .

Thus, we define the hypersingular BIO as

W = gN · DLk.

Now the unknown Dirichlet trace gD(u) 2 H
1
2 (G) can be found by solving

WgD(u) = h. (1.13)

Also this BIE can be cast in variational form and it results in the problem

Find v = gDu 2 H
+ 1

2 (G) such that ⌧ Wv, p �=⌧ h, p � 8p 2 H
�

1
2 (G).

(1.14)
It would be desirable to have existence and uniqueness of the solutions of (1.12) and
(1.14). Unfortunately, this can be proved only if we restrict the BIOs to map jump
spaces into single trace spaces as stated in the following proposition.

Proposition 8 ([6, Proposition 8.8]). For any wavenumber k 2 C\{0} such that Imk � 0
let V : eH�

1
2 ([G]) ! H+ 1

2 ([G]) and W : eH+ 1
2 ([G]) ! H�

1
2 ([G]) denote the weakly singular

and hypersingular BIOs respectively. Then there exist compact operators KV : eH�
1
2 ([G]) !

H+ 1
2 ([G]) and KW : eH+ 1

2 ([G]) ! H�
1
2 ([G]) such that the following generalized Gårding
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FIGURE 1.2: Multi-trace mesh on an infinitesimally thick screen

inequalities are satisfied

Re
⇢Z

[G]
q(V + KV)q̄ ds

�
� Ckqk2

eH�
1
2 ([G])

8q 2 eH�
1
2 ([G])

Re
⇢Z

[G]
v(W + KW)v̄ ds

�
� Ckvk2

eH+ 1
2 ([G])

8v 2 eH+ 1
2 ([G])

Thanks to proposition 4 it can be seen that the solutions of the BIEs posed on the
multi-trace spaces exists but they are not unique

1.3 Galerkin Discretization of the Boundary Integral Equa-
tions

In this section we will show how to apply the Galerkin approach to the variational
BIEs (1.12) and (1.14).
The discretization of the multi-trace spaces is possible as we have a concrete intu-
ition about those spaces and the duality pairing between them. Indeed, recalling
observation 1 and the fact that the trace spaces must allow a trace to have differ-
ent values depending on which side of the screen is considered, we can imagine to
have an infinitesimally thick screen and mesh its surface so that we get overlapping
nodes and elements on opposite sides of the screen like in figure 1.2. Then we can
build Boundary Element Spaces (BES) for the multi-trace spaces in the same way as
we would build BES for the standard trace spaces on the boundary of a Lipschitz
domain, which in our case is the infinitesimally thick screen.
Having chosen this strategy to build the BES, we first need to formally define 2D
and 3D meshes G on Lipschitz polygons or polyhedrons. Then, we can approximate
the trace spaces on G using lowest order Lagrangian BES defined on G. Finally, we
derive the linear systems of equations which arise from the discretization.

1.3.1 Meshes on an closed Polygon

If G is a polygon, i.e. a piecewise straight curve, it can be partitioned as

G = G1 [ · · · [ GM with Gi \ Gj = ∆ for i 6= j.

where Gj, j = 1, . . . , M are the edges of G with C2-parametrizations

aj : [�1, 1] ! Gj, j = 1, . . . , M
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aj(1) = aj+1(�1), j = 1, . . . , M � 1 a1(�1) = aM(1).

Now we are ready to define a mesh on a polygon.

Definition 7 (Mesh on a an Closed Polygon). A mesh G on a polygon is a decomposition

G =
M[

j=1

Nj[

i=1
t
(j)
i , t

(j)
i = aj(]x

(j)
i�1, x

(j)
i [), i = 1, . . . , Nj, Nj 2 N, j = 1, . . . , M

induced by grids of the parameter intervals [�1, 1]:

�1 =: x
(j)
0 < x

(j)
1 < · · · < x

(j)
Nj�1 < x

(j)
Nj

:= 1

1.3.2 Triangular Meshes on Polyhedron

Suppose that G is a closed polyhedron which can be partitioned as

G = G1 [ · · · [ GN with Gi \ Gj = ∆ for i 6= j.

Each Gi has a C2-parameterization

ai : Pi ! Gi,

where Pi is a planar polygon. Now we can define a triangulation on a polygon in
R

2.

Definition 8 (Triangulation of a Polygon). A triangulation M of a polygon P ⇢ R
2 is

a finite collection {Ki}
N
i=1, N 2 N of open non-degenerate triangles such that

• P =
S
{Ki, i = 1, . . . , M},

• Ki \ Kj = ∆ $ i 6= j

• for all i, j 2 {1, . . . , M}, i 6= j, the intersection Ki \ Kj is either empty or a vertex or
edge both Ki and Kj

Now we are ready to define a triangular surface mesh

Definition 9 (Triangular Surface Mesh on a closed Polyhedron). A triangular surface
mesh G is a partitioning

G = t1 [ · · · [ tN , ti \ ti = ∆ for i 6= j,

such that

• every panel tj is contained in exactly one face Gi,

• the pre-images of the panels contained in Gj under the parameterization aj form a
triangulation Mj of Pj according to previous definition.

• for all ti, tj 2 T (G) the intersections ti \ tj are either empty, a common vertex, or a
face of both panels.

In this definition and throughout the rest of this work we indicate with:

• V(G) the sets of vertices of the mesh G with cardinality NV

• T (G) the sets of panels of the mesh G with cardinality NT

• E(G) the sets of edges of the mesh G with cardinality NE
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1.3.3 The Boundary Element Spaces

The strategy to build discrete Boundary Element spaces on the boundary is now to
define classical finite element spaces on the domain of the parameterizations and to
transfer them via pullback to G. The pullback of a function f is defined as a⇤ f = f � a.

Definition 10 (Lagrangian Boundary Element Spaces). Let G be a triangular mesh as
defined in 9, we define the piecewise polynomial Boundary Element spaces as

S
0
p(G) := {v 2 C0(G) : a⇤

j (v|t) 2 Pp(R
q), 8t 2 G, t ⇢ Gj, j = 1, . . . , M}, p � 1,

S
�1
p (G) := {v 2 L2(G) : a⇤

j (v|e) 2 Pp(R
q), 8t 2 G, t ⇢ Gj, j = 1, . . . , M}, p � 0,

where q = 1 for meshes on curves and q = 2 for meshes on surfaces.

Where the spaces Pp are the spaces of polynomials of degree p Since we carry out
a lowest order Lagrangian discretization, we discretize H

+ 1
2 (G) with S

0
1 (G), while

we discretize H
�

1
2 (G) with S

�1
0 (G).

Keeping in mind the goal of Galerkin discretization we need to choose a basis for
each of S0

1 and S
�1
0 . For the first we choose the nodal basis composed by tent func-

tions. For each vertex pi 2 V(G) we define the basis function

bi
NV

2 S
0
1 (G),

bi
NV

(x) =

(
1
Di

if x = pi,
0 if x 2 V(G)\{pi},

where Nv is the number of vertices of the mesh and Di is the Gram determinant
when G is a polyhedron, or simply the panel length when G is a polygon. On the
other hand, for S�1

0 we chose characteristic functions of the panels. For each panel
ei we define

bi
NE

2 S
�1
1 (G),

bi
NE

=

(
1
Di

if x 2 ei,
0 elsewhere on G.

Where NE is the number of elements in the mesh.
In practice, the basis functions are built as usual parametrically via pullback using
the parameterizations aj.

1.3.4 Linear System Construction

Having the boundary element spaces and their basis functions, we are finally ready
to build the linear systems of equations which arise from the variational formula-
tions 1.12 and 1.14.

The Weakly Singular Operator System

In this paragraph we aim at discretizing the variational formulation (1.12). As we
already anticipated, we approximate H

�
1
2 (G) with S

�1
0 (G). Therefore, any function

f 2 H
�

1
2 (G) can be approximated as

f ⇡

NE

Â
i=1

fib
i
NE

.
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Every function f we can now be associated to a vector of Degrees of Freedom (DoFs)
~f = (f1, . . . , fNE)

T. On the other hand the function g 2 H
+ 1

2 (G) is approximated
using S

0
1 (G) as

g ⇡

NV

Â
i=1

gibi
NV

.

and it is associated to a DoF vector ~g = (g1, . . . , gNV )
T. As a result, using the bilin-

earity properties of the involved operators, (1.12) becomes

Find ~f 2 R
NE such that

NE

Â
i=1

⌧ Vbi
NE

, b
j
NE

� fi =
NV

Â
i=1

⌧ bi
NV

, b
j
NE

� gi 8j 2 {1, . . . , NE}.

(1.15)
If now we define the matrices

[V]i,j =⌧ Vbi
NE

, b
j
NE

� 2 R
NE⇥NE ,

[M]i,j =⌧ bi
NV

, b
j
NE

� 2 R
NV⇥NE , (1.16)

formulation (1.15) can be compactly rewritten as

Find ~f such that V~f = ~rV ,

with ~rV = M~g

The Hyper-Singular Operator System

We now take care of the variational formulation (1.14). Here we discretize the spaces
H

+ 1
2 (G) with S

0
1 (G): a function v 2 H

+ 1
2 (G) can be approximated as

v ⇡

NV

Â
i=1

vibi
NV

,

and it is associated to a DoF vector ~v = {v1, . . . , vNV}. Instead the right-hand side
function h 2 H

�
1
2 (G) approximated with piecewise constants as

h ⇡

NE

Â
i=1

hib
i
NE

,

and it is again associated with a DoF vector~h = {h1, . . . , hNE}. Using once more the
bilinearity of the operators, (1.14) becomes

Find ~v 2 R
NV such that

NV

Â
i=1

⌧ Wbi
NV

, bj
NV

� vi =
NE

Â
i=1

⌧ bi
NE

, bj
NV

� hi 8j 2 {1, . . . , NV}.

(1.17)
Now, by defining the matrix

[W]i,j =⌧ Wbi
NV

, bj
NV

� 2 R
NV⇥NV , (1.18)

the (1.17) can be rewritten as

Find~h such that W~h = ~rW ,
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with ~rW = MT~h.

1.3.5 The Variational Formulation of the Hypersingular Operator

When written in its integral form, the hypersingular operator cannot be used in prac-
tice to compute the integrals (1.18) as they involve non-integrable kernels. Fortu-
nately, through integration by parts it is possible to manipulate the hypersingular
operator in variational form so that its kernel becomes integrable. The next formu-
lae we report are rigorously proved in [12, Section 6.5]. In two dimensions we can
write:

⌧ Wbi
NV

, bj
NV

�= �
1

2p

Z

[G]

Z

[G]
log(kx � yk)

dbi
NV

ds
dbj

NV

ds
ds(x)ds(y),

where d·
ds indicates the arclength derivative. On the other hand, in three dimensions

we have

⌧ Wbi
NV

, bj
NV

�=
1

4p

Z

[G]

Z

[G]

1
kx � yk

(gradGbi
NV

⇥ n) · (gradGbj
NV

⇥ n)ds(x)ds(y).
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Chapter 2

2D Laplace Equation

In this chapter we apply the ideas from chapter 1 to two-dimensional Laplace screen
problems. In this case, the multi-screen is simply an open curve which is allowed to
have junctions. The Laplace-Neumann and Laplace-Dirichlet problems are respec-
tively (

Du = 0 in W
gD(u) = g on G

and

(
Du = 0 in W
gN(u) = h on G

.

In the same way as it has been done for the Helmholtz equation in chapter 1, it can
be shown that the problems are equivalent to the variational BIEs (??) and (??) with
k = 0).

We analyze 3 different geometries for the numerical tests: a segment screen (fig-
ure 2.1a), a triple junction (figure 2.1b) and a quadruple junction (figure 2.1c).
We first investigate the kernels of the discretized BIOs, which will turn out to be non-
empty, (section 2.1). In section 2.2 we empirically show that iterative solvers, such
as Conjugate Gradient (CG) method and Generalized Minimal Residual (GMRES)
method, are still able to solve the linear systems despite the non-empty kernels, by
virtue to the structure of the involved matrices. Moreover, we validate our code in
the segment case using some known analytical solutions (section 2.3). To conclude,
we show how the kernels can be suppressed by incorporating into the problems the
knowledge we have about the multi-trace spaces (section 2.4). The codes used in
this chapter are briefly discussed in Appendix A. 1

2.1 Tests for the Kernel Dimensions

The matrices corresponding to the discrete versions of the weakly- and hyper-singular
BIOs are supposed to become singular when the thickness of the screen tends to zero.
From an abstract theoretical point of view, the singularity of the discrete BIOs is in-
herited from the single and double layer potentials (recall lemma 1). From a practical
point of view, when the thickness of screen is zero, some of mesh elements and ver-
tices coincide. Therefore, we have that the rows and columns corresponding to these
DoFs couples are exactly equal, as we will prove in the next section. Accordingly, in
the following we verify that kernel dimensions of the Galerkin matrices correspond-
ing to the two BIOs match the expectations.
In MATLAB the kernel dimension of a matrix A can be obtained using the com-
mands size(null(A),2). Another option would be to check how many eigenvalues of
the matrices are numerically null (of order of 10�14 or smaller). This number gives
the kernel dimension. Figure 2.2 shows, for example the eigenvalues of V and W
in the segment case for different system sizes. In the pictures it can be clearly seen

1For all the implementations of this chapter we used MATLAB R2017b
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(A) Segment screen.
Coordinates: A = (�1, 0)T , B = (1, 0)T
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(B) Triple screen.
Coordinates:
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2/2)T ,
D = (
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2/2)T ,

E = (0, 1)T
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(C) Quadruple screen.
Coordinates:

F = (�1, 0)T , G = (0,�1)T ,
H = (1, 0)T , I = (0, 1)T

FIGURE 2.1: The screens used in our numerical simulations.
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FIGURE 2.2: Eigenvalues of V (left) and W (right) on a hierarchy of
nested meshes.

that in each case half of the eigenvalues are numerically negligible with respect to
the others.

2.1.1 Kernel of the Weakly Singular operator

In the case of the weakly singular operator we have DoFs associated with the ele-
ments of the mesh, since we carry out a Galerkin discretization based on piecewise
linear basis functions.
As it is shown in figure 2.3a, the mesh elements overlap in couples and the number
of overlapping couples is equal to the total number of elements divided by two.
We can prove that each of these couples brings a contribution to the kernel of V. If
we consider two overlapping elements ei ⌘ ej, then for any other element ek we have

Vki= �
1

2p

R
ek

R
ei

log 1
kx�yk

1
|ek |

1
|ei |

ds(x)ds(y) =
= �

1
2p

R
ek

R
ej

log 1
kx�yk

1
|ek |

1
|ej|

ds(x)ds(y) = Vkj
(2.1)

The condition Vki = Vkj results in a kernel contribution since we can build a vector
fij

2 R
Ne with

f
ij
l =

8
><

>:

1 if l = i
�1 if l = j
0 otherwise,

(2.2)

and we will have Vfij = 0, since, using 2.1, we have by direct computation:

Ne

Â
l=1

Vklf
ij
l = Vkif

ij
i + Vkjf

ij
j = 0 8k = 1 . . . Ne.

Now if we chose any other couple of overlapping elements ei0 ⌘ ej0 we can build a
vector fi0 j0 in the same way as in 2.2. Given that i0 6= i and j0 6= j, fi0 j0 will always
be linearly independent from fij, and it will add a further dimension to the kernel
of V. Repeating the same reasoning for every couple of overlapping elements, we
observe a new kernel contribution for each of those couples, getting in total Ne

2 con-
tributions. Moreover, it seems clear that, in general, for couples of non overlapping
elements there is no relation similar to 2.1 therefore those couples do not carry any
new contribution to the kernel of V and the f vectors constitute a base for the kernel.
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Segment Triple Junction Quadruple Junction
N dim(ker(V)) N dim(ker(V)) N dim(ker(V))
4 2 12 6 16 8
10 5 30 15 40 20
22 11 66 33 88 44
46 23 138 69 184 92
94 47 282 141 376 188

TABLE 2.1: Kernel dimensions of V when using a mesh with N el-
ements. The kernel dimension is always half as the total number of

elements

Observation 2. Each vector f corresponds to a Neumann trace whose jump across the
screen is null. Moreover, using the basis constituted by the f vectors we can only build
Neumann traces which do not jump across the screen. Therefore, the kernel of V is composed
by Neumann traces which do not jump across the screen. This practical result confirms the
theoretical expectations from [6, Lemma 8.6].

Table 2.1 shows the numerical results of the tests for the kernel size of V, which
confirm our expectations.

2.1.2 Kernel of the Hyper-Singular Operator

For the hyper-singular operator the mesh vertices are the geometric entities asso-
ciated with the DoFs. Figure 2.3b shows how the vertices overlap when the mesh
thickness tends to zero. We observe that the nodes overlap in couples when they are
away from the junction, while we have many overlapping vertices at the junction.
We divide the analysis of the kernel of W in three cases: dependencies for couples of
overlapping vertices away from the junction, dependencies of nodes overlapping at
the junction and nodes at the tips.

Couple of Vertices Away from the Junctions

We will consider a couple of vertices overlapping on a flat region of the screen as in
figure 2.4a. First of all, we observe that there is a specific relation for the arc length
derivative of overlapping basis functions, namely:

dbi
ds

= �
dbj

ds
.

By virtue of this formula and the fact that ei ⌘ ej�1 ej ⌘ ei�1, we find that for any
vertex k we have

Wki= �
1

2p

R
ek[ek�1

R
ei[ei�1

log 1
kx�yk

dbk
ds

dbi
ds ds(x)ds(y) =

= 1
2p

R
ek[ek�1

R
ej[ej�1

log 1
kx�yk

dbk
ds

dbj
ds ds(x)ds(y) = �Wkj

(2.3)

Similarly to what we have seen in the previous section, this relation implies that the
vector Yij defined as

Yij
l =

(
1 if l = i or l = j
0 otherwise
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(A) Overlap of the elements (B) Overlap of the vertices

FIGURE 2.3: Multi-trace meshes in which equal DoFs are indicated
with the same color
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(C) Tip vertex

FIGURE 2.4: Multi-trace meshes in which equal DoFs are indicated
with the same color
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belongs to the kernel of W. On the other hand, in the hypersingular case there also
other basis functions that contribute to the kernel of W, therefore the Yij vectors are
not enough to form a basis of ker W

Vertices Overlapping at the Junction

As it can be seen in 2.4b for a triple junction, thanks to the opposite orientations of
the elements which overlap we have the following relation

dbi
ds

+
dbj

ds
+

dbk
ds

= 0,

from which we find easily that

Wzi + Wzj + Wzk = 0.

For a general n-uple junction we have that

n

Â
t=1

Wzt = 0.

We can observe that any vector µ of the form

µl =

(
1 if l is a junction DoF
0 otherwise

lies in the kernel of W and it is linearly independent from the vectors Yij

Vertices at the Tips

From figure 2.4c we observe that for any tip DoF k we have that ek ⌘ ek�1 and,
therefore,

Wzk= �
1

2p

R
ez[ez�1

R
ek[ek�1

log 1
kx�yk

dbz
ds

dbk
ds ds(x)ds(y) =

= �
1

2p

R
ez[ez�1

R
ek

log 1
kx�yk

dbz
ds

1
|ek |

ds(x)ds(y)+

�
1

2p

R
ez[ez�1

R
ek�1

log 1
kx�yk

dbz
ds

⇣
�

1
|ek�1|

⌘
ds(x)ds(y) = 0, 8z 2 {1, . . . , Nv}.

(2.4)
As a result, the vectors hk such that

hk
l =

(
1 if l = i
0 otherwise

belong to the kernel of W. Moreover, they are linearly independent from the vectors
Yij and µ found in the previous sections.

Observation 3. The vectors (Yij, µi, hk) form a basis of ker(W). Therefore the functions in
this space are Dirichlet traces which cannot jump across the screen, not even at the junction.
This observation complies with [6, Lemma 8.6]

Given that the tips DoFs lead to rows and columns of W which are populated
only by zeros, we decided to neglect them leaving the associated mesh vertices out
of the computations.
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Segment Triple Junction Quadruple Junction
N dim(ker(V)) N dim(ker(V)) N dim(ker(V))
2 1 9 4 12 5
8 4 27 13 36 17
20 10 63 31 84 41
44 22 135 69 180 89
92 46 279 139 372 185

TABLE 2.2: Kernel dimensions of W when using a mesh with N inner
DoFs.

We tested the kernel dimensionalities of the W matrices computed with our numeri-
cal codes and we report them in table 2.2. For the segment screen the kernel of W has
number of dimensions equal to half the total number of DoFs. For the triple junction
we observe that W has always (N � 3)/2 dimensions, where N is the total number
of DoFs, while for the quadruple junction it has (N � 3)/2 dimensions.

2.2 Tests for CG and GMRES Iterative Solvers

In this section we show that the CG and GMRES iterative solvers are still able to
solve the linear systems that involve V and W, although those matrices have non-
empty kernels. For each of them we pick a right hand-side vector which belongs to
the column space of the matrices and we show that both of the solvers converge to a
solution in a number of iterations much smaller then the system size.
As it has been shown in [8] and [1], CG and GMRES are still supposed to converge
thanks to the fact that the matrices V and W are symmetric and semi-positive defi-
nite. Moreover the solution given by those solvers is the same as the one we would
get using a pseudo-inverse approach. From the point of view of the convergence of
CG and GMRES it seems like the null eigenvalues of V and W do not influence the
number of iterations needed to converge. For this reason for all the numerical ex-
periments of this thesis we will use an unusual definition of the condition number,
defined as the ratio between the highest eigenvalue an the lowest non-zero eigen-
value.

2.2.1 CG and GMRES for the Weakly-Singular BIO

To test the behaviour of iterative solvers for the discrete weakly-singular BIO, we
solve the system

Vx = rV. (2.5)

where rV = Vz and z is a random vector. This choice of the right-hand side vector
ensures the solvability of the system. The results show that, as predicted, both CG
and GMRES are able to solve the underdetermined system and they perform nicely
even when the mesh thickness is exactly zero. In table 2.3 we reported the condition
number of V for different number of elements and varying the mesh thickness. It
is interesting to observe that with e = 0 the condition number grows linearly with
the number of mesh elements in all the three cases. In the case in which # = 0 many
eigenvalues of V are null and we ignored them computing the condition number as
the ratio between the largest singular value and the smallest non-zero eigenvalue.
The results show that the condition number of V increases both when we decrease
the mesh thickness and when we increase the number of elements. As predicted
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Segment
H
H
H
H
HH

#
Ne 32 64 128 256

0.1 7.0035e+1 1.8061e+2 5.4803e+2 1.9051e+3
0.01 2.1623e+2 2.2381e+2 3.0677e+2 6.0394e+2
0.001 3.8852e+3 3.0436e+3 2.5584e+3 2.2446e+3
0.0001 2.5804e+5 1.2999e+5 6.9615e+4 4.3079e+4

0.00001 2.5630e+7 1.2649e+7 6.2879e+6 3.1444e+6
0 3.7019e+1 7.5657e+1 1.5281e+2 3.0706e+2

Triple Junction
H
H
H
H
HH

#
Ne 32 64 128 256

0.1 2.7429e+2 7.5706e+2 2.3743e+3 8.7757e+3
0.01 3.0054e+2 4.1453e+2 8.2605e+2 1.6853e+3
0.001 4.0731e+3 3.4149e+3 2.9923e+3 2.9503e+3
0.0001 4.4801e+5 1.0108e+5 5.7493e+4 4.3186e+4

0.00001 1.7123e+7 8.4414e+6 4.2039e+6 2.2845e+6
0 1.0363e+2 2.1083e+2 4.2520e+2 8.5393e+2

Quadruple Junction
H
H
H
H
HH

#
Ne 32 64 128 256

0.1 2.3279e+2 8.5931e+2 3.3656e+3 1.3387e+4
0.01 5.1285e+2 7.5803e+2 1.0277e+3 2.0579e+3
0.001 5.2136e+3 4.4840e+3 4.1865e+3 4.4894e+3
0.0001 2.2064e+5 1.1721e+5 7.2541e+4 5.5144e+4

0.00001 2.1490e+7 1.0593e+7 5.2750e+6 2.6640e+6
0 1.4842e+2 3.0190e+2 6.0883e+2 1.2227e+3

TABLE 2.3: Condition number of V with mesh thickness # and Ne
elements for each side of the fins.

by the theory, in our numerical experiments both CG and GMRES have been able
to solve system 2.5. The performances of the two methods in terms of number of
iterations needed to reach the convergence, with stopping criterion for the relative
residual equal to 1e-6, are shown in tables 2.4 and 2.5.

2.2.2 CG and GMRES for the Hyper-Singular BIO

We now consider the system
Wx = rW (2.6)

In analogy to the what has been done in the previous section, we take rW = Wz
with z being a random vector. By repeating the same experiments as for V we obtain
the results reported in tables 2.6, 2.7 and 2.8. The stopping criterion for the relative
residual is again equal to 1e-6. Also in this case, when e = 0 the condition number
grows linearly with the number of elements.

Observation 4. Both in the weakly singular and hypersingular cases, when decreasing #
the number of iterations to convergence first increases and then decreases. The reason is that
both V and W have bunch of eigenvalues whose order of magnitude decreases when # becomes
smaller, while the other eigenvalues are not affected. When these eigenvalues are small the
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Segment Triple Junction Quadruple Junction
H

H
H
H

HH
#

Ne 32 64 128 256 32 64 128 256 32 64 128 256

0.1 23 32 42 59 39 54 80 109 33 48 70 106
0.01 29 31 36 48 36 44 55 71 29 42 55 82
0.001 35 53 64 73 61 75 84 87 24 33 51 78
0.0001 26 36 60 73 56 70 89 109 22 31 42 58
0.00001 17 23 29 39 27 34 44 103 22 31 40 52

0 17 22 30 37 27 34 46 54 22 31 40 52

TABLE 2.4: Number of iterations for the CG solution of 2.5 with mesh
thickness # and system size and Ne elements for each side of the fins.

Segment Triple Junction Quadruple Junction
H

H
H
H

HH
#

N 32 64 128 256 32 64 128 256 32 64 128 256

0.1 21 27 33 40 31 40 49 56 28 39 50 61
0.01 25 26 29 36 30 33 40 49 26 36 44 58
0.001 28 39 46 49 45 52 55 54 23 30 41 57
0.0001 23 30 36 51 42 41 58 68 21 28 36 45
0.00001 16 21 25 31 23 29 35 42 21 28 34 43

0 16 20 25 25 30 29 35 41 21 28 34 43

TABLE 2.5: Number of iterations for the GMRES solution of 2.5 with
mesh thickness # and Ne elements for each side of the fins.

matrices become ill-conditioned and iterative solvers struggle more to find the solution. On
the other hand, if the magnitude of these eigenvalues becomes small enough they become
irrelevant and the iterative solvers converge as if these eigenvalues did not exist.

2.3 Validation on a segment

In this section we show the validation results for our implementation of the BIOs
when the screen is the horizontal segment G = [�1, 1] ⇥ 0. We compare our nu-
merical solutions to the ones prescribed by analytical formulae as in [14, section
4.1.1-4.1.2] and we compute the errors in the discrete energy norms

kfhk
2
V = fT

h Vhfh, (2.7)
kyhk

2
W = yT

h Whyh, (2.8)

where fh and yh are the DoFs vectors coresponding to fh and yh respectively and
Vh and Wh are the matrices encoding the discretized BIOs.
Remark: in this analysis we ignored the multiplicative constant of the fundamental
solution of the Laplace equation, but it can be easily plugged back in).

2.3.1 Validation for the Weakly-Singular BIO

For the weakly singular operator we have the analytic formula

Vf(x) = px with f(x) =
x

p
1 � x2

,
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Segment
H
H
H
H
HH

#
Nf 32 64 128 256

0.1 6.4553e+1 1.3921e+2 3.1517e+2 7.1894e+2
0.01 7.5600e+2 1.0988e+3 1.7015e+3 3.0155e+3
0.001 1.9488e+4 2.5552e+4 3.6117e+4 5.4028e+4
0.0001 1.3563e+6 1.2599e+6 1.2857e+6 1.5129e+6

0.00001 1.3477e+8 1.2283e+8 1.1713e+8 1.1466e+8
0 1.3763e+1 2.7969e+1 5.6380e+1 1.1320e+2

Triple Junction
H
H
H
H
HH

#
Nf 32 64 128 256

0.1 2.4482e+2 3.2596e+2 7.6596e+2 1.8223e+4
0.01 1.1912e+3 1.8971e+3 3.3397e+3 6.7633e+3
0.001 2.7537e+4 3.9101e+4 5.8863e+4 9.2623e+4
0.0001 1.3579e+6 1.3992e+6 1.6419e+6 2.2452e+6

0.00001 1.3346e+8 1.2676e+8 1.6419e+8 1.2033e+8
0 3.5654e+1 7.2014e+1 1.4475e+2 2.9022e+2

Quadruple Junction
H
H
H
H
HH

#
Nf 32 64 128 256

0.1 1.4495e+2 3.5456e+2 8.3689e+2 1.9331e+3
0.01 1.2153e+3 1.8430e+2 3.1206e+3 6.2508e+3
0.001 3.0710e+4 4.3156e+4 6.3957e+4 9.8094e+4
0.0001 1.5883e+6 1.5922e+6 1.8559e+6 2.5206e+6

0.00001 3.8214e+7 1.9110e+8 4.5429e+8 1.9708e+8
0 4.9820e+1 1.0114e+2 2.0378e+2 4.0907e+2

TABLE 2.6: Condition number of W with mesh thickness #.

Segment Triple Junction Quadruple Junction
H
H

H
H
HH

#
Nf 32 64 128 256 32 64 128 256 32 64 128 256

0.1 23 32 46 66 37 56 83 112 33 48 70 106
0.01 51 66 81 108 84 85 111 157 29 42 55 82
0.001 60 116 251 372 173 289 386 490 24 33 51 78

0.0001 48 109 194 493 75 368 693 1519 22 31 42 58
0.00001 20 40 118 289 21 46 52 125 22 31 40 52

0 14 21 29 40 26 36 47 65 22 31 40 52

TABLE 2.7: Number of iterations for the CG solution of 2.6 with mesh
thickness # and system size Nf .
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Segment Triple Junction Quadruple Junction
H
H
H
H
HH

#
Nf 32 64 128 256 32 64 128 256 32 64 128 256

0.1 23 31 45 62 36 54 75 95 40 54 71 103
0.01 51 65 80 104 78 83 110 152 72 97 115 152

0.001 60 119 211 310 147 250 364 479 164 263 377 426
0.0001 51 104 212 396 142 272 526 793 166 337 566 887
0.00001 20 35 70 129 60 98 177 318 49 97 179 321

0 14 21 29 40 60 98 177 318 25 34 46 63

TABLE 2.8: Number of iterations for the GMRES solution of 2.6 with
mesh thickness #.

Single-Trace Multi-Trace
N kf � fhkV Order N kf � fhkV Order
4 7.7816e-1 / 4 1.5563 /
8 5.2962e-1 0.5551 8 1.0592 0.5551
16 3.6619e-1 0.5324 16 7.3238e-1 0.5324
32 2.5520e-1 0.5210 32 5.1039e-1 0.5210
64 1.7853e-1 0.5154 64 3.5706e-1 0.5154
128 1.2513e-1 0.5128 128 2.5026e-1 0.5128
256 8.7777e-2 0.5114 256 1.7555e-1 0.5114
512 6.1600e-2 0.5109 512 1.2320e-1 0.5108

1024 4.3235e-2 0.5107 1024 8.6496e-2 0.5103

TABLE 2.9: Energy norm of the error and order of convergence for
the weakly-singular operator on the segment [�1, 1] ⇥ {0} with N

elements

as it is stated in [14, Section 4.1.1].
For the energy norm of the solution we have

kf � fhk
2
V = hV(f � fh), (f � fh)i =

= hVf, fi � hVfh, fhi =

=
D

px, x
p

1�x2

E
� hVfh, fhi =

= p2

2 � fT
h Vfh.

The results for the single-trace approach are summarized in the left part of table 2.9.
For the multi-trace approach we carried out the same same simulations with some
small changes in the analytical solution. In this case the integration path is twice as
long, therefore the error energy norm becomes

kf � fhk
2
V = 2p2

� fT
h Vfh

we summarize the results of the simulations in the right part of table 2.9. For both
cases we observe order of convergence 1

2 due to the singularity of the solution.
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Single-Trace Multi-Trace
N ky � yhkW Order N ky � yhkW Order
4 7.7816e-1 / 4 1.5563 /
8 5.2962e-1 0.5551 8 1.0592 0.5551
16 3.6619e-1 0.5324 16 7.3238e-1 0.5324
32 2.5520e-1 0.5210 32 5.1039e-1 0.5210
64 1.7853e-1 0.5154 64 3.5706e-1 0.5154
128 1.2513e-1 0.5128 128 2.5026e-1 0.5128
256 8.7777e-2 0.5114 256 1.7555e-1 0.5114
512 6.1600e-2 0.5109 512 1.2320e-1 0.5108
1024 4.3235e-2 0.5107 1024 8.6496e-2 0.5103

TABLE 2.10: Energy norm of the error and order of convergence for
the hyper-singular operator on the segment [�1, 1]⇥ {0} with N ele-

ments

2.3.2 Validation for the Hyper-Singular BIO

Also for the hyper-singular BIO we have an analytic formula which gives a reference
solution. From [14, Section 4.1.2] we know that

Wy(x) = p with y(x) =
p

1 � x2

In the same way as stated before we can compute the error in the energy norm for
the single-trace approach as

ky � yhk
2
W = p2/2 � yT

h Wyh,

and for the multi-trace approach as

ky � yhk
2
W = 2p2

� yT
h Wyh

The convergence results are reported in table 2.10. Also here we observe order of
convergence 1

2 as the derivative of the solution is singular in [�1, 1].

2.4 Elimination of the Kernels

It is possible to incorporate the knowledge we have about the relations between the
overlapping DoFs into the matrices V and W in order to suppress their kernels. In
order to do so we create new DoFs vectors (in the following example û) which are
obtained from the old DoFs (u) through a linear transformation T which encodes the
prior knowledge about the DoFs.
For example in the weakly-singular operator case it is known that the old DoFs are
equal in pairs when they are overlapping. This has to happen by virtue of the fact
that the jump of a Dirichlet trace across the screen (away from junctions) has to be
null. Therefore, on a segment mesh with N elements the new DoFs must be such
that

ûi = ui = uj if i = j or i + j = 2N � 1.
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Hence, the components of the matrix T are

Tij =

(
1 if i = j or i + j = 2N � 1
0 otherwise

The new DoFs are obtained as
û = TTu

With this new DoFs vector we also need to modify the Galerkin matrix correspond-
ing to the weakly-singular BIO through the formula

bV = TTVT.

The matrix V̂ is now non-singular and the system

V̂f̂ = ĝ

can be directly solved.
The solution expressed in the old DoFs system can be then retrieved as

f = Tf̂.

When we consider the hyper-singular operator we know that DoFs associated with
overlapping vertices have to be opposite in sign. Again this fact has an interpretation
related to jumps of traces: the Neumann jump across the screen away from junctions
must be null. Accordingly, the entries of T for a segment are

Tij =

8
><

>:

1 if i = j,
�1 if i + j = 2N � 1,
0 otherwise.

The same consideration done in the previous case apply and the matrix

bW = TTWT

is full-ranked.
It is possible to build T matrices also for the cases with junctions by analogous con-
siderations. In particular for the hyper-singular operator we also need to enforce the
constrain 2.1.2 in the T matrix. In order to do this, we reorder the DoFs to place the
junction DoFs at the end of our vectors and matrices. Now, the matrix T needs to
have this block structure:

T =


T0

J

�

Where T0 is analogous to the T matrix in the segment case, while J for a triple junc-
tion is

J =

2

4
1 0
0 1
1 1

3

5
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Segment
Original Reduced

N CG GMRES CG GMRES
32 17 16 16 16
64 22 20 22 20

128 30 25 29 25
256 38 31 38 31

Triple Junction
Original Reduced

N CG GMRES CG GMRES
32 26 23 26 23
64 34 29 34 29

128 46 34 46 34
256 54 41 57 41

Quadruple
Original Reduced

N CG GMRES CG GMRES
32 26 24 26 24
64 34 30 34 30

128 42 35 42 35
256 54 43 54 53

Segment
Original Reduced

N CG GMRES CG GMRES
32 14 14 14 14
64 21 21 21 21
128 28 27 28 27
256 40 38 40 38

Triple Junction
Original Reduced

N CG GMRES CG GMRES
32 24 24 28 28
64 35 35 35 34
128 47 46 48 47
256 54 60 64 60

Quadruple
Original Reduced

N CG GMRES CG GMRES
32 24 24 25 25
64 34 34 35 34
128 48 47 49 47
256 64 55 64 53

TABLE 2.11: Comparison of the numbers of iterations to convergence
for the weakly singular system (left) and the hypersingular system

(right).

and for a quadruple function it is

J =

2

4
1 0 0
0 1 0
1 1 1

3

5 .

Unfortunately, for the discrete hypersingular operator the nodes reduction requires
detailed knowledge about the geometric situation at the junction.
An advantage of solving the reduced system is that it is much smaller than the origi-
nal one, and, therefore, the computational burden of CG and GMRES is considerably
smaller. This is because in the reduced case the matrix by vector multiplications re-
quire much less floating point operations and each iteration of both the two methods
is much faster.
On the other hand, we can see how the null eigenvalues which show up in the non-
reduced case do not influence the convergence of the iterative solver. By comparing
the numbers of iterations to convergence for the original and the reduced systems,
which are reported in table 2.11, it is possible to observe that the numbers of itera-
tions are always really similar, which means that the null eigenvalues are irrelevant
for the convergence of CG and GMRES.
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Chapter 3

3D Laplace Equation

In this chapter we work with the Laplace equation posed in three dimensions. In
principle, this case is not really different from the previous one, but some new diffi-
culties arise. In particular, the treatment of the singular integrands in the numerical
quadrature schemes is in general much more difficult and the entries of the BEM
matrices have to be computed using the complex schemes from [11, Chapter 5].
These methods involve transformations which introduce small numerical inaccura-
cies which are different depending on the orientation of the involved elements. This
phenomenon is visible in our numerical results and in the case of the hyper-singular
operator we have to deal with matrices which are not exactly singular, but still really
ill-conditioned. Although these new problems with numerical quadrature, the CG
and GMRES iterative solvers are able to compute a solution for the linear systems
involved within a reasonably small number of iterations. On the other hand, we are
more interested in analysing the possibility of solving the singular linear systems,
therefore we correct the matrices to recover the non-empty kernels and study the
convergence of GMRES and CG.
This chapter is organized similarly to the previous one: in section 3.1 we explain
the approach used to build suitable multi-trace boundary element spaces, in section
3.2 we analyse the dimension of the kernels of the BEM matrices, in section 3.3 we
show that the CG and GMRES solvers are able to solve the linear systems despite the
non-empty kernels, finally in section 3.4 we show how prior knowledge about the
jumps of the traces can be incorporated in our computations in order to eliminate
the kernels of the BEM matrices.
All the numerical experiments of this chapter are carried out using BETL2, a well
established C++ library for Boundary Element Method [7].

3.1 Construction of the Multi-Trace Approach

There are different strategies which could be used to construct the BES defined on a
three-dimensional multi-screen, therefore in this section we would like to describe
our choice. In our numerical experiments we deal with a disk screen (figure 3.1a),
a triple multi-screen (figure 3.1b) and a quadruple multi-screen (figure 3.1c). The
junctions of our multi-screens form in both cases a simple line. More complicated
geometries with articulated junctions are allowed and they can be treated exactly in
the same way as we did for our simpler junctions.
Similarly to the what we did in the previous chapter, also for the three-dimensional

case we built multi-trace meshes which tightly wrap the screens. This means that all
the mesh nodes which are not on the boundary of the screen are duplicated and they
form two perfectly overlapping surfaces for each of the flat parts of the multi-screen.
To understand better the structure of the multi-trace meshes we show in figure 3.2
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Z

(A) Disk screen

X

Y

Z

(B) Triple junction

X

Z

Y

(C) Quadruple junction

FIGURE 3.1: The screens used in our 3D numerical simulations
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how the surface of the multi-screen would look like if it had a finite thickness, to
obtain the multi-trace mesh we then set the thickness to be null. If now we mesh
such a surface we obtain couples of overlapping nodes on the flat parts and triplets
or quadruplets of overlapping nodes at the junctions.

After the mesh is created, the BES can be generated in the same way as for a
closed mesh.
An alternative strategy to generate the necessary BES could have been to use a classic
single trace mesh on the open surfaces and manually build BES with duplicated
DoFs.

3.2 Tests for the Kernel Dimensions

Also in 3D, when dealing with multi-trace meshes, the BEM matrices corresponding
two the two BIOs have non empty kernels. As explained in the previous chapter,
couple, triplets or quadruplets of overlapping elements or nodes can yield kernel
contributions. In this section we show why overlapping DoFs yield a kernel contri-
bution and we verify the theoretical expectations with numerical experiments. We
will see that in the numerical experiments for the hypersingular operator, due to
numerical errors which appear in the computation of double integrals by quadra-
ture, the W matrices are not exactly singular but they still have a certain number of
eigenvalues which are smaller than the others. We report in figure 3.3 the plots of
the eigenvalues of V and W for the three kind of meshes we considered.

3.2.1 Kernel of the Weakly Singular Operator

When discretizing the weakly singular operator, we use piecewise constant basis
functions, each of which is associated with an element.
In the following, we show how every couple of overlapping elements yields a kernel
contribution to V.
Let us consider the situation depicted in figure 3.4. The DoF k is associated with the

element tk and the DoFs i and j are associated with the overlapping elements ti ⌘ tj.
We observe that

Vki=
1

4p

R
tk

R
ti

1
kx�yk

1
Dk

1
Di

ds(x)ds(y) =
1

4p

R
tk

R
tj

1
kx�yk

1
Dk

1
Dj

ds(x)ds(y) = Vkj 8k 2 (1, . . . , NT),
(3.1)

where NT is the total number of elements in the mesh. The discussion about the
kernel contribution from section 2.1.1 applies also here. We empirically verified our
theoretical expectations by computing the V matrix using the BETL2 library on the
meshes previously presented, we report the results in table 3.1. The dimension of
the kernel has been computed by importing the matrices in Matlab and using the
command size(null(V),1). As expected the dimensionality of the kernel of V is al-
ways half as the total number of elements, one for each couple.

3.2.2 Kernel of the Hypersingular Operator

In the same way as done in section 2.1.2, we analyse in which way overlapping DoFs
yield kernel contributions to W.
For the discretization of the hypersingular operator we use nodal piecewise linear
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XY

Z

(A) Thick disk screen

Z X

Y

(B) Thick triple junction

Z X

Y

(C) Thick quadruple junction

FIGURE 3.2: Rendering of the screens used in our numerical experi-
ments as if they had a non-zero thickness
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(A) Eigenvalues of V computed on a disk

(B) Eigenvalues of V computed on a triple
junction

(C) Eigenvalues of V computed on a
quadruple junction

(D) Eigenvalues of W computed on a disk

(E) Eigenvalues of W computed on a
triple junction

(F) Eigenvalues of W computed on a
quadruple junction

FIGURE 3.3: Eigenvalues of the BEM matrices on hierarchies of nested
meshes. In the left column the dashed line indicates the machine pre-

cision.
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FIGURE 3.4: Representation of the support of the basis functions as-
sociated with overlapping DoFs i and j and a generic DoF k.

Disk
NT 40 160 640

dim(ker(V)) 20 80 320
Triple Junction

NT 24 96 384
dim(ker(V)) 12 48 192

Quadruple Junction
NT 32 128 512

dim(ker(V)) 16 64 256

TABLE 3.1: Dimension of the kernel of W when using a mesh with
NT triangular elements

basis functions, associated with mesh vertices. Hence, we have to check what hap-
pens when the nodes overlap.
Following the same procedure of 2.1.2 we analyze separately the three cases of nodes
away from the junctions, nodes at the junctions and nodes at the tips.

Couple of Vertices Away from the Junctions

We will analyze the situation depicted in figure 3.5. Although we pretend that
the nodes are locate at the intersection between three triangles, our analysis can be
straightforwardly extended if more triangles are involved.

The DoFs i and j is are associated to basis functions with overlapping supports
supp{bi} ⌘ supp{bj} which have opposite normals ni = �nj while the k-th DoF is
any other DoF.
To keep the formulae short we write

fst(x, y) =
1

4p

1
kx � yk

(gradGbs
Nv
(x)⇥ ns) · (gradGbt

Nv
(y)⇥ nt),

and

f rq
st (x, y) =

1
4p

1
kx � yk

����
{tq⇥tr}

(gradGbs
Nv
(x)

��
tq
⇥ ns) · (gradGbt

Nv

�
y)|tr ⇥ nt).



3.2. Tests for the Kernel Dimensions 41

FIGURE 3.5: Representation of the support of the basis functions as-
sociated with two overlapping DoFs i and j and a generic DoF k.

We observe that in our case for every couple of overlapping triangles tm ⌘ tn it holds
f lm
ki (x, y) = � f ln

kj (x, y) since we have gradGbi
NV

���
tm

= gradGbj
NV

���
tn

, but the normals

are opposite. Consequently, we find that

Wki=
R

tk1[tk2[tk3

R
ti1[ti2[ti3

fki(x, y)ds(x)ds(y) =
= Âq={k1,k2,k3} Âp={i1,i2,i3}

R
tq

R
tp

f qp
ki (x, y)ds(x)ds(y) =

= �Âq={k1,k2,k3} Âr={j1,j2,j3}
R

tq

R
tr

f qr
kj (x, y)ds(x)ds(y) =

= �
R

tk1[tk2[tk3

R
tj1[tj2[tj3

fkj(x, y)ds(x)ds(y) = �Wkj 8k 2 (1, . . . , NV),
(3.2)

Vertices Overlapping at the Junctions

We analyze the case of a triple junction as depicted in figure 3.6. The same reasoning
can be extended to any kind of junction with a small effort. Using the same notations
from the previous section we find that

Wzi + Wzj + Wzk = Âq={z1,z2,z3} Âr={i1,i2,i3}
R

tq

R
tr

f qr
zi (x, y)ds(x)ds(y)+

+Âq={z1,z2,z3} Âs={j1,j2,j3}
R

tq

R
ts

f qs
zj (x, y)ds(x)ds(y)+

Âq={z1,z2,z3} Ât={k1,k2,k3}

R
tq

R
tt

f qt
zk(x, y)ds(x)ds(y) =

= Âq={z1,z2,z3}

R
tq

h
Â

r={i1,i2}

Z

tr

f qr
zi (x, y)ds(x) + Â

t={k3,k4}

Z

tt

f qt
zk(x, y)ds(x)

| {z }
=0 since tr⌘tt and f qr

zi =� f qt
zk

+

+ Â
s={j1,j2}

Z

ts

f qs
zj (x, y)ds(x)) + Â

r={i3,i4}

Z

tr

f qr
zi (x, y)ds(x)

| {z }
=0 since ts⌘tr and f qs

zj =� f qr
zi

+

+ Â
t={k1,k2}

Z

tt

f qt
zk(x, y)ds(x)) + Â

s={j3,j4}

Z

ts

f qs
zj (x, y)ds(x)

| {z }
=0 since tt⌘ts and f qt

zk=� f qs
zj

i
ds(y) = 0,
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FIGURE 3.6: Representation of the support of the basis functions as-
sociated with three DoFs i, j and k which overlap at a triple junction

and a generic DoF z.

that is
Wzi + Wzj + Wzk = 0. (3.3)

Vertices at the Boundaries

The last special case we analyze is the situation in which the DoF k is located on the
boundary of the screen and z is any other DoF, as depicted in figure 3.7.

Wzk = Âp={z1,z2,z3} Âq={k1,k2,k3,k4}

R
tp

R
tq

f pq
zk (x, y)ds(x)ds(y) =

= Âp={z1,z2,z3}

R
tp

h
Âq={k1,k2,k3,k4}

R
tq

f pq
zk (x, y)ds(x)

i
ds(y) =

= Âp={z1,z2,z3}

R
tp

hZ

tk1

f pk1
zk (x, y)ds(x) +

Z

tk3

f pk3
zk (x, y)ds(x)

| {z }
=0 since tk1⌘tk3 and f pk1

zk =� f pk3
zk

+

+
Z

tk2

f pk2
zk (x, y)ds(x) +

Z

tk4

f pk4
zk (x, y)ds(x)

| {z }
=0 since tk2⌘tk4 and f pk2

zk =� f pk4
zk

i
= 0.

(3.4)

Given equations (3.2), (3.3) and (3.4) we can repeat all the observations about the
kernel contributions from section 2.1.2. In particular, we excluded the DoFs at the
boundary of the screen from the computations as they would lead to rows and
columns in W which are populated by zeros only.

Observation 5. When it comes to numerical experiments we incur an undesired effect.
The relations (3.2) and (3.3) are not precisely satisfied by some of the entries of W. We in-
vestigated the reasons for these discrepancies between the theoretical expectations and the
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FIGURE 3.7: Representation of the support of the basis functions as-
sociated with a boundary DoF k and a generic DoF z.

numerical experiments, and we eventually found out that this effect is caused by the partic-
ular techniques used to compute the double integrals with singular integrands (details can
be found in [11, Chapter 5]). In particular, the quadrature seems to produce slightly differ-
ent results when changing the local ordering of the nodes in the involved triangles. In the
meshes used for computing W we needed to take into account the different orientations of the
normals of overlapping triangles, which implies that they must have different local ordering
of the nodes (see figure 3.8). This was not happening in the case of V, as there we did not
need to take into account the orientation of overlapping elements, which could then have the
the same local ordering of the nodes.
For these reasons, some of the entries of W which should have the same value differ by small
error. Consequently, if we were to compute the kernel of W using again the Matlab com-
mand null(W) we would always find that the kernel of W only consists of the zero vector.
On the other hand, we can observe that some eigenvalues of W are way smaller then the
others. Those eigenvalues correspond to the rows/columns of W which are similar but not
exactly equal. This phenomenon is observed in all the three considered cases as it is shown
in figures 3.3d, 3.3e and 3.3f. Therefore, we can still identify an "approximate kernel dimen-
sionality" by counting the cardinality of this subset of eigenvalues which are much smaller
than the others. In table 3.2 we report the results we obtain in our numerical experiments
by following this policy to compute the approximate kernel dimensionality of W. The results
again match with the expectation in term of number of couples, triplets or quadruplets of
overlapping DoFs.

3.3 Tests for CG and GMRES solvers

In this section we aim at showing that, in the same way as in the two-dimensional
case, iterative solvers such as CG and GMRES are able to solve systems of the form

Vx = rV, (3.5)
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Disk
NT 40 160 640

DoFs away from the junction 12 62 282
DoFs at the junction 0 0 0

Expected kernel dimensions 6 31 141
Approximate kernel dimensions 6 31 141

Triple Junction
NT 24 96 384

DoFs away from the junction 6 30 150
DoFs at the junction 0 3 9

Expected kernel dimensions 3 16 78
Approximate kernel dimensions 3 16 78

Quadruple Junction
NT 32 256 512

DoFs away from the junction 8 40 200
DoFs at the junction 0 4 12

Expected kernel dimensions 4 21 103
Approximate kernel dimensions 4 21 103

TABLE 3.2: Dimension of the kernel of W when using a mesh with
NT triangular elements

Wx = rW, (3.6)

despite the presence of the non-empty kernels. We would like to remind that for the
CG this is only possible thanks to the particular structure of the BEM matrices which
are always symmetric and positive semi-definite.
Given that our BEM matrices are not full-ranked, a generic right hand-side vector
will not be always in the column space of V or W. Therefore, the choice of the right
hand-side vector is important in order for the system to be solvable.
For our numerical experiments we chose to use

rV = Vz,
rW = Wz, (3.7)

where z is a random vector. Notice that in any practical case the solubility of the
system would be ensured by the fact that the right hand-side vectors would be the
result of the multiplication of a mass matrix as defined in (1.16) times another vector.
In this section we decided to use the right hand-side vectors as defined in (3.7) for
the sake of simplicity. In both of the cases the stopping criterion of CG and GMRES
is based on the relative residual and the tolerance is 10�5.

0

0

1

2

1

2

FIGURE 3.8: Two overlapping triangles with different local ordering
of the nodes due to the opposite normals.
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3.3.1 CG and GMRES for the Weakly Singular BIO

As already discussed in the previous section the V matrix computed on a multi-
screen mesh has a bunch of zero eigenvalues. Anyways, the matrix is still sym-
metric positive semi-definite and, thus, both CG and GMRES are still able to find
a solution of system 3.5. In table 3.3 we report the results for our numerical tests
together with the condition numbers of the V matrices. As in the previous chapter,
null eigenvalues have been neglected in the computation of the condition number,
which therefore does not blow up even though the matrices are singular. The results
show how both the methods converge with a number of iterations which is much
smaller than the system size.

Disk
NT 40 160 640

size(V) 40⇥40 160⇥160 640⇥640
condition number 1.3040e+01 2.8897e+01 6.0478e+01
#iterations for CG 9 15 21

#iterations for GMRES 10 12 16
Triple Junction

NT 24 96 384
size(V) 24⇥24 96⇥96 384⇥384

condition number 1.0944e+01 2.3755e+01 4.8850e+01
#iterations for CG 8 13 20

#iterations for GMRES 9 15 18
Quadruple Junction

NT 32 128 512
size(V) 32⇥32 128⇥128 512⇥512

condition number 1.5405e+01 3.2453e+01 6.6592e+01
#iterations for CG 9 16 21

#iterations for GMRES 10 16 18

TABLE 3.3: number of iterations to convergence for the hypersingular
BIO system with condition number

3.3.2 CG and GMRES for the Hypersingular BIO

We already showed that, in all of the three cases of interest, W has a group of eigen-
values which are small but not really null. The numerical results from table 3.4 show
how using CG and GMRES the systems are still solvable although, with respect to
the previous case, the number of iterations to convergence is much higher for com-
parable system sizes. Together with the number of iterations we reported again also
the condition number, but this time we did not neglect any eigenvalue as the small
but non-zero eigenvalues of W play a role in the convergence of the CG and GM-
RES methods. Indeed, we can infer that the higher number of iterations required
for convergence with respect to the weakly singular case is caused by the presence
of these small but not null eigenvalues. This result comply with Observation 4. As
a matter of fact, it can be observed that our 3D W matrices and the BEM matrices
computed in the previous chapter with a small but non zero mesh thickness have a
similar eigenvalue structure and like in that case we have a slow convergence.
Since it would still be interesting to observe what happens when getting rid of the
numerical inaccuracies explained in Observation 5, we decided to post-process the



46 Chapter 3. 3D Laplace Equation

computed BEM matrices so that the relations (3.2) and (3.3) are perfectly satisfied.
The corrected BEM matrices have non empty kernels and some null-eigenvalues. In
table 3.5 we report the convergence results for CG and GMRES and we can observe
how those two methods converge much faster now. Indeed, it would be desirable
to have a BEM code which does not suffer from these inaccuracies, but these results
still give a confirmation that the convergence of CG and GMRES is not affected by
the null eigenvalues also in this case.

Disk
NT 40 160 640

size(W) 12⇥12 62⇥62 282⇥282
condition number 1.1530e+02 2.3774e+02 7.7688e+02
#iterations for CG 12 40 99

#iterations for GMRES 11 55 157
Triple Junction

NT 24 96 384
size(W) 6⇥6 33⇥33 159⇥159

condition number 6.2836e+01 2.7002e+02 1.1539e+03
#iterations for CG 3 23 80

#iterations for GMRES 4 23 139
Quadruple Junction

NT 32 128 512
size(W) 8⇥8 44⇥44 212⇥212

condition number 6.2836e+01 2.7029e+02 1.1451e+03
#iterations for CG 3 27 96

#iterations for GMRES 4 28 173

TABLE 3.4: Number of iterations to convergence for the hypersingu-
lar BIO system with condition number with non corrected entries.

3.4 Elimination of the kernels

Analogously to what has been done in section 2.4, we can include our prior knowl-
edge about the jumps of the traces into the BEM matrices to eliminate the kernels.
The procedure is exactly equal to the one used in the two-dimensional case: we ap-
ply a transformation T to the DoFs in order to obtain a reduced DoFs system. The T
transformations can be used to obtain the reduced matrices

bV = TTVT and bW = TTWT,

which are full-ranked. The T transformation can be built exactly how we stated in
section 2.4 with the difference that with a two-dimensional mesh we cannot rely
on the DoFs ordering to understand which nodes are overlapping and which DoFs
should be eliminated. This is because in triangular meshes in which some DoFs
have been eliminated it is not easy to establish a priori the nodes ordering. In fact,
the BETL2 library produces a different ordering every time that the code is run.
For the weakly singular operator we can write

Tij =

(
1 if ti ⌘ tj,
0 otherwise,
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Disk
NT 40 160 640

size(W) 12⇥12 62⇥62 282⇥282
#iterations for CG 3 6 9

#iterations for GMRES 4 7 10
Triple Junction

NT 24 96 384
size(W) 6⇥6 33⇥33 159⇥159

#iterations for CG 2 7 11
#iterations for GMRES 3 8 12

Quadruple Junction
NT 32 128 512

size(W) 8⇥8 44⇥44 212⇥212
#iterations for CG 2 8 33

#iterations for GMRES 3 9 34

TABLE 3.5: Number of iterations to convergence for the discrete hy-
persingular BIO system with corrected entries.

where ti and tj elements of the mesh ordered in the same way as the original DoFs.
Using this transformation we associate to every couple of overlapping elements the
value of the Neumann jump at the centroid of the elements. Similarly for W, we can
write that if the nodes pi and pj overlap away from a junction we have Tij = 1 and
Tji = �1. Here the idea is to associate to every couple of overlapping nodes the
value of the Dirichlet jump at those nodes.
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Chapter 4

Theory for Electromagnetic
Scattering by Complex Screens

The theoretical and practical ideas used in the previous chapters can be applied also
to the computation of the electromagnetic field scattered by a complex screen. In
this chapter we summarize the theory as derived in [5], which allows to extend our
approach to the electromagnetic scattering.
Although some new complications arise, we can follow a similar scheme to the one
used in chapter 1 and derive a multi-trace space to then single out a single-trace
space. To complete the picture, the jump space will be again the dual of the single-
trace space. The definition of the multi-trace space as quotient space will allow to
redefine the commonly used traces using the canonical surjection. Having traces and
suitable layer potentials, it will be possible to define the BIOs which will show up
in a representation formula for the solution of electromagnetic scattering. From this
representation formula we will derive the Electric Field Integral Equation (EFIE),
which is the only BIE we consider in this case.

4.1 Function Spaces

Using the same strategy as in Chapter 1, we define a tangential trace space as quo-
tient of spaces of functions defined on the domain R

3
\G. Before that we need to

recall the standard functional analysis framework on smooth boundaries, then we
define functions spaces on a domain which contains a multi-screens and, taking the
quotients of them, we define a multi-trace space

4.1.1 Standard Tangential Trace Space

In this section we recall the main definitions used in the standard functional analysis
framework as they are stated in [2]. In the following W is a generic Lipschitz domain
and ∂W is its boundary.
To begin with, we define the function spaces for functions defined in the domain W:

H(curl, W) = {u 2 L2(W) : curl(u) 2 (L2(W))3
},

H0,∂W(curl, W) = {u 2 L2(W) : curl(u) = 0}.

For functions in H(curl, W) we define the tangential trace

gT(u) = n ⇥ (u ⇥ n).
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The definition of the tangential trace space is now simply

H�
1
2 (curl∂W, ∂W) = {gT(u) : u 2 H(curl, W)}

. With these definitions we have that the tangential trace induces a surjective con-
tinuous trace operator gT = H(curl, W) ! H�

1
2 (curl∂W, ∂W) and H0,∂W(curl, ∂W) =

ker(gT). Once more the trace space can be identified as a quotient space

H�
1
2 (curl∂W, ∂W) = H(curl, W)/H0,∂W(curl, W) (4.1)

and the trace gT is the canonical projection associated with the quotient space.

4.1.2 Function Spaces for Vector Fields in the Domain

Now we consider G as being a multiscreen and we define function spaces for func-
tions defined on R

3
\G.

The space H(curl, R
3
\G) denotes the set of functions u 2 (L2(R3))3 such that there

exists p 2 (L2(R3))3 satisfying
Z

R3\G
u · curl(v)dx =

Z

R3\G
p · vdx 8v 2 (D(R3

\G))3.

This is an Hilbert space when equipped with the scalar product

(u, v)H(curl,R3\G) :=
Z

R3\G
u · vdx +

Z

R3\G
(curlu|

R3\G) · (curlv|
R3\G)dx.

where curlu|
R3\G = p.

This scalar product induces a norm k kH(curl,R3\G) and we can define H0,G(curl, R
3
\G)

as the closure of D(R\G) with respect to the k kH(curl,R3\G) norm.
It is important for the following to observe that both H(curl, R

3) and H0,G(curl, R
3)

are closed subspaces of H(curl, R
3
\G) and we have the following chain of inclusions:

H0,G(curl, R
3) ⇢ H(curl, R

3) ⇢ H(curl, R
3
\G)

4.1.3 Tangential Multi-Trace Space

Exactly in the same way as in chapter 1 we define tangential multi-trace space by
taking the cue from equation 4.1:

H
�

1
2 (curlG, G) := H(curl, R

3
\G)/H0,G(curl, R

3
\G).

Like the multi-trace spaces defined in chapter 1, this space should be read as a gen-
eralization of the trace spaces to a multi-screen. Traces in this space do not enjoy any
tangential continuity across the screen.
The tangential multi-trace space is equipped with the quotient norm and the canon-
ical surjection

pT : H(curl, R
3
\G) ! H

�
1
2 (curlG, G),

which plays the same role as the tangential trace in the Lipschitz case.
We define the duality pairing for functions u̇, v̇ 2 H

�
1
2 (curlG, G)
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⌧ u̇, v̇ �⇥=
Z

R3\G
curl(u) · v � u · curl(v)dx,

where u, v 2 H(curl, R\G) are such that pT(u) = u̇ and pT(v) = v̇.
In [5, Section 4.4] the authors show concrete formulae for the computation of this
pairing in some particular situations. Using their reasoning it can be seen that this
pairing is equivalent to the < ·, · >t,G pairing from [4, Equation 10] when computed
on the boundary of the infinitesimally thick screen just like in observation 1. To con-
vey this idea and according to the notation of Chapter 1 we will denote the integral
on the boundary of the infinitesimally thick screen as

⌧ u̇, v̇ �⇥=
Z

[G]
(u̇ ⇥ n) · v̇ds. (4.2)

The most important property about the ⌧ ·, · �⇥-pairing is that it puts H
�

1
2 (curlG, G)

in duality with itself.

Proposition 9 (Self-duality of H
�

1
2 (curlG, G),[5, Proposition 4.2]). For any continuous

linear form f : H
�

1
2 (curlG, G) ! C there exists a unique u̇ 2 H

�
1
2 (curlG, G) such that

f(v̇) =⌧ u̇, v̇ �⇥ for all v̇ 2 H
�

1
2 (curlG, G) and kfk

(H�
1
2 (curlG,G))0

= ku̇k
H

�
1
2 (curlG,G)

.

Moreover, we have a characterization of H0,G(curl, R
3) as kernel of the bilinear

form ⌧ ·, · �⇥.

Lemma 2 ([5, Lemma 4.3]). For any u 2 H(curl, R
3
\G), we have u 2 H0,G(curl, R

3
\G)

if and only if
Z

R3\G
curl(u) · v � u · curl(v)dx = 0 8v 2 H(curl, R

3
\G)

4.1.4 Tangential Single-Trace Space

In this section we single out a subspace of H
�

1
2 (curlG, G) to which functions which

do not jump across G belong.

Definition 11 (Tangential single-trace space). The tangential single-trace space is defined
as the quotient space

H�
1
2 (curlG, [G]) := H(curl, R

3)/H0,G(curl, R
3)

.

H(curl, R
3) ⇢ H(curl, R

3
\G) implies that H�

1
2 (curlG, [G]) ⇢ H

�
1
2 (curlG, G),

which means that single-traces are special multi-traces which additionally satisfy
transmission conditions across G.
In the same way as in the scalar case, when dealing with single traces, polarity takes
duality’s place.

Proposition 10 ( [5, Proposition 4.5]). For u̇ 2 H
�

1
2 (curlG, G), we have

u̇ 2 H�
1
2 (curlG, [G]) () ⌧ ·, · �⇥= 0 8v̇ 2 H�

1
2 (curlG, [G])
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4.1.5 Tangential Jump Spaces

Lastly, we define the tangential jump space as dual of spaces of the tangential single-
trace space in analogy to Section 1.1.6.

Definition 12. The tangential jump space on the multi-screen G is defined as the dual space

eH�
1
2 (curlG, [G]) = (H�

1
2 (curlG, [G]))0

The eH�
1
2 (curlG, [G]) space is endowed with the dual norm

ku̇keH�
1
2 (curlG,[G])

:= sup
v̇2H�

1
2 (curlG,[G])

|⌧ u̇, v̇ �G|

kv̇k
H

�
1
2 (curlG,G)

Also the jump spaces allow an interpretation as quotient space, as stated in the fol-
lowing lemma.

Lemma 3 ([5, Lemma 4.7]). The tangential jump space eH�
1
2 (curlG, [G]) is isometrically

isomorphic to the quotient space H
�

1
2 (curlG, G)/H�

1
2 (curlG, [G]).

Thanks to this interpretation, it is possible to see that each element of H
�

1
2 (curlG, G)

induces an element of eH�
1
2 (curlG, [G]) via the duality pairing ⌧ ·, · �⇥. This obser-

vation justifies the following definition of jumps at multiscreens.

Definition 13 (Jump operator, [5, Definition 4.8]). We define the jump operator [ ] :
H

�
1
2 (curlG, G) ! eH�

1
2 (curlG, [G]) through

⌧ [u̇], v̇ �⇥:=⌧ u̇, v̇ �⇥, 8v̇ 2 H�
1
2 (curlG, [G]).

An important consequence of the self-polarity of the tangential single-trace space
is the following property about the kernel of the jump operators.

Lemma 4 ([5, Lemma 4.9]). A trace u̇ 2 H
�

1
2 (curlG, G) belongs to H�

1
2 (curlG, [G]) if and

only if [u̇] = 0.

4.2 Boundary Integral Equations

Now that we have suitable function spaces defined on a multi-screen, we are ready
to derive the BIE which solve the electromagnetic scattering problem, the EFIE.
However, to derive such equations it is necessary to define some surface differen-
tial operators for multi-screens. Those operators are crucial to define proper traces
on multi-screens, using the canonical surjections given by the quotient spaces, and
proper layer potentials. Combining traces and layer potentials we obtain the BIOs
which show up in the representation formula for the solution of the electromagnetic
scattering problem.

4.2.1 Surface Differential Operators

First, we can define the surface gradient on multi-screen. We notice that if p 2

H1(R3
\G) then in R

3
\G we have curl(rp) = 0 and, therefore, rp 2 H(curl, R

3
\G)
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and its tangential trace is well defined. Given these considerations we can write for
all u 2 H(curl, R

3
\G) and p 2 H1(R3

\G)
Z

R3\G
curl(u) ·rpdx =⌧ pT(u), pT(rp) �⇥ . (4.3)

Roughly speaking, the left-hand side only depends on the boundary values of u and
p, therefore nothing changes if we substitute p with p + q for any q 2 H1

0,G(R
3). This

implies that we can define a surface gradient rG : H
1
2 (G) ! H

�
1
2 (curlG, G) through

the formula
rG(pD(p)) := pT(rp) 8p 2 H1(R3

\G).

Repeating the same reasoning for p 2 H1(R3), which implies rp 2 H(curl, R
3) and

this time we get rG ṗ 2 H�
1
2 (curlG, [G]) for all ṗ 2 H 1

2 ([G]), which means that the
surface gradient as defined above also maps H 1

2 ([G]) into H�
1
2 (curlG, [G]).

With a similar strategy we can build also a surface curl operator, which so far was
only used as a abstract notation for the trace spaces.
To begin with, we observe that for any u 2 H(curl, R

3
\G) we have div(curl(u)) = 0

in R
3
\G), which implies that curl(u) 2 H(div, R

3
\G). Then, recalling the defi-

nition of the ⌧ ·, · � pairing between H
1
2 (G) and H

1
2 (G), we have for all u 2

H(curl, R
3
\G) and p 2 H1(R3

\G)
Z

R3\G
curl(u) ·rpdx =⌧ pD(p), pN(curl(u)) �, (4.4)

by inspecting the left-hand side of this equation, we can observe that pN(curl(u))
only depends on pT(u), therefore we can define the surface curl through the formula

curlG(pT(u)) := pN(curl(u)) 8u 2 H(curl, R
3
\G).

It is possible to make an interesting observation about the relation between the sur-
face gradient and the surface curl. If pT(u) for some ṗ = pD(p) 2 H

1
2 (G), then

curlG(rG ṗ) = curlG(pT(rp)) = pN(curl(rp)) = 0, that is curlG ·rG = 0.
Moreover in the same way as for the surface gradient we can see that the surface
curl maps single traces to single traces.
The definitions of the surface differential operators allow to formulate a surface
Green’s formula on multi-screens. By observing that pD : H1(R3)\G ! H

1
2 (G)

and pT : H(curl, R
3)\G ! H

�
1
2 (curlG, G) and, using equations (4.3) and (4.4), we

obtain the formula

⌧ ṗ, curlG(v̇) �=⌧ v̇,rG( ṗ) �⇥ 8 ṗ 2 H
1
2 (G), v̇ 2 H

�
1
2 (curlG, G).

Using this formula we can extend the definition of the surface operators to the
tangential jump spaces. For the surface gradient we can define rG : eH 1

2 ([G]) !

eH�
1
2 (curlG, [G]) as adjoint to curlG by the formula

⌧ v̇,rGu̇ �⇥:=⌧ u̇, curlGv̇ � 8v̇ 2 H�
1
2 (curlG, [G]),

for all u̇ 2 eH 1
2 ([G]). Similarly one can also define an operator curlG : eH�

1
2 (curlG, [G]) !

eH�
1
2 ([G]).
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4.2.2 Boundary Value Problem and Traces

Along the same lines as in Chapter 1, after having defined the abstract functional
analysis framework needed to extend the notions of jumps and traces to the case of
a complex screen, we are ready to extend also the results about the BVPs and the
traces.

Boundary Value Problem

First of all we show how to derive the electric wave equation starting from the
Maxwell Equations. In the same way as in Chapter 1 we consider time-harmonic
vector fields, which are of the form

eF(x, t) = F(x)eiwt.

With this time dependency the Maxwell’s equation become
8
>>>><

>>>>:

divE = r
e0

,
divB = 0,
curlE = �iwtB,
curlB = µ0 (J + e0iwtE) .

where E is the amplitude of the electric field, B is the amplitude of the magnetic
field, r is the electric charge density, J is the electric current density, e0 and µ0 are
respectively the permittivity and permeability of free space.
If now we impose J = 0 (i.e. there are no free currents), by taking the curl of the
third equation and plugging the fourth into it we obtain

curlcurlE � k2E = 0 in G\R
3,

with k = w
p

eµ. Moreover, we will suppose the tangential trace of the solution to
be known and we will look for a solution which satisfies the Silver-Müller radiation
conditions

lim
r!•

Z

∂Br

|curl(E)⇥ nr � iku|2ds = 0.

As we will see later, this BVP is well-posed on a multi-screen.
In order to prove the well-posedness of the BVPs a restriction of the considered ge-
ometries is needed because the general notion of a multi-screen as in Definition 2
would pose some problems regarding compact embeddings. We therefore restrict
ourselves to considering piecewise smooth multi-screens.

Definition 14 (Piecewise Smooth Multi-screen, [5, Definition 6.3]). We call a multi-
screen piecewise smooth, if the adjacent Lipschitz domains Wj, j = 0, . . . , n, stipulated by
definition 2, are curved Lipschitz polyhedra and G \ ∂Wj is the union of smooth faces of Wj

According to [5, Section 6.1], this class of multi-screens does not pose any tech-
nical issues in the development of the theory for the BVPs.
It is important to notice that the screens of our interest (for example the ones used in
the previous chapter) belong to this class and we can keep performing computations
on them because the following existence and uniqueness result is valid.

Proposition 11 (Existence and Uniqueness of Solutions of the Exterior Dirichlet Prob-
lem, [5, Proposition 6.6]). Assume that G is a piecewise smooth multi-screen and R

3
\G is
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connected, then for any tangential multi-trace g 2 H
�

1
2 (curlG, G) there exists a unique

vector field E 2 Hloc(curl, R
3
\G) that satisfies

curlcurlE � k2E = 0 in R
3
\G, pT(E) = g on G

and the Silver-Müller radiation condition. Moreover, E depends continuously on g.

Traces

The last ingredient needed for the derivation of BIEs for the electromagnetic scatter-
ing are the trace operators. In the same way as in the scalar case the trace operators
are directly related to the canonical surjection onto the tangential multi-trace space.
In particular, for sufficiently smooth vector fields the traces are defined as

gT(E) := pT(E) and gR(E) := pT(curl(E))

By denoting curl2 := curlcurl we can now define the Hilbert space

H(curl2, R
3
\G) := {v 2 H(curl, R

3
\G) : curl2(v) 2 (L2(G))3

},

equipped with the natural norm Â2
j=0kcurljvkL2(R3\G). Then it is possible to derive

the following result:

Lemma 5 ([5, Lemma 7.1]). The operators gT, gR : H(curl2, R
3
\G) ! H

�
1
2 (curlG, G)

are both continuous and they admit a continuous right-inverse.

In the following section we will also make use of the operators

g0

D : H
�

1
2 (G) ! H1

loc(R
3
\G)0,

g0

T : H
�

1
2 (curlG, G) ! Hloc(R

3
\G)0,

g0

R : H
�

1
2 (curlG, G) ! Hloc(R

3
\G)0,

which are defined as the formal adjoint operators of gD, gT and gR:

hg0

D ṗ, ji = ⌧ ṗ, gD j � 8f 2 D(R3),
hg0

Tu̇,ji = ⌧ u̇, gT j � 8f 2 (D(R3))3,
hg0

Ru̇,ji = ⌧ u̇, gT j � 8f 2 (D(R3))3.

4.2.3 Layer Potentials

We can now define the layer potentials which show up in the representation formula
for the solution of the considered BVP. As usual, we have a single layer potential SLk

and a double layer potential DLk for any u̇ 2 H(curl, R
3
\G):

SLk(u̇) = �Gk ⇤ g0

T(u̇) + k�2
r(Gk ⇤ g0

D · curlG(u̇)),
DLk(u̇) = �Gk ⇤ g0

R(u̇).

In the rest of this section we will list the most important properties of the layer po-
tentials.
To begin with, we report a continuity result for the single layer potentials.
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Lemma 6 ([5, Lemma 7.4] and [5, Corollary 7.7]). The single layer potential SLk maps
continuously the space H

�
1
2 (curlG, G) into Hloc(curl, R

3). The double layer potential DLk

maps continuously the space H
�

1
2 (curlG, G) into Hloc(curl, R

3
\G).

In addition, the layer potentials can be shown to be solutions of the Maxwell
equations.

Corollary 4 ([5, Corollary 7.7]). It holds curl2SLk(u̇)� k2SLk(u̇) = �g0

T(u̇) and curl2DLk(u̇)�
k2DLk(u̇) = �curl(g0

T(u̇)) in the sense of the distributions in R
3. In addition SLk(u̇) and

DLk(u̇) both satisfy the Silver Müller radiation conditions at • for any u̇ 2 H
�

1
2 (curlG, G).

Moreover, the layer potentials satisfy certain jump relations.

Proposition 12 (Jump Relations, [5, Proposition 7.8]). For all the tangential traces u̇ 2

H
�

1
2 (curlG, G) we have

[gT] · DLk(u̇) =[u̇] [gT] · SLk(u̇) =0,
[gR] · DLk(u̇) =0 [gR] · SLk(u̇) =[u̇]

It is really important to observe how, exactly like in the scalar case, the layer
potentials are not injective.

Lemma 7 (Kernels of layer potentials, [5, Lemma 7.9]).

Ker(SLk) = Ker(DLk) = H�
1
2 (curlG, G)

As it has been seen in Lemma 3 the tangential jump space eH�
1
2 (curlG, [G]) can be

interpreted as a quotient space. This observation together with the previous lemma
show that the layer potential operators induce injective continuous maps defined on
the jump space:

SLk, DLk : eH�
1
2 (curlG, [G]) ! Hloc(curl2, R

3
\G)

4.2.4 The Representation Formula and the EFIE

The last ingredient needed to derive the EFIE is a representation formula for the
solution of the electromagnetic scattering problem, which we state in the following
proposition.

Proposition 13 (Representation formula, [5, Proposition 7.3]). Assume that u 2 H(curl, R
3
\G)

is a radiating vector field satisfying curl2u � k2u = 0 in R3. Then it can be represented as

u(x) = DLk(gT(u))(x) + SLk(gR(u))(x) 8x 2 R
3
\G.

Now, when u a solution of the BVP 11, by applying Lemma 7 and the represen-
tation formula we find

gT · SLk(gR(u)) = gT · SLk([gR(u)]) = f := g � gT · DLk(g)

If we solve this equation and retrieve p = [SLk(gR(u))] we can find the correspond-
ing u by plugging p and g into the representation formula. Since equation (4.2.4)
is posed in H�

1
2 (curlG, [G]) we can obtain an equivalent variational form by testing
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with arbitrary functions in eH�
1
2 (curlG, [G]):

Find p 2 eH�
1
2 (curlG, [G]) such that

⌧ gT · SLk(p), q �⇥=⌧ f, q �⇥ 8q 2 eH�
1
2 (curlG, [G]).

It is possible to give a more explicit form to the left-hand side of the EFIE by plugging
into it the definition of the single layer potential:

⌧ gT · SLk(p), q �⇥=

= k�2
⌧ gD · Gk ⇤ g0

D(curlGp), curlGq � � ⌧ gT · Gk ⇤ g0

T(p), q �⇥

(4.5)

In the notation from equation (4.2) the two terms become:

⌧ gD · Gk ⇤ g0

D(curlGp),curlGq �=

=
Z

[G]

Z

[G]
Gk(x � y)curlGp(x)curlGq(y)ds(x)ds(y)

(4.6)

⌧ gT · Gk⇤g0

T(p), q �⇥=

=
Z

[G]

Z

[G]
Gk(x � y)(n(x)⇥ p(x)) · (n(y)⇥ q(y))ds(x)ds(y)

(4.7)

The EFIE can be shown to be elliptic, since it can be proved that it satisfies a gener-
alized Gårding inequality. The proof is out of the scope of this thesis, but it can be
found in [5, Section 9].

4.3 Galerkin Discretization of the EFIE

We can apply the same ideas as in Section 1.3 to discretize the EFIE using a Galerkin
approach and turn it into a linear system of equations. In order to do so, we will
need to specify which BES we will use to discretize the H

�
1
2 (curlG, G), namely the

Nédélec lowest order BES [9]. It will turn out that we need a second BES which is a
rotated version of the first, to which we refer as the Raviart-Thomas BES [10].

4.3.1 The Boundary Element Spaces

Let us consider a triangulation G of the infinitesimally thick screen, as in definition
9. We define the reference triangle as t̂ := {x̂ = (x̂1, x̂2)

T
2 (0, 1)2 : x̂2 < x̂1} and

the local to global mapping Ft : t̂ 7! t. Now we are able to formally define the
Nédélec BES. Here and in the following E(G) denotes the set of the panels of the
mesh G. Moreover, since we will deal again with a infinitesimally thick screen, in
the next definitions the spaces H�

1
2 (curlG, G) and H�

1
2 (divG, G) are the same as in

[4], where the authors deal with closed Lipschitz surfaces.

Definition 15 (Nédélec Edge Elements). For k 2 N0, we define the Nédélec boundary
element space by

N
k
T (G)(G) =

�
v 2 H�

1
2 (curlG, G) : v|t 2 Ft,t(N

k(t̂)), 8t 2 T (G)
 

,
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where Ft,t denotes the following (rotated) Piola transform

Ft,t{p}(x) := DFt(x̂)(Gt(x̂))�1p(x̂),
Gt(x) := (DFt(x̂))TDFt(x̂), x̂ = F�1

t (x), x 2 t,

and

N
k(t̂) := (Pk(t̂))

2
� Sk(t̂),

Sk(t̂) := {x 2 ( ePk+1(t̂))
2 : v(x̂) · x̂ = 0 8x̂ 2 t̂},

and ePk(t̂) represents all homogeneous multivariate polynomials of total degree k 2 N0.
Pk(t̂) contains all multivariate polynomials of total degree k 2 N0 on t̂. For k = 0, which
we will consider for our numerical experiments, P0(t̂) contains all constant functions on t̂.

We will apply a lowest-order discretization, i.e. is we will consider the zeroth
order Nédélec space N

0
T (G)(G). For this space the local shape functions on the refer-

ence triangle are:

bhN 0

1 (x̂) =

�x̂2
x̂1

�
, bhN 0

2 (x̂) =


�x̂2
x̂1 � 1

�
, bhN 0

3 (x̂) =


1 � x̂2
x̂1

�
.

The second BES which is of interest fur us is the Raviart-Thomas space which is
defined as follows.

Definition 16 (Raviart-Thomas Edge Elements). For k 2 N0, we define the Raviart-
Thomas boundary element space by

RT
k
T (G)(G) =

�
v 2 H�

1
2 (divG, G) : v|t 2 F⇥,t(RT

k(t̂)), 8t 2 T (G)
 

,

where F⇥,t is the so-called Piola transform

F⇥,t{p}(x) :=
1p

det Gt(x̂)
DFt(x̂)p(x̂),

Gt(x) := (DFt(x̂))TFt(x̂), x̂ = F�1
t (x), x 2 t,

and

RT
k(t̂) := (Pk(t̂))

2
� (x̂ ePk(t̂))

=
�

x̂ 7! p(x̂) + q(x̂)x̂, x̂ 2 t̂ : p 2 (Pk(t̂))
2, q 2 ePk(t̂)

 
,

and Pk(t̂) contains all multivariate polynomials of total degree k 2 N0 on t̂ and ePk(t̂)
represents all homogeneous multivariate polynomials of total degree k 2 N0.

We will consider only the lowest order Raviart Thomas BES RT
0
T (G)(G), for

which the local shape functions on the reference triangle are

bhRT
0

1 (x̂) =


x̂1
x̂2

�
, bhRT

0

2 (x̂) =


x̂1 � 1
x̂2

�
, bhRT

0

3 (x̂) =


x̂1
x̂2 � 1

�
.

At this stage it is important to observe that the Nédélec local shape functions can
be obtained transforming the Raviart-Thomas local shape functions by applying to
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them a rotation by 90 degrees rotation about the normal vector to the surface repre-
sented by the matrix

R =


0 �1
1 0

�
.

Therefore, we get that

bhRT
0

i (x̂) = �R bhN 0

i (x̂) = n ⇥ bhN 0

i (x̂) i = {1, 2, 3}, (4.8)

which is due to the fact that the Nédélec BES is a rotated version of the Raviart-
Thomas space (and viceversa). Each of the global basis functions are associated with
the edges of the mesh and the total number of DoFs of the BES is equal to the total
number of edges. We denote the global basis functions as hN

0

i and hRT
0

i .

4.3.2 Linear System Construction

In this final section of this chapter we derive the typical linear system of equations
which we obtain with a BE discretization. The BIE we would like to discretize is
the EFIE posed in the multi-trace space. Also in the EFIE we substitute the jump
spaces with multi-trace spaces for the same reasons as in section 1.3 and we obtain
the following variational problem:

Find p 2 H
�

1
2 (curlG, G) s.t.

⌧ gT · SLk(p, q) �⇥=⌧ f, q �⇥ 8q 2 H
�

1
2 (curlG, G).

(4.9)

Now we approximate the H
�

1
2 (curlG, G) using the N

k
E(G)(G) BES. Therefore, a func-

tion p 2 H
�

1
2 (curlG, G) is approximated on the mesh G as

p ⇡

NE

Â
i=1

pih
N

0

i ,

where NE is the number of edges of G. Therefore, the variational problem (4.9) can
be rewritten in the form

⌧ gT · SLk(
NE

Â
i=1

pih
N

0

i , q) �⇥=⌧

NE

Â
i=1

fih
N

0

i , q �⇥ 8q 2 N
k
E(G)(G),

which results in

⌧ gT · SLk(
NE

Â
i=1

pih
N

0

i , hN0
j ) �⇥=⌧

NE

Â
i=1

fih
N

0

i , hN0
j ) �⇥ 8j = 1, . . . , NE.

By defining the matrices

[S]i,j :=⌧ gT · SLk(hN
0

i , hN0
j ) �⇥, S 2 R

NE⇥NE

[M⇥]i,j :=⌧ hN
0

i , hN
0

j �⇥, M 2 R
NE⇥NE

and the vectors

~pi = (p1, . . . , pNE)
T, ~fi = ( f1, . . . , fNE)

T,
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we finally get the linear system
S~p = M~f (4.10)

from which we can obtain the DoFs µ associated with the solution p.
The entries of S cannot be practically computed straightforwardly and they require
a more detailed analysis. The idea is to decompose S using equation (4.5) and finally
compute the entries using the formulae (4.6) and (4.7). Then S is computed as

S = k�2Sd � Sedge,

where

[Sedge]i,j =
R
[G]

R
[G] Gk(x � y)(n(x)⇥ hN

0

i (x)) · (n(y)⇥ hN
0

j (y))ds(x)ds(y),

[Sd]i,j =
R
[G]

R
[G] Gk(x � y)curlGhN

0

i (x)curlGhN
0

j (y)ds(x)ds(y).

Now we can observe that 8p 2 H
�

1
2 (curl, G) we have

curlGp = divG(n ⇥ p),

which, together with equation (4.8), allows us to compute the entries of the two
matrices using the formulae

[Sedge]i, j =
R
[G]

R
[G] Gk(x � y)hRT

0

i (x) · hRT
0

i (y)ds(x)ds(y),

[Sd]i, j =
R
[G]

R
[G] Gk(x � y)divGhRT

0

i (x)divGhRT
0

j (y)ds(x)ds(y).

When using BETL2 it is easy to compute the Sd matrix by using a discretized surface
divergence. The discretization is carried out by observing that we can write

divGhRT
0

i =
NV

Â
j=1

dijb
i
NE

and if we construct the matrix [D]i,j = di,j, D 2 R
NE⇥NV , we can decompose Sd as

Sd = DVDT

where denotes V same matrix as in Chapter 1

[V]i,j =
Z

[G]

Z

[G]
Gk(x � y)bi

NE
(x)b

j
NE
(y)ds(x)ds(y), V 2 R

NV⇥NV .

To summarize, the linear system 4.10 becomes

(k�2Sd � Sedge)~p = M~f
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Chapter 5

3D Electromagnetic Scattering

In this last chapter we will show the numerical results for our discretization of the
EFIE. This chapter follows closely the structure of chapter 3: in section 5.1 we show
that the kernel dimensions of the computed matrices match our theoretical expec-
tations and in section 5.2 we show that iterative solvers are still able to solve the
singular systems within a small number of iterations.
The construction of the boundary element spaces is done in the same way as for the
3D-Laplace equation: we build close meshes which wrap the screen and the BES are
simply the usual trace spaces on a closed mesh.
Also in this case we observe the impact of numerical quadrature due to the different
local ordering of overlapping DoFS, in particular in this case it is not always possible
to observe a subset of much smaller eigenvalues. The convergence of the iterative
solvers deteriorates because of these inaccuracies but we will show how, when elim-
inating them by correcting the matrices, fast convergence is recovered.
We test our codes on the same screens as in chapter 3 and we compute the BEM
matrices using the BETL2 library [7].

5.1 Tests for the Kernel Dimensions

In this section we illustrate which combinations of DOFs yield a kernel contribution
to the discrete EFIE operator S and we show that the results of our numerical exper-
iments match the theoretical expectations. In this case, we have degrees of freedom
associated with the edges of the mesh so we need to analyze particular situations
in which edges overlap. As in sections 2.1.2 and 3.2.2 there are three kinds of DoFs
combinations which yield kernel contributions: couple of edges overlapping away
from the junction, edges overlapping at a junction and edges at the boundary of the
screen.

Couples of Vertices Away from the Junctions

To shorten the formulae we define two auxiliary functions:

gi,j(x, y) =
1

4p

1
kx � yk

(n(x)⇥ hN0
i (x)) · (n(y)⇥ hN0

j (y)),

hi,j(x, y) =
1

4p

1
kx � yk

curlGhN0
i (x)curlGhN0

j (y),
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FIGURE 5.1: Representation of the support of the basis functions as-
sociated with the overlapping edges i and j and the generic edge k.

and their restrictions

gs,t
i,j (x, y) =

1
4p

1
kx � yk

����
{ts⇥tt}

(n(x)⇥ hN0
i (x))|ts · (n(y)⇥ hN0

j (y))|tt ,

hs,t
i,j (x, y) =

1
4p

1
kx � yk

����
{ts⇥tt}

curlGhN0
i (x)

���
ts

curlGhN0
j (y)

���
tt

.

If we suppose that two overlapping edges i and j have the same orientations then we
find that for two overlapping, but opposite triangles, i.e. tm ⌘ tn and n|ts = �n|tt ,
we have gl,m

k,i = �gl,n
k,j and hl,m

k,i = �hl,n
k,j . Now we consider the situation depicted

in figure 5.1, in which we have the overlapping edges i and j respectively at the
interfaces between the couples of triangles (ti1 , ti2) and (ti1 , ti2) and the generic edge
k at the interface of the triangles (tk1 , tk2).
In this case we find

[Sedge]k,i =
Z

tk1[tk2

Z

ti1[ti2

gi,j(x, y)ds(x)ds(y) =

= Â
q={k1,k2}

Â
p={i1,i2}

Z

tq

Z

tp

gq,p
i,j ds(x)ds(y) =

= � Â
q={k1,k2}

Â
r={j1,j2}

Z

tq

Z

tp

gq,p
i,j ds(x)ds(y) =

= �

Z

tk1[tk2

Z

tj1[tj2

gi,j(x, y)ds(x)ds(y) = �[Sedge]k,j.

and

[Sd]k,i =
Z

tk1[tk2

Z

ti1[ti2

hi,j(x, y)ds(x)ds(y) =

= Â
q={k1,k2}

Â
p={i1,i2}

Z

tq

Z

tp

hq,p
i,j ds(x)ds(y) =

= � Â
q={k1,k2}

Â
r={j1,j2}

Z

tq

Z

tp

hq,p
i,j ds(x)ds(y) =

= �

Z

tk1[tk2

Z

tj1[tj2

hi,j(x, y)ds(x)ds(y) = �[Sd]k,j.
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FIGURE 5.2: Representation of the supports of the basis functions as-
sociated with the edges i,j and k, which overlap at the junction and

the generic edge z.

Thus, summing up it holds
[S]k,i = �[S]k,j (5.1)

As discussed already in sections 2.1.2 and 3.2.2 this relation means that there is a
kernel contribution for every couple of overlapping edges.

Edges Overlapping at the Junctions

We can also prove that there exists a linear dependence among the DoFs related to
edges overlapping at a junction. We will consider a triple junction, but the reasoning
can be extended to any kind junction. As it is depicted in figure 5.2 we suppose that
the three edges i, j and k overlap at the junction and they are the interfaces between
the couples of panels (ti1 , ti2), (tj1 , tj2) and (tk1 , tk2) respectively. Moreover, z is a
generic edge and it is the interface between the couple of triangles (tz1 , tz2).
Now, with the same notation as in the previous case, we can write
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FIGURE 5.3: Representation of the support of the basis functions as-
sociated with a boundary edge k and a generic edge z.

[Sedge]zi + [Sedge]zj + [Sedge]zk = Âq={z1,z2} Âr={i1,i2}
R

tq

R
tr

gqr
zi (x, y)dS(x)dS(y)+

+Âq={z1,z2} Âs={j1,j2}
R

tq

R
ts

gqs
zj (x, y)dS(x)dS(y)+

Âq={z1,z2} Ât={k1,k2}

R
tq

R
tt

gqt
zk(x, y)dS(x)dS(y) =

= Âq={z1,z2}

R
tq

hZ

ti1

gqi1
zi (x, y)dS(x) +

Z

tk2

gqk2
zk (x, y)dS(x)

| {z }
=0 since ti1⌘tk2 and gqi1

zi =�gqk2
zk

+

+
Z

tj1

gqj1
zj (x, y)dS(x)) +

Z

ti2

gqi2
zi (x, y)dS(x)

| {z }
=0 since tj1⌘ti2 and gqj1

zj =�gqi2
zi

+

+
Z

tk1

gqk1
zk (x, y)dS(x)) +

Z

tj2

gqj2
zj (x, y)dS(x)

| {z }
=0 since tk1⌘tj2 and gqk1

zk =�gqj2
zj

i
dS(y) = 0,
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and

[Sd]zi + [Sd]zj + [Sd]zk = Âq={z1,z2} Âr={i1,i2}
R

tq

R
tr

hqr
zi (x, y)dS(x)dS(y)+

+Âq={z1,z2} Âs={j1,j2}
R

tq

R
ts

hqs
zj (x, y)dS(x)dS(y)+

Âq={z1,z2} Ât={k1,k2}

R
tq

R
tt

hqt
zk(x, y)dS(x)dS(y) =

= Âq={z1,z2}

R
tq

hZ

ti1

hqi1
zi (x, y)dS(x) +

Z

tk2

hqk2
zk (x, y)dS(x)

| {z }
=0 since ti1⌘tk2 and hqi1

zi =�hqk2
zk

+

+
Z

tj1

hqj1
zj (x, y)dS(x)) +

Z

ti2

hqi2
zi (x, y)dS(x)

| {z }
=0 since tj1⌘ti2 and hqj1

zj =�hqi2
zi

+

+
Z

tk1

hqk1
zk (x, y)dS(x)) +

Z

tj2

hqj2
zj (x, y)dS(x)

| {z }
=0 since tk1⌘tj2 and hqk1

zk =�hqj2
zj

i
dS(y) = 0.

Together these two formulae result in

[S]zi + [S]zj + [S]zk = 0, (5.2)

which means that we expect a kernel contribution from every group of edges that
overlap at a junction.

Edges at the Boundaries

Finally, we analyze the situation of the edges which are located at the boundaries
of the screen. We consider an edge k which is located at the boundary of the screen
and a generic edge z. The two are respectively at the interfaces between the triangles
(tk1 , tk2) and (tz1 , tz2) (see figure 5.3). Then we have

[Sedge]zk = Âp={z1,z2} Âq={k1,k2}

R
tp

R
tq

gpq
zk (x, y)dS(x)dS(y) =

= Âp={z1,z2}

R
tp

h
Âq={k1,k2}

R
tq

gpq
zk (x, y)dS(x)

i
dS(y) =

= Âp={z1,z2}

R
tp

hZ

tk1

gpk1
zk (x, y)dS(x) +

Z

tk2

gpk2
zk (x, y)dS(x)

| {z }
=0 since tk1⌘tk2 and gpk1

zk =�gpk2
zk

i
= 0,

and
[Sd]zk = Âp={z1,z2} Âq={k1,k2}

R
tp

R
tq

hpq
zk (x, y)dS(x)dS(y) =

= Âp={z1,z2}

R
tp

h
Âq={k1,k2}

R
tq

hpq
zk (x, y)dS(x)

i
dS(y) =

= Âp={z1,z2}

R
tp

hZ

tk1

hpk1
zk (x, y)dS(x) +

Z

tk2

hpk2
zk (x, y)dS(x)

| {z }
=0 since tk1⌘tk2 and hpk1

zk =�hpk2
zk

i
= 0,

from which we see that
[S]zk = 0.

Analogously to the previous cases, due to this last observation we will exclude from
the computations the DoFs at the boundaries, as the relative entries are always null.
All things considered, in our numerical experiments we expect to obtain a kernel
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FIGURE 5.4: The magnitude of the eigenvalues of S computed on a
disk on a hierarchy of nested meshes.

contribution from each couple of overlapping DoFs and for each triplet or quadru-
plet of edges which overlap at a junction.
At this point it is important to observe that in this case counting the "approximated
kernel dimensions" as done in section 3.2.2 is not possible. The reason is that due to
the impact of numerical quadrature which we already discussed in chapter 3 and,
due to the peculiar eigenvalue structure of S which is indefinite, we are not able to
distinguish two clusters of eigenvalues. In figure 5.4 we show the magnitude of the
eigenvalues of S, when using a disk mesh. We clearly see that the eigenvalues are
uniformly distributed and there is no way to distinguish the approximate kernel di-
mensionalities by inspecting the eigenvalues. For this reason the approximate kernel
dimensionality has to be counted using a different strategy based on the fact that the
impact of the numerical quadrature is only relevant when the entries are computed
by approximating integrals with singular integrands. This only happens when the
integrals are performed on neighbouring or overlapping panels. For most of the en-
tries, then, the integrals are accurate and relations (5.1) and (5.2) are satisfied up to
machine precision. Therefore, the approximate kernel dimensionality is the number
of rows or columns which satisfy the relations (5.1) and (5.2) up to a small num-
ber of entries which are those involving the inaccurate singular integrals. With this
strategy we are still able to count the approximate kernel dimensionalities and the
results, which confirm the theoretical expectations in terms of kernel dimensions,
are reported in table 5.1.

5.2 Test for CG and GMRES

In this section we want to test the capability of iterative solvers to find the solution of
the discrete EFIE. In first we will consider a static version of the EFIE, which involves
matrices which are positive semi-definite, and after that we will consider the regular
discrete EFIE, for which the system matrix is indefinite. In all the tests of this section
the stopping criterion is based on the relative residual with a tolerance of 10�5.
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Disk
NT 40 160 640

DoFs away from the junction 50 220 920
DoFs at the junction 0 0 0

Expected kernel dimensions 25 110 460
Approximate kernel dimensions 25 110 460

Triple Junction
NT 24 96 384

DoFs away from the junction 24 120 540
DoFs at the junction 3 6 12

Expected kernel dimensions 13 62 268
Approximate kernel dimensions 13 62 268

Quadruple Junction
NT 32 256 512

DoFs away from the junction 32 168 704
DoFs at the junction 4 8 16

Expected kernel dimensions 17 82 356
Approximate kernel dimensions 17 82 356

TABLE 5.1: Dimension of the kernel of S when using a mesh with NT
triangular elements

5.2.1 The Static EFIE

First we will set k = 0 and consider the static version of the EFIE, which reads

⌧ gT · G0 ⇤ g0

T(p), q �⇥ + ⌧ gD · G0 ⇤ g0

D(curlGp),curlGq �=⌧ fq �⇥

8p 2 H
�

1
2 (curlG, G).

(5.3)

Equation (5.3) can be discretized using the same ideas as for the regular EFIE, giving
�
Sedge + Sd

�
| {z }

S0

~p = M~f .

Unlike the regular EFIE system, the system matrix for the bilinear form of the static
EFIE is positive definite, and, thus, we can solve the system using both CG and GM-
RES as done in chapters 2 and 3. From the point of view of the kernel dimensions
nothing changes and we could apply the ideas of the previous section to the system
matrix of the static EFIE and we would obtain the same results. To prove the solv-
ability of the systems associated with Sedge, we construct a right-hand side vector in
the image of Sedge as

rS0 = S0z

with z being a random vector.
Then we solve the system

S0x = rS0

which has infinitely many solutions.
We report condition number of S0 together with the number of iterations to conver-
gence for CG and GMRES in table 5.2.
We can observe that for both the solvers the number of iterations is not as small as
expected. We can explain this by observing once more that S0 does not have any null
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Disk
NT 40 160 640

condition number 8.1370e+03 3.4933e+04 1.5111e+05
#iterations for CG 82 635 3361

#iterations for GMRES 47 180 617
Triple Junction

NT 24 96 384
condition number 5.1662e+02 1.5610e+03 6.6056e+03
#iterations for CG 21 129 759

#iterations for GMRES 20 90 330
Quadruple Junction

NT 32 128 512
condition number 5.4696e+02 1.6086e+03 6.6781e+03
#iterations for CG 27 154 901

#iterations for GMRES 25 110 422

TABLE 5.2: Number of iterations to convergence for the static EFIE
system with non corrected entries

Disk
NT 40 160 640

#iterations for CG 17 38 62
#iterations for GMRES 18 39 63

Triple Junction
NT 24 96 384

#iterations for CG 10 25 53
#iterations for GMRES 11 26 49

Quadruple Junction
NT 32 128 512

#iterations for CG 12 77 399
#iterations for GMRES 13 71 238

TABLE 5.3: Number of iterations to convergence for the static EFIE
system with corrected entries

eigenvalue due to the numerical inaccuracies. Moreover in this case the eigenvalues
which should be null are negative and for this reason CG struggles even more than
GMRES to find a solution.
In order to observe what would happen when eliminating the inaccuracies, we cor-
rected the S0 by forcing their entries to satisfy the relations (5.1) and (5.2) and re-
peated the numerical experiments. As we can see from the results reported in table
5.3, the number of iterations required to find a solution is now much smaller.

5.2.2 The Indefinite EFIE

We now consider the indefinite version of the EFIE, and we set k = 1. The linear
system we aim to solve is �

Sedge � Sd
�

| {z }
S

x = rS.
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Disk
NT 40 160 640

condition number 8.0738e+03 3.4855e+04 1.5103e+05
#iterations for GMRES 46 155 458

Triple Junction
NT 24 96 384

condition number 4.4801e+03 2.6702e+03 9.9557e+03
#iterations for GMRES 19 105 311

Quadruple Junction
NT 32 128 512

condition number 4.8026e+03 2.8053e+03 1.0428e+04
#iterations for GMRES 27 129 396

TABLE 5.4: Number of iterations to convergence for the EFIE system
with non corrected entries

Disk
NT 40 160 640

#iterations for GMRES 24 75 197
Triple Junction

NT 24 96 384
#iterations for GMRES 14 63 207

Quadruple Junction
NT 32 128 512

#iterations for GMRES 19 80 279

TABLE 5.5: Number of iterations to convergence for the corrected
EFIE system with corrected entries

The matrix S is indefinite and CG is not supposed to converge in this case. On the
other hand, GMRES should still converge to a solution in a number of iterations
smaller than the system size since S is symmetric. We tested the convergence of the
GMRES on our numerically computed matrices, the results are reported in table 5.4
together with the condition number of S. Also in this case the computed S is polluted
by numerical inaccuracies in the integration by quadrature, which slows down the
convergence of GMRES. Also in this case we post-processed the matrices and tested
GMRES with the corrected S. With this procedure also in this case we have a faster
convergence of the iterative solver, as shown by the results in table 5.5. Anyway,
the number of iterations is higher than in the static case as GMRES is slower when
dealing with indefinite matrices.
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Conclusion

To conclude, we would like to recapitulate the content of the thesis. We have applied
a Galerkin discretization to the BIEs which arise in the acoustic and the electromag-
netic scattering in presence of multi-screens. Due to the use of multi-trace spaces
instead of jump spaces in the BIEs, the uniqueness of the solutions to these BIEs is
lost, but we have shown that GMRES and CG are still able to find a solution of these
BIEs. In addition we have shown with numerical examples how the convergence
iterative solvers is not influenced by the null eigenvalues of the BEM matrices.
Moreover, we have shown that it is possible to suppress the redundant DoFs and
reduce the computational burden og CG and GMRES.
Unfortunately, it has not been possible to solve some issues related to the numerical
quadrature in presence of singular integrands in BETL2 and some further investiga-
tions should be done to understand how the inaccuracies can be avoided.
Future research will aim at extending our approach to composite geometries formed
by the union of many junctions and generic domains.
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Appendix A

The Matlab Codes

In this appendix we give an overview of the routines and scripts we implemented to
obtain the results reported in Chapter 2. These codes have been included to the Git-
Lab repository https://gitlab.math.ethz.ch/curzuato/matlab_multiscreen.git
currently in the branch multiscreen_tests.

Betl2
...

junction

BIOs

mesh

segment

triple

quadruple

tests

kernel_test

ls_solver_test

kernel_validation
...

...

FIGURE A.1: Structure of the multiscreen_matlab Gitab repository

Computation of V and W

The two routines which we use to compute the matrices V and W are the following.

LISTING A.1: BIOs/varV0_ms.m

1 function [MVQ] = varV0_ms( X, elems, dofs, Nq)
2 % Carolina A. Urzua Torres - SAM, ETH, Zuerich.
3 %
4 % varV0_ms - Compute the Galerkin matrix corresponding to the
5 % variational weakly singular for Laplace eq. on a triple
6 % multi-screen using Gauss quadrature. Test and trial
7 % functions correspond to p.w.c. Implementation works for

https://gitlab.math.ethz.ch/curzuato/matlab_multiscreen.git
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8 % both single and multi trace approach.
9 % INFORCES SYMMETRY.

10 %
11 % INPUT:
12 % - X : vector containing the coordinates of the mesh points.
13 % - elems : indices of the vertices of each mesh element.
14 % - dofs :
15 % - Nq : Number of quadrature points to be used
16 %
17 % OUTPUT:
18 % - MVQ : Galerkin matrix corresponding to variational V.
19

20 N = size(dofs,1); %number of elements
21

22 MVQ = zeros(N); % coefficient matrix L1_ij = < L1 psi_i, psi_j>
23

24 % Get quadrature points and weights
25 [xx, w1]=GL(Nq);
26 [yy, w2]=GL(Nq+1);
27

28 % create function handle with the kernel
29 f=@(x,y) -log(norm(x-y));
30

31 for i=1:N
32 %get indices of elements in which phi_i is supported
33 dofs_i = dofs{i};
34 for di=1:size(dofs_i,2)
35 %define element e_i
36 e_i = X(elems(dofs_i(di),1:2),:);
37 for j=1:i
38 %get indices of elements in which phi_j is supported
39 dofs_j = dofs{j};
40

41 for dj=1:size(dofs_j,2)
42 %define element e_j
43 e_j = X(elems(dofs_j(dj),1:2),:);
44

45 MVQ(i,j) = MVQ(i,j) + VDGLQ(e_i(1,:), e_i(2,:), ...
e_j(1,:), e_j(2,:),xx, yy, w1, w2, f);

46 MVQ(j,i) = MVQ(i,j);
47 end
48 end
49

50 end
51 end
52

53

54 end

LISTING A.2: BIOs/varW0_ms.m

1 function [ W ] = varW0_ms( X, elems, dofs, Nq)
2 % Carolina A. Urzua Torres - SAM, ETH, Zuerich.
3 %
4 % varW0_ms - Compute the Galerkin matrix corresponding to the
5 % variational hypersingular for Laplace eq. on a triple
6 % multi-screen using Gauss quadrature. Test and trial
7 % functions correspond to p.w.lin Implementation works for
8 % both single and multi trace approach.
9 % INFORCES SYMMETRY.

10 %
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11 % INPUT:
12 % - X : vector containing the coordinates of the mesh points.
13 % - elems : indices of the vertices of each mesh element.
14 % - dofs :
15 % - Nq : Number of quadrature points to be used
16 %
17 % OUTPUT:
18 % - W : Galerkin matrix corresponding to variational W.
19

20 N = size(dofs,1); %number of points
21 %Nl = (length(X)+2)/3; % number of points per leg
22

23 % Since we are working with p.w.linear test and trial spaces, u_i' and
24 % u_j' are constants. Then, we calculate E_ij entries by
25 %
26 % W_ij = < L1 u_i', v_j'> = u_i' * v_j' * M1_ij,
27 %
28 % where M1 is the Galerking Matrix corresponding to the variational
29 % form of the weakly singular operator V.
30 W = zeros(N); % coefficient matrix L1_ij = < L1 psi_i, psi_j>
31 % zero bc at tip points
32

33 % Get quadrature points and weights
34 [xx, w1]=GL(Nq);
35 [yy, w2]=GL(Nq+1);
36

37 % create function handle with the kernel
38 f=@(x,y) -log(norm(x-y));
39

40 for i=1:N
41 %get indices of elements in which phi_i is supported
42 dofs_i = dofs{i};
43 %get indices of vertices that compose each element in the support
44 %of phi_i
45 els_i = [elems(dofs_i(1),1:2); %e_{i-1}
46 elems(dofs_i(2),1:2)]; %e_{i}
47 %compute derivatives
48 dphi_i = [ 1/norm(X(els_i(1,2),:) - X(els_i(1,1),:));
49 -1/norm(X(els_i(2,2),:) - X(els_i(2,1),:))];
50

51 % if i=1 and we are with ST, we actually have 3 elements. Complete!
52 if(i==1 && size(dofs{i},2)>2)
53 %disp(['ST'])
54 %correct sign
55 dphi_i(1) = -dphi_i(1);
56 %add extra element (and derivative)
57 els_i = [els_i; elems(dofs_i(3),1:2)];
58 dphi_i = [dphi_i; -1/norm(X(els_i(3,2),:) - X(els_i(3,1),:))];
59 end
60

61 for j=1:i
62 %get indices of elements in which phi_i is supported
63 dofs_j = dofs{j};
64 %get indices of vertices that compose each element in the
65 %support of phi_j
66 els_j = [elems(dofs_j(1),1:2); %e_{j-1}
67 elems(dofs_j(2),1:2)]; %e_{j}
68 %compute derivatives
69 dphi_j = [ 1/norm(X(els_j(1,2),:) - X(els_j(1,1),:));
70 -1/norm(X(els_j(2,2),:) - X(els_j(2,1),:))];
71

72 % if j=1 and we are with ST, we actually have 3 elements. Complete!
73 if(j==1 && size(dofs{j},2)>2)
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74 %correct sign
75 dphi_j(1) = -dphi_j(1);
76 %add extra element (and derivative)
77 els_j = [els_j; elems(dofs_j(3),1:2)];
78 dphi_j = [dphi_j; -1/norm(X(els_j(3,2),:) - X(els_j(3,1),:))];
79 end
80

81 I1 = 0;
82 %compute and add all contributions!
83 for ki=1:size(els_i,1)
84 for kj=1:size(els_j,1)
85

86 I1 = I1 + dphi_i(ki)*dphi_j(kj)*VDGLQ( ...
X(els_i(ki,1),:), ...

87 X(els_i(ki,2),:), X(els_j(kj,1),:), ...
X(els_j(kj,2),:), ...

88 xx, yy, w1, w2, f);
89

90 end
91 end
92

93 W(i,j) = I1;
94 W(j,i) = I1;
95

96 end
97 end
98

99

100 end

The Meshes

We wrote the routines which build the meshes used in the numerical experiments.
We needed both single-trace and a multi-trace meshes for the segment and only
multi-trace meshes for the junctions.

LISTING A.3: mesh/segment/segmentST_mesh.m

1 function [ X, elems, dofs] = segmentST_mesh( a, b, N, order, plotmesh)
2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % segmentST_mesh - Compute Mesh for a simple flat screen. It uses ...

single trace
5 % approach and it assumes that the screen is ...

located on the x axis.
6 %
7 %INPUT:
8 % - a : x coordinate of the left tip.
9 % - b : x coordinate of the right tip.

10 % - N : Number of points.
11 % - order : 0 if primal mesh is discretized by p.w.constants.
12 % 1 if discretized by p.w.linear
13 %
14 %OUTPUT:
15 % - X : (3Nl-2)x2 vector containing primal mesh points ...

coordinates for
16 % standard screen
17 % - elems : 3(Nl-1)x3 vector containing elements' information. The ...

two columns
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18 % give the indices of the vertices that conform the ...
current element.

19 % - dofs : cell-array returning dofs indices.
20 % In case of order 0, it gives the indices of the vertices
21 % composing the element.
22 % In case of order 1, it gives the indices of the elements
23 % composing the support of the p.w.linear function.
24

25

26 X = [linspace(a, b, N)' zeros(N, 1)];
27

28 elems = [[1 : N - 1]', [2 : N]'];
29

30 if(order == 0)
31 dofs = mat2cell([1 : N - 1]', ones(1, N - 1), 1);
32

33 elseif(order == 1)
34 aux = (1 : length(X))';
35 doftmp = [aux - 1 aux];
36 % General dofs formula
37 dofs = mat2cell(doftmp, ones(1, length(X)), 2);
38 % Correct first and last row
39 dofs{1} = [1];
40 dofs{N} = [N - 1];
41

42 else
43 disp("Only order 0 and 1 implemented")
44 elems = 0;
45 X = 0;
46 end
47

48 if(plotmesh)
49 figure;
50 plot(X( : , 1), X( : ,2), 'ob')
51 for i = 1 : 1 : length(X)
52 t(i) = text(X(i, 1) + 0.02, X(i, 2) , num2str(i));
53 end
54 for i = 1 : 1 : length(elems)
55 text((X(elems(i, 1), 1) + X(elems(i, 2), 1)) / 2, ...

(X(elems(i, 1), 2) + X(elems(i, 2), 2)) / 2, ...
num2str(i), 'fontw', 'b')

56 end
57 set(t(:), 'FontSize', 8, 'color', 'blue');
58 end
59

60

61 end

LISTING A.4: mesh/segment/segmentMT_mesh.m

1 function [ X, elems, dofs] = segmentMT_mesh( a, b, N, order, eps, ...
plotmesh)

2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % segmentMT_mesh - Compute Mesh for a simple flat screen. It uses ...

multi trace
5 % approach and it assumes that the screen is ...

located on the x axis.
6 %
7 %INPUT:
8 % - a : x coordinate of the left tip.
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9 % - b : x coordinate of the right tip.
10 % - N : Number of points.
11 % - order : 0 if primal mesh is discretized by p.w.constants.
12 % 1 if discretized by p.w.linear
13 % - eps : thickness of the mesh
14 %
15 %OUTPUT:
16 % - X : (3Nl-2)x2 vector containing primal mesh points ...

coordinates for
17 % standard screen
18 % - elems : 3(Nl-1)x3 vector containing elements' information. The ...

two columns
19 % give the indices of the vertices that conform the ...

current element.
20 % - dofs : cell-array returning dofs indices.
21 % In case of order 0, it gives the indices of the vertices
22 % composing the element.
23 % In case of order 1, it gives the indices of the elements
24 % composing the support of the p.w.linear function.
25

26 aux1 = linspace(a + (b - a) / (N - 1), b - (b - a) / (N - 1), N ...
- 2)';

27 X = [a, 0;
28 aux1, -eps * ones(N - 2, 1);
29 b, 0;
30 flipud(aux1) eps * ones(N - 2, 1)];
31 Ntot = 2 * N - 2;
32 elems = [[1 : Ntot - 1]',[2 : Ntot]';
33 Ntot, 1];
34

35 if(order == 0)
36 dofs = mat2cell([1 : Ntot]', ones(1, Ntot), 1);
37

38 elseif(order == 1)
39 aux2 = (1 : length(X))';
40 doftmp = [aux2 - 1 aux2];
41 % General dofs formula
42 dofs = mat2cell(doftmp,ones(1, length(X)), 2);
43 dofs{1} = [Ntot, 1];
44 else
45 disp("Only order 0 and 1 implemented")
46 elems = 0;
47 X = 0;
48 end
49

50 if(plotmesh)
51 figure;
52 plot([X( : , 1); X(1, 1)], [X( : , 2); X(1, 2)], '-ob')
53 for i = 1 : 1 : length(X)
54 t(i) = text(X(i, 1) + 0.02, X(i, 2) ,num2str(i));
55 end
56 for i=1 : 1 : length(elems)
57 text((X(elems(i, 1), 1) + X(elems(i, 2), 1)) / 2, ...

(X(elems(i, 1), 2) + X(elems(i, 2), 2)) / 2, ...
num2str(i), 'fontw', 'b')

58 end
59 set(t(:), 'FontSize', 8, 'color', 'blue');
60 end
61

62

63 end
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LISTING A.5: mesh/triple/tripleJMT_mesh.m

1 function [X, elems, dofs] = tripleJMT_mesh( tips_c, Nl, order, e, ...
plotmesh)

2 % Carolina A. Urzua Torres - SAM, ETH, Zuerich.
3 % Compute Mesh for triple multiscreen. It uses multi-trace approach ...

(fat screen)
4 % and it assumes that the junction point is located in the origin.
5 %
6 %INPUT:
7 % - tips_c : 3x2 vector containing (x,y) coordinates of the three ...

tips/end points
8 % - Nl : Number of points per leg.
9 % - order : 0 if primal mesh is discretized by p.w.constants.

10 % 1 if discretized by p.w.linear
11 % - e : thickness of inflated multi-screen
12 %
13 %OUTPUT:
14 % - X : (3(2Nl-1))x2 vector containing primal mesh points ...

coordinates for
15 % "inflated" multi-screen
16 % - elems : (6Nl-4)x3 vector containing elements' information. ...

First two columns
17 % give the indices of the vertices that conform the ...

current element,
18 % and the third column states to which leg the element ...

belongs.
19 % - dofs : cell-array returning dofs indices.
20 % In case of order 0, it gives the indices of the vertices
21 % composing the element.
22 % In case of order 1, it gives the indices of the elements
23 % composing the support of the p.w.linear function.
24

25 if(nargin < 4)
26 e = 0;
27 end
28

29 if(nargin <5)
30 plotmesh = false;
31 end
32 %{
33 disp(['Computing inflated multi-screen mesh with ',num2str(Nl), ...
34 ' points per leg.'])
35 disp(['This means ', num2str(6*(Nl-1)),' mesh points in total.'])
36 %}
37

38 %auxiliary vector
39 scaling = linspace(0+e,1,Nl)';
40

41 % get tips' angles
42 theta = atan2(tips_c(:,2),tips_c(:,1));
43

44 % direction vector (to construct legs)
45 %dir = repmat([norm(tips_c(1,:)); norm(tips_c(2,:)); ...
46 % norm(tips_c(3,:))],1,2).*[cos(theta) sin(theta)]
47 dir = tips_c;
48 % get mesh nodes with origins (un-inflated)
49 P = [scaling*dir(1,:) scaling*dir(2,:) scaling*dir(3,:)];
50

51 % compute direction tangent to leg (to inflate screen)
52 dirtan = zeros(Nl-2,6);
53 for i=1:1:3
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54 dirtan(:,2*i-1:2*i) = e*repmat([-sin(theta(i)) ...
cos(theta(i))],Nl-2,1);

55 end
56

57 %create vertices for inflated screen
58 X = [ %inflate first leg
59 e*[cos(theta(2)-pi) sin(theta(2)-pi)]
60 P(2:Nl-1,1:2)-dirtan(:,1:2);
61 P(Nl,1:2); %endpoint is not duplicated
62 flipud(P(2:Nl-1,1:2))+dirtan(:,1:2);
63 %inflate second leg
64 e*[cos(theta(3)-pi) sin(theta(3)-pi)]
65 P(2:Nl-1,3:4)-dirtan(:,3:4);
66 P(Nl,3:4) %endpoint is not duplicated
67 flipud(P(2:Nl-1,3:4))+dirtan(:,3:4);
68 %inflate third leg
69 e*[cos(theta(1)-pi) sin(theta(1)-pi)]
70 P(2:Nl-1,5:6)-dirtan(:,5:6)
71 P(Nl,5:6) %endpoint is not duplicated
72 flipud(P(2:Nl-1,5:6))+dirtan(:,5:6)] ;
73

74 elems = [[1:2*(Nl-1)]' [2:(2*Nl-1)]' repmat(1,2*Nl-2,1);
75 [(2*Nl-1):4*(Nl-1)]' [2*Nl:(4*Nl-3)]' repmat(2,2*Nl-2,1);
76 [(4*Nl-3):(6*Nl-7)]' [(4*Nl-2):6*(Nl-1)]' repmat(3,2*Nl-3,1);
77 6*(Nl-1) 1 3 ];
78

79 % compute dofs vector
80 if(order == 0)
81 % p.w.c.: dofs contains the vertices indices for each element
82 % i.e. e_i=[x(i), x(i+1)], such that it avoides fictional elements
83 % (tips, etc)
84 %not really necessary but implemeted for consistency
85 N = size(elems,1);
86 dofs = mat2cell([1:N]',ones(1,N),1);
87

88 %{
89 disp([num2str(length(elems)),' p.w.constants dofs have been ...

created.'])
90 %}
91 else if(order ==1)
92 % p.w.linear
93 aux = (1:length(X))';
94 doftmp = [aux-1 aux];
95 dofs = mat2cell(doftmp,ones(1,length(doftmp)),2);
96 %correct first row
97 dofs{1} = [length(X) 1];
98

99 %{
100 disp([num2str(length(dofs)),' p.w.linear dofs have been created.'])
101 %}
102 else
103 disp('Sorry, not implemented')
104 elems=0;
105 end
106 end
107

108 if(plotmesh)
109 figure;
110 plot([X(:,1);X(1,1)],[X(:,2);X(1,2)], '-ob')
111 hold on
112 for i=1:1:length(X)
113 t(i) = text(X(i,1)+0.02, X(i,2) ,num2str(i));
114 end
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115 for i=1:1:length(elems)
116 text((X(elems(i,1),1)+X(elems(i,2),1))/2, ...

(X(elems(i,1),2)+X(elems(i,2),2))/2 ...
,num2str(i),'fontw','b')

117 end
118 set(t(:),'FontSize',8, 'color', 'blue');
119 end
120

121 end

LISTING A.6: mesh/quadruple/quadrupleJMT_mesh.m

1 function [X, elems, dofs] = quadrupleJMT_mesh( l, Nl, order, eps, ...
plotmesh)

2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % quadrupleJMT_mesh - Compute Mesh for quadruple multiscreen. It uses
5 % multi-trace approach (fat screen) and it assumes
6 % that the junction point is located at the origin.
7 %
8 %INPUT:
9 % - l : length of each leg of the cross

10 % - Nl : Number of points per leg.
11 % - order : 0 if primal mesh is discretized by p.w.constants.
12 % 1 if discretized by p.w.linear
13 % - e : thickness of inflated multi-screen
14 %
15 %OUTPUT:
16 % - X : (8Nl-8))x2 vector containing primal mesh points ...

coordinates for
17 % "inflated" multi-screen
18 % - elems : (8Nl-8)x3 vector containing elements' information. The ...

two columns
19 % give the indices of the vertices that conform the ...

current element.
20 % - dofs : cell-array returning dofs indices.
21 % In case of order 0, it gives the indices of the vertices
22 % composing the element.
23 % In case of order 1, it gives the indices of the elements
24 % composing the support of the p.w.linear function.
25

26 if(nargin < 4)
27 e = 0;
28 end
29

30 if(nargin < 5)
31 plotmesh = false;
32 end
33 %{
34 disp(['Computing inflated multi-screen mesh with ',num2str(Nl), ...
35 ' points per leg.'])
36 disp(['This means ', num2str(8*Nl-8),' mesh points in total.'])
37 %}
38 %auxiliary vector
39 aux_x = [linspace(1 / (Nl - 1), l - 1 / (Nl - 1), Nl - 2)' , ...

zeros(Nl - 2, 1)];
40 aux_y = [zeros(Nl - 2, 1), linspace(1 / (Nl - 1), l - 1 / (Nl - ...

1), Nl - 2)'];
41 % compute direction tangent to leg (to inflate screen)
42

43
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44 %create vertices for inflated screen
45 X = [ %inflate first leg
46 -eps , eps;
47 -aux_x + repmat([-eps, eps], Nl - 2, 1);
48 -l, 0; %endpoint is not duplicated
49 -flipud(aux_x) + repmat([-eps, -eps], Nl - 2, 1);
50 %inflate second leg
51 -eps, -eps;
52 -aux_y + repmat([-eps,-eps],Nl - 2, 1);
53 0, -l;%endpoint is not duplicated
54 -flipud(aux_y) + repmat([eps, -eps], Nl - 2, 1);
55 %inflate third leg
56 eps, -eps;
57 aux_x + repmat([eps, -eps], Nl - 2, 1);
58 l, 0;%endpoint is not duplicated
59 flipud(aux_x) + repmat([eps, eps], Nl - 2, 1);
60 %inflate fourth leg
61 eps , eps;
62 aux_y + repmat([eps, eps], Nl - 2, 1);
63 0, l;%endpoint is not duplicated
64 flipud(aux_y) + repmat([-eps, eps], Nl - 2, 1);];
65

66 elems = [(1:2*(Nl-1))' (2:2*Nl-1)' ones(2*Nl-2,1);
67 (2*Nl-1:4*Nl-4)' (2*Nl:4*Nl-3)' repmat(2,2*Nl-2,1);
68 (4*Nl-3:6*Nl-6)' (4*Nl-2:6*Nl-5)' repmat(3,2*Nl-2,1);
69 (6*Nl-5:8*Nl-9)' (6*Nl-4:8*Nl-8)' repmat(4,2*Nl-3,1);
70 8*Nl-8 1 4];
71

72 % compute dofs vector
73 if(order == 0)
74 % p.w.c.: dofs contains the vertices indices for each element
75 % i.e. e_i=[x(i), x(i+1)], such that it avoides fictional elements
76 % (tips, etc)
77 % not really necessary but implemeted for consistency
78 N = size(elems, 1);
79 dofs = mat2cell([1:N]', ones(1, N), 1);
80

81 %{
82 disp([num2str(length(elems)),' p.w.constants dofs have been ...

created.'])
83 %}
84

85 else if(order ==1)
86 % p.w.linear
87 aux = (1 : length(X))';
88 doftmp = [aux - 1 aux];
89 dofs = mat2cell(doftmp, ones(1, length(doftmp)), 2);
90 %correct first row
91 dofs{1} = [length(X) 1];
92 %{
93 disp([num2str(length(dofs)),' p.w.linear dofs have been created.'])
94 %}
95 else
96 disp('Sorry, not implemented')
97 elems = 0;
98 end
99 end

100

101 if(plotmesh)
102 figure;
103 plot([X( : , 1); X(1, 1)], [X( : , 2); X(1, 2)], '-ob')
104 hold on
105 for i = 1 : 1 : length(X)
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106 t(i) = text(X(i, 1) + 0.02, X(i, 2), num2str(i));
107 end
108 for i = 1 : 1 : length(elems)
109 text((X(elems(i, 1), 1) + X(elems(i, 2), 1)) / 2, ...

(X(elems(i, 1), 2) + X(elems(i, 2), 2)) / 2 , ...
num2str(i), 'fontw', 'b')

110 end
111 set(t(:), 'FontSize', 8, 'color', 'blue');
112 end
113

114 end

For the hyper-singular operator we excluded the exterior DoFs from the com-
putations. We, therefore, implemented the following routines which prune the cells
corresponding to the tip DoFs and return the reduced array of cells containing the
new DoFs.

LISTING A.7: mesh/segment/segmentST_innerDofs.m

1 function [dofs] = segmentST_innerDofs( dofs, N, order)
2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % segmentST_innerDofs - Extract the interior DoFs from the DoFs of a
5 % single-trace segment mesh.
6 %INPUT:
7 % - dofs : cell-array from which to extract the interior DoFs
8 % - N : Number of points.
9 % - order : 0 if primal mesh is discretized by p.w.constants.

10 % 1 if discretized by p.w.linear
11 %OUTPUT:
12 % - dofs : cell-array returning interior DoFs indices.
13

14 if (N <= 3)
15 disp('Impossible to retrieve inner dofs for N <= 3')
16 end
17 if (order == 1)
18 %remove dofs cells corresponding to vertices on tips
19 dofs(N) = [];
20 dofs(1) = [];
21 else
22 disp('Implemented only for first order')
23 end
24

25 end

LISTING A.8: mesh/segment/segmentMT_innerDofs.m

1 function [idofs] = segmentMT_innerDofs( dofs, N, order)
2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % segmentMT_innerDofs - Extract the interior DoFs from the DoFs of a
5 % multi-trace segment mesh.
6 %INPUT:
7 % - dofs : cell-array from which to extract the interior DoFs
8 % - N : Number of points.
9 % - order : 0 if primal mesh is discretized by p.w.constants.

10 % 1 if discretized by p.w.linear
11 %OUTPUT:
12 % - dofs : cell-array returning interior DoFs indices.
13
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14 if (N <= 2)
15 disp('Impossible to retrieve inner dofs for N <= 3')
16 else
17 idofs = dofs;
18 if (order == 1)
19 %remove dofs cells corresponding to vertices on tips
20 idofs(N) = [];
21 idofs(1) = [];
22 else
23 disp('Implemented only for first order')
24 end
25 end
26

27 end

LISTING A.9: mesh/triple/tripleJMT_innerDofs.m

1 function [ dofs] = tripleJMT_innerDofs( dofs, Nl, order)
2 % Carolina A. Urzua Torres - SAM, ETH, Zuerich.
3

4 if (order==1)
5 %remove dofs cells corresponding to vertices on tips
6 dofs(5*Nl-4) = [];
7 dofs(3*Nl-2) = [];
8 dofs(Nl) = [];
9

10 %since new cell array has one elements less than original
11 %since new cell array has two elements less than original
12

13 else
14 disp('Sorry, not implemented.')
15 end
16

17 end

LISTING A.10: mesh/quadruple/quadrupleJMT_mesh.m

1 function [ dofs] = quadrupleJMT_innerDofs( dofs, Nl, order)
2 % Lorenzo Giacomel - SAM, ETH, Zuerich.
3 %
4 % quadrupleJMT_innerDofs - Extract the interior DoFs from the DoFs ...

of a
5 % multi-trace quadruple junction mesh.
6 %INPUT:
7 % - dofs : cell-array from which to extract the interior DoFs
8 % - N : Number of points.
9 % - order : 0 if primal mesh is discretized by p.w.constants.

10 % 1 if discretized by p.w.linear
11 %OUTPUT:
12 % - dofs : cell-array returning interior DoFs indices.
13

14 if (order==1)
15 %remove dofs cells corresponding to vertices on tips
16 dofs(7*Nl - 6) = [];
17 dofs(5*Nl - 4) = [];
18 dofs(3*Nl - 2) = [];
19 dofs(Nl) = [];
20 else
21 disp('Sorry, not implemented.')
22 end
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23

24 end

Tests for the Kernel Dimensions

The results from section 2.1 have been obtained by running the following scripts.

LISTING A.11: tests/kernel_test/test_kernel_V0_segment.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh vertices per side of the mesh
5 Nl = [3, 6, 12, 24, 48];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (constant for V)
9 order = 0;

10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|', 9, '#elements', 9, '|','|', 9, '#dim(ker(V))', 9, ...

'|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k = 1 : length(Nl)
21 % Compute the mesh
22 [ mX, melems, mdofs] = segmentMT_mesh( a, b, Nl(k), order, 0, ...

false);
23 % Compute V0 on the mesh
24 mV = varV0_ms(mX, melems, mdofs, Nq);
25 % Number of elements in the mesh
26 res(k, 1) = 2 * (Nl(k) - 1);
27 % Kernel size
28 res(k, 2) = size(null(mV), 2);
29

30 out = strcat('|', 9, num2str(res(k, 1)), 9, 9, '|', '|', 9, ...
num2str(res(k, 2)), 9, 9, '|');

31 disp(out)
32 end
33

34 disp('|-----------------------------------------------|')

LISTING A.12: tests/kernel_test/test_kernel_V0_triple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Tip coordinates
3 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
4 % Number of mesh vertices per side of the mesh for each fin
5 Nl = [3, 6, 12, 24, 48];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (constant for V)
9 order = 0;
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10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|', 9, '#elements', 9, '|', '|', 9, '#dim(ker(V))', ...

9, '|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k=1 : length(Nl)
21 % Compute the mesh
22 [mX, melems, mdofs] = tripleJMT_mesh(tips, Nl(k), order, 0, false);
23 % Compute V0 on the mesh
24 mV = varV0_ms(mX, melems, mdofs, Nq);
25 % Number of elements in the mesh
26 res(k, 1) = 6 * (Nl(k) - 1);
27 % Kernel size
28 res(k, 2) = size(null(mV), 2);
29

30 out = strcat('|', 9, num2str(res(k, 1)), 9, 9, '|', '|', 9, ...
num2str(res(k, 2)), 9, 9, '|');

31 disp(out)
32 end
33

34 disp('|-----------------------------------------------|')

LISTING A.13: tests/kernel_test/test_kernel_V0_quadruple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Length of each fin
3 l=1;
4 % Number of mesh vertices per side of the mesh for each flat part ...

of the mesh
5 Nl = [3, 6, 12, 24, 48];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (constant for V)
9 order = 0;

10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|', 9, '#elements', 9, '|', '|', 9, '#dim(ker(V))', ...

9, '|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k = 1 : length(Nl)
21 % Compute the mesh
22 [mX, melems, mdofs] = quadrupleJMT_mesh(l, Nl(k), order, 0, false);
23 % Compute V0 on the mesh
24 mV = varV0_ms(mX, melems, mdofs, Nq);
25 % Number of elements in the mesh
26 res(k, 1) = 8 * (Nl(k) - 1);
27 % Kernel size
28 res(k, 2) = size(null(mV), 2);
29
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30 out = strcat('|', 9, num2str(res(k, 1)), 9, 9, '|', '|', 9, ...
num2str(res(k, 2)), 9, 9, '|');

31 disp(out)
32 end
33

34 disp('|-----------------------------------------------|')

LISTING A.14: tests/kernel_test/test_kernel_W0_segment.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh vertices per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (linear for W)
9 order = 1;

10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|', 9, '#elements', 9, '|', '|', 9, '#dim(ker(W))', ...

9, '|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k = 1 : length(Nl)
21 % Compute the mesh
22 [ mX, melems, mdofs] = segmentMT_mesh( a, b, Nl(k), order, 0 , ...

false);
23 % Extract the interior DoFs
24 [idofs] = segmentMT_innerDofs(mdofs, Nl(k), order);
25 % Compute W0 on the mesh
26 mW = varW0_ms(mX, melems, idofs, Nq);
27 % Number of vertices in the mesh
28 res(k, 1) = size(idofs, 1);
29 % Kernel size
30 res(k, 2) = size(null(mW), 2);
31

32 out = strcat('|', 9, num2str(res(k, 1)), 9, 9, '|', '|', 9, ...
num2str(res(k, 2)), 9, 9, '|');

33 disp(out)

LISTING A.15: tests/kernel_test/test_kernel_W0_triple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Tip coordinates
3 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
4 % Number of mesh vertices per side of the mesh for each fin
5 Nl = [3, 6, 12, 24, 48];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (linear for W)
9 order = 1;

10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
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13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|', 9, '#elements', 9, '|', '|', 9, '#dim(ker(V))', ...

9, '|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k = 1 : length(Nl)
21 % Compute the mesh
22 [ mX, melems, mdofs] = tripleJMT_mesh(tips, Nl(k), order, 0 , ...

false);
23 % Extract the interior DoFs
24 [idofs] = tripleJMT_innerDofs(mdofs, Nl(k), order);
25 % Compute W0 on the mesh
26 mW = varW0_ms(mX, melems, idofs, Nq);
27 % Number of vertices in the mesh
28 res(k, 1) = size(idofs,1);
29 % Kernel size
30 res(k, 2) = size(null(mW), 2);
31

32 out = strcat('|', 9, num2str(res(k,1)), 9, 9, '|', '|', 9, ...
num2str(res(k,2)), 9 , 9, '|');

33 disp(out)
34 end

LISTING A.16: tests/kernel_test/test_kernel_W0_quadruple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Length of each fin
3 l = 1;
4 % Number of mesh vertices per side of the mesh for each fin
5 Nl = [3, 6, 12, 24, 48];
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space
9 order = 1;

10 % Number of quadrature points
11 Nq = 4;
12 % Mesh thickness
13 e = 0;
14

15 disp('|-----------------------------------------------|')
16 out = strcat('|',9,'#elements',9,'|','|',9,'#dim(ker(W))',9,'|');
17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%% Compute kernels %%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 for k = 1 : length(Nl)
21 % Compute the mesh
22 [ mX, melems, mdofs] = quadrupleJMT_mesh(l, Nl(k), order, 0, ...

false);
23 % Extract the interior DoFs
24 [idofs] = quadrupleJMT_innerDofs(mdofs, Nl(k), order);
25 % Compute W0 on the mesh
26 mW = varW0_ms(mX, melems, idofs, Nq);
27 % Number of vertices in the mesh
28 res(k, 1) = size(idofs, 1);
29 % Kernel size
30 res(k, 2) = size(null(mW), 2);
31
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32 out = strcat('|', 9, num2str(res(k, 1)), 9, 9, '|', '|', 9, ...
num2str(res(k, 2)), 9, 9, '|');

33 disp(out)
34 end

Tests CG and GMRES Iterative Solvers

The tests for the iterative solvers from section 2.2 are implemented in the following
scripts.

LISTING A.17: tests/ls_solver_test/segment_V0_ls.m

1 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];

10 % Auxiliary matrices for storing results
11 cn = zeros(length(ev), length(Nl));
12 iter_pcg = zeros(length(ev), length(Nl));
13 iter_gmres = zeros(length(ev), length(Nl));
14 % Piecewise order of the Boundary Element Space (constant for V)
15 order = 0;
16

17 out1 = strcat('|', 'eps', 9, '|');
18 out2 = strcat('|', 9, '|');
19

20 for i = 1 : length(Nl)
21 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
22 out2 = strcat(out2, 'cond(V)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
23 end
24 disp(out1)
25 disp(out2)
26

27 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 for i = 1 : length(ev)
29 out3 = strcat('|', num2str(ev(i)), 9, '|');
30 for j = 1 : length(Nl)
31 % Compute the mesh
32 [X, elems, dofs] = segmentMT_mesh( a, b, Nl(j), order, ...

ev(i), false);
33 % Compute V0 on the mesh
34 V = varV0_ms(X, elems, dofs, Nq);
35 % Compute random rhs
36 rhs = V * rand(size(V, 1), 1);
37 % Solve with CG
38 [~, ~, ~, iter_pcg(i,j)] = pcg(V, rhs, 1e-6, size(V, 1));
39 % Solve with GMRES
40 [~, ~, ~,iteraux] = gmres(V, rhs, [], 1e-6, size(V, 1));
41 % Store and output results
42 iter_gmres(i, j) = iteraux(2);
43 cn(i, j) = cond(V);
44 if(i == length(ev))
45 eg = eig(V);
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46 cn(i, j) = max(eig(V)) / min(eg(eg > 1e-16));

LISTING A.18: tests/ls_solver_test/tripleJ_V0_ls.m

1 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
2 % Tip coordinates
3 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
4 % Number of mesh vertices for each fin per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];

10 % Auxiliary matrices for storing results
11 cn = zeros(length(ev), length(Nl));
12 iter_pcg = zeros(length(ev), length(Nl));
13 iter_gmres = zeros(length(ev), length(Nl));
14 % Piecewise order of the Boundary Element Space (constant for V)
15 order = 0;
16

17 out1 = strcat('|', 'eps', 9, '|');
18 out2 = strcat('|', 9, '|');
19

20 for i = 1 : length(Nl)
21 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
22 out2 = strcat(out2, 'cond(V)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
23 end
24 disp(out1)
25 disp(out2)
26

27 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 for i = 1 : length(ev)
29 out3 = strcat('|', num2str(ev(i)), 9, '|');
30 for j = 1 : length(Nl)
31 % Compute the mesh
32 [X, elems, dofs] = tripleJMT_mesh(tips, Nl(j), order, ...

ev(i), false);
33 % Compute V0 on the mesh
34 V = varV0_ms(X, elems, dofs, Nq);
35 % Compute random rhs
36 rhs = V * rand(size(V, 1), 1);
37 % Solve with CG
38 [~, ~, ~, iter_pcg(i,j)] = pcg(V, rhs, 1e-6, size(V, 1));
39 % Solve with GMRES
40 [~, ~, ~,iteraux] = gmres(V, rhs, [], 1e-6, size(V, 1));
41 % Store and output results
42 iter_gmres(i, j) = iteraux(2);
43 cn(i, j) = cond(V);
44 if(i == length(ev))
45 eg = eig(V);
46 cn(i, j) = max(eig(V)) / min(eg(eg > 1e-16));

LISTING A.19: tests/ls_solver_test/quadrupleJ_V0_ls.m

1

2 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
3 % Length of each fin
4 l=1;
5 % Number of mesh elements for each fin per side of the mesh
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6 Nl = [32, 64, 128, 256];
7 % Number of quadrature points
8 Nq = 4;
9 % Mesh thickness

10 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];
11 % Auxiliary matrices for storing results
12 cn = zeros(length(ev), length(Nl));
13 iter_pcg = zeros(length(ev), length(Nl));
14 iter_gmres = zeros(length(ev), length(Nl));
15 % Piecewise order of the Boundary Element Space (constant for V)
16 order = 0;
17

18 out1 = strcat('|', 'eps', 9, '|');
19 out2 = strcat('|', 9, '|');
20

21 for i = 1 : length(Nl)
22 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
23 out2 = strcat(out2, 'cond(V)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
24 end
25 disp(out1)
26 disp(out2)
27

28 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 for i = 1 : length(ev)
30 out3 = strcat('|', num2str(ev(i)), 9, '|');
31 for j = 1 : length(Nl)
32 % Compute the mesh
33 [X, elems, dofs] = quadrupleJMT_mesh(l, Nl(j), order, ...

ev(i), false);
34 % Compute V0 on the mesh
35 V = varV0_ms(X, elems, dofs, Nq);
36 % Compute random rhs
37 rhs = V * rand(size(V, 1), 1);
38 % Solve with CG
39 [~, ~, ~, iter_pcg(i,j)] = pcg(V, rhs, 1e-6, size(V, 1));
40 % Solve with GMRES
41 [~, FLAG, relres,iteraux] = gmres(V, rhs, [], 1e-6, size(V, ...

1));
42 % Store and output results
43 iter_gmres(i, j) = iteraux(2);
44 cn(i, j) = cond(V);
45 if(i == length(ev))
46 eg = eig(V);

LISTING A.20: tests/ls_solver_test/segment_W0_ls.m

1 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];

10 % Auxiliary matrices for storing results
11 cn = zeros(length(ev), length(Nl));
12 iter_pcg = zeros(length(ev), length(Nl));
13 iter_gmres = zeros(length(ev), length(Nl));
14 % Piecewise order of the Boundary Element Space (linear for W)
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15 order = 1;
16

17 out1 = strcat('|', 'eps', 9, '|');
18 out2 = strcat('|', 9, '|');
19

20 for i = 1 : length(Nl)
21 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
22 out2 = strcat(out2, 'cond(W)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
23 end
24 disp(out1)
25 disp(out2)
26

27 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 for i = 1 : length(ev)
29 out3 = strcat('|', num2str(ev(i)), 9, '|');
30 for j = 1 : length(Nl)
31 % Compute the mesh
32 [X, elems, dofs] = segmentMT_mesh( a, b, Nl(j), ...

order,ev(i), false);
33 % Extract the interior DoFs
34 [idofs] = segmentMT_innerDofs(dofs, Nl(j), order);
35 % Compute W0 on the mesh
36 W = varW0_ms(X, elems, idofs, Nq);
37 % Compute random rhs
38 rhs = W * rand(size(W, 1), 1);
39 % Solve with CG
40 [~, ~, ~, iter_pcg(i,j)] = pcg(W, rhs, 1e-6, size(W, 1));
41 % Solve with GMRES
42 [~, ~, ~,iteraux] = gmres(W, rhs, [], 1e-6, size(W, 1));
43 % Store and output results
44 iter_gmres(i, j) = iteraux(2);
45 cn(i, j) = cond(W);
46 if(i == length(ev))

LISTING A.21: tests/ls_solver_test/tripleJ_W0_ls.m

1 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
2 % Tips coordinates [a,b]
3 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];

10 % Auxiliary matrices for storing results
11 cn = zeros(length(ev), length(Nl));
12 iter_pcg = zeros(length(ev), length(Nl));
13 iter_gmres = zeros(length(ev), length(Nl));
14 % Piecewise order of the Boundary Element Space (linear for W)
15 order = 1;
16

17 out1 = strcat('|', 'eps', 9, '|');
18 out2 = strcat('|', 9, '|');
19

20 for i = 1 : length(Nl)
21 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
22 out2 = strcat(out2, 'cond(W)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
23 end
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24 disp(out1)
25 disp(out2)
26

27 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 for i = 1 : length(ev)
29 out3 = strcat('|', num2str(ev(i)), 9, '|');
30 for j = 1 : length(Nl)
31 % Compute the mesh
32 [X, elems, dofs] = tripleJMT_mesh(tips, Nl(j), order,ev(i), ...

false);
33 % Extract the interior DoFs
34 [idofs] = tripleJMT_innerDofs(dofs, Nl(j), order);
35 % Compute W0 on the mesh
36 W = varW0_ms(X, elems, idofs, Nq);
37 % Compute random rhs
38 rhs = W * rand(size(W, 1), 1);
39 % Solve with CG
40 [~, ~, ~, iter_pcg(i,j)] = pcg(W, rhs, 1e-6, size(W, 1));
41 % Solve with GMRES
42 [~, ~, ~,iteraux] = gmres(W, rhs, [], 1e-6, size(W, 1));
43 % Store and output results
44 iter_gmres(i, j) = iteraux(2);
45 cn(i, j) = cond(W);
46 if(i == length(ev))

LISTING A.22: tests/ls_solver_test/quadrupleJ_W0_ls.m

1 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
2 % Length of each fin
3 l = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 ev = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0];

10 % Auxiliary matrices for storing results
11 cn = zeros(length(ev), length(Nl));
12 iter_pcg = zeros(length(ev), length(Nl));
13 iter_gmres = zeros(length(ev), length(Nl));
14 % Piecewise order of the Boundary Element Space (linear for W)
15 order = 1;
16

17 out1 = strcat('|', 'eps', 9, '|');
18 out2 = strcat('|', 9, '|');
19

20 for i = 1:length(Nl)
21 out1 = strcat(out1, 9, 9, 'N=', num2str(Nl(i)), 9, 9, '|');
22 out2 = strcat(out2, 'cond(W)', 9, '|', 'CG', 9, '|', 'GMRES', ...

9, '|');
23 end
24 disp(out1)
25 disp(out2)
26

27 %%%%%%%%%%%%%%%%%%%%%%%%%% Solve System %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 for i = 1 : length(ev)
29 out3 = strcat('|', num2str(ev(i)), 9, '|');
30 for j = 1 : length(Nl)
31 % Compute the mesh
32 [X, elems, dofs] = quadrupleJMT_mesh(l, Nl(j), order,ev(i), ...

false);
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33 % Extract the interior DoFs
34 [idofs] = quadrupleJMT_innerDofs(dofs, Nl(j), order);
35 % Compute W0 on the mesh
36 W = varW0_ms(X, elems, idofs, Nq);
37 % Compute random rhs
38 rhs = W * rand(size(W, 1),1);
39 % Solve with CG
40 [~, ~, ~, iter_pcg(i,j)] = pcg(W, rhs, 1e-6, size(W, 1));
41 % Solve with GMRES
42 [~, ~, ~,iteraux] = gmres(W, rhs, [], 1e-6, size(W, 1));
43 % Store and output results
44 iter_gmres(i, j) = iteraux(2);
45 cn(i, j) = cond(W);
46 if(i == length(ev))

Validation on a Segment

The tests for the validation of our BEM matrices on a segment from section 2.3 are
implemented in the scripts

LISTING A.23: tests/segment_validation/segment_validation_V0_ST.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh vertices
5 Nl = [4, 8, 16, 32, 64, 128, 256, 512, 1024]+1;
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (constant for V)
9 order = 0;

10 % Number of quadrature points
11 Nq = 30;
12 % Mesh thickness
13 e = 0;
14 errv = [];
15

16 out = strcat('|', 9, 'N', 9, '|', 9, 'L2-error', 9, 9, '|', '|', 9, ...
'order', 9, 9, '|');

17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
20 for i = 1 : length(Nl)
21 % Compute the mesh
22 [ X, elems, dofs] = segmentST_mesh(a, b, Nl(i), order, false);
23 Ne = size(elems, 1);
24

25 % Compute right-hand side verctor
26 rhs = zeros(Ne, 1);
27 for j = 1 : Ne
28 rhs(j) = pi / 2 * (X(j + 1, 1) ^ 2 - X(j, 1) ^ 2);
29 end
30 % Compute V0 on the mesh
31 V = varV0_ms(X, elems, dofs, Nq);
32 % Solve the linear system
33 [sol, ~, ~, ~] = pcg(V, rhs, 1e-6, size(V, 1));
34

35 % Compute L2 error and estimated order
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36 errv = [errv sqrt(abs(pi ^ 2 / 2 - sol' * V * sol))];
37 if i > 1
38 p = log2(errv(end - 1) ./ errv(end));
39 else
40 p = 0;
41 end
42

43 out = strcat('|', 9, num2str(Ne), 9, '|', 9, num2str(errv(end), ...
'%e'), 9, 9, '|', '|', 9, num2str(p), 9, 9, '|');

44 disp(out)
45

46 end

LISTING A.24: tests/segment_validation/segment_validation_V0_MT.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh vertices
5 Nl = [4, 8, 16, 32, 64, 128, 256, 512, 1024]+1;
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (constant for V)
9 order = 0;

10 % Number of quadrature points
11 Nq = 30;
12 % Mesh thickness
13 e = 0;
14 errv = [];
15

16 out = strcat('|', 9, 'N', 9, '|', 9, 'L2-error', 9, 9, '|', '|', 9, ...
'order', 9, 9, '|');

17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
20 for i = 1 : length(Nl)
21 % Compute the mesh
22 [ X, elems, dofs] = segmentMT_mesh(a, b, Nl(i), order, 0, false);
23 Ne = size(elems, 1);
24

25 % Compute right-hand side verctor
26 rhs = zeros(Ne, 1);
27 for j = 1 : Ne - 1
28 rhs(j) = pi * (X(j + 1, 1) ^ 2 - X(j, 1) ^ 2);
29 end
30 rhs(Ne) = pi * (X(1, 1) ^ 2 - X(end,1) ^ 2);
31 rhs(Ne / 2 + 1 : Ne) = -rhs(Ne / 2 + 1 : Ne);
32

33 % Compute V0 on the mesh
34 V = varV0_ms(X, elems, dofs, Nq);
35

36 % Solve the linear system
37 [sol, ~, ~, ~] = pcg(V, rhs, 1e-6, size(V, 1));
38

39 % Compute L2 error and estimated order
40 errv = [errv sqrt(abs(2 * pi ^ 2 - sol' * V * sol))];
41 if i > 1
42 p = log2(errv(end - 1) ./ errv(end));
43 else
44 p = 0;
45 end
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46

47 out = strcat('|', 9, num2str(Ne), 9, '|', 9, num2str(errv(end), ...
'%e'), 9, 9, '|', '|', 9, num2str(p), 9, 9, '|');

48 disp(out)

LISTING A.25: tests/segment_validation/segment_validation_W0_ST.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh vertices
5 Nl = [4, 8, 16, 32, 64, 128, 256, 512, 1024]+1;
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (linear for linear)
9 order = 1;

10 % Number of quadrature points
11 Nq = 30;
12 % Mesh thickness
13 e = 0;
14 errv = [];
15

16 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
17 for i = 1 : length(Nl)
18 % Compute the mesh
19 [ X, elems, sdofs] = segmentST_mesh(a, b, Nl(i), order, false);
20 [idofs] = segmentST_innerDofs(sdofs, Nl(i), order);
21 Ne = size(elems,1);
22

23 % Compute the right-hand side vector
24 rhs = zeros(Nl(i) - 2, 1);
25 eta = zeros(Nl(i) - 1, 1);
26 for j = 1 : Nl(i) - 1
27 eta(j) = (X(j, 1) + X(j + 1, 1)) / 2;
28 end
29 rhs = pi * diff(eta);
30

31 % Compute W0 on the mesh
32 W = varW0_ms(X, elems, idofs, Nq);
33

34 % Solve the linear system
35 [sol, ~, ~, ~] = pcg(W, rhs, 1e-6, 100);
36

37 % Compute L2 error and estimated order
38 errv = [errv sqrt(abs(pi ^ 2 / 2 - (sol)' * W * (sol)))];
39 if i > 1
40 p = log2(errv(end - 1) ./ errv(end));
41 else
42 p = 0;
43 end
44

45 out = strcat('|', 9, num2str(Ne), 9, '|', 9, num2str(errv(end), ...
'%e'), 9, 9, '|', '|' , 9, num2str(p), 9, 9, '|');

46 disp(out)

LISTING A.26: tests/segment_validation/segment_validation_W0_MT.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
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4 % Number of mesh vertices
5 Nl = [4, 8, 16, 32, 64, 128, 256, 512, 1024]+1;
6 % Auxiliary matrix for storing results
7 res = zeros(length(Nl), 2);
8 % Piecewise order of the Boundary Element Space (linear for linear)
9 order = 1;

10 % Number of quadrature points
11 Nq = 30;
12 % Mesh thickness
13 e = 0;
14 errv = [];
15

16 out = strcat('|', 9, 'N', 9, '|', 9, 'L2-error', 9, 9, '|', '|', 9, ...
'order', 9, 9, '|');

17 disp(out)
18

19 %%%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%
20 for i = 1 : length(Nl)
21 % Compute the mesh
22 [ X, elems, mdofs] = segmentMT_mesh(a, b, Nl(i), order, 0, false);
23 inner_dofs = segmentST_innerDofs(mdofs, Nl(i), order);
24 Ne = size(elems, 1);
25

26 % Compute the right-hand side
27 rhs = zeros(Nl(i) - 2, 1);
28 eta =zeros(Nl(i) - 1, 1);
29 for j = 1 : Nl(i) - 1
30 eta(j) = (X(j,1) + X(j + 1, 1)) / 2;
31 end
32 rhs = 2 * [pi * diff(eta); - pi * diff(eta)];
33

34 % Compute W0 on the mesh
35 W = varW0_ms(X, elems, inner_dofs, Nq);
36

37 % Solve the linear system
38 [sol, ~, ~, ~] = pcg(W, rhs, 1e-6, size(W, 1));
39

40 % Compute L2 error and estimated order
41 errv = [errv sqrt(abs(2 * pi ^ 2 - sol' * W * sol))];
42 if i > 1
43 p = log2(errv(end - 1) ./ errv(end));
44 else
45 p = 0;
46 end
47

48 out = strcat('|', 9, num2str(Ne), 9, '|', 9, num2str(errv(end), ...
'%e'), 9, 9, '|', '|', 9, num2str(p), 9, 9, '|');

49 disp(out)

Elimination of the Kernels

The scripts in which we implemented the elimination of the kernels of V and W from
section 2.4 are

LISTING A.27: tests/eliminate_dofs/V0_segment.m

1 % Segment limits [a,b]
2 a = -1; b = 1;
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3 % Number of mesh elements per side of the mesh
4 Nl = [32 64 128 256 512 1024];
5 % Number of quadrature points
6 Nq = 4;
7 % Mesh thickness
8 e = 0;
9 % Piecewise order of the Boundary Element Space (constant for V)

10 order = 0;
11

12 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
13 for i = 1 : length(Nl)
14 % Compute the mesh
15 [ X, elems, dofs] = segmentMT_mesh( a, b, Nl(i), order, 0, false);
16 Ne = size(elems, 1);
17

18 % Compute V0 on the mesh
19 V = varV0_ms(X, elems, dofs, Nq);
20

21 % Compute random right-hand side
22 rhs = V * rand(size(V, 1), 1);
23

24 % Compute the T matrix
25 T = zeros(Ne, Ne / 2);
26 T(1 : Ne / 2, 1 : Ne / 2) = eye(Ne / 2, Ne / 2);
27 T(Ne / 2 + 1 : 2 * Ne / 2, 1 : Ne / 2) = flipud(eye(Ne / 2, Ne ...

/ 2));
28

29 % Compute reduced system by transforming the DoFs
30 Vred = T' * V * T;
31 rhsRed = T' * rhs;
32

33 % Solve the full linear system
34 out = strcat('Full system with N = ', num2str(Nl(i)));

LISTING A.28: tests/eliminate_dofs/V0_triple.m

1 % Tips coordinates
2 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
3 % Number of mesh elements per side of the mesh
4 Nl = [32, 64, 128, 256];
5 % Number of quadrature points
6 Nq = 4;
7 % Mesh thickness
8 e = 0;
9 % Piecewise order of the Boundary Element Space (constant for V)

10 order = 0;
11

12 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
13 for i = 1 : length(Nl)
14 % Compute the mesh
15 [X, elems, dofs] = tripleJMT_mesh(tips, Nl(i), order, 0, false);
16

17 % Compute V on the mesh
18 V = varV0_ms(X, elems, dofs, Nq);
19 % Compute random rhs
20 rhs = V * rand(size(V, 1), 1);
21

22 % Compute the T matrix
23 Tblock = zeros(2 * (Nl(i) - 1), Nl(i) - 1);
24 Tblock(1 : Nl(i) - 1, : ) = eye(Nl(i) - 1, Nl(i) - 1);
25 Tblock(Nl(i) : end, : ) = flipud(eye(Nl(i) - 1, Nl(i) - 1));
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26 zblock = zeros(2 * (Nl(i) - 1), Nl(i) - 1);
27 T = [Tblock, zblock,zblock;
28 zblock, Tblock, zblock;
29 zblock, zblock, Tblock;];
30

31 % Compute reduced system by transforming the DoFs
32 Vred = T' * V * T;
33 rhsRed = T' * rhs;

LISTING A.29: tests/eliminate_dofs/V0_quadruple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Length of each fin
3 l = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 e = 0;

10 % Piecewise order of the Boundary Element Space (constant for V)
11 order = 0;
12

13 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
14 for i = 1 : length(Nl)
15 [X, elems, dofs] = quadrupleJMT_mesh(l, Nl(i), order, 0, false);
16 % compute W in the two approaches
17 V = varV0_ms(X, elems, dofs, Nq);
18 % compute dummy rhs
19 rhs = V * rand(size(V, 1), 1);
20 % compute T matrix for dofs reduction
21 Tblock = zeros(2 * (Nl(i) - 1), Nl(i) - 1);
22 Tblock(1 : Nl(i) - 1, :) = eye(Nl(i) - 1, Nl(i) - 1);
23 Tblock(Nl(i) : end, : ) = flipud(eye(Nl(i) - 1, Nl(i) - 1));
24 zblock = zeros(2 * (Nl(i) - 1), Nl(i) - 1);
25 T = [Tblock, zblock,zblock, zblock;
26 zblock, Tblock, zblock, zblock;
27 zblock, zblock, Tblock, zblock;
28 zblock, zblock, zblock, Tblock];
29

30 % Compute reduced system by transforming the DoFs
31 Vred = T' * V * T;
32 rhsRed = T' * rhs;
33

34 % Solve the non-reduced linear system

LISTING A.30: tests/eliminate_dofs/W0_segment.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Segment limits [a,b]
3 a = -1; b = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 e = 0;

10 % Piecewise order of the Boundary Element Space (linear for W)
11 order = 1;
12
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13 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
14 for i = 1 : length(Nl)
15 % Compute the mesh
16 [ X, elems, dofs] = segmentMT_mesh(a, b, Nl(i), order, 0, false);
17 % Extract the interior DoFs
18 [idofs] = segmentMT_innerDofs(dofs, Nl(i), order);
19 Ndofs = size(idofs, 1);
20

21 % Compute W0 on the mesh
22 W = varW0_ms(X, elems, idofs, Nq);
23

24 % Compute random rhs
25 rhs = W * rand(size(W, 1), 1);
26

27 % Compute the T matrix
28 T = zeros(Ndofs, Ndofs / 2);
29 T(1 : Ndofs / 2, : ) = eye(Ndofs / 2, Ndofs / 2);
30 T(Ndofs / 2 + 1 : 2 * Ndofs / 2, : ) = ...

-flipud(eye(Ndofs/2,Ndofs/2));
31

32 % Compute reduced system by transforming the DoFs
33 Wred = T' * W * T;
34 rhsRed = T' * rhs;

LISTING A.31: tests/eliminate_dofs/W0_triple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Tips coordinates
3 tips = [-sqrt(2)/2 -sqrt(2)/2; sqrt(2)/2 -sqrt(2)/2; 0 1];
4 % Number of mesh elements per side of the mesh
5 Nl = [32 64 128 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 e = 0;

10 % Piecewise order of the Boundary Element Space (linear for W)
11 order = 1;
12

13 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
14 for i = 1 : length(Nl)
15 % Compute the mesh
16 [X, elems, dofs] = tripleJMT_mesh(tips, Nl(i), order, 0, false);
17 % Extract the interior DoFs
18 idofs = tripleJMT_innerDofs(dofs, Nl(i), order);
19 Ndofs = size(idofs, 1);
20

21 % Compute W0 on the mesh
22 W = varW0_ms(X, elems, idofs, Nq);
23

24 % Reorder the DofFs for the sake of simplicity
25 N = Nl(i);
26 mask = [2 : 2 * N - 3, 2 * N - 1 : 4 * N - 6, 4 * N - 4 : 6 * N ...

- 9, 1 , 2 * N - 2, 4 * N - 5];
27 W_masked = W(mask, mask);
28

29 % Compute random rhs
30 rhs = W_masked * rand(size(W_masked, 1), 1);
31

32 % Compute the T matrix
33 Tblock = zeros(2 * (Nl(i) - 2), Nl(i) - 2);
34 Tblock(1 : Nl(i) - 2, : ) = eye(Nl(i) - 2, Nl(i) - 2);
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35 Tblock(Nl(i) - 1 : end, : ) = -flipud(eye(Nl(i) - 2, Nl(i) - 2));

LISTING A.32: tests/eliminate_dofs/W0_quadruple.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%% Define parameters %%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Length of each fin
3 l = 1;
4 % Number of mesh elements per side of the mesh
5 Nl = [32, 64, 128, 256];
6 % Number of quadrature points
7 Nq = 4;
8 % Mesh thickness
9 e = 0;

10 % Piecewise order of the Boundary Element Space (linear for W)
11 order = 1;
12

13 %%%%%%%%%%%%%%%%%%%%%%%% Perform Computations %%%%%%%%%%%%%%%%%%%%%%%%%
14 for i = 1 : length(Nl)
15 % Compute the mesh
16 [X, elems, dofs] = quadrupleJMT_mesh(l, Nl(i), order, 0, false);
17 % Extract the interior DoFs
18 idofs = quadrupleJMT_innerDofs(dofs, Nl(i), order);
19 Ndofs = size(idofs, 1);
20

21 % Compute W0 on the mesh
22 W = varW0_ms(X, elems, idofs, Nq);
23

24 % Reorder the DofFs for the sake of simplicity
25 N = Nl(i);
26 mask = [2 : 2 * N - 3, 2 * N - 1 : 4 * N - 6, 4 * N - 4 : 6 * N ...

- 9, 6 * N - 7 : 8 * N - 12, 1, 2 * N - 2, 4 * N - 5, 6 * N ...
- 8];

27 W_masked = W(mask, mask);
28

29 % Compute random rhs
30 rhs = W_masked * rand(size(W_masked, 1), 1);
31

32 % Compute the T matrix
33 Tblock = zeros(2 * (N - 2), N - 2);
34 Tblock(1 : N - 2, : ) = eye(N - 2, N - 2);
35 Tblock(N - 1 : end, : ) = -flipud(eye(N - 2, N - 2));





103

Appendix B

The C++ Codes

In this appendix we briefly describe the location of our codes in the GitLab repos-
itory of BETL2 (https://gitlab.math.ethz.ch/betl/Betl2.git). The codes have
been included in an application called bem_multiscreen whose structure is depicted
in figure B.1. This directory contains two sub-directories called laplace_multi-screen
and efie_multi-screen: the former contains the codes which solve the weakly sin-
gular BIE (mainV0.cpp) and the hypersingular BIE (mainW0.cpp), the latter contains
the main drivers used to solve the static EFIE (mainS0.cpp) and the indefinite EFIE
(mainSk.cpp). In addition, we have a folder which contains the codes used to correct
the BEM matrices to retrieve the non-empty kernels and a folder which contains the
grids used in the numerical experiments. The grids are of two types: the ordered
meshes have been used for the weakly singular BIE while the oriented meshes have
been used for all the other experiments. More detailed explanations about how to
run the codes can be found in the README.md file of the application.

https://gitlab.math.ethz.ch/betl/Betl2.git
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Betl2
...

Applications

...

readme.md

bem_multiscreen

laplace_multiscreen

main_V0.cpp

main _W0.cpp

util

efie_multiscreen

main_S0.cpp

main_Sk.cpp

util

postprocessing

grids

ordered_grids

oriented_grids

...

...

FIGURE B.1: Structure of the BETL2 Gitab repository
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