
Rayleigh Quotient Multigrid

Bachelor Thesis

written by
Robert Gantner

supervised by
Prof. Dr. Ralf Hiptmair

Seminar for Applied Mathematics
ETH Zürich

Spring Semester 2011

Abstract

This thesis elucidates the Rayleigh quotient multigrid algorithm and presents an
optimal implementation. Basic considerations regarding the smoothing operation,
a coordinate relaxation scheme, are made. The asymptotic complexity if found to
be O(n) analytically and is numerically verified, along with the h-independence of
convergence.

Various other numerical experiments are conducted, including empirical determina-
tion of the rate of convergence and timings for composite multigrid schemes like
nested iteration or the FMG cycle. Some pitfalls of computing multiple eigen-
vector approximations are discussed and numerically analyzed. This is aided by
a suboptimal implementation of complexity O(n logn), which allows more flexible
manipulation of the iterates.

i

Contents

Contents

1 Introduction 1

2 Elliptic Eigenvalue Problems 2
2.1 Strong Formulation . 2
2.2 Variational Formulation . 2
2.3 Finite Element Galerkin Discretization 3

2.3.1 Basis of Finite Element Space 3
2.3.2 Properties of Galerkin Matrices 4

3 Rayleigh Quotient Minimization 5
3.1 Definition of Rayleigh Quotient . 5
3.2 Subspace Correction . 5
3.3 Line Search . 7

3.3.1 Analytical Solution . 8
3.4 Intergrid Transfer Operators . 9
3.5 Coordinate Relaxation . 9

3.5.1 Optimizations . 10
3.6 Ritz Projection . 11

4 Rayleigh Quotient Multigrid 13
4.1 Algorithm . 13
4.2 Intergrid Transfers . 15
4.3 Multiple Eigenvectors . 16
4.4 Multigrid Cycles . 16
4.5 Data Structures . 19

4.5.1 Mesh Refinement . 19
4.5.2 Mass and Stiffness Matrix Computation 21
4.5.3 Smoothing Parameters . 21
4.5.4 Error Functionals . 21

4.6 Implementation Details . 22
4.6.1 Dynamically Updated Quantities 22
4.6.2 Coordinate Relaxation . 23
4.6.3 Orthogonalization and Ritz Projection 24
4.6.4 Nested Iteration and FMG 25

4.7 Complexity . 25
4.7.1 Work on One Level . 25
4.7.2 Total RQMG Complexity . 25

5 Numerical Experiments 27
5.1 Domains . 27

ii

Contents

5.2 Exact Solutions . 28
5.3 Asymptotic Complexity . 29
5.4 h-Independence of Convergence . 29
5.5 Multiple Eigenvectors . 32

5.5.1 Size of Search Space . 32
5.5.2 Deficiencies of W-Cycle . 33

5.6 Rate of Convergence . 35
5.6.1 V- and W-Cycles . 35
5.6.2 Multiple Eigenvectors . 38

5.7 Nested Iteration and FMG Cycle . 38

6 Conclusion 40

iii

Contents

List of Symbols

bi Finite element basis function of the i-th degree of freedom 3
V0,N Finite-dimensional subspace of H1

0(Ω) . 3
A Stiffness matrix . 4
M Mass matrix . 4
RQ(x) Rayleigh quotient of coefficient vector x . 5
Vi Subspaces of V0,N over which Rayleigh quotient is minimized6
Pi Prolongation operator. Maps vectors in Vi ⊂ V0,N to V0,N 6
p,pk 1-dimensional search direction for Rayleigh quotient minimization 7
δ, δk Step length in direction p . 7
x,xk Coefficient vector of current approximation .7
Iji Intergrid transfer operator . 9
dli i-th basis vector on level l .9
ν1 Number of presmoothing steps on each level . 13
ν2 Number of postsmoothing steps on each level 13
α Abbreviation for the dynamically updated quantity xTAmx 13
β Abbreviation for the dynamically updated quantity xTMmx 13
ql Abbreviation for the dynamically updated quantity (xTAmIml)T 15
rl Abbreviation for the dynamically updated quantity (xTMmIml)T 15
Al Stiffness matrix on level l, 1 ≤ l ≤ m . 15
Ml Mass matrix on level l, 1 ≤ l ≤ m . 15
cl Correction on level l . 15
γ Cycle parameter . 16
RQMG_DATA RQMG data structure containing multilevel information 19
ε

(k)
i Error of the i-th eigenvector in the k-th iteration21
vars Data structure containing the dynamically updated quantities . . .22
Ω� Square domain with side length 2 and midpoint (0, 0) 27
ΩL L-shaped domain; like Ω� but without the lower right unit square 27
Ω◦ Circular domain with radius r and midpoint (0, 0) 27
M�

i Mesh of a square domain Ω� on the i-th level 27
ML

i Mesh of an L-shaped domain ΩL on the i-th level 27
M◦i Mesh of a circular domain Ω◦ on the i-th level 27
Eλ Eigenspace to the eigenvalue λ. Eλ := {x ∈ Rn|Ax = λMx} . . . 32
∠(X,U) Angle between span{xi} and span{ui} . 35

iv

1 Introduction

The goal of this thesis is to analyze an optimal O(n) implementation of the Rayleigh
quotient multigrid algorithm. The implementation is based on the existing Matlab
framework LehrFEM, developed at the Seminar for Applied Mathematics at ETH
Zürich. [Burtscher et al. 2009] Various properties of this algorithm, including opti-
mal complexity and h-independence of convergence, are numerically scrutinized.

The model problem used in this thesis is an elliptic eigenvalue problem. This model
problem is stated and formulated as a variational problem in Section 2. The dis-
cretization by the finite element method is then elucidated and some fundamental
properties of the resulting Galerkin matrices are discussed.

At the core of the Rayleigh quotient multigrid algorithm lies a Rayleigh quotient
minimization iteration, which is formulated as a multiplicative Schwarz procedure
in Section 3. This iteration will be used as a smoothing procedure in the multigrid
method. Some analytical considerations are necessary to optimize the smoothing
iteration by updating certain quantities. This is explained in Section 3.5.1.

After the prerequisite tools are defined, Section 4 deals with the Rayleigh quotient
multigrid algorithm. The algorithm is stated in detail and intergrid transfers of cor-
rections are derived. This decouples the individual levels from any O(n) operations,
further paving the way for an optimal implementation.

The possibility of calculating multiple eigenvectors is mentioned in Section 4.3, while
the Ritz projection is introduced in Section 3.6. Some common multigrid cycles are
illustrated, as they allow further reduction of the total runtime. The data structures
used in the implementation are then presented, along with other implementation
details. A theoretical complexity analysis forms the end of Section 4.

In order to test the correctness and optimality of the implementation, various numer-
ical experiments were conducted and are documented in Section 5. A few sample
domains are shown, along with some solutions of the model problem on each of
them. The asymptotically linear complexity is numerically verified in Section 5.3,
along with the h-independence of convergence in Section 5.4. This is compared to a
standard Rayleigh quotient minimization iteration without coarse-grid corrections.

Following these experiments, a variety of computations involving multiple eigenvalue
approximations are presented (Section 5.5). In Section 5.6, convergence rates are
computed for some of the more common situations and compared to each other.
Finally, a comparison of the execution time of the nested iteration scheme, the full
multigrid cycle and a standard V-cycle is exhibited in Section 5.7.

1

2 ELLIPTIC EIGENVALUE PROBLEMS

2 Elliptic Eigenvalue Problems

Eigenvalue Problems are found in many diverse areas of science. From the eigenfre-
quencies of bridges to the values of quantum mechanical observables, eigenvectors
and their corresponding eigenvalues are important concepts for solving modern sci-
entific problems. [Arbenz & Kressner 2010, p. 1]

2.1 Strong Formulation

In this thesis, we will consider eigenproblems arising from elliptic partial differential
equations of the form

−∆u = λu in Ω
u = 0 on ∂Ω

(1)

where the Laplace operator is defined as ∆ = ∂2

∂x2 + ∂2

∂y2 on a two-dimensional domain
Ω, λ is the eigenvalue and u : Ω 7→ R its corresponding eigenfunction.

2.2 Variational Formulation

The partial differential equation given in (1) implies the existence of two derivatives
of u in Ω (i.e. u ∈ C2(Ω)). This is an unnecessarily specific constraint which can
be reduced by deriving a so-called variational, or weak, formulation of the problem.
This is desirable because one may be interested in solutions of less smoothness than
those fulfilling the strong formulation given in (1). [Friese 1998, p. 7]

To this end, we proceed as follows:
• Multiply with a test function v ∈ H1

0(Ω)
• Integrate over Ω and apply Green’s formula

where H1
0 is the Sobolev space as defined in [Braess 2007, p. 27]:

H1
0(Ω) =

{
f : Ω 7→ R

∣∣∣ f, ∂if ∈ L2(Ω), f|∂Ω = 0
}
.

Executing this procedure yields

−
∫

Ω
∆u · v dx Green=

∫
Ω
∇u · ∇v dx−

∫
∂Ω
∇u · v ds

v∈H1
0=
∫

Ω
∇u · ∇v dx

⇒
∫

Ω
∇u · ∇v dx = λ

∫
Ω

u · v dx.

2

2.3 Finite Element Galerkin Discretization

Defining a(u, v) :=
∫

Ω∇u·∇v dx and m(u, v) := λ
∫

Ωu·v dx, we obtain the variational
formulation:

find u ∈ H1
0(Ω) such that: a(u, v) = λm(u, v) ∀v ∈ H1

0(Ω). (2)

Note that all classical solutions of (1) automatically fulfill (2), but not vice-versa.

2.3 Finite Element Galerkin Discretization

The discretization of (2) using a standard Galerkin finite elements approach involves
replacing the infinite-dimensional function space H1

0 with a finite-dimensional sub-
space V0,N ⊂ H1

0 where the subscript N denotes both the dimension of the subspace
and its discrete nature.

The discrete variational problem now reads

find uN ∈ V0,N s.t.: a(uN , vN) = λm(uN , vN) ∀vN ∈ V0,N . (3)

Both uN and vN are taken from the space V0,N , i.e. the trial and test spaces are the
same.

2.3.1 Basis of Finite Element Space

In order to find a representation of V0,N suitable for use on a computer, a basis must
be chosen. Let BN = {b1, . . . , bN} be a basis of V0,N . This leads to the following
ansatz for uN , called the Ritz ansatz [Arbenz & Kressner 2010, p. 16]:

uN =
N∑
i=1

µibi. (4)

Inserting this into (3) results in the following:
N∑
i=1

µi

∫
Ω
∇bi∇v dx = λ

N∑
i=1

µi

∫
Ω
biv dx.

Since {b1, . . . , bN} form a basis of V0,N , this is equivalent to:

N∑
i=1

µi

∫
Ω
∇bi∇bj dx = λ

N∑
i=1

µi

∫
Ω
bibj dx, j = 1, . . . , N.

By interpreting both summations over i as matrix-vector products, this equation
can be written as a generalized eigenvalue problem

Aµ = λMµ (5)

3

2 ELLIPTIC EIGENVALUE PROBLEMS

with

(A)i,j =
∫

Ω
∇bi∇bj dx “stiffness matrix” (6)

(M)i,j =
∫

Ω
bibj dx “mass matrix”. (7)

2.3.2 Properties of Galerkin Matrices

First, let us state the Poincaré-Friedrichs inequality as presented in [Braess 2007, p.
29]:

Poincaré-Friedrichs Inequality: If Ω is contained in a square of side
length s, then

||v||0 ≤ s|v|H1 ∀v ∈ H1
0. (8)

Using this inequality, we can show that A is positive definite:

µTAµ =
∑
i

µi
∑
j

µj

∫
Ω
∇bi∇bj dx =

∫
Ω
∇
(∑

i

µibi
)
∇
(∑

j

µjbj
)

dx

=
∫

Ω
∇uN∇uN dx = |uN |2H1(Ω)

(8)
≥ 1
s2 ||uN ||

2
0.

Since the last term is a norm, the positive definiteness of A follows from the positivity
property of the norm. The symmetry of A follows trivially from the commutative
property of the scalar product.

The matrix M can also be shown to be spd:

µTMµ =
∑
i

µi
∑
j

µj

∫
Ω
bibj dx =

∫
Ω

u2 dx ≥ 0, u 6= 0

= 0, u = 0

where the symmetry is of course given by the commutativity of scalar multiplication.
[Braess 2007]

4

3 Rayleigh Quotient Minimization

3.1 Definition of Rayleigh Quotient

One method to find the smallest eigenvalue λ1 and its corresponding eigenvector v1
is by minimization of the so-called Rayleigh quotient. The Rayleigh quotient of a
generalized eigenvalue problem Ax = λMx is defined as

RQ(x) := xTAx
xTMx . (9)

It can be seen that if x is an eigenvector, RQ(x) is the corresponding eigenvalue. The
following theorem provides the theoretical framework for general Rayleigh quotient
minimization methods.

Courant-Fischer Minimax Theorem: If A ∈ Rn×n is symmetric, then

λk(A) = min
dim(S)=k

max
06=x∈S

xTAx
xTx (10)

for k = 1, . . . , n.

In the above theorem, xT Ax
xT x is the Rayleigh quotient of a special eigenvalue problem

Ax = λx with λ1 being the smallest eigenvalue of A. Since we have a generalized
eigenvalue problem, we must show that this theorem is still applicable. This can be
done by assuming that at least one of the two matrices A or M is spd. As proven in
the previous section, in our case both A and M fulfill this condition; without loss of
generality we will use M in the following. This leads to the following reformulation
using the well-defined decomposition M = M1/2M1/2:

xTAx
xTMx = xTAx

(M1/2x)T (M1/2x)
M1/2x=y= yTM1/2AM1/2y

yTy = yTBy
yTy ,

which, since B must be symmetric, allows us to apply (10) to our generalized eigen-
value problem. [Golub & Van Loan 1996, p. 394]

3.2 Subspace Correction

Instead of minimizing the Rayleigh quotient over the entire domain, a decomposition
with (overlapping) subdomains can be constructed:

Ω = ∪iΩi V0,N = ∪iVi

5

3 RAYLEIGH QUOTIENT MINIMIZATION

In order to map the coefficient vector of a finite element function on a subspace to the
coefficient vector on the entire space, so-called prolongation operators Pi : Vi → V0,N
are needed. Pi is the transpose of PT

i : V0,N → Vi, the orthogonal projection into
the subspace Vi.

Using such a decomposition, a multiplicative Schwarz procedure can be used as an
iterative method to determine the solution on the entire domain. This will allow us to
solve multiple small problems instead of one very large one, which is computationally
less intensive. The multiplicative Schwarz procedure is summarized as presented in
[Chan & Sharapov 1998]:

Algorithm 1 Subspace Correction
Input: Initial guess x0, discrete subspaces {Vi}Ni=1, prolongation operators Pi

Output: Approximation x on V0,N
1: repeat
2: for i = 1 to N do
3: RQ(xk+ i

N) = mindi∈Vi
RQ(xk+ i−1

N + Pidi)
4: end for
5: until convergence

In practice, the subspace iteration in Algorithm 1 is not computed until convergence.
Instead, the iteration on lines 2 to 4 is performed a given number of times (called ν
in the following). This method will be used as a smoother in the RQMG algorithm.

As shown in [Chan & Sharapov 1998], the subspace problem is also an eigenvalue
problem. Therefore, the solution on the subspace can be recursively calculated. As
can be seen in line 3 of Algorithm 1, the subspace problem is the minimization of:

RQ(x + Pidi) = (x + Pidi)TA(x + Pidi)
(x + Pidi)TM(x + Pidi)

.

With (x + Pidi) =
(
Pi x

)
·
(
di
1

)
= P̃i · d̃i, we can write:

RQ(x + Pidi) = d̃i
T P̃i

TAP̃id̃i

d̃i
T P̃i

TMP̃id̃i
= d̃i

T Ãd̃i
d̃i
TM̃d̃i

,

which corresponds to the Rayleigh quotient of the following problem:

Ãd̃i = λ̃M̃d̃i.

This subspace problem has the dimension ni+1×ni+1, where ni is the dimension of
the i-th subspace. As mentioned above, this problem is also an eigenvalue problem,

6

3.3 Line Search

so by decomposing the chosen subdomain again a recursive algorithm can be formu-
lated to iteratively solve the problem on the whole domain. [Chan & Sharapov 1998]

In this thesis, however, the so-called coordinate relaxation method is used. This is
equivalent to using one-dimensional subspaces, which of course cannot be further
decomposed. The benefit of this approach is the simplicity of the prolongation
operation and of the minimization of the Rayleigh quotient on the one-dimensional
subdomains, which corresponds to the solution of a 2 × 2 generalized eigenvalue
problem. Additionally, this solution can be found very efficiently by determining the
roots of a quadratic polynomial in δ. This special case is now further investigated.

3.3 Line Search

The approach we will use to find an approximation to the smallest eigenvalue is to
find an iteration that fulfills the condition RQ(xk+1) < RQ(xk). If this iteration
converges, it will give us a sequence of eigenvalues which converge to λ1, as well as
a sequence of eigenvectors xk which converge to v1.

To realize such an iteration, we modify the current iterate xk by adding a search
direction pk scaled with a “step length” δk:

xk+1 = xk + δk · pk, (11)

where δk is chosen such that xk+1 minimizes the Rayleigh quotient in the direction
pk:

RQ(xk+1) = min
δk

RQ(xk + δk · pk) (12)

The value for δk can be computed by rewriting the Rayleigh quotient of the gener-
alized eigenvalue problem (5) as the Rayleigh quotient of a small 2 × 2 eigenvalue
problem:

RQ(xk + δpk) = (xk + δpk)TA(xk + δpk)
(xk + δpk)TM(xk + δpk)

= xTk Axk + 2δxTk Apk + δ2pTk Apk
xTk Mxk + 2δxTk Mpk + δ2pTk Mpk

=

(
1 δ

)
·
(

xTk Axk xTk Apk
xTk Apk pTk Apk

)
·
(

1
δ

)
(
1 δ

)
·
(

xTk Mxk xTk Mpk
xTk Mpk pTk Mpk

)
·
(

1
δ

) .

The last term corresponds to the Rayleigh quotient of the eigenvalue problem(
xTk Axk xTk Apk
xTk Apk pTk Apk

)(
α
β

)
= λ

(
xTk Mxk xTk Mpk
xTk Mpk pTk Mpk

)(
α
β

)
(13)

7

3 RAYLEIGH QUOTIENT MINIMIZATION

with two eigenvalues λ̃1 < λ̃2. Since the Rayleigh quotients are equal, we can solve
the minimization problem (12) by computing the eigenvector of (13) corresponding
to the smaller eigenvalue λ̃1. By scaling the eigenvector (α β)T such that α = 1,
the second component becomes the unknown value δk. [Arbenz & Kressner 2010, p.
213]

Algorithm 2 minRQ(A,M,x,p) Minimization of Rayleigh Quotient
Input: System matrices A,M, initial guess x, search direction p
Output: Step size δ

1: Ã =
(

xTAx xTAp
xTAp pTAp

)

2: M̃ =
(

xTMx xTMp
xTMp pTMp

)
3: V,Λ = EIG(Ã, M̃)
4: if Λ1,1 < Λ2,2 then
5: return V2,1/V1,1
6: else
7: return V2,2/V1,2
8: end if

3.3.1 Analytical Solution

The unknown δk in (11) can be found by solving the minimization problem (12)
analytically. In other words, we seek the δ that minimizes the Rayleigh quotient

RQ(x + δp) =

(
1 δ

)
· Ã ·

(
1
δ

)
(
1 δ

)
· M̃ ·

(
1
δ

) ,

where Ã and M̃ are the 2 × 2 matrices from (13). Referring to the elements of Ã
and M̃ as aij and mij and executing the matrix multiplications yields

RQ(x + δp) = a11 + 2δa12 + δ2a22
m11 + 2δm12 + δ2m22

. (14)

A necessary condition for the minimizer δ? is ∂
∂δRQ(x + δp)|δ=δ? = 0, which leads

to the following quadratic equation:

δ2 (a22m12 − a12m22)︸ ︷︷ ︸
α

+δ (a22m11 − a11m22)︸ ︷︷ ︸
β

+ a12m11 − a11m12︸ ︷︷ ︸
γ

= 0.

8

3.4 Intergrid Transfer Operators

The two solutions of this equation are of course

δ± = −β ±
√
β2 − 4αγ

2α .

By assuming that the current iterate x has a smaller Rayleigh quotient than any
single basis function, i.e.

RQ(x) = a11
m11

<
a22
m22

= RQ(Pidi), (15)

it follows that β = a22m11 − a11m22 > 0. Inserting into the second derivative of
(14), it is evident that the solution δ− always yields a maximum:

∂2

∂δ2RQ(x+δp)|δ=δ− = 2αδ−−β = 2α−β −
√
β2 − 4αγ

2α −β = −2β−
√
β2 − 4αγ < 0.

Therefore, δ+ ≤ δ−, which makes it clear that δ+ is the minimizer of the Rayleigh
quotient. In practice, assumption (15) is always true. [Mandel & McCormick 1989]

3.4 Intergrid Transfer Operators

An important component of every multigrid algorithm is a method of prolongating
coefficient vectors from coarse grids to finer grids. This should not be confused with
the prolongation operator defined in Section 3.2, which, in the case of coordinate
relaxation, maps one-dimensional subspaces Vi onto the entire discrete finite element
space V0,N .

Intergrid transfer operators map the coefficient vector of a finite element function on
a coarse grid (nc components) to the coefficient vector of the function on a fine grid
(nf > nc components). They are also referred to as prolongation and restriction,
where restriction is the adjoint of prolongation, mapping residuals from the fine grid
to residuals on the coarse grid.

In the following, the intergrid prolongation and restriction operations are denoted
by the operator Iji which describes prolongation from level i to level j for i < j and
restriction between the corresponding levels for j < i. For the sake of completeness,
Iii corresponds to the ni × ni identity matrix. The finest level is described by the
index m. Using this convention, Imj prolongates the coefficient vector on level j to
the finest level. [Mandel & McCormick 1989, 445]

3.5 Coordinate Relaxation

Coordinate relaxation on a level l involves applying the Rayleigh quotient minimiza-
tion procedure from Algorithm 2 using the basis vectors dli as the search directions.

9

3 RAYLEIGH QUOTIENT MINIMIZATION

On the finest level, this corresponds to an iteration over the euclidean basis vectors.
In each iteration, the iterate x is corrected according to the minimization of the
Rayleigh quotient in the direction of the current basis vector as represented on the
fine grid (Iml dli). This is a one-dimensional subspace correction in the sense of the
approach used in Algorithm 1.

Algorithm 3 CoordRelax(A,M,x, l) Coordinate Relaxation
Input: System matrices A,M on finest level, initial guess x, level l.
Output: A better approximation of the eigenvector to the smallest eigenvalue.

1: for i = 1 : n do
2: δ = minRQ(A,M,x, Iml dli)
3: x = x + δ · Iml dli
4: end for
5: return x

3.5.1 Optimizations

The minimization of the Rayleigh quotient as described above requires O(n) oper-
ations per search direction due to the computation of the elements of Ã and M̃
in the procedure minRQ (Algorithm 2). A much more efficient version of this inner-
loop function can be obtained by updating the values for xTAx, xTMx, xTAp and
xTMp after computing each δ on a certain level l. This can be done in constant
time, instead of the O(n) complexity needed for recomputing these values each time.
A derivation of the update formulas will now be presented. The derivations are given
for the quantities involving the fine-grid matrix A only; they are identical for the
quantities involving M.

Consider a coordinate relaxation iteration on level l. The first correction to x0 is
found by minimizing the Rayleigh quotient in the direction p1 = Iml dl1, i.e. in the
direction of the first basis vector on level l. By inserting x1 = x0 + δ?p1 into the
expressions mentioned above, we obtain the following update formulas.

xTAx:

xT1 Ax1 = (x0 + δ?Iml dl1)TA(x0 + δ?Iml dl1)

= xT0 Ax0 + 2δ? xT0 AIml dl1︸ ︷︷ ︸
xT

0 Ap1

+δ?2 dl1
T IlmAIml dl1︸ ︷︷ ︸

(Al)1,1

This update requires only the already known quantities xTAp and (Al)i,i and can
therefore be executed in constant time.

10

3.6 Ritz Projection

xTAp:

For the quantity needed in the second iteration, we obtain:

xT1 Ap2 = (x0 + δ?1Iml dl1)TA(Iml dl2)

= xT0 AIml dl2 + δ?1 d
l
1
T IlmAIml dl2︸ ︷︷ ︸

(Al)1,2

.

For the third iteration, we obtain:

xT2 Ap3 = (x0 + δ?1Iml dl1 + δ?2Iml dl2)TA(Iml dl3)

= xT0 AIml dl3 + δ?1 d
l
1
T IlmAIml dl3︸ ︷︷ ︸

(Al)1,3

+δ?2 dl2
T IlmAIml dl3︸ ︷︷ ︸

(Al)2,3

.

We see that in the i-th iteration we require a multiplication of the first i−1 elements
of the i-th column of Al with the already determined values δ?j , j = 1, . . . , i − 1.
This can be realized most efficiently by storing the values δ?j in a vector, which is
initialized to zero. Since only a dot product of this vector with a sparse column of
A is required, the complexity of the second part of this update is constant.

The first part of the update involves the expression xT0 AIml , which can be precom-
puted before starting the coordinate relaxation loop. Multiplication with dli then
simplifies to just accessing the i-th element. In an optimal implementation, this
quantity must be passed along from coarser or finer grids. This is explained in
detail in Section 4.2.

pTAp:

For pTAp we need no update – in the i-th iteration, this quantity corresponds to
the i-th diagonal element of Al.

These updates lead to a smoothing procedure requiring only O(n) operations per
sweep over all coordinates. The complexity of the entire algorithm is analyzed in
more detail in Section 4.7. [Mandel & McCormick 1989, p. 447]

3.6 Ritz Projection

An effective way of increasing the speed of convergence when computing multiple
eigenvectors is by using Ritz projections at some point in the multigrid cycle. After
a few smoothing or coarse-grid correction steps, one can assume that the space
spanned by {xi}ki=1 is a good approximation of the eigenspace containing the desired
eigenvectors.

11

3 RAYLEIGH QUOTIENT MINIMIZATION

Better approximations to the desired eigenvectors can be obtained by writing them
as linear combinations of the current iterates:

x̃i =
∑
j

αj · xj = X · α , (16)

where X is the matrix containing the orthonormal iterates xi as columns and α is
the unknown vector of coefficients.

The Rayleigh quotient of this expression is

RQA,M(X · α) = αTXTAXα
αTXTMXα = αT Ãα

αTM̃α
= RQÃ,M̃(α) ,

which is the Rayleigh quotient of the small k × k eigenvalue problem

(XTAX)α = λ̃(XTMX)α . (17)

Since (17) is such a small eigenvalue problem, its solutions can be determined ef-
ficiently, resulting in the eigenvectors α which give the coefficients of the linear
combination in (16). Since the Rayleigh quotients are the same, the sorting of the
new iterates x̃i is determined by the eigenvalues of (17). Implementation details can
be found in Section 4.6.3. [Hiptmair et al. 2010]

12

4 Rayleigh Quotient Multigrid

In this section, the Rayleigh quotient multigrid algorithm (RQMG) is presented and
details concerning its implementation are described. The algorithm is first presented
for computing only the eigenvector to the smallest eigenvalue and then generalized
to be able to compute k eigenvectors.

4.1 Algorithm

The first requirement for the RQMG algorithm is a set of nested finite element
discretizations of the given elliptic eigenvalue problem. In this thesis, this is done
in two dimensions using linear finite elements, with finer levels obtained by regular
refinement.

A second requirement is a procedure that reduces the high-frequency components of
the error, called a “smoother”. In our application, we use coordinate relaxation as
elucidated in Section 3.5 and Algorithm 3. This iteration is applied ν1 times before
(presmoothing) and ν2 times after (postsmoothing) the coarse-grid correction.

In this implementation, a distinction is made between smoothing on the finest grid
and on the coarser grids, as additional optimizations are possible on the finest grid.
Smoothing on the fine grid is achieved by the procedure SMOOTH_FINE, which returns
the smoothed solution (see implementation in Section 4.6.2). On the coarser grids,
the procedure SMOOTH_STEP returns the correction to the current iterate in terms of
the basis functions on the given level.

Between the two smoothing steps, a coarse-grid correction is computed by recursively
calling the RQMG_STEP function. This causes the smoother to be recursively applied
to each level until the coarsest level is reached. The corrections are then propagated
up to the finest grid, with a smoothing operation being executed on each level after
the correction is applied.

Algorithm 4 forms the main body of this function, calling the recursion until a
given tolerance (with respect to the error functional ε(x)) is reached. The recursive
coarse-grid correction for a single eigenvector is shown in Algorithm 5.

In order to obtain an efficient implementation, various quantities must be updated
globally or transferred between the levels. Among these are α, β,ql and rl in Algo-
rithm 5. The global quantities α and β correspond to xTAx and xTMx, respectively;
ql and rl are explained in the following section. [Mandel & McCormick 1989]

13

4 RAYLEIGH QUOTIENT MULTIGRID

Algorithm 4 RQMG(Al,Ml,x0,m, tol, ν1, ν2, γ) Rayleigh Quotient Multigrid
Input: System matrices Al,Ml on all levels l; initial guess x0; finest level m;

tolerance tol; number of pre and postsmoothing steps ν1, ν2; cycle parameter γ
Output: Better approximation x of the eigenvector the the smallest eigenvalue λ

1: α = xT0 Ax0; β = xT0 Mx0
2: while ε(x) > tol do
3: x = SMOOTH_FINE(Am,Mm,x0, ν1, α, β)
4: qm−1 = Im−1

m Amx; rm−1 = Im−1
m Mmx

5: for i = 1, . . . , γ do
6: c = RQMG_STEP(Am−1,Mm−1,m− 1, α, β,qm−1, rm−1, ν1, ν2, γ)
7: x = x + Imm−1c
8: end for
9: x = SMOOTH_FINE(Am,Mm,x, ν2, α, β)

10: end while
11: return xl

Algorithm 5 RQMG_STEP(Al,Ml, l, α, β,ql, rl, ν1, ν2, γ) Rayleigh Quotient Multigrid
Step
Input: System matrices Al,Ml; level l; dynamic variables α, β,ql, rl;

number of pre and postsmoothing steps ν1, ν2; cycle parameter γ
Output: Correction on current level x

1: x = 0
2: for i = 1, . . . , ν1 do
3: c = SMOOTH_STEP(Al,Ml, l, α, β,ql, rl)
4: ql = ql + Al · c; rl = rl + Ml · c
5: x = x + c
6: end for
7: if l 6= 1 then
8: ql−1 = Il−1

l ql; rl−1 = Il−1
l rl

9: for g = 1, . . . , γ do
10: c = RQMG_STEP(Al−1,Ml−1, l − 1, α, β,ql−1, rl−1, ν1, ν2, γ)
11: ql = ql + Al · Ill−1c; rl = rl + Ml · Ill−1c
12: x = x + Ill−1c
13: end for
14: for i = 1, . . . , ν2 do
15: c = SMOOTH_STEP(Al,Ml, l, α, β,ql, rl)
16: ql = ql + Al · c; rl = rl + Ml · c
17: x = x + c
18: end for
19: end if
20: return x

14

4.2 Intergrid Transfers

4.2 Intergrid Transfers

An important aspect of an optimal implementation of the RQMG algorithm is the
fact that the computation of corrections on a certain level should only depend on
quantities of that level, i.e. one should not have to use the fine-grid matrices Am and
Mm on each level. This requires a reformulation of the computation of the quantities
xT0 AmIml and xT0 MmIml , mentioned in Section 3.5.1, which involve computations
with fine-grid quantities on every level.

Fine to Coarse First consider the transfer from fine to coarse grids. Given the
quantity xT0 AmIml and the correction cl on level l due to the presmoothing step, we
seek an expression for xT0 AmIml−1 on level l−1. The subscript 0 in the expressions (x0)
signifies the value at the beginning of the smoothing iteration, before any correction
to x0 is computed. After presmoothing on level l, resulting in the correction cl, we
have

xTAmIml = (x0 + Iml cl)TAmIml = xT0 AmIml + cTl IlmAmIml︸ ︷︷ ︸
Al

,

which, combined with Iml−1 = Iml · Ill−1, yields

xT0 AmIml−1 = (xT0 AmIml + cTl Al) · Ill−1.

In order to simplify the notation, the quantity xT0 AmIml will be referred to as qTl
and xT0 MmIml as rTl . Since the derivation with the matrix M is identical, this yields
the following intergrid updates:

ql−1 = Il−1
l (ql + Alcl)

rl−1 = Il−1
l (rl + Mlcl),

which only involve level l quantities. These can be seen in Algorithm 5 on line 8,
where the presmoothing corrections cl were already applied on line 4.

Coarse to Fine The second type of transfer is needed when coarse-grid corrections
are propagated upwards to finer grids. The quantities xTAmIml and xTMmIml must
be updated in order to incorporate the changes made to x during the coarse-grid
operations. Let xb be the value of x before the coarse-grid correction operation on
level l. We must add to this the coarse-grid corrections, as represented on the current
level l, in order to determine the correct value for xTAIml before the postsmoothing
process. This yields

xTAIml = (xb + Iml−1cl−1 + Iml−2cl−2 + . . .)TAIml ,

15

4 RAYLEIGH QUOTIENT MULTIGRID

where ck, k < l represents the changes due to smoothing on a coarser level k. By
defining c̃l := cl + Ill−1c̃l−1 on each level, the expression simplifies to

xTAIml = (xb + Iml−1c̃l−1)TAIml = xTb AIml + (Ill−1c̃l−1)T IlmAIml︸ ︷︷ ︸
Al

,

which, together with the notation adopted above and the fact that xTb AIml is already
known, yields the updates

ql = ql + AlIll−1c̃l−1

rl = rl + MlIll−1c̃l−1.

This is precisely what is done on line 11 of Algorithm 5. If multiple coarse-grid
corrections are desired (for example in the case of a W-cycle), they must of course
all be included in the update, which is why it is done inside of the loop over γ.

4.3 Multiple Eigenvectors

Multiple eigenvectors can be computed with a subspace iteration. The Rayleigh
quotient is minimized for k eigenvector approximations independently as before, with
an orthogonalization procedure being executed somewhere in the iteration. This
orthogonalization is usually executed on the finest level, for example in Algorithm
4 after the coarse-grid correction is applied on line 7.

However, depending on the cycle parameter γ (particularly for γ > 1), this orthog-
onalization is not executed frequently enough to keep the eigenvectors sufficiently
separated. Therefore, one must have the possibility of orthogonalizing on coarser
grids as well, which involves forming the linear combinations of all basis functions
as represented on the finest level. This leads to a destruction of the optimality of
the implementation due to the fact that one must perform O(n) operations on up
to m ∝ log(n) coarse levels. For practical applications and γ = 1 (V-cycle) this
problem is avoided.

In order to numerically observe this phenomenon, a suboptimal implementation was
created which allows orthogonalization (along with a Ritz projection as discussed in
Section 3.6) to be done selectively on a specified level. For details, see Section 5.5.2.

4.4 Multigrid Cycles

In Algorithm 5, the parameter γ denotes the number of coarse-grid corrections
applied on each level and is known as the “cycle parameter”. The two most common

16

4.4 Multigrid Cycles

cycles, the V-cycle and the W-cycle, as well as the full multigrid cycle and the nested
iteration technique are now quickly explained.

V-Cycle The V-cycle only involves computing one recursive coarse-grid correction.
The diagram of this procedure (see Figure 1) resembles a V, which explains the
origin of the name. To obtain this cycle, the cycle parameter γ is set to 1. The
V-cycle is more suited to compute multiple eigenvalues, as demonstrated in Section
5.5.2.

W-Cycle The W-cycle applies two coarse-grid corrections on each level. In Algo-
rithm 5, setting the parameter γ to 2 results in a W-cycle. Due to the increased
number of coarse-grid operations, the orthogonalization procedure (needed when
computing k > 1 eigenvectors) must in some cases be applied on coarser grids to
ensure continued separation of the eigenvector approximations. The W-cycle has a
better rate of convergence than the V-cycle, which is expected since more work is
done per iteration. In Section 5.6.1, this is observed numerically.

Nested Iteration Instead of starting with a random initial guess on the finest
grid, a better initial guess can be computed by starting with a random guess on
the coarsest grid and working one’s way up to the finest grid by interpolating and
smoothing. This is called the nested iteration scheme and is formulated in Algorithm
6. An implementation of this method can be found in Section 4.6.4 and an example
of its efficacy in Section 5.7. [Saad 2003, p. 424]

Algorithm 6 NESTED(A,M) Nested Iteration
Input: System matrices on all levels Al,Ml ∈ Rnl×nl , Interpolation operators Iji
Output: Good initial guess on fine grid.

1: x = RAND(n1)
2: q1 = A1x; r1 = M1x
3: c = SMOOTH_STEP(A1,M1, 1, α, β,q1, r1)
4: x = x + c
5: for l = 2, . . . ,m− 1 do
6: x = Ill−1x
7: ql = Alx; rl = Mlx
8: c = SMOOTH_STEP(Al,Ml, l, α, β,ql, rl)
9: x = x + c

10: end for
11: x = SMOOTH_FINE(Am,Mm,x, 1)
12: return x

17

4 RAYLEIGH QUOTIENT MULTIGRID

Figure 1: Diagram of a V-cycle (left) and a W-cycle (right). The finest level is
located at the top, connected to coarser levels with a line symbolizing
intergrid transfer operations.

Figure 2: Diagram of a nested iteration. After the finest (top) level is reached,
any multigrid cycle can be applied – a V-cycle is shown as an example.
An important distinction is the use of the intergrid transfer operators as
interpolations of a coarse-grid coefficient vector instead of a coarse-grid
correction. This operation is symbolized by the double lines.

Figure 3: Full multigrid cycle (FMG). Once a level is reached for the first time, a
V-cycle is executed. The double lines represent interpolation of a coarse
grid coefficient vector to a finer grid, single lines represent interpolation of
corrections.

18

4.5 Data Structures

Full Multigrid The full multigrid cycle combines the idea of deducing a good initial
guess from the coarse-grid approximations with a multigrid V-cycle. Instead of
computing an initial guess on the finest grid by just smoothing as in the nested
iteration scheme, V-cycles are performed instead. This is done until the finest level
is reached. Typically, only one FMG cycle is needed to obtain a good approximation
to the solution. This is verified in Section 5.7. [Saad 2003, p. 424 – 430]

4.5 Data Structures

The data structures used for this implementation are based on the MG_DATA struct
used in the LehrFEM implementation of geometric multigrid. In order to avoid con-
fusion, the MATLAB structure used in this project will be referred to as RQMG_DATA .

The following description of the RQMG_DATA structure is an extension of the original
LehrFEM documentation found in the files mg_stima.m, mg_error.m, mg_mesh.m and
mg_smooth.m. The data structure RQMG_DATA is a 1×LVL cell array of structures where
LVL is the number of levels. Each structure contains the fields listed in Table 1,
which will be explained in detail in the following sections.

The initialization of RQMG_DATA is done in five steps by the following functions:

1. rqmg_mesh.m Mesh refinement
2. rqmg_stima.m Calculate stiffness matrix for each level
3. rqmg_mass.m Calculate mass matrix for each level
4. rqmg_smooth.m Set smoother type and properties (ν1, ν2, γ)
5. rqmg_error.m Specify error functionals

4.5.1 Mesh Refinement

The function rqmg_mesh generates a sequence of nested meshes for the multigrid
iteration. Along with the mandatory argument RQMG_DATA , it accepts the parameters
listed in Table 2. The most important are mesh, the LehrFEM mesh data structure,
ref, a 1× 2 vector specifying the number of refinements for the coarsest and finest
grids, and k, the number of eigenvectors to compute.

If, for example, a circular domain is to be discretized, one must supply rqmg_mesh

with a signed distance function in order to be able to project new boundary points
onto the actual boundary of the domain. To this end, rqmg_mesh accepts the param-
eter dist_func, which specifies a signed distance function, and dist_args, which is
a cell array of arguments to dist_func.

19

4 RAYLEIGH QUOTIENT MULTIGRID

Table 1: Fields of RQMG_DATA Structure
mesh LehrFEM mesh data structure
dofs Logical array specifying the non-Dirichlet-boundary degrees of

freedom
n.all Total number of degrees of freedom
n.free Number of non-boundary degrees of freedom
P Prolongation matrix from level lvl-1 to level lvl, for functions

that vanish on the Dirichlet boundary. Only defined for lvl>1
P_full Prolongation matrix for all degrees of freedom. Only defined

for lvl>1
P_all Cumulative prolongation matrix from level lvl-1 to the finest

level. Only defined for lvl>1
A Stiffness matrix
M Mass matrix
cyc Number of coarse-grid corrections γ
pre Number of presmoothing steps ν1 (see Section 4.5.3)
post Number of postsmoothing steps ν2 (see Section 4.5.3)
error Structure containing error functional information
error_ctrl Name of error functional to use to control the behavior of the

RQMG iteration
error_rel Flag for relative errors. True means relative errors will be used

Table 2: Parameters of rqmg_mesh
mesh LehrFEM mesh data structure [default: unit square divided

into two triangles]
ref 1×2 vector specifying the number of refinements for the coars-

est and finest grids, respectively
full Boolean specifying whether or not to add full prolongation

matrix. If false, only P(dofs) is stored [default: false]
all Boolean specifying whether or not to add cumulative prolon-

gation matrices (Im`) [default: false]
k Number of eigenvectors to compute [default: 1]
dist_func Signed distance function to use for refinements
dist_args Arguments to signed distance function (see dist_func)

20

4.5 Data Structures

4.5.2 Mass and Stiffness Matrix Computation

The assembly of mass and stiffness matrices is done in the functions rqmg_mass

and rqmg_stima. They accept the structure RQMG_DATA and various other (optional)
parameters which are explained in detail in the Matlab documentation.

4.5.3 Smoothing Parameters

The function rqmg_smooth initializes parameters related to the smoother. rqmg_smooth
accepts the parameter m, which is either a 1× 2 vector containing the number of pre
and postsmoothing steps or an integer if they are the same, and the parameter cyc,
which corresponds to the cycle parameter γ.

4.5.4 Error Functionals

The structure error contains information on the error functionals that can be com-
puted. The convention, which was adopted from the existing geometric multigrid
implementation, is that the structure error contains fields named after the error
functionals. The values of these fields are function handles which take the arguments
x, x0, A and M in that order. Absolute (exact) errors are computed by functionals
with field names ending in _exact while those of relative error functionals end in
_iter.

Among the error functionals already implemented were standard error norms used
in finite element computations. For the application of iteratively computing eigen-
vectors, however, there are much more well-suited error functionals. These include
the deviation of the Rayleigh quotients from the exact eigenvalues as well as the
angle between the current approximation of the invariant subspace, i.e. span(xi),
and the exact subspace.

Rayleigh quotient Since the RQMG algorithm minimizes the Rayleigh quotient,
it is most natural to monitor its convergence to the exact eigenvalue. This “exact”
version of the error functional can be written as

ε
(k)
i,exact =

∣∣∣RQ(x(k)
i)− λi

∣∣∣ ,
where k is the iteration index and i the index of the eigenvector. A drawback of this
error functional is the fact that it requires the computation of the desired eigenvalues
on the finest mesh. Therefore, a relative version makes sense, measuring the change
in the Rayleigh quotient due to one iteration:

ε
(k)
i,iter =

∣∣∣RQ(x(k)
i)−RQ(x(k−1)

i)
∣∣∣ .

21

4 RAYLEIGH QUOTIENT MULTIGRID

Since this functional yields one scalar value per desired eigenvector, the maximum
over all approximations must be taken to obtain a scalar value.

Angle between subspaces A second important convergence indicator is the angle
between the current subspace and the exact invariant subspace [Saad 2010, p.99].
This angle can be easily computed using an SVD-based algorithm implemented
in the built-in Matlab function subspace(U,V), which accepts matrices U and V
containing a basis of the respective subspace in their columns and returns the angle
between them in radians. Both exact and iterative versions of this error functional
were implemented. For details, see the implementation in rqmg_error.m.

4.6 Implementation Details

The implementation of the Rayleigh quotient multigrid algorithm was based on an
existing geometric multigrid implementation in the LehrFEM framework. Due to
the very different nature of the problem, many changes were necessary to achieve a
well-functioning code. First of all, the program should be able to compute multiple
eigenvalues. The unknown vectors are therefore stored in the columns of an nm × k
matrix, where nm is the number of degrees of freedom on the finest mesh and k is
the number of eigenvectors to be computed.

4.6.1 Dynamically Updated Quantities

In Section 3.5.1 and Section 4.2, various dynamic quantities and relations between
them were derived. In order to keep track of these in a sensible way, even for multiple
iterates and arbitrary cycles, a data structure called vars was created. This allows
easy management of all dynamic quantities, without the need to pass a large number
of arguments to each function.

The vars data structure consists of an m× k cell array, each element of which is a
struct containing the fields listed in Table 3.

Table 3: Fields of each element of vars
xAP Corresponds to ql = xTAIml
xMP Corresponds to rl = xTMIml
xAx Corresponds to α = xTAx (only stored on finest level)
xMx Corresponds to β = xTMx (only stored on finest level)

22

4.6 Implementation Details

4.6.2 Coordinate Relaxation

The smoother used in this implementation employs coordinate relaxation as ex-
plained in Section 3.5 and detailed in Algorithm 3. Of course, the optimizations
detailed in Section 3.5.1 were applied.

The following listing shows the smoother routine for the finest level. In this case,
the optimization for xTApi from Section 3.5.1 does not improve the speed, as an
additional vector of size n would be needed to store the values for δ?i . It is preferred
to update x in situ and compute xTApi as a scalar product of x with the i-th
column of A, which requires O(const) operations due to the sparsity of A.

The full implementation for an arbitrary level can be found in rqmg_step.m

Listing 1: Optimized Smoother for Finest Level
1 function [x,vars] = smooth_fine(rqmg_data,x,vars)

2 %SMOOTH_FINE Coordinate relaxation optimized for finest level

3

4 % get dynamic variables (potentially faster for some Matlab versions)

5 A = rqmg_data{end}.A; M = rqmg_data{end}.M;

6 Adiag = rqmg_data{end}.Adiag; xAx = vars{end}.xAx;

7 Mdiag = rqmg_data{end}.Mdiag; xMx = vars{end}.xMx;

8

9 n = rqmg_data{end}.n.free;

10 for p = 1:n

11 pAp = Adiag(p); pMp = Mdiag(p);

12 xAp = x’*A(:,p); xMp = x’*M(:,p);

13

14 t1 = pMp*xAp - pAp*xMp;

15 t2 = xMx*pAp - xAx*pMp;

16 t3 = xAx*xMp - xMx*xAp;

17 delta = 2*t3 / (t2 + sqrt(t2*t2-4*t1*t3));

18

19 % update x

20 x(p) = x(p) + delta;

21 % update dynamic variables

22 xAx = xAx + 2*delta*xAp + delta*delta*pAp;

23 xMx = xMx + 2*delta*xMp + delta*delta*pMp;

24 end

25

26 % store dynamic variables for next relaxation step

27 vars{end}.xAx = xAx;

28 vars{end}.xMx = xMx;

29

30 end

23

4 RAYLEIGH QUOTIENT MULTIGRID

4.6.3 Orthogonalization and Ritz Projection

In order to speed up convergence, one can use a Ritz projection to search for better
approximations in the space spanned by the current iterates. This is done after
orthogonalizing the iterates, which is accomplished using an economical QR decom-
position. Listing 2 summarizes the main steps of this procedure in Matlab code.

Listing 2: Orthogonalization and Ritz Projection

1 function x = ortho(x,A,M)

2 [x,dummy] = qr(x,0);

3 AA = x’*A*x; MM = x’*M*x;

4 [U,D] = eig(full(AA),full(MM)); % solve eigenvalue problem

5 [ev,ind] = sort(abs(diag(D)));

6 x = x*U(:,ind); % recover eigenvectors

7 end

Listing 3: Implementation of Nested Iteration Scheme

1 function [x] = rqmg_nested(rqmg_data,tol)

2 %RQMG_NESTED Nested iteration for RQMG

3 LVL = size(rqmg_data,2);

4 x = rand(rqmg_data{1}.n.free, 1);

5 vars = cell(LVL,1);

6 vars{1}.xAP = x’*rqmg_data{1}.A; % q_1

7 vars{1}.xMP = x’*rqmg_data{1}.M; % r_1

8 vars{end}.xAx = x’*rqmg_data{1}.A*x; % alpha

9 vars{end}.xMx = x’*rqmg_data{1}.M*x; % beta

10 [c,vars] = smooth_step(rqmg_data,1,vars);

11 x = x + c; % correction on coarse grid

12 x = rqmg_data{2}.P*x; % interpolation!

13 for l=2:LVL-1

14 vars{l}.xAP = x’*rqmg_data{l}.A; % q_l

15 vars{l}.xMP = x’*rqmg_data{l}.M; % r_l

16 [c,vars] = smooth_step(rqmg_data,l,vars);

17 x = x + c;

18 x = rqmg_data{l+1}.P*x; % interpolation!

19 end

20 x = rqmg(x,rqmg_data,tol,1); % one complete V-cycle

21 end

24

4.7 Complexity

4.6.4 Nested Iteration and FMG

Due to the modularity of multigrid implementations, it is very easy to combine vari-
ous cycles. This allows for implementations of many schemes (e.g. the full multigrid
cycle or the nested iteration scheme) based only on the procedures rqmg_step, rqmg
and the smoother smooth_step. Listing 3 shows an example of the nested iteration
scheme. The implementation for the full multigrid iteration is exactly the same, the
only difference being a call to rqmg_step instead of smooth_step on line 16.

4.7 Complexity

4.7.1 Work on One Level

Before determining the complexity of the entire RQMG algorithm, we need an idea
of how much work is executed by each component. As discussed in Section 3.5.1,
the smoothing iteration requires O(n) operations per sweep over all coordinates on
a level with n degrees of freedom.

On each level, the smoother is called ν1 times before and ν2 times after the coarse-
grid correction, resulting in about (ν1+ν2)5n` operations. Updating the variables q`
and r` requires approximately 4n` operations (two updates before and two after the
coarse-grid correction). Assuming that the application of the correction requires n`
operations, this gives a total of approximately 5(1 + ν1 + ν2)n` operations, resulting
in the expression

W` = Cn` (18)

for the work on level `, where C is independent of n`.

4.7.2 Total RQMG Complexity

In order to determine the computational cost of the RQMG algorithm, we are in-
terested in determining the number of operations required to reduce the maximal
error in the Rayleigh quotient by a given factor τ :

ε(k) ≤ τε(0) , ε(k) :=
∣∣∣RQ(x(k))− λi

∣∣∣ ,
where ε(k) is the error of the eigenvector after the k–th iteration. We are currently
only interested in analyzing the complexity of calculating one eigenvector.

By assuming that the sequence of meshes is obtained by regular refinement, the
number of vertices increases by a factor of approximately 4 per refinement step in

25

4 RAYLEIGH QUOTIENT MULTIGRID

two dimensions, where small deviations from this factor are caused by negligible
boundary effects. In terms of the number of degrees of freedom on the finest mesh,
nm, the corresponding quantity on level ` is given by

n` = nm
4m−` , 1 ≤ ` ≤ m. (19)

In order to estimate the amount of work done in total, Wtot, it is helpful to split up
the total work on a level `, denoted by Wtot

` , into the part that is done only on level
` and a recursive part, corresponding to the total work done on level ` − 1. This
results in the recursion

Wtot
` = W` + γWtot

`−1 Wtot
2 = W2 + W1,

where W1 is the work done on the coarsest level and γ is the cycle parameter which
describes the number of coarse-grid corrections. Expansion of this recursion for the
term Wtot

m yields

Wtot
m = Wm + γ(Wm−1 + γ(Wm−2 + γ(. . .))) =

m∑
`=2

γm−`W` + γm−2W1.

Using (18) for the terms W`, and (19) as an expression for n`, we obtain

Wtot
m

(18)=
m∑
`=2

γm−`Cn` + γm−2Cn1
(19)= Cnm

m∑
`=2

(
γ

4

)m−`
+
(
γ

4

)m−2
4Cnm,

which, for γ < 4, results in

Wtot
m = Cnm

(
1− (γ4)m−1

1− γ
4

)
+
(
γ

4

)m−2
4Cnm

≤ Cnm

(
1

1− γ
4

)
,

showing that one cycle of the RQMG algorithm requires O(nm) operations for γ ≤ 3.

Assuming that the convergence of the RQMG algorithm is independent of h, we only
require a constant number of such RQMG cycles (h-independence of the RQMG algo-
rithm is verified empirically in Section 5.4). This assumption, along with the above
argumentation, results in the conclusion that the RQMG algorithm requires only
O(n) operations to reduce the error by a constant factor. [Trottenberg et al. 2001,
p. 50]

26

5 Numerical Experiments

5.1 Domains

In the following, various experimental results are presented. The model problem (1)
was solved on three domains: a square domain Ω� := [−1, 1]2, an L-shaped domain
ΩL := [−1, 1]2 \

(
[0, 1]× [−1, 0]

)
and a circular domain Ω◦ := {x ∈ R2 : |x| ≤ r}.

(a) n1 = 0 (b) n2 = 1 (c) n3 = 9 (d) n4 = 49

Figure 4: MeshesM�
i of a square domain Ω� with various levels of refinement.

(a) n1 = 0 (b) n2 = 3 (c) n3 = 21 (d) n4 = 105

Figure 5: MeshesML
i of an L-shaped domain ΩL with various levels of refinement.

(a) n1 = 1 (b) n2 = 9 (c) n3 = 49 (d) n4 = 225

Figure 6: MeshesM◦i of a circular domain Ω◦ with various levels of refinement.

27

5 NUMERICAL EXPERIMENTS

5.2 Exact Solutions

The first four eigenfunctions for each of the domains mentioned above are shown in
Figures 7 to 9 with their corresponding eigenvalues.

(a) λ1 ≈ 4.9467 (b) λ2 ≈ 12.3881 (c) λ2 ≈ 12.4168 (d) λ3 ≈ 19.9290

Figure 7: Solutions to the four smallest eigenvalues on Ω�. The values for λ2 are
not identical due to an asymmetry in the discretization, see Figure 4.

(a) λ1 ≈ 9.6825 (b) λ2 ≈ 15.2268 (c) λ3 ≈ 19.7974 (d) λ4 ≈ 29.6671

Figure 8: Solutions to the four smallest eigenvalues on ΩL.

(a) λ1 ≈ 4.9411 (b) λ2 ≈ 12.5837 (c) λ2 ≈ 12.5837 (d) λ3 ≈ 22.6766

Figure 9: Solutions to the four smallest eigenvalues on Ω◦.

28

5.3 Asymptotic Complexity

5.3 Asymptotic Complexity

As analyzed in Section 4.7, the time complexity of the RQMG algorithm should scale
like O(n). Figures 10 and 11 show a numerical determination of the complexity
with respect to the number of degrees of freedom n and the meshwidth h. This
was done by solving the given model problem for the eigenvector to the smallest
eigenvalue using successively finer discretizations. In two dimensions, n ∝ h−2,
which is consistent with the observed complexity in Figure 11.

102 103 104 105 106

Degrees of Freedom nm

10-3

10-2

10-1

100

101

102

T
im

e
 p

e
r

C
y
cl

e
 [

se
c]

p=1.006

Regression
Measurements

Figure 10: Measurement of the asymptotic complexity of the RQMG algorithm with
respect to the number of degrees of freedom on the finest mesh, nm.

5.4 h-Independence of Convergence

An important property of multigrid algorithms is the independence of convergence
on the finest meshwidth h. In Section 4.7 this property was used to derive the O(n)
total complexity of the RQMG algorithm. This property is numerically verified in
figures 12 to 14 in order to justify the assumption previously made.

As a contrast, Figure 15 shows the strong dependence of normal Rayleigh quotient
minimization (without coarse-grid corrections) on the meshwidth.

29

5 NUMERICAL EXPERIMENTS

10-3 10-2 10-1 100

Meshwidth hm

10-3

10-2

10-1

100

101

102
T
im

e
 p

e
r

C
y
cl

e
 [

se
c]

p=−2.053

Regression
Measurements

Figure 11: Measurement of the asymptotic complexity of the RQMG algorithm with
respect to the meshwidth of the finest mesh, hm.

1 2 3 4 5 6 7 8 9 10
Iteration k

10-12

10-10

10-8

10-6

10-4

10-2

100

|R
Q

(x
(k

)

h
)−
λ
|

h= 0.354

h= 0.177

h= 0.088

h= 0.044

Figure 12: RQMG convergence history using discretizations of Ω� with varying fine
meshwidth. The coarsest meshwidth was the same for all trials.

30

5.4 h-Independence of Convergence

1 2 3 4 5 6 7 8 9 10
Iteration k

10-6

10-5

10-4

10-3

10-2

10-1

100

|R
Q

(x
(k

)

h
)−
λ
|

h= 0.250

h= 0.125

h= 0.062

h= 0.031

Figure 13: RQMG convergence history using discretizations of ΩL with varying fine
meshwidth. The coarsest meshwidth was the same for all trials.

1 2 3 4 5 6 7 8 9 10
Iteration k

10-5

10-4

10-3

10-2

10-1

100

101

|R
Q

(x
(k

)

h
)−
λ
|

h= 0.168

h= 0.085

h= 0.043

h= 0.021

Figure 14: RQMG convergence history using discretizations of Ω◦ with varying fine
meshwidth. The coarsest meshwidth was the same for all trials.

31

5 NUMERICAL EXPERIMENTS

0 20 40 60 80 100 120 140

Iteration k

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

|R
Q

(x
(k

)

h
)−
λ
|

h= 0.354

h= 0.177

Figure 15: Convergence history using Rayleigh quotient minimization without
coarse-grid corrections. Convergence to machine precision is observed
after about 40 iterations for h = 0.354 while taking 120 iterations for
h = 0.177. One eigenvector was computed for the domain Ω�.

5.5 Multiple Eigenvectors

Compared to the case of computing only the eigenvector to the smallest eigenvalue,
computing multiple eigenvectors introduces many potential pitfalls. A few of them
are now illustrated.

5.5.1 Size of Search Space

Given a domain that leads to the existence of one or more degenerate eigenvalues λ,
one must ensure that the search space (i.e. the number of iterates) is large enough
to contain the entire eigenspace Eλ .

The square domain Ω� can be used to illustrate this point, since the second-smallest
analytical eigenvalue is doubly degenerate. By choosing the search space smaller
than required, one observes that the solution to the eigenvalue λ is a linear combi-
nation of the eigenvectors in Eλ (see Figure 16).

32

5.5 Multiple Eigenvectors

While the solution, as a linear combination of eigenvectors to the same eigenvalue,
is of course an eigenvector, an orthonormal basis of the eigenspace is usually sought.
This desire can only be fulfilled by choosing the search space large enough to contain
the entire eigenspace Eλ.

Additionally, in this case the discretization introduces a slight separation of the
eigenvalues of the discrete system. Therefore, the eigenvalues are not exactly iden-
tical and one cannot settle for a linear combination of the two eigenvectors.

(a) RQ(x1) ≈ 4.947 (b) RQ(x2) ≈ 12.400

Figure 16: Solutions to the two smallest eigenvalues on Ω�. Due to the analytical
degeneracy of λ2, solution (b) converges to a linear combination of the
two eigenvectors in Eλ2 (cf. Figures 7(b) and 7(c)).

(a) RQ(x1) ≈ 4.947 (b) RQ(x2) ≈ 12.388 (c) RQ(x3) ≈ 12.417

Figure 17: Solutions to the three smallest eigenvalues on Ω�, obtained using a V-
cycle. The approximations (b) and (c) converge to the correct discrete
eigenvectors if the search space is large enough (cf. Figures 7, 16).

5.5.2 Deficiencies of W-Cycle

The W-cycle suffers from a deficiency resulting from the fact that in an optimal
implementation one can only orthogonalize on the finest level. A result of this is
that when using a W-cycle, the iterates tend to loose orthogonality if the number of
levels is sufficiently large, as the finest grid is not visited often enough. This can be
seen in Figure 18.

33

5 NUMERICAL EXPERIMENTS

Figure 19 shows the convergence history of a W-cycle in which orthogonalization
is done on all levels except the coarsest. This introduces sufficient orthogonal-
ity between the iterates, but relies on a suboptimal implementation of complexity
O(n logn). As can be seen in Figure 17, the V-cycle does not suffer from this
problem. It is therefore much more suited for computing multiple solutions to the
eigenvalue problem in O(n) time than the W-cycle.

(a) RQ(x1) ≈ 4.947 (b) RQ(x2) ≈ 12.904 (c) RQ(x3) ≈ 71.766

Figure 18: Solutions to the three smallest eigenvalues on Ω�, obtained using a W-
cycle. Both (b) and (c) are not correct, which can be blamed on insuffi-
cient orthogonality of the iterates during the W-cycle.

1 2 3 4 5 6

Iteration k

10-12

10-10

10-8

10-6

10-4

10-2

100

|R
Q

(x
(k

)
i

)−
λ
i|

x1

x2

x3

Figure 19: Convergence history of a W-cycle used to solve the eigenvalue problem
on Ω�. Convergence can be clearly seen, thanks to orthogonalization on
the three finest levels (out of four levels in total).

34

5.6 Rate of Convergence

5.6 Rate of Convergence

The rate of convergence of the RQMG algorithm was measured in various error
functionals for a few different cycles and domains. Figures 20 to 23 show various
combinations of cycles and domains and what convergence rates were measured in
each situation.

In Section 5.6.2, multiple eigenvectors are computed and the rate of convergence
determined for different search space sizes.

5.6.1 V- and W-Cycles

As one expects, the W-cycle performs much better, especially for the domains ΩL and
Ω◦. The angle between the space spanned by the iterates xj and the exact invariant
subspace Uk, denoted by ∠(Xi,U)1 in figures 20 and 22, converges more slowly than
the modulus of the difference of the Rayleigh quotient and the correct eigenvalue.
The two rates seem to be roughly related by the proportionality rRQ ∝ (r∠)2.

1 2 3 4 5 6 7

Iteration k

10-5

10-4

10-3

10-2

10-1

100

(X
i,
U

)

V-Cycle
Square Domain, r≈0.294

L-Shaped Domain, r≈0.601

Disk Domain, r≈0.545

Figure 20: Convergence of the angle between the iterates and the exact eigenvectors
using a V-cycle to solve the eigenvalue problem on various domains.

1The index i in the quantity ∠(Xi,U) denotes the domain type.

35

5 NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7

Iteration k

10-8

10-6

10-4

10-2

100

|R
Q

(x
(k

)
)−
λ
|

V-Cycle
Square Domain, r≈0.069

L-Shaped Domain, r≈0.285

Disk Domain, r≈0.224

Figure 21: Convergence of the Rayleigh quotient using a V-cycle to solve the eigen-
value problem on various domains.

1 2 3 4 5 6 7

Iteration k

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

(X
i,
U

)

W-Cycle
Square Domain, r≈0.100

L-Shaped Domain, r≈0.094

Disk Domain, r≈0.130

Figure 22: Convergence of the angle between the iterates and the exact eigenvectors
using a W-cycle to solve the eigenvalue problem on various domains.

36

5.6 Rate of Convergence

1 2 3 4 5 6 7

Iteration k

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|R
Q

(x
(k

)
)−
λ
|

W-Cycle
Square Domain, r≈0.010

L-Shaped Domain, r≈0.008

Disk Domain, r≈0.019

Figure 23: Convergence of the Rayleigh quotient using a W-cycle to solve the eigen-
value problem on various domains.

0 5 10 15 20

Iteration k
10-13

10-11

10-9

10-7

10-5

10-3

10-1

|R
Q

(x
(k

)
1

)−
λ

1
|

d=1, r≈0.462

d=2, r≈0.300

d=3, r≈0.085

Figure 24: Convergence of the Rayleigh quotient of the eigenvector to the smallest
eigenvalue using a V-cycle to solve the eigenvalue problem on ΩL for
various search space sizes. Here, d corresponds to the number of iterates.

37

5 NUMERICAL EXPERIMENTS

5.6.2 Multiple Eigenvectors

One possibility of increasing the rate of convergence of the iteration is to enlarge
the search space. Due to the Ritz projection executed after the orthogonalization
procedure, this can lead to a reduction in the number of iterations to achieve a given
accuracy on an eigenvector to one of the lower eigenvalues.

In Figure 24, the convergence of the eigenvector to the smallest eigenvalue is shown
for different sizes of the search space. The dimension of the search space, d, corre-
sponds to the number of eigenvector approximations used by RQMG. By computing
two eigenvectors more than required, the observed rate of convergence drops from
0.46 to 0.09, which corresponds to a factor of about 5.

5.7 Nested Iteration and FMG Cycle

Nested iteration provides a method of quickly determining a relatively good approx-
imation to be used as an initial value. Figure 25(a) shows the first eigenvector after
a trial run of the implementation in Section 4.6.4. Comparing with Figure 7, it can
be seen that the eigenvector is already a very good approximation to the solution.

Figure 26 shows timings of nested iteration, FMG and standard RQMG with a
random initial guess used to solve the model problem for one eigenvector up to a
tolerance of 10−5. It can be seen that nested iteration provides a slight improvement,
however FMG is clearly the winner. Of course, all three algorithms scale with O(n).

(a) RQ(x) ≈ 5.028 (b) RQ(x) ≈ 4.947

Figure 25: (a) Approximation obtained after one application of nested iteration on
the model problem. (b) Approximation obtained after one application of
Full Multigrid on the model problem (|RQ(x)− λ| ≈ 5 · 10−4).

38

5.7 Nested Iteration and FMG Cycle

101 102 103 104 105 106

Degrees of Freedom nm

10-3

10-2

10-1

100

101

102

T
o
ta

l
T
im

e
 [

se
c]

Random Initial Guess
Nested Iteration
Full Multigrid (FMG)

Figure 26: Timings of the nested iteration scheme, FMG (full multigrid), and the
standard V-cycle with a random initial guess. One eigenvector was com-
puted until the iterate x fulfilled |RQ(x)− λ| < 10−5.

39

6 CONCLUSION

6 Conclusion

In this thesis, the Rayleigh quotient multigrid algorithm was elucidated and an opti-
mal implementation constructed. The O(n) asymptotic complexity was analytically
derived and numerically verified, along with the h-independence of convergence, a
characteristic property of multigrid methods.

Some pitfalls of computing multiple eigenvector approximations were discussed and
numerically analyzed. This was aided by a suboptimal implementation of complexity
O(n logn), which allows more flexible manipulation of the iterates.

The execution time of finding a solution of the model problem to a certain precision
was measured for the standard V-cycle and more advanced cycles like the nested
iteration scheme and the full multigrid cycle, showing their superiority.

Possible improvements over the current implementation include the use of a more
efficient smoother, for example by choosing the search direction pk in (11) as the
negative gradient of the Rayleigh quotient, resulting in a steepest descent iteration.
Conjugate gradient approaches are also possible. [Friese 1998, p. 47]

40

References

References

[Arbenz & Kressner 2010] Peter Arbenz and Daniel Kressner. Lecture Notes on
Solving Large Scale Eigenvalue Problems. 2010. (Cited on pages 2, 3 and 8.)

[Braess 2007] Dietrich Braess. Finite Elemente. 2007. (Cited on pages 2 and 4.)

[Burtscher et al. 2009] Annegret Burtscher, Patrick Meury and Eivind Fonn.
LehrFEM - A 2D Finite Element Toolbox. 2009. (Cited on page 1.)

[Chan & Sharapov 1998] T. Chan and I. Sharapov. Subspace Correction Multilevel
Methods for Elliptic Eigenvalue Problems. 1998. (Cited on pages 6 and 7.)

[Friese 1998] T. Friese. Eine Mehrgitter-Methode Zur Lösung des Eigenwertproblems
der Komplexen Helmholtzgleichung. PhD thesis, 1998. (Cited on pages 2
and 40.)

[Golub & Van Loan 1996] Gene H. Golub and Charles F. Van Loan. Matrix Com-
putations. October 1996. (Cited on page 5.)

[Hiptmair et al. 2010] R. Hiptmair, C. Schwab, H. Harbrecht, V. Gradinaru and
A. Chernov. Lecture Notes: Numerical Methods for Partial Differential Equa-
tions. October 2010. (Cited on page 12.)

[Mandel & McCormick 1989] Jan Mandel and Stephen F. McCormick. A Multilevel
Variational Method for Au = λBu on Composite Grids. Journal of Compu-
tational Physics, vol. 80, no. 2, pages 442 – 452, 1989. (Cited on pages 9, 11
and 13.)

[Saad 2003] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2003. (Cited
on pages 17 and 19.)

[Saad 2010] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. 2010.
(Cited on page 22.)

[Trottenberg et al. 2001] U. Trottenberg, C. W. Oosterlee and A. Schuller. Multi-
grid. 2001. (Cited on page 26.)

41

	Introduction
	Elliptic Eigenvalue Problems
	Strong Formulation
	Variational Formulation
	Finite Element Galerkin Discretization
	Basis of Finite Element Space
	Properties of Galerkin Matrices

	Rayleigh Quotient Minimization
	Definition of Rayleigh Quotient
	Subspace Correction
	Line Search
	Analytical Solution

	Intergrid Transfer Operators
	Coordinate Relaxation
	Optimizations

	Ritz Projection

	Rayleigh Quotient Multigrid
	Algorithm
	Intergrid Transfers
	Multiple Eigenvectors
	Multigrid Cycles
	Data Structures
	Mesh Refinement
	Mass and Stiffness Matrix Computation
	Smoothing Parameters
	Error Functionals

	Implementation Details
	Dynamically Updated Quantities
	Coordinate Relaxation
	Orthogonalization and Ritz Projection
	Nested Iteration and FMG

	Complexity
	Work on One Level
	Total RQMG Complexity

	Numerical Experiments
	Domains
	Exact Solutions
	Asymptotic Complexity
	h-Independence of Convergence
	Multiple Eigenvectors
	Size of Search Space
	Deficiencies of W-Cycle

	Rate of Convergence
	V- and W-Cycles
	Multiple Eigenvectors

	Nested Iteration and FMG Cycle

	Conclusion

