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Abstract

In this thesis I present the implementation of the TipiFEM library, a framework
for the implementation of finite element solvers in Julia. At the time of writ-
ing the library supports linear and quadratic Lagrangian finite elements on two
dimensional domains discretized using triangles and quadrilaterals. Its design
however allows extension to three dimensional domains and different finite ele-
ments. The different building blocks of the finite element solver are explained.
This includes a simple yet general and efficient representation of computational
meshes. A topology construction algorithm for meshes with topological dimen-
sion two is developed that can easily be extended to meshes with topological
dimension three. Furthermore, datastructures for numerical integration and fi-
nite element spaces as well as computer representations of finite element bases
are developed. The assembly procedure of the Galerkin matrix and right hand
side vector is explained briefly. Then a second order elliptic boundary value
problem with inhomogeneous Dirichlet and Neumann boundary conditions is
solved on a hybrid mesh and its runtime is discussed. In the end the Julia pro-
gramming language is evaluated by pointing out its strengths and weaknesses.



Introduction

Finite element methods are a numerical technique for finding approximate solu-
tions to weak formulations of boundary value problems arising in various fields of
engineering. Typically the sought solution is the distribution of some field vari-
able like electrical charge, temperature or heat flux. Nowadays it has become a
key technology used for computational modeling and simulation in engineering.
A typical finite element software package consists of three modules

- Mesh generator (Input: CAD data, Output: Mesh file)
Discretizes the domain on which the problem is formulated into small
pieces.

- Finite element solver (Input: Parameters, Mesh file, Output: Degrees
of freedom)
Numerically solves the boundary value problem on the mesh and stores
the solution.

- Post-Processor / Visualizer (Input: Galerkin Solution)

In this thesis we will concentrate on the finite element solver. We will develop
the datastructures and algorithms required to solve a model problem general
enough to build the foundation of an efficient framework applicable to a wider
range of problems that can be solved using finite element methods. The model
problem will be a second order elliptic boundary value problem with inhomoge-
nous Dirichlet and Neumann boundary conditions posed on a two dimensional
domain. Furthermore, we will discuss the implementation of such a framework
in the Julia programming language and some aspects of Julia that played a role
during the design process. Lastly a brief performance evaluation is carried out.

1.1. TipiFEM

The framework developed as part of this thesis is TipiFEM. It is freely avail-
able at https://github.com/tehrengruber/TipiFEM and distributed un-
der the GNU Affero General Public License. TipiFEM is compatible with Julia
v0.6.


https://github.com/tehrengruber/TipiFEM

Design principles & goals At various time points in the development of a
software library design choices are being made that influence what a library is
good at and what not. To guide the developer in such choices a set of principles
and their relevance is very handy. In TipiFEM the following design principles,
in order of descending relevance, have been choosen:

1. Extendability
2. Performance
3. Explicitness
4. Readability

Considering the title of this thesis the ordering of the first two principles might
be surprising. However, it was decided that solving harder problems in a reason-
able amount of time is more important to the library than solving easy problems
in the shortest amount of time. A design goal of TipiFEM is to give mathe-
maticans and programmers a common ground to rapidly develop new methods
for the solution of boundary value problemtﬂ and while attributing performance
higher relevance then extendibility the archieved performance is pointless if one
can not implement complex problems for which extendibility is crucial because
there already exists a dozen of performant libraries for simple problems.

1.2. The Choice of a Progamming Language

The idea of generating efficient machine code from high-level, generic code is
probably as old as the first computers. It was then realized that writing ma-
chine code by hand is time comsuming and error prone. A major step towards
realization of this idea had been made with the development of FORTRAN, C
and C++, which remain the default choice for computationally intensive tasks.
Although these three languages have been extended steadily since their first
appereances in the mid 50s for FORTRAN, the early 70s for C and the early
80s for C++, it has to be recognized that today dynamic languages like MAT-
LAB or Python enjoy high popularity in the scientific community, used for both
research and teaching, due to their increased productivity, ability to closely re-
semble mathematical formulas and low language complexity. But since many of
these languages were not designed with the goal of high performance in mind
EI, computationally intensive tasks are often carried out by libraries written in
a static language, accessed by means of a foreign function interfaceﬂ Due to
this discrepancy in performance it is then often beneficial to write code in a
form that uses operations implemented in a static language. For arithmetic
operations this typically means rewriting for loops in terms of linear algebra

INote that TipiFEM is not there yet.

2Matlab for example was developed initially to give students an easy way to interact with LIN-
PACK and EISPACK

3A prominent example for such a library is NumPy http://www.numpy.org/



operations commonly referred to as vectorizationﬂ Finite element matrix as-
sembly however is naturally written in terms of a loop over mesh elements with
rather short loop bodies (in terms of runtime). Dynamic languages tend to be
slow in this regard, giving rise to the development of vectorized algorithms to
save the property of efficienty [I]. Julia is different in this regard as its for loops
can easily archieve the speed of equivalent loops in static languages like the ones
given before. While this is nothing particulary new in computer science, Julia
comes with a remarkable set of features that make it very attractive for the
efficient implementation of numerical algorithms: Its syntax can easily resemble
mathematical expressions with only minor differences in notation. Furthermore,
the basic syntax is easy to read especially for programmers that are familar with
Matlab. Most notably Julia also has features for metaprogramming, allowing
sophisticated code generation by means of macros operating at the level of ab-
stract syntax trees. Last but not least Julia has bindings to LAPACK and
SuiteSparse for linear algebra operations.

1.3. Motivation

During a university course about numerical methods for partial differential equa-
tions I worked with DUNEP| a modular toolbox for solving partial differential
equations, and BETIEL a framework with DUNE style interface, mainly con-
cerned with providing a toolbox for Galerkin boundary element methods. Both
libraries include tools for the implementation of finite element methods. This
was my first contact with finite element methods and therefore implementation
of first codes were done in a try and error fashion. During implementation I
observed that I spent only a fraction of time dealing with the implementation of
algorithms and was mostly waiting for compilation to finish and understanding
how the library works internally. This distribution of time was not because the
two frameworks were designed badly, but because of the programming workflow
in C+- intrinsic to most static languages. Every fix in my code, no matter how
small, required an additional step of compilation, significantly slowing down
productivity. Furthermore, derivations on paper differed significantly from the
implementation in the code, requiring frequent checks to verify that the imple-
mentation matched the derivation.

4The Matlab manual explicitly names performance as reason for vectorization see https://math-
works.com /help/matlab/matlab prog/vectorization.html

Shttp://dune-project.org/

Shttp://www.sam.math.ethz.ch/betl/
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Mathematical concepts

A rigourous discussion of finite element methods is far beyond the scope of this
thesis. In this section only a set of definitions is given to introduce the reader
to the notation, conventions, and theory used later on.

2.1. Cell

Definition 2.1 (Polytope) A (convez) d-polytope is the convex hull of a finite
set of points in RY.

Definition 2.2 (Facet) The facets of a d-polytope P are the polytope elements
of P with dimension d — 1.

Definition 2.3 (Face) The faces of a d-polytope P are the polytope elements
of P with dimension less than d.

Definition 2.4 (Skeleton) The skeleton of a d-polytope P is the set of all
polytope elements of P with dimension less or equal to d. Put differently the
skeleton of P is P itself and its faces.

Definition 2.5 (Cell) A closed (resp. open) cell K C R™ is a bounded closed
(resp. open) set with nonempty interior and piecewise smooth boundary. There-
fore a polytope is a cell and its interior is an open cell.

Definition 2.6 (Reference triangle) The reference triangle is the triangle
with vertices in R?

1/)\1 = (070)7 1’)\2 = (170)7 ﬁ3 = (07 ]-)

Definition 2.7 (Reference square) The reference square is the square with
vertices in R?

ﬁl = (070)1 ﬁQ = (170)7 ﬁ?) = (1a 1)7 134 = (01 1)

Definition 2.8 (Reference edge) The reference edge is the edge with end
points/vertices in R

p1=0, pp=1
Put differently the reference edge is the interval [0, 1].



(0, 1) (0, 1) (1, 1)

(0, 0) (1, 0) (0, 0) (1, 0) 0 1

(a) The reference triangle (b) The reference quadri- (¢) The reference edge

lateral

2.2. Mesh

In general the term mesh describes a subdivision of a bounded set Q@ C R” into
open cells of dimension less than or equal D. Here we stick to a more specific
definition of a mesh with topological dimension two.

Definition 2.9 (Mesh) We say that M =V UEUT is a mesh if the following
properties hold

1. T is a finite set of flat, bounded, open and non-degenerate triangles and
quadrangles, the mesh elements.

2. &, respectively V, is the set of all facets, respectively vertices, of elements

mn T.
3. Q is covered by M

4. ForTy,T; € T with i # j the intersection fﬂTj is either empty, a node,
or an edge of both T; and Tj.

Definition 2.10 (Incidency) We say that a cell is incident to another cell if
one cell is either a face to the other cell or if the intersection of the two cells is
a facet.

Definition 2.11 (Adjacency / Neighbourhood) We say that a cell is adja-
cent to another cell or is a neighbour to another cell if both cells share a common
facet.

2.3. Polynomials

Definition 2.12 (Multivariate polynomials) The space of univariate poly-
nomials of degree p € Z>°

Pp(R) ={z — Z car®, cq € R}

0<a<p



The space of 2-variate polynomials of degree p € Z=°

Pp(R?) = (w1, 72) € R? Z Cor,as 1 52, Cay o € R

a1,a2>0,
a1 +az<p

Definition 2.13 (Tensor product polynomials) The space of tensor prod-
uct polynomials of degree p € 721

Qp(R?) := {(x1,22) = p1(z1)pa(22), p1 € Pp(R), p2 € Pp(R)}

2.4. Finite Element

Definition 2.14 (Finite Element) A finite element is a triplet (K, P,X) such
that

- K is a cell
- P is a s-dimensional vector space of functions p : K — R where s € Z="

- Y = (01,09,...,05) is an ordered basis of the dual space to P. The
elements 01,03, ...,05 are called local degrees of freedom and their indices
are called local degree of freedom indices.

The elements by, ..., bs € P with 0;(b;) = d§;; are called local shape functions or
nodal basis.

Definition 2.15 (Internal degree of freedom) An internal degree of free-
dom is a degree of freedom that is associated with the interior of its finite
element.

Definition 2.16 (Boundary degree of freedom) A boundary degree of free-
dom is a degree of freedom that is not an internal degree of freedom.

Definition 2.17 (Lagrange element) A Langrange element is a finite ele-
ment (K, P,X) such that, given a set of points ai,...,as € K, the i-th de-
gree of freedom is defined as o; : P — R,p — p(a;). Then by definition
ai(bj) = bj(ai) = 0;5. The points a; are called local interpolation points and i is
the local interpolation node indez.

Note that for the specification of the nodal basis of a Lagrange element only
the interpolation points need to be specified. Therefore only the interpolation
nodes for different Lagrange elements are given later on.

Definition 2.18 (Associated cell) Given an interpolation node a € K the
cell associated with a is the open cell in the skeleton of K that contains a.
Since every degree of freedom of a Lagrange element is associated naturally to
an interpolation node, every interpolation node and then also every local shape
function is associated with a cell.

10



Definition 2.19 (Cell type constrained interpolation node index) Let
A ={ay,...,as} be an ordered set of interpolation nodes. If one removes all
interpolation nodes that are not associated to a cell of type [C]ﬂ one obtains a
new ordered set Ac. The cell type constrained interpolation node index of an
interpolation node a; is then the index of a; in Ac.

4 3 3
4 °1 2
1 1 2

Figure 2.2: Cell type constrained interpolation node indices of the Qs (K) ele-
ment

Definition 2.20 (P, element) AP,(K) element is a Lagrange element (K, P, ¥)
such that

- K is a simplex (e.g. a line segment or a triangle)

- P= PP(K)

We omit the general specification of the interpolation nodes of the P,(K) element
here and specify them only for K being either a triangle T or an edge E.

Definition 2.21 (Triangle element) The triangle element is o P,(K) ele-
ment where K is a triangle with vertices vq,vs,v3 € R2.

Its interpolation nodes are

-p=1:
a; =71, G2 =72, dasz="uvs
- p:2_-
a1 = V1, ag = V2, a3z = v3,
V1 + Vg Vg + U3 U3 + U1
ag = ——(— as = ——(— ag = ——(——
2 2 7 2
as as
ae as
a1 a2 a1 2 a2

(a) The Py element in 2D (b) The P; element in 2D

"This notation is inspired by the standard notation of equivalence classes. Later on we will just
specify the cell type by saying that C' is for example a triangle.
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Definition 2.22 (Edge element) The edge element is a P, (K) element where
K is an edge with endpoints vi,vs € R.

Its interpolation nodes are

_pzlj
a; = v, a2 =72
_p:2"
V1 + U2
2

Definition 2.23 (Q, element) The Q,(K) element is a Lagrange element
such that

a; = v, a2 = V2, az =

- K is parallelotop (e.g. square)

-P= QP(K)
Gy as Qa4 ar as
as e g Qg
ai a2 a1 as az

(a) The Py element in 2D (b) The P; element in 2D

2.5. Function Spaces

Definition 2.24 (Sobolev space H'(2)) The space of integrable functions
on  with square integrable gradient

H'(Q) = {v: Q — R integrable : / | gradv(x)|*de < oo}
Q

Definition 2.25 (Lagrangian finite element space) The space of p-th de-
gree Lagrangian finite element functions on M

SpM) :={veC’(Q):vyx € P(K) VKeT}
where P is the space of local shape functions of the finite element of K.

2.6. Variational Problem

Definition 2.26 (Linear variational problem) A variational problem posed
on an affine space V. and a vector space Vy of the form

ueV:a(u,v)=Iv) Yv eV

12



is called a linear variational problem if a : V x V, — R is a bilinear form and
l: Vo — R is a linear form.

Definition 2.27 (Discrete variational problem) Given a continuous vari-
ational problem the corresponding discrete variational problem is obtained by
choosing a finite dimensional trial space Vi and test space Vi o, where N is the
dimension of the two spaces. The discrete variational problem then reads:

Find uny € Vy such that:

a(un,vn) = l(vwn) Von € Von

2.6.1. Solution of a Linear Discrete Variational Problem

The Galerkin solution uy of a linear discrete variational problem is obtained by

1. Introduction of an (ordered) basis By = {bY;,...,bN} C Vv for the trial
and test space.

2. Solution of the linear system of equations Ay = ¢ where

N\ N
A= (a (b’f\,, b@)) € RNV (Galerkin matrix)
k=
N
p= (l (b&)) € RY (Right hand side vector)
j=
p=(p1,. .., un)"T €RY (Coefficient vector)

The functions b%; are called the global basis functions or global shape
functions, the matrix A Galerkin matrix, ¢ right hand side vector and u
coefficient vector. The elements p; of p are the global degrees of freedom
and the index i is the global degree of freedom index.

3. Recovery of the solution by uy = chvzl ukb’f\,

To keep the discussion focused, we use the same basis for both spaces Vi and
Vnoo-

13



3

Model problem

Before we start with description of the finite element solver we define a sim-
ple boundary value problem which we use to develop all building blocks of a
finite element method. The problem is a second order elliptic boundary value
problem with Dirichlet and Neumann boundary conditions posed on a bounded
and connected domain Q@ C R?. Let v : Q =R, g:'p =R, h: Ty = R be
scalar valued functions, where I'p and I'y are disjoint subsets of € such that
0Q) =T'pUT'y. The function g specifies Dirichlet data and h specifies Neumann
data.

Strong formulation
Find u such that:

—div(o(x)gradu) = f in
Uu=g on I'p
(o(z)gradu) -n=nh onI'y

Weak formulation
Findu eV ={ve H Q) | ur, = g} with Vy = {v € H(Q) | vjr, = 0} such
that

a(u,v) =1(v) Yv e Wy
where

a(u,v) = / o(z)gradu - gradv dx
Q

l(v) = /va dz + /39 ((o(x)gradu) - n) v dS(x)

:/vadx—l—/r hv dS(z)

14



4

Mesh datastructure

In this section we will develop a datastructure to represent a mesh in computer
memory. A suitable datastructure must be both space efficient and time efficient
in the sense that a low amount of memory is required to store the datastructure
and that the operations on the mesh are fast. The following operations are of
particular importance:

1. Cell traversal

2. Retrieval of topological information (incidence relationships between ele-
ments, faces and facets)

3. Retrieval of geometrical information (location, shape)

4.1. Concepts

In TipiFEM a representation inspired by the one given in [2] has been chosen
and is based on the basic concepts of a cell identifier, cell geometry, cell con-
nectivity, mesh function, mesh connectivity and mesh topology. The concepts
themselves are generic in the sense that they can be applied to very different
types of meshes.

For the sake of concreteness we give an example of a simple hybrid mesh.

V4 €3 (O} (Ov 1) (L 1)
€6
vs 2,0.5)
€4 tq ey to
€s
vt (0,0) (1,0)

Figure 4.1: Simple hybrid mesh (Topological information on the left, geometrical
information on the right)
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Cell type id A cell type id or cell type identifier is  ctid  Cell type

an integer specifying the type of a cell. Which cell type 5

Vertex
id belongs to which cell type may be chosen arbitrarily.
. .. . . 1 Edge
For the sake of simplicity however the choice made in the .
2 Triangle

Gmslﬁ file format was takerEl

3 Quadrilateral

Figure 4.2: Selected
cell types and their
cell type identifier

Cell index A cell index is an integer unique within the
set of all cells of equal cell type.

Cellid A cellid or cell identifier is a pair (ctid, i) where

ctid is a cell type id (i.e. triangle, edge, vertex) and i is

the cell index. Since a cell id uniquely identifies a cell,

the two terms are often used synonymously later on even though the notion of
cell id is just about identification while the notion of cell is also about geometry
and connectivity. We denote the cell id of a cell K C M by d(K).

The mesh given in Figure |4.1| contains 13 cells. Considering only the edges with
ctid equal to one the cell indices are: {(1,1),(1,2),(1,3),(1,4)}

Cell Geometry A cell geometry is a matrix of dimension ny, x d associated to
a single cell, where ny, is the number of vertices of the cell and d the dimension
of the ambient space. The rows of the matrix contain the coordinates of the
vertices of the cell in counter clock wise ordering.

The cell geometry of the quadrangle ¢, from Figure [£.1] is:

0 0

10

1 1

01
Cell Connectivity A cell connectivity is a tuple (ctidy — ctida, (i1,...,in))
containing the cell indices i1, ...,1, of a cell with cell type id ctid, incident to

a single cell with cell type id ctid;. The cell to which a cell connectivity object
belongs to is called the incidenter and the incident cells are called the inciden-
tees. Here ctid; is the cell type id of the incidenter, or the incidenter type and
ctidy is the cell type id of the incidentees, or the incidentee type. The indices
i1,...,14, in combination with the incidentee type give us the cell identifiers of
all incident cells. Note that since the incident cells are specified by a tuple, we
can talk about the orientation of a cell. Therefore for example an edge has a
source and a sink.

Let ctid; be the incidenter type and ctids the incidentee type of a cell connec-
tivity then we call this a connectivity from ctid; to ctids. If the incidente type
is omitted we implicitly mean that ctids is a vertex.

8See http://gmsh.info/doc/texinfo/gmsh.html#MSH-ASCII-file- format
9Note that in Gmsh a cell is called a geometrical entity

16
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The cell connectivity of the quadrangle ¢; and its edges from Figure [4.1] is
3—1,(1,2,3,4)).

Definition 4.1 A canonical form of a cell connectivity with its vertices is an-
other cell connectivity such that, given two cell connectivities with different
orientation, the canonical form of the two is equal.

The choice of a canonical form is arbitrary. For an edge its canonical form is
the connectivity itself if the vertex index of the first vertex is larger than the
second and otherwise the connectivity of the edge with opposite orientation.

Mesh function The basic building block to store cell geometry and connec-
tivity objects is a mesh function that maps cells, respectively their cell identifiers
to arbitrary objects. In mathematical notation a mesh function may be written
as some function faq: X — Y where X C {id(K) | K € M}.

We define a set of operations on mesh functions that may be written in mathe-
matical notation:

- domain(fa) = X

- image(fm) =Y

graph(fa) = {(z, fm(2)) | 2 € X}

push(fa1, 7, v) = gam with graph(ga) = graph(fad) U {(i,v)}
length(fum) = | X]|

A real valued mesh function may assign material parameters to mesh elements.
Another boolean valued mesh function may describe which cells of a mesh are
part of the mesh boundary.

Mesh connectivity A mesh connectivity caq,i—; is a mesh function mapping
i-dimensional cells to their cell connectivity which contains j-dimensional cells.
This is just another form of writing down the incidence relation between two
sets of cells, but in a way that given a cell id allows efficient retrieval of its in-
cident cells if implemented correctly. Since the incidence relation is symmetric
for every mesh connectivity caq,i—j, there is an equivalent mesh connectivity
cM,j—i differing only in representation.

Considering a mesh connectivity mapping i-dimensional cells to j-dimensional
cells we can distinguish the following three cases:

- ¢ > j: A map from i-dimensional cells to their j-dimensional faces.

- i =j: A map from i-dimensional cells to their neighboring cells (i.e. cells
with a common facet).

- 1 < j: A map from i-dimensional cells to j-dimensional cells, which contain
the i-dimensional cell.

17



It is worth noting that the mesh connectivity mapping codimension zero cells
to dimension zero cells, i.e. vertices, already provides complete topological
information from which all other mesh connectivities may be reconstructed.
Furthermore, from the definition of incidency it follows that there is no mesh
connectivity caq,0—0 because vertices have no facets.

Mesh geometry A mesh geometry is a mesh function g ; mapping i-dimensional
cells to their cell geometry.

The mesh geometry of the mesh given in Figure [£.1] is:

cell id ‘ cell geometry H commentary

0 0
(3,1) 1 ? Cell geometry of the quadrangle t;
0 1
1 0
(2,1) 2 05 Cell geometry of the triangle to
1 1

Mesh topology The mesh topology Z contains the mesh connectivities of
a mesh. It is convenient to write the mesh topology in matrix form (Z);; =
¢M,i—;- The matrix contains a maximum of (D + 1)? — 1 connectivities where
D is the topological dimension of the mesh. For a fully bidirectional topology
representation of a mesh with topological dimension two the matrix is as follows:

- CM,0—-1 CM;0—-2
T=|CcM150 CM1—=1 CM;1-2
CM2—0 CM2—1 CM;2—2

More restricted representations can be noted simple by dropping some connec-
tivities. In a fully unidirectional representation the upper triangular part of the
matrix is empty, while all other entries being set. In a restricted bidirectional
representation only the lower triangular part and the entry (D, D) are set.

4.2. (Data)types and Datastructures

Except for the cell type id, which is just an integer, each of the concepts given
in the previous section is represented by a type and potentially subtypes of that
type equipped with a set of methods in the TipiFEM.Meshes module. This mod-
ule however does not specify the properties of the mesh cells. From now on we
will call this the abstract mesh implementation, while a concrete mesh imple-
mentation also specifies the properties of the mesh cells. The TipiFEM.Poly-
topalMesh module contains such a concrete mesh implementation for a mesh
with polytopal cells, leveraging the types and methods of the TipiFEM.Meshes
module. We begin with the discussion of how each concept corresponds to a
datatype in the abstract mesh implementation.

18



4.2.1. Abstract Mesh Implementation

Cell The cell type is represented by a singleton type!ml that subtypes the
abstract type Cell. The Cell type is part of the abstract mesh implementation
while the singleton type is declared in the concrete mesh implementation. The
cell type identifier may be accessed by calling cell_type_id(T) with T a subtype
of Cell.

Id The primitive typﬂ Id{T} represents a cell type identifier. It stores only
the index of the cell, while the cell type T is encoded as a type parameter. In
order to avoid writing the type T and potentially the cell type id parameter of
T explicitly, the concrete mesh implementation may contain a string macroﬁ
such that, in the case of a polytopal mesh, the cell id Id{Polytope{15}}(1), in
mathematical notation (15,1), may be written as Id"1-node point"(1).

Geometry Theimmutable composite typéﬂII Geometry{T, world_dim, T}, where
T is a subtype of Cell, world_dim is the dimension of the ambient space as an
integer, and T is a subtype of Real (i.e. Float64 if the coordinates are stored in
double precision), represents the cell geometry. It is a subtype of StaticMatrix
from the StaticArrays package and therefore behaves like a statically sized
matrix. An SIM[E friendly storage layout was choosen where the coordinates

of one dimension are contiguous in memory or, put differently, the coordinates

of one vertex are stored in a row of the matrix.

Geometry{Triangle, 2, Float64}((0, 0), (1, 0), (0, 1))

Figure 4.3: Construction of the Geometry of the reference triangle

Connectivity Theimmutable composite typéjIII Connecitvity{T1, T2}, where
T1 and T2 are subtypes of Cell represent a cell connectivity. It is a subtype of
StaticVector, therefore behaving like a statically sized vector.

Connectivity"4-node quadrangle — 1-node point"(1, 2, 3, 4)

Figure 4.4: Construction of the Connectivity of the quadrilateral ¢ from

Figure [1.]]

MeshFunction Conceptionally all mesh functions can be written using the
same mathematical notation. A representation in memory suitable for the design
of efficient algorithms however depends on the properties of the input values,

10See https://docs. julialang.org/en/latest/manual/types.html

HSee https://docs. julialang.org/en/latest/manual/metaprogramming/
#non-standard-string-literals

2 Single instruction, multiple data
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i.e. the cell identifiers element of the domain. Therefore the following three
datatypes, each of which has its own datastructure, were designed:

- GenericMeshFunction: The cell type of all input values is not known at
the time of construction. Input values of different cell type can be stored
in arbitrary order.

- HomogeneousMeshFunction: All input values are of equal cell type known
at the time of construction.

- HeterogeneousMeshFunction: The cell types of all input values are known
at the time of construction and multiple cell types are allowed. Input
values of the same cell type are packed together in memory.

The abstract typéﬂII MeshFunction{K, V} isthe supertype of all these datatypes,
where I is the cell type of the cell ids in the domain of the mesh function and v
the type of the values in the domain of the mesh function. Most functionality is
implemented in a generic fashion and inherited by subtyping from MeshFunction
and implementing the domain, image, getindex, setindex operations. Which
of the three datatypes GenericMeshFunction, HomogeneousMeshFunction and
HeterogeneousMeshFunction should be used can be decided if the type param-
eters K and V are known. Therefore the type MeshFunction has a constructor
that, given K and V, returns an empty mesh function of appropiate type.

# construct an empty mesh function mapping polytopes to integers

generic_mf = MeshFunction(Polytope, Int)

# construct an empty mesh function mapping triangles and

# quadrangles to integers

heterogeneous_mf = MeshFunction(Union{Polytope"3-node triangle",
Polytope"4-node quadrangle"}, Int)

# construct an empty mesh function mapping triangles to integers

homogenous_mf = MeshFunction(Polytope"3-node triangle", Int)

Figure 4.5: Construction of empty generic-, heterogenous-, homogenous-mesh
functions.

GenericMeshFunction This type is the most flexible one because no infor-
mation on the cell type of the input values is required at the time of construction.
Initially this was used for loading a mesh from file. Now a HeterogeneousMesh-
Function is used for this purpose and the allowed cell types are obtained by
querying the concrete mesh implementation for all admissible cells. The type
however is still present because there exist some narrow cases where it might be
useful.

HomogeneousMeshFunction{K, VvV, II, VI} Thistype can only represent
mesh functions mapping cell ids of a single cell type K. The type parameter v
is the element type of the image, IT the type of the domain iterator and VI the
type of the image iterator. The type has two fields: ids, the domain iterator
and values, the image iterator. Let id be a cell id in the domain of the mesh
function stored in the i-th element of the domain iterator then its value is
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the i-th element of the value iterator. From now on we assume that II and
VI are random access iterators because it greatly simplifies runtime complexity
considerations.

The HomogeneousMeshFunction supports four types of domain iterators:

OneTo: The domain is a range of ids from Id{K} (1) to Id{K}(stop), where
stop is an integer equal to the number of elements in the domain.

UnitRange: The domain is a range of ids from Id{K}(start) to Id{K}(stop),
where start and stop are integers.

StepRange: The domain is a range of ids from Id{K} (start) to Id{K}(stop)
in steps of length step, where start, stop and step are integers.

AbstractArray: The domain is an array of cell ids.

Depending on the type of the domain iterator the memory requirements of
the domain and runtime of the getindex operation differ. In case the type of
the domain iterator is either oneTo, UnitRange, or StepRange only a constant
amount of memory is required. Furthermore, the runtime of the getindex
operation is constant because the index in the image iterator of the value that
belongs to an element in the domain can be calculated. For example in case
of OneTo the value belonging to the cell id 1d{K}(i) is the i-th value of the
image iterator. In case the type of the domain is a Vector, which is a subtype
of AbstractArray, each cell id is stored explicitly therefore requiring memory
space proportional to the length of the mesh function.
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# construct a homogeneous mesh function

# an empty domain iterator of type OneTo and image iterator
# of type Vector are used by default

mf = MeshFunction(Polytope"1-node point", Int)

# add some values. cell ids are allocated automatically
push!(mf, 2)

push!(mf, 3)

push!(mf, 4)

# print the mesh function

# output:

# 3 element HomogenousMeshFunction Polytope"l-node point" - Int64
# (1, 2)

# (2, 3)
# (3, 4)
display(mf)

# access the value belonging to the Id"i1-node point" (1)
# returns 2
mf[Id"1-node point"(1)]
# iterate over all values and print their values
for v in mf
println(v)
end
# iterate over all indices and values and print their values
for (cid, v) in graph(mf)
println(cid, " ", v)
end

Figure 4.6: Operations on a homogeneous mesh function with domain iterator
of type OneTo and image iterator of type Vector mapping vertices to integers.

HeterogeneousMeshFunction{K, V, II, VI} This type can represent
mesh functions mapping cell ids of multiple cell types. The type is essentially
just a wrapper around multiple homogeneous mesh functions. Additionally to
the methods defined on all mesh functions, methods are provided to return the
wrapped mesh functions for a particular cell type.

# construct a hybrid mesh function

heterogeneous_mf = MeshFunction(Union{Polytope"3-node triangle",
Polytope"4-node quadrangle"}, Int)

# add some values

# ...

# extract the homogeneous mesh function mapping from triangles

# to integers

homogeneous_mf[Polytope"3-node triangle"]

Figure 4.7: Extraction of a homogeneous mesh function from a hybrid mesh
function

Note that one should not use for loops over mesh functions because they are
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not type stablﬂ Instead one should use for example the foreach function.

MeshTopology The MeshTopology type represents the mesh topology. The
type has two fields. One is a tuple storing the mesh connectivities and the
other one is a tuple of booleans storing which mesh connectivities have been
constructed.

Mesh Given the datastructures above the datastructure representing a mesh
is quite simple. The Mesh type represents a mesh. The type has the following
three type parameters:

- K: A subtype of Cell representing the cell types of codimension zero cells.
For a hybrid mesh K is a union type.

- world_dim: The dimension of the ambient space.
- REAL_: A subtype of Real representing real numbers.
Furthermore, the Mesh type has the following three fields:
- vertices: A mesh function mapping vertex ids to their coordinates.
- topology: The mesh topology of the mesh.

- cell_groups: An associative array that maps cell tags to the cell ids with
that tag.

4.2.2. Concrete Mesh Implementation

TipiFEM currently only contains a single concrete mesh implementation for
polytopal cells. The implementation is contained in the TipiFEM.PolytopalMesh
module. It contains functions specifying the dimension of all supported poly-
topes, their number of vertices and rules to construct the facet connectivity and
geometry. Furthermore functionality to access reference cells and evaluate co-
ordinate transformations mapping coordinates on the reference cells to cells, as
well as their Jacobians, is provided.

Code examples

Below are some code examples to demonstrate mesh construction and retrieval
of topological and geometrical information.

Bgee https://docs. julialang.org/en/stable/manual/performance-tips/

#write-type-stable-functions
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# construct mesh instance

mesh = Mesh(Union{Polytope'"3-node triangle",
Polytope'"4-node quadrangle"})

# add some vertices

add_vertex!(mesh, 0, 0)

add_vertex!(mesh, 0, 1)

add_vertex!(mesh, 1, 1)

add_vertex!(mesh, 1, 0)

add_vertex!(mesh, 3, 0.5)

# query the number of cells
number_of_cells(mesh, Polytope"l-node point") ==

# connect vertices
add_cell!(mesh, Polytope"4-node quadrangle", 1, 2, 3, 4)
add_cell! (mesh, Polytope"3-node triangle", 2, 5, 3)

# populate topology (restricted bidirectional by default)
populate_connectivity!(mesh)

# extract mesh that contains only the boundary
boundary(mesh)

Figure 4.8: Construction of the hybrid mesh in

using Gmsh
mesh = Gmsh.load(filename, mesh_dim=2, world_dim=2)

Figure 4.9: Loading a Gmsh file from disk

# print Geometry instances of all line segments

for geo in geometry(mesh, Polytope"2-node line")
display(geo)

end

# print the Geometry of all facets of codimension zero cells

for geo in geometry(mesh)
display(facets(geo))

end

# calculate the volume / area of a mesh

mapreduce(volume, +, geometry(mesh))

Figure 4.10: Access to geometrical information
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# print the cell connectivity of all codimension zero cells

# with their facets

for conn in connectivity(mesh, Codim{0}(), Codim{1}())
display(conn)

end

Figure 4.11: Access to topological information

# retrieve the geometry of the triangle reference element

ref_tria = reference_element(Polytope"3-node triangle"())

# construct the geometry of a triangle

tria=Geometry{Polytope"3-node triangle", 2, Float64}(
(0., 0.), (1., 0.), (2., 0.))

# obtain global coordinates from local coordinates

# return (2, 0)

local_to_global(quad, SVector{2, Float64}(0., 1.))

Figure 4.12: Reference elements and coordinate transformation

4.3. Mesh Topology Construction

After a mesh has been constructed, e.g. by adding cells manually or by load-
ing the data from a Gmsh file, only the mesh connectivity from codimension
zero cells to dimension zero cells, i.e. caq,2-50 since we are in two dimensions,
is constructed. For the assembly procedure discussed later on we additionally
need the connectivity caq,1-0 to obtain the cell identifiers of edges associated
to two dimensional cells. We begin with the description of the construction of
M, 1—0 from cpq,2-0. This construction procedure can easily be extended to
construct also caq,2—1 and caq,2-52, resulting in a restricted bidirectional topol-
ogy representation. In order to construct caq,2-1 one only needs to determine
which edges are located on the boundary and which are located in the interior
of the mesh. Then, given a two dimensional cell, one can add all of its edges
onto cpq2-1 if they are either on the boundary or if the first vertex id of the
edge is larger than the second. The latter condition ensures that an edge is
only added only once. Note that this only works if the source of the edge of
one triangle is equal the corresponding edge of the neighbouring triangle. To
determine whether an edge is on the boundary one just needs to find another
triangle containing this edge. In the beginning of the development of TipiFEM
two algorithms were tested to construct this caq,1—0. Both of these algorithms
were rather slow such that a new third algorithm was developed outperforming
the first two ones by far. We begin with the sketch of the first two algorithms
and discuss the reasons for their bad performance.
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Hash table based algorithm The first algorithm was based on a hash table
datastructure. While a hash table has constant average complexity for the
lookup operation thus rendering an algorithm with complexity linear to the
number of codimension zero cells the memory accesses suffers from poor locality
of referencﬂ and computational cost for the computation of the hash values
such that the constants hidden in the asymptotic runtime made this algorithm
rather slow.

Binary search based algorithm An improvement to this was an algorithm
that is based on binary search where first, one iterates over all codimension
zero cells, then adds all edges and the cell id of its codimension zero cell to an
array, thus obtaining an array containing all edges on the boundary once and all
edges in the interior of the domain twice. Then one copies this array, obtaining
a second array and sorts it by the vertex connectivity of the contained edges.
Equipped with these two arrays one iterates over the unsorted one and runs
for every contained edge binary search on the sorted array to find an edge with
opposite direction. If such an edge was not found the current edge is an edge
on the boundary and we add it to a third array. Otherwise we only add it if
the cell index of the source is larger than the cell index of its sink. Again the
latter condition ensures that an edge is only added once. Afterwards the array
contains every edge only once and we can assign cell identifiers to the edges
using its index in the third array. The asymptotic runtime of this algorithm is
O(n-log(n)) where n is the number of codimension zero cells. Even though the
asymptotic runtime of this algorithm is higher than for the hash table based
algorithm, it was faster even for meshes with millions of elements because it has
better locality of reference o,

4.3.1. Sorting Based Algorithm

The thrid algorithm, which is the one currently used in TipiFEM, is based again
on sorting, but this time without the need for binary search. Furthermore, this
algorithm constructs also caq 2,1 and caq,2—2 For its implementation we need
the additional concept of a facet tuple.

Definition 4.2 (Facet tuple) A facet tuple is a quadruple (i, 7,b, c) associated
with a facet of a cell. The elements of the tuple are:

i: A cell id of the codimension zero cell that contains the facet.
j: An integer storing the facet index of the facet.

b: A boolean storing whether the facets vertex connectivity is in canonical
form.

c: The canonical form of the facets vertexr connectivity.

The facet tuples of all facets of a cell can be constructed given only its cell id
and vertex connectivity.

Gee https://en.wikipedia.org/wiki/Locality_of_reference
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Restricted bidirectional version Now we will sketch a version of the topol-
ogy construction algorithm that constructs a restricted bidirectional topological

representation.

We first define

a set of variables that store the data used in the algorithm:

mesh_conn

Mesh connectivity from codimension zero cells to their vertices. Obtained from
the mesh instance that is an input argument to the algorithm.

facets_mesh_conn

Mesh connectivity of codimension one cells (edges) with their vertices. Empty
at the beginning of the algorithm.

neighbour_mesh_conn

Mesh connectivity of codimension zero cells (triangles, quadrilaters) with codi-

mension zero

cells.

el facet_mesh_conn

Mesh connectivity of codimension zero cells (triangles, quadrilaters) with their

facets (edges)

. Empty at the beginning of the algorithm.

facet_tuples

Temporary array of facet tuples.

boundary_facet_tuples

Array of facet tuples whose facets are on the boundary.

boundary_facet_ids

Cell ids of facets that are part of the boundary of the mesh.

boundary_facet_tuples

Facet tuples of facets that are part of the boundary of the mesh.

Now we come to the algorithm itself:

1. Iterate over all codimension zero cells of the mesh stored in mesh_conn,
construct their facet tuples and add them to the facet_tuples array.

2. Sort the facet tuples in facet_tuples by the facets vertex connectivity.
Since the vertex connectivity is given in canonical form, the facet tuples
associated with the same facet are next to each other in the sorted array.

3. This step constructs the topological information of interior facets. First
iterate over the sorted facet tuples and do a case distinctions:

- If the vertex connectivity in the facet tuple in the last iteration is
the same as in the facet tuple in the current iteration the facet is an
interior facet and we do the following;:

1.

Remove the last facet tuple from boundary_facet_tuples since
it is associated with an interior facet.

. Assign a new cell id to the facet (both facet tuples are associated

to the same facet).
Store its vertex connectivity in facets_mesh_conn.

Store in neighbour_mesh_conn that the two codimension zero
cells of the current and last facet tuple are neighbours.

. For the current and the last facet tuple: Fetch the cell connec-

tivity of the codimension zero cell in the facet tuple with its
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facets from el_facet_mesh_conn. Using the face index given in
the facet tuple store in the obtained connectivity the previously
assigned cell id.

- Otherwise add the current facet tuple to boundary_facet_tuples.
Note that it is only determined in the next iteration whether the
current facet is on the boundary. Therefore its facet tuple needs to
be removed again in the next iteration if the facet is an interior facet.

4. For each of the facet tuples in boundary_facet_tuples do the following:

1. Assign a new cell id to the facet.
2. Add the newly assigned id to boundary_facet_ids.

3. Store its vertex connectivity in facets_mesh_conn. If the canonical
form differs from the original vertex connectivity, flip the orientation.
This flipping ensures that normals of facets on the boundary can be
calculated given only its geometry.

4. Store that the codimension zero cell has no neighbour.

5. Fetch the cell connectivity of the codimension zero cell in the facet tuple
with its facets from el_facet_mesh_conn. Using the face index given
in the facet tuple store, in the obtained connectivity, the previously
assigned cell id.

5. Tag all facets in boundary_facet_ids with the tag :boundary.

Staged restricted bidirectional version The previously described restricted
bidirectional version suffers from the problem that the facet_tuples array con-
tains cell ids to codimension zero cells of different cell type. This leads to a
situation where access to el_facets_mesh_conn and neighbour_mesh_conn in-
volves a substantial overhead because of type instabilitym. The idea of the
staged restricted bidirectional version is then:

1. Run step 1 - 4 of the naive restricted bidirectional version separately on all
codimension zero cells of a single cell type. In 2D this means that one runs
the naive version first for all triangles and then for all quadrilaterals. Now
the obtained boundary_facet_tuples may contain facet tuples associated
with facets that are the intersection of two cells with different type.

2. Run step 2 - 5 on boundary_facet_tuples instead of facet_tuples.

The last step is still type unstable but usually the number of facets that are
the intersection of two cells is low. Therefore the last step takes only a fraction
of time and does not need to be optimized any further. Overall this algorithm
performs significantly better than the two previous ones because only a few sort
operations and for loops over elements consecutive in memory are required. For
a mesh consisting of 2097152 cells the algorithm still requires about 13 seconds
to finish on a 4th generation Intel i7 processor with 2.1GHz. The reason for the
rather bad performance is a type inferencdd]issue currently present in Julia and
a speedup of &~ 6x was measured when the algorithm was restricted to cells of
a single cell type. This algorithm is right now the one used in TipiFEM. Later
on it might be extended such that a fully bidirectional topology representation
is constructed.
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Numerical Integration / Quadrature

In case the coefficient o or source term f of our model problem® [3] is given
only in procedural form numerical quadrature is mandatory to evaluate the
integrals in the linear and bilinear form. Composite quadrature is then used
to split the integral on a mesh M into cell contributions, required for a cell
oriented assembly procedure. The approximation of the integral | of (x)dx can
be written in terms of a P-point local quadrature rule

Py
/f(x)dxﬁ::sZw,?f(gc) CeM,PxeN wCeR, (el
c 1=1

with s a scaling factor, w{ the weights and (£ the quadrature nodes. The
weights and quadrature nodes however are specific the cell C'. To avoid recom-
putation of the quadrature nodes and weights, their values are only stored for a
quadrature rule defined on the reference cell C. We will call this a local quadra-
ture rule. The quadrature rule on the cell C'is then obtained using a coordinate
transformation ®¢ : €' — C, 4 — .

Py
/C f(z)ds = /C F(@a(#)) det(Doc)| di ~ 53 &€ F(CC)

=1
CeM,PgkeNwleR, (FeC

5.1. Datastructures

All quadrature related datastructures are implemented in the TipiFEM.Quadra-
ture module. The actual quadrature rules itself are implemented in the concrete
mesh implementation. We will now discuss the datastructures and their usage
in TipiFEM.

Quadrule An instance of the immutable composite typém] Quadrule{C,
num_points, REAL_T}, where C is a cell type, num_points is the number of
quadrature points and REAL_T is a type representing real numbers, stores the
weights, quadrature points and scaling factor of a quadrature rule.
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@computed type Quadrule{C <: Cell, num_points, REAL_T}
w: :SVector {num_points, REAL_T}
x::SVector{num_points,
dim(C) == 1 ? REAL_T : SVector{dim(C), REAL_T}}
scale: :REAL_T
end

Figure 5.1: Definition of the Quadrule datastructure

Local quadrature rules are accessible by means of the quadrule function that
takes the type of a quadrature rule and returns the weights, quadrature points
and scaling factor of such a rule.

e

s,Xs,8 = quadrule(Quadrule{Polytope"3-node triangle",6,Float64})

Figure 5.2: Access to a six-point quadrature rule on the reference triangle in
double precision.

QuadruleList Some functions that rely on quadrature, e.g. the element matrix
assembler, can be written in a generic fashion such that they may be evaluated
on different types of cells. In that case the Quadrule datastructure is insuf-
ficient to access local quadrature rule data because it can only store the data for
a single reference cell. For this purpose the QuadrulelList datastructure exists
that stores multiple local quadrature rules in a single datastructure. Access to
a quadrature rule is then by evaluation of the [] operator on the quadrature
rule list with the cell type for which one wants to obtain the data.

# construct quadrature rule list

quadrule_list = QuadrulelList(
Quadrule{Polytope"2-node line", 3, Float64},
Quadrule{Polytope"3-node triangle", 12, Float64},
Quadrule{Polytope"4-node quadrangle", 12, Float64})

# access quadrature rule data for the reference triangle

@s, Xs, § = quadrule_list[Polytope"3-node triangle"]

Figure 5.3: Constrution of a QuadruleList and access to the quadrature rule
data for the reference triangle
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6

Finite Element Space & Finite Element Basis

6.1. Finite Element Basis

All information about a finite element can be accessed via methods that take an
argument of type FEBasis and a cell type. The FEBasis type itself is a singleton
typemII and thus does not store any data except for its type parameters. The
type has two type parameters. The first parameter basis_type is a symbol
specifying the type of the element (i.e. :Lagrangian) and the second parameter
approx_order is an integer from which the number of local shape functions can
be deduced. In case of the P, and Q, element the approx_order is simply p.
At the time of writing only the P, and Q, element for p = 1,2 are implemented.
Therefore we will only discuss these elements here.

# Linear Lagrangian finite element basis
basis = FEBasis{:Lagrangian, 1}()
# Second order Lagrangian finite elements
basis = FEBasis{:Lagrangian, 2}()

Drawbacks While it is convenient to use the polynomial degree as a type
parameter for the Lagrangian element this prevents the usage of Lagrange ele-
ments which are not the P, or Q, element but are still defined on simplices or
parallelotops. Therefore the interface of FEBasis might change in the feature.

Local degrees of freedom Information about a local degrees of freedom can
be accessed by methods that take an argument of type LocalDOF. The LocalDOF
type is a singleton type|jZII with three type parameters:

- basis: A subtype of FEBasis.
- K: A subtype of Cell specifying the cell type.
- idx: An index specifying which degree of freedom is represented.

Note that the type does not store the value of the degree of freedom but is only
used for accessing information.
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In case basis is a subtype of FEBasis{:Lagrangian} the following methods can
be called on an instance of LocalDOF:

- associated_cell: Return the associated cell of the interpolation node
which belongs to the local degree of freedom.

- local_face_indices: Return the index of the face to which the interpo-
lation node of the local degree of freedom is associated to.

- interpolation_node: Return the interpolation node which is associated
to the degree of freedom.

- local_shape_function: Returns the shape function that belongs to the
dof.

- grad_local_shape_function: Returns the gradient of the shape function
that belongs to the dof.

Local interpolation nodes A local interpolation node is represented by
the LocalInterpolationNode singleton typéml. The following methods can be
called on an instance of LocalInterpolationNode:

- coordinates: Return the coordinates of the interpolation node.
- associated_cell: The cell associated to the interpolation node.

The local interpolation nodes of a Lagrange element are accessible via the in-

terpolation_nodes(::FEBasis{:Lagrangian}, ::Cell) method.

# Prints:

# [0.0, 0.0]

# [1.0, 0.0]

# [1.0, 1.0]

# [0.0, 1.0]

for node in interpolation_nodes(FEBasis{:Lagrangian, 1}(),

Polytope"4-node quadrangle"())
println(coordinates(node))
end

Figure 6.1: Print interpolation nodes of the Q; element.

Local shape functions Additionally to accessing the local shape functions
and their gradients by means of the LocalDOF type, all of them can be accessed
at once by means of calling local_shape_functions, respectively grad_lo-
cal_shape_functions, on a FEBasis instance and a cell type.
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# construct a FEBasis

basis = FEBasis{:Lagrangian, 2}()

# select a cell type

K = Polytope"3-node triangle'"()

# specify some points at which we want to evaluate
# the shape functions and their gradients
X=SVector{2, Float64}(0.5, 0)

xs=SMatrix{2, 2, Floato64}(1, 0.5, 0, 0)

=

# SISD version

B

# evaluate local shape functions
local_shape_functions(basis, K, Xs)

# evaluate gradients of local shape functions
grad_local_shape_functions(basis, K, Xs)

#

# SIMD/vectorized version

#

# evaluate local shape functions
local_shape_functions(basis, K, Xs)

# evaluate gradients of local shape functions
grad_local_shape_functions(basis, K, Xs)

Figure 6.2: Evaluation of local shape functions and their gradients

Boundary (local) degrees of freedom The boundary degrees of freedom
of a finite element can be accessed by calling boundary_dofs with a FEBasis
instance and a cell type.

Internal (local) degrees of freedom The internal degrees of freedom of a
finite element can be accessed by calling internal_dofs with a FEBasis instance
and a cell type.

6.2. Finite Element Space

A Langrangian finite element space is represented by the FESpace datatype.
The finite element basis is stored as a type parameter. The datatype has the
following fields:

- mesh: The Mesh instance on which the finite element space is defined.

- dofh: The DofHandler that maps a cell id and a local degree of freedom
index to a global degree of freedom index.

- constraints: An array of IndexMappings that maps indices of degrees of
freedoms to degrees of freedom. The field is used to store Dirichlet degrees
of freedom. In the future it might also be used to store IndexMappings
from indices of degrees of freedom to a indices of other degrees of freedom
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with an associated weight. This could then be used to do block elimination
of internal degrees of freedom.

- active_cells: A cell id iterator. No cells that are faces of cells that are
already contained in active_cells need to be stored. Only contributions
of local shape functions on these cells are distributed by the Galerkin
matrix / right hand side assembler. For a Neumann term the active cells
are codimension 1 cells.

- active_cells_mask A boolean valued mesh function on all cells (i.e.
quadrilaterals, triangles, edges, vertices) in the mesh. All contributions
of local shape functions associated to cells for which this function evalu-
ates to false are dropped.

# setup trial space
trial_space = FESpace(basis, mesh)

# evaluate analytic solution at all Dirichlet nodes
dirichlet_term = map(u, interpolation_nodes(trial_space,
tagged_cells(mesh, :boundary)))

# impose dirichlet boundary conditions
add_constraints!(trial_space, dirichlet_term)

# retrieve degrees of freedom on the triangle with
# 1id 2 that are active
active_dofs(trial_space, Id"3-node triangle"())

Figure 6.3: Construction of a trail space with (inhomogeneous) Dirichlet
boundary conditions and retrieval of active degrees of freedom.
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7

Assembly

In this section the assembly procedure of the Galerkin matrix and right hand
side vector is described.

7.1. DofHandler - Local to Global Mapping

The distribution of local contributions relies on an function locglobmap: M X
N — N, (K,7) — j that maps a cell K and the index of the local degree of
freedom ¢ to the index of a global degree of freedom j. We will now construct
such a mapping that ensures that the finite element space is H; conforming.
The constructed mapping can only be used if a fixed finite element basis is
used, which is currently a constraint in TipiFEM anyway.

- Initialization procedure First write down the cell types in some order,
e.g. ordered by ascending dimension. Afterwards assign consecutive in-
dices starting at one to the cell types. Then assign to each cell type an
integer called offset by recursion

offset(1) =0
offset(n) = offset(n — 1) 4+ #(7) - multiplicty(¢)

where #4 is the number of cells and multiplicty(7) is the number of internal
degrees of freedom of the cells with type ¢ in M. Then by definition the
offsets are separated such that one can assign to each degree a unique
integer in the range of its associated cell type.

For a hybrid mesh the offsets read:

i cell type offset(i)

1 vertices 0

2 edges offset(1) + #vertices - multiplicity(vertices)
3 triangles offset(2) + Ffedges - multiplicity(edges)

4 quadrilaterals offset(3) + #triangles - multiplicity (triangles)

This initialization procedure needs to be done only once.

- Evaluation procedure
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1. Fetch the cell index k of the cell to which the local degree of freedom
with index ¢ is associated to.

2. Fetch the cell constrained interpolation node index 1 of the local
degree of freedom with index 1.

3. Now the index of the global degree of freedom is:
1 = offset(cell_type(K)) + k + 1.

This approach takes only memory space proportional to the number of cell types
instead of proportional to the number of degrees of freedom and is very fast to
construct and evaluate.

The index mapping discussed previously is represented by the DofHandler
type in TipiFEM. The type can be constructed by passing a Mesh instance
and a FEBasis to its constructor. The constructor then does the initialization
procedure. Given a cell id the global indices of the degrees of freedom can be
obtained by means of the [ ] operator.

dofh
dofs

DofHandler (mesh, basis)
dofh[Id"3-node triangle"(1)]

Figure 7.1: Construction of a DofHandler object and access to the global
indices of the degrees of freedom on the triangle with cell index 1

7.2. Element Matrix Assembly

In TipiFEM the element matrix assembler is a function that takes the finite
element basis of the trial space and the finite element basis of the test space and
returns a function. The returned function is a function that takes a cell identi-
fier and its geometry and returns the element matrix belonging to the cell with
the given cell identifier. This two step evaluation procedure is done because it
avoids capturing the finite element basis from the enclosing scope in which the
assembler has been defined and instead hands over the obligation to pass the
basis to the Galerkin matrix assembler. The element matrix assembly itself has
to be implemented by the user of the library.

The element matrix assembler for the model problem B can be found below:
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function element_matrix_assembler(basis::B,_ ::B) where B<:FEBasis
function (cid::Id{K}, geo::Geometry{K,world_dim,REAL_T}) where
{K <: Cell, world_dim, REAL_T <: Real}
# the number of local shape functions on K
n = number_of_local_shape_functions(basis, K())
# get quadrature rule data
Ws, Xs, 8§ = quadrule_list[K]
# initialize empty element matrix
el mat = zeros(MMatrix{n, n, Float64})
# assemble element matrix
for (W, X) in zip(ws, Xs)
let D& *=D& '(geo, X),
grads = map(grad -> D& '*grad,
grad_local_shape_functions(basis, K(), X)),
det_D& = integration_element(geo, X),
x = local_to_global(geo, X)
for i in 1:n
for j in 1:n
grad_bi = grads[i]
grad_bj = grads[j]
el mat[i, j] += det D® * W * grad_bi - grad_bj * o(x)
end
end
end
end
# apply scaling factor
el mat*§
end
end

Figure 7.2: Element matrix assembler for the bilinear form a(u,v) =
S o(x) gradu - gradv dz

7.3. Element Vector Assembly

The implementation of the element vector is analogous to the one of the element
matrix. The element vector assembler is a function that takes the finite element
basis of the test space and returns a function that takes the cell id and its
geometry and returns the corresponding element vector. Again the element
vector assembler has to be implemented by the user.
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function element_vector_assembler(basis::FEBasis)
function (cid::Id{K}, geo::Geometry{K,world_dim,REAL_T}) where
{K <: Cell, world_dim, REAL_T <: Real}
# the number of local shape functions on K
n = number_of_local_shape_functions(basis, K())
# get quadrature rule data
Ws, Xs, 8§ = quadrule_list[K]
# initialize empty element matrix
el vec = zeros(MVector{n, Float64})
# assemble element matrix
for (W, X) in zip(ws, Xs)
let 1sfs = local_shape_functions(basis, K(), X),
det D& = integration_element(geo, X),
x = local_to_global(geo, X)
for i in 1:n
el vec[i] += det_D® * w * 1lsfs[i] * f(x)

end

end
end
# apply scaling factor
el vec*=3§
# return element vector
el_vec

end
end

Figure 7.3: Element vector assembler for the linear form I(v) = [}, f(x)v dz

7.4. Galerkin Matrix Assembly

The Galerkin matrix assembler in TipiFEM is implemented in the matrix_as-
sembler function that takes an element matrix assembler defined by the user
and two instances of FESpace one of which is the trial space and the other on is
the test space. The actual assembly is then the usual one and works as follows:

1. The Galerkin matrix assembler evaluates the element matrix assembler
with the basis of the trial and test space and obtains the actual element
matrix assembler taking a cell id and its geometry.

2. The Galerkin matrix assembler iterates over all active cells in the finite
element space with the lowest amount of active cells.

(a) Evaluates the actual element matrix assembler.

(b) Distributes the elements of the element matrix assembler that belong
to cells that are not marked inactive in the active_cell_mask field
of the trial and test space.

3. Return the Galerkin matrix (in triplet form)
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A = matrix_assembler (element_matrix_assembler, trial_space,
test_space)

Figure 7.4: Galerkin matrix assembly

7.5. Right Hand Side Vector Assembly

The right hand side vector assembler in TipiFEM is implemented in the vec-
tor_assembler function which takes an element vector assembler and the test
space. There is nothing exceptional about the assembler. It just iterates over
all active cells and distributes the entries of the element matrix to the coefficient
vector.

b = vector_assembler(element_vector_assembler, test_space)

Figure 7.5: Right hand side vector assembly

7.6. Incorporation of Neumann Boundary Conditions

For the incorporation of Neumann boundary condition one just needs to con-
struct a FESpace instance where the active cells are the cells of the boundary on
which Neumann boundary conditions are present and then assemble the right
hand side vector with that finite element space and an element vector assembler
that evaluates the Neumann term of the variational equation.

# get the neumann cells
neumann_cells = tagged_cells(mesh, :neumann_cells)

# construct a finite element space for the neumann cells
neumann_fespace = FESpace(basis, mesh, neumann_cells)

# assemble right hand side b
# ...

# incorporate Neumann boundary conditions
b += vector_assembler (element_vector_neumann, neumann_fespace)

Figure 7.6: Incorporation of Neumann boundary conditions
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7.7. Incorporation of Dirichlet Boundary Conditions

Currently the elimination technique is used to incorporate Dirichlet boundary
conditions. Implementation wise this means that the matrix assembler skips
all rows of the Galerkin matrix that correspond to degrees of freedom where
Dirichlet boundary conditions are imposed. Then after the assembly of the
Galerkin matrix the incorporate_constraints method must be evaluated by
the user. This method sets the diagonal entries of Dirichlet degrees of freedom
to one and modifies the right hand side vector by setting the degrees of freedom
on which Dirichlet conditions have been imposed to the fixed values that are
stored in the constraints field of the trial space.

# get the dirichlet cells
dirichlet_cells = tagged_cells(mesh, :dirichlet_cells)

# evaluate analytic solution at all dirichlet nodes
dirichlet_term = map(u, interpolation_nodes(trial_space,

dirichlet_cells))

# impose dirichlet boundary conditions
add_constraints!(trial_space, dirichlet_term)

# assemble Galerkin matrix and rhs vector

# ...

# incorporate Dirichlet boundary conditions into A and b
incorporate_constraints(trial_space, A, b)

Figure 7.7: Incorporation of Dirichlet boundary conditions in TipiFEM

This technique has the disadvantage that the resulting Galerkin matrix is not
symmetric anymore and contains a higher amount of nonzero elements. There-
fore it is planed to use the augmentation technique in later versions of TipiFEM.
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3

Case Study

Now that we have developed all building blocks to solve the model problem
we proceed by solving the problem on a hybrid mesh with inhomogeneous
Dirichlet and inhomogeneous Neumann boundary data. We use the following
manufactured solution u and coefficient o:

u(x,y) = sin(x) sin(y)

oz, y) =y

The domain €2 is the union of the two sets {lg and Q7.

Gg={@yer | 0<z<1, o<y<1}

Q:QQUQT

Using the strong formulation of the model problem * we can derive f.

f(z,y) =— div(o(x) grad u)
= — zcos(x)sin(y) — x sin(z) cos(y) + 2zy sin(zx) sin(y)

0,00 0

Figure 8.1: The domain 2 with inhomogeneous Dirichlet boundary conditions
on the dashed line and inhomogeneous Neumann boundary conditions on the
densely dotted line.

The set g was subdivided using quadrilaterals and Q7 using triangles. Af-
terwards the timings were collected for both linear and quadratic Lagrangian
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Figure 8.2: Hybrid mesh after three regular refinement steps.

N Setup time Assembly time Sparse solver time |ju — un||o

5 0.213573 0.356063 0.000425389 3.37509e-3

12 0.00358171 0.0010706 0.000506341 3.03735e-4

35 0.00352524 0.00125792 0.00184714 2.38240e-5

117 0.00363856  0.00215343 0.00110623 1.71460e-6

425 0.00402946 0.00557717 0.0149168 1.17279e-7

1617 0.00453351 0.022046 0.0240581 7.77739e-9
6305 0.00515485 0.0841215 0.0569778 5.06050e-10
24897 0.00404427  0.193442 0.353058 3.25407e-11
98945 0.0143459  0.893896 1.15355 2.07687e-12
394497  0.00789053  3.35427 5.09676 1.31907e-13

Table 8.1: Timings in seconds for linear Lagrangian finite elements on a sequence
of meshes created by regular refinement. N is the number of degrees of freedom.

finite elements on a sequence of meshes that were created by regular refine-
ment of the mesh in Figure |4.1| using the Gmsh[3] mesh generator. The Pardiso
solveIE| was used to solve the sparse linear system of equations. On both tri-
angles and quadrilaterals a 12-point quadrature rule was used to calculate to
element matrices and vectors. On edges a three point quadrature rule was used.
The timings were collected on a computer with an Intel(R) Core(TM) i7-4600U
CPU @ 2.10GHz processor and 8GB of DDR3 memory. The timings can be
found in Table[8.1] and The setup time is just the time needed to construct
the FESpace instances. The assembly time is the time needed to compute the
Galerkin matrix and right hand side vector, the incorporation of Dirichlet and
Neumann boundary conditions, and the conversion from triplets to CSC format.

Scaling behavior Figure shows a log-log plot of the number of degrees of
freedom compared to the assembly time. The plot suggests that the assembly
procedure scales like O(N), where N is the number of degrees of freedom. The
nonlinear increase in runtime before the fourth refinement step can be explained
by the memory hierarchy of the computer. No explanation on the bump in the
sixth refinement step was found. The bump persisted across multiple runs and
a detailed memory traffic analysis that might explain the behavior was not
feasible.

15The Pardiso. j1 package was used to call the Pardiso library. See: https://github.com/Ju-
liaSparse/Pardiso.jl
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N Setup time Assembly time Sparse solver time |ju — unl|lo

12 0.00243636 0.421545 0.000470896 6.43083e-5

35 0.00377534 0.0011894 0.000772178 7.67773e-7

117 0.00360992  0.00198156 0.00792169 1.08240e-8
425 0.00420641 0.00379326 0.00797907 1.62498e-10
1617  0.00455445 0.0120698 0.02377 2.46452e-12
6305 0.00584542  0.0546963 0.130999 3.74386e-14
24897  0.00359999 0.113003 0.480396 5.69799e-16
98945 0.00480784  0.479446 1.7126 8.69804e-18
394497  0.00698595 2.28516 7.38854 1.33855e-19
1575425 0.0121419  8.18097 36.5552 2.75770e-21

Table 8.2: Timings in seconds for quadratic Lagrangian finite elements on a

sequence of meshes created by regular refinement. N is the number of degrees

of freedom.
—»— Linear Lagrangian FE
O(N)
101 N
100 4
)
()
£
5 1071 4
4
10—2 N
=
10—3 N
10! 102 103 104 10°

N

Figure 8.3: Number of degrees of freedom plotted against the runtime of the
assembly of the Galerkin matrix and right hand side vector. The runtime on
the unrefined mesh is omitted..
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Evaluation First of all it should be noted that the relativly long runtimes for
the lowest value of N are an artefact, stemming from the fact that in the first run
Julia is still compiling code. The evaluation of the timings without a theoretical
performance analysis or direct comparisons to other libraries is quite difficult.
Looking at the timings given in [I] the timings seem rather competitive. A
detailed comparison however is not meaningful since the timings given there are
for the Galerkin matrix assembly only, a constant ¢, and a different quadrature,
and are therefore omitted. Considering only single core performance I conclude
from the timings that TipiFEM’s design goal of being a performant library has
been met. However, considering that nearly 50% of the assembly time is spend
in the garbage collector and no caching of the evaluation of shape functions and
their gradients has been done shows that there is still optimization potential.
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9

Discussion of the Julia Programming Language

The development of TipiFEM was my first development of a larger library in
Julia. In this section I want to discuss the my experiences with the language.
Most topics covered in this section are not tied to the implementation presented
in this paper and might be interesting to everyone that develops numerical
libraries in Julia or is assessing Julia’s current state to see whether it is suitable
for a given use case.

9.1. Type Inference

Type inference algorithm Dynamically typed programming languages re-
quire by definition no type declaration on variables. The process of automati-
cally deducing the type of expressions is termed type inference and the algorithm
that executes this deduction is a type inference algorithm.

Abstract types An abstract type is a type that cannot be instantiated directlymd.
A type that is not abstract, thus can be instantiated directly, is a concrete type
or leaf type.

Problem description In Julia abstract types have no structure, i.e. no fields,
and therefore their memory layout is not known to the compiler. Therefore ac-
cessing fields of abstract types induces a significant overhead. This induces sig-
nificant overhead in case abstract types are accessed frequently and this should
therefore be avoided m However, even though all types of expressions that
return concrete types may be deducible in theory, in practice this process some-
times fails. I observed two major causes where the process failed:

- Instantiation of types whose type parameters were specified by constant
expressionﬂ Since currently type inference is run after constant fold-
ing/ propagatiorffl7 the type cannot be deduced because the type parame-
ters are only known after type inference. This problems are difficult to find

16T his is also one of the reasons for the various mesh function datatypes.
TFor example 2*2 is a constant expression.
18See https://en.wikipedia.org/wiki/Constant_folding
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because the type annotated code, that can be displayed in julia, contains
the result of the constant expression only, thus hiding its origin.

- Access to fields of types that are so complex that the type inference gives
up on them. This problems are nearly impossible to find without knowl-
edge of the type inference algorithm. This is because every reduction of
the code may just render it simple enough such that the types are infered
well enough.

The two causes stated were a major cause of performance degradation in Tip-
iFEM and lead to a situation in which most of my time assigned to optimization
was spend on finding occurrences in which types were not infered well enough,
even though the actual fix was often easy. This time however could have been
better spend on other optimizations. Especially because I only optimized per-
formance critical parts where I used concrete datatypes anyway.

Possible solutions & workarounds

- Wrap constant expressions into a pure functions. Sometimes this works,
sometimes it doesn’t. This problem will probably disappear after Julia
issue #5560 is closed.

- Increase the tupletype_len, tuple_depth, tuple_splat,
apply_union_enum of Julia’s inference algorithm. Unfortunately this re-
quires a recompilation of Julia.

Furthermore, I think that Julia would profit significantly from a mechanism to
annotate expressions in which all variables and accessed fields are required to
be concrete typeﬂ This could then be verified by the compiler and hints on
the location should be printed. I assume this would eliminate most of the time
spend on fixing problems with inference.

9.2. Metaprogramming / Code generation

The two most important features for metaprogramming in Julia are Lisp-style
macros and @generated functions. Both of this features are heavily used in Tip-
iFEM and I want to give an example demonstrating their superiority compared
to macros in C/C++ and template metaprogramming in C++.

@dim_dispatch macro The first example is the @dim_dispatch macro that,
given a function definition with type parameter K, with K a codimension zero
cell that takes arguments of type Dim or Codim, generates a set of wrapper func-
tions by altering the function signature such that each Dim argument can be
specified as a Codim argument and vice versa. One of the functions that makes
use of this macro is connectivity(msh::Mesh{K}, i::Dim, j::Dim) where K

Gee https://github.com/Julialang/julia/issues/5560
20A discussion about this can be found at https://github.com/Julialang/julia/issues/
10980.
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<: Cell that, given a mesh and two dimensions, returns the mesh connectivity
cM,i—j- Given the definition of this function the macro automatically detects
that the i and j argument are of type Dim and generates three additional func-
tions with the following signatures:

- connectivity(msh::Mesh{K}, i::Codim, j::Dim) where K <: Cell
- connectivity(msh::Mesh{K}, i::Dim, j::Codim) where K <: Cell
- connectivity(msh::Mesh{K}, i::Codim, j::Codim) where K <: Cell

Macros in C/C-++ are not capable of such transformations because they do not
allow for examination of the abstract syntax tree, which makes them useful only
in a much smaller subset of cases. It should be noted that there are ways of
doing something similar in C-++11, but certainly not with the same productivity
and elegance that Julia’s Lisp-style macros offer.

9.3. Memory Allocation

Except for immutable composite objects, objects in Julia are usually allocated
on the heaﬂ While this is very convenient and in certain cases also more
efficient than reference counting often allocation and garbage collection are a
bottleneck. This is especially true if an object allocated inside of a subroutine
does not escape to the calling subroutine. In that case allocation on the stac@ is
often significantly faster. There exist mainly two workarrounds for this: Either
one allocates the object in global scope once or if the caller calls the callee
multiple times, allocates the object in the caller and passes it as an additional
argument to the callee. The first approach however is problematic because it is
not thread-safe and the second approach is too intrusive and harnesses flexibility.
The only clean solution is to do escape analysis to avoid the allocation on the
heap in such cases and since this is currently under active developmen@ it was
decided that the performance degradation that I observed in TipiFEM can be
tolerated until development of this feature has completed. The element matrix
assembler currently suffers from this issue. There 50% of the time is spent on
garbage collection only. I think that this is currently a huge disadvantage over
C/C++.

9.4. Volatility of the Language and Package Ecosystem

At the time I started developing TipiFEM in the end of 2016 the most recent
stable version of Julia was 0.5. I quickly switched to the nightly version 0.6
mainly because of the new features introduced to the type system in that version.

21See https://en.wikipedia.org/wiki/Dynamic_memory_allocation
22See https://en.wikipedia.org/wiki/Stack-based_memory_allocation
2See https://github.com/Julialang/julia/pull/8134
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Now in June 2017 Julia 0.6 is mostly finished. During that time I have observed
a lot of changes that were sometimes quite significant and broke a lot of my
code. I want to give two examples because they allow to assess whether Julia is
already mature enough for production use.

Example 1 - @generated function A lot of type instability issues that I
encountered occurred because of if statements that branch depending on the
dimension of a cell, given as an argument. Since the cell type was often accessible
at compile time, i.e. because it was a type parameter, those branches were easily
eliminated by the use of generated functions that just evaluated the branch
condition at compile time and only returned the code of the taken branch. Such
functions occurred often in the abstract mesh implementation. The definition
of the dimension of a cell is located in the concrete mesh implementation and
therefore compiled at a later time point. At some point in the development
cycle of 0.6, generated functions became restricted to use only functions that
were defined before the generated function was defined. Thus the example given
above broke. While there are reasons for this change it has still cost me days
to rewrite my code such that it worked again. Such breaking changes are quite
rare, but they occur and I do not expect them to disappear until at least version
1.0.

Example 2 - Switch from FixedSizeArrays.jl to StaticArrays.jl At
first I used the FixedSizeArrays.jl package to represent vectors and matri-
ces of fixed size because they are much more efficient for small vector/matrix
sizes than the built in vector and matrix types where the size is not stored in a
type parameter. This package however was deprecated at some point because
new features in Julia version 0.6 allowed for a more powerful implementation.
I then switched to the new StaticArrays.jl. This however required rewrit-
ing all code that used fixed size vectors and matrices and additionally all of
my datastructures that inherited functionality from types in the FixedSizeAr-
rays. j1 package. Therefore one should be aware that even packages that are
used by quite a few other Julia packages because they provide basic functional-
ity may just be abandoned and will stop working in more recent versions of Julia.

The lesson I learned from these two examples is that the Julia language and
also its package ecosystem are currently very volatile, which increases develop-
ment time and makes its prediction difficult.

9.5. Introspects

Since Julia aims to be a high performance language, it comes with a set of
tools to analyse the different stages of its compilation process. These tools
were heavily used during the development of TipiFEM to spot potential perfor-
mance bottlenecks like dynamic memory allocation, unnecessary bound checks,
incomplete constant propagation or missing function inlining. Below you find
a concrete example of how easy it is in Julia to gather information about the
generated machine code:

48



julia> @code native connectivity(mesh, Dim{2}(), Dim{0}())

. text
Filename: mesh.jl
pushqg srbp
movq Srsp, srbp
Source line: 133
movq 8(%rdi), %rax
movq (%rax), S%rax
movq 48(%rax), %rax
popq srbp
retq
nopw %cs: (Srax, srax)

Figure 9.1: x86 assembly code of the connectivity function.

9.6. Contributions to the Package Ecosystem

9.6.1. ExtendedParametricTypes & ComputedFieldTypes

Julia version 0.6 does not support specifying field types of a parametric type that
depend on one of the type parameters. During early development this has shown
to be an unfeasible constraint in writing an efficient and maintainable mesh
implementation. Most of the datatypes in the mesh implementation depend
in some way on the dimension or the number of vertices of a cell. Specifying
these values as an additional type parameter, which is how the StaticArrays
package deals with this issue, is not only redundant, but it also requires writing
special constructors and time consuming type stability optimizations for every
datatype. I have therefore developed a package that uses metaprogramming
to add this functionality in a type stable fashion thus eliminating the need to
optimize for type stability for every new datatype. While the type stability
has proven to be very difficult it was essential for performance reasons and
could be achieved by using what Julia calls a pure function. "Inspired” by this
package Jameson Nash, a Julia maintainer, has developed an improved package
ComputedFieldTypes providing similar functionality. This package was a major
improvement in terms of code quality and ease of use but suffered from some
type instability issues in complicated cases required in TipiFEM. I can report
to have successfully resolved these issues and a pull request asking to merge my
improvements back is currently pending.

9.6.2. SimpleRepeatIterator

During the population of the topology datastructure an iterable type was re-
quired to efficiently represent the local indices of all edges. Since the local indices
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are the same for every cell of one cell type, storing them explicitly is unnecessar-
ily wasteful in terms of memory space and bandwidth usage. Thus Julia’s built
in function repeat function cannot be used because it stores every element ex-
plicitly. T have therefore developed the SimpleRepeatIterator. j1 package pro-
viding the same functionality as Julia’s built in repeat function, but without the
wasteful allocation. The package is freely available under the MIT Expat license
at https://github.com/tehrengruber/SimpleRepeatIterator. jl.

9.6.3. EvalInModuleREPLMode

While Julia is a Just-In-Time compiled language with a REPI@ which allows
writing code line by line, the development of code that is located inside a pack-
age/module, in this case TipiFEM, was tideous at the beginning. One had to
either modify the source files and recompile the complete package or wrap the
new code inside an eval call. This lead to a significant decrease in productivity
that was regained by the EvalInModuleREPLMode package. The package intro-
duces a new REPL mode such that when one presses : one can type a module
in which one wants to evaluate code in and afterwards paste in the code to be
evaluated. If no module is specified the previously used one is chosen. Therefore
with this new package in most cases pressing : followed by <Enter> and pasting
in the code is enough to evaluate code inside a module, significantly increasing
productivity of package development.

24Read-Eval-Print Loop
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10

Conclusions

In the previous chapters the TipiFEM library has been introduced. Its mesh
datastructure has been described and example codes have been given of how it
can be used. Additionally the mesh topology construction algorithm for hybrid
meshes with topological dimension two has been given. Afterwards the usage
of quadrature rules and quadrature rule lists in TipiFEM has been explained.
Later on the assembly procedure of the Galerkin matrix and right hand side
vector has been described. Then a second order elliptic boundary value problem
has been solved using TipiFEM. Its timings showed that the implementation is
indeed efficient. Therefore the main goal of this thesis to develop an efficient
finite element solver in a dynamic programming language has been achieved. My
experiences and the timings of the solver showed that Julia is a very promosing
language, but also that there are some problems with type inference and memory
allocation that need to be solved before it will be ready for production use.
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