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Abstract

Various methods for the solution of a shape optimization prob-
lem via pursuing diffeomorphism are discussed. As a model problem,
an instance of a Bernoulli exterior free boundary problem is consid-
ered. The solvers described belong to the category of Descent methods.
These methods propose different ways of evaluating both descent di-
rections and step sizes, with various degrees of numerical accuracy.
The properties of these methods are analysed and compared, paying
specific attention to their computational costs and convergence rates.

1 Introduction

The aim of solving a shape optimization problem consists in finding a cer-
tain shape (or domain) Ω that is optimal in the sense that it minimizes a
given cost functional J . Problems of this sort are of major importance in
engineering, and find their applications for instance in aerodynamics or in
structural mechanics. Examples might be finding the profile of an airfoil that
minimizes the total drag, or the shape of a beam that can best resist a given
load. The value of the functional J is influenced by the shape itself, but it
might also depend on some other variable defined on the above-mentioned
domain, u(Ω). This variable is called state variable, and could represent a
displacement, a velocity or a temperature field. In the case the value of such
state is recovered via the solution of a Partial Differential Equation (PDE),
or state equation, the problem considered is said to have a PDE constraint.
Unfortunately, in the majority of applications, an analytic expression for the
solution is not available; therefore, a numerical approach must be invoked.

The Bernoulli exterior free boundary problems represent a large set that
falls within the category of PDE constrained shape optimization problems
[11, 4, 13]. They appear in a range of applications, from Fluid-dynamics to
Thermodynamics, and due to their characteristics are often used as models
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for the evaluation of numerical schemes [12]. The scheme discussed in this
paper belongs to the class of fixed-mesh methods (see for example [7, 8]), as
a counterpart to moving-mesh methods [9, 10]. This work is to be considered
as a continuation of what has been done by R. Hiptmair and A. Paganini in
[6], and it is inserted in its set-up.

The peculiarity of fixed-mesh methods consists in searching the optimal
shape via a map from the initial domain Ω0 to the optimal one Ω. The true
unknown of the problem becomes then the map itself. As a main advantage
of this approach, there is no need to update the shape step-by-step as the
optimization algorithm proceeds. This may instead represent an issue in
moving-mesh methods, since for them a way to update the mesh too must
be found, which is often not a trivial task. This is due to the fact that, as
the mesh is changed to take into account the modifications applied to the
domain, its initial quality may not be preserved.

In the following, the mathematical description of the problem considered
is given.

2 Problem definition

2.1 Exterior Bernoulli free boundary problem

Following the derivation described in [2], we consider the following overdeter-
mined Boundary Value Problem (BVP) on a domain with an annular shape
Ω0 

− div(∇u) = 0, in Ω0

u = 1, on ∂Ωin
0

u = 0, on ∂Ωout
0

‖∇u‖ = 1, on ∂Ωout
0 .

(1)

A sketch of the domain Ω0 can be seen in Fig.1. We fix a-priori the inte-
rior boundary ∂Ωout

0 and we formulate the following exterior Bernoulli free
boundary problem: find a new domain Ω by modifying ∂Ωout

0 in such a way
that (1) admits a solution, while preserving an annular shape.

2.2 Shape optimization problem

It can be shown that the exterior Bernoulli free boundary problem described
in 2.1 can be reformulated as a shape optimization problem with PDE con-
straints [2]. In order to provide the formulation of this problem, we introduce
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∂Ωin

∂Ωout

Ω

Figure 1: Sketch for the domain of the BVP (1). The internal border ∂Ωin

is fixed, while ∂Ωout is modified to find the optimal shape.

the cost functional

J (Ω, u(Ω)) =

∫
Ω

(∇u∇u+ 1)dx, (2)

and the PDE that acts as constraint, which is also called the State Equation
− div(∇u) = 0, in Ω0

u = 1, on ∂Ωin
0

u = 0, on ∂Ωout
0 .

(3)

The PDE-constrained shape optimization problem we consider can then
be formulated as follows

min
Ω∈Uad

J (Ω, u(Ω)) s.t. (3), (4)

where Uad denotes the set of admissible shapes.

2.3 Admissible shapes

We define the set of admissible shapes as

Uad := {Ω = TV(Ω0) | TV := I + V , ‖V‖C2(Ω0) ≤ 1− ε, TV(∂Ωin
0 ) = ∂Ωin

0 },

given a fixed small real number ε. Here, Ω0 is the initial domain which is
assumed to have Lipschitz boundary, I represents the identity operator, and
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TV is a map that preserves the internal boundary ∂Ωin
0 , defined as following:

TV : Rd → Rd,

x 7→ TV(x) := x+ V(x).

By TV(Ω0) we denote the image set of the map TV restricted to Ω0.
We assume that the vector field

V : Rd → Rd

satisfies the condition ‖V‖C2(Ω0) < 1, so that TV is a diffeomorphism [1,
Lemma 6.13]. As a consequence of this requirement, we have that

det (DTV)(x) > 0 ∀x ∈ Rd,

where DTV denotes the Jacobian of TV .

2.4 Shape optimization in parametric form

With the change of coordinates induced by TV , we can formulate the state
equation (3) on the initial domain Ω0, as in the following

− div(MV ∇u) = 0, in Ω0

u = 1, on ∂Ωin
0

u = 0, on ∂Ωout
0 ,

(5)

where
MV := DT−1

V DT−TV |det (DTV)| . (6)

This can be easily seen by noting that, given the map x̃ = F (x), it holds∫
Ω

∇u(x)∇ v(x) dx =

∫
Ω̃

(DF−T ∇̃u(x̃))(DF−T ∇̃v(x̃)) |det DF | dx̃,

where ∇̃ denotes the gradient in x̃ coordinates. In our case, we just have to
substitute Ω̃ = Ω0 and F = TV , and note that the formula above appears in
the weak formulation of the problem (5).

Similarly, the functional defined in (2) can be re-cast in a form that
depends on the mapping TV or, more precisely, on V

J (V , u(V)) =

∫
Ω0

∇uMV ∇u dx +

∫
Ω0

|det(DTV)| dx. (7)
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In this way, we have dropped the dependency of J on the shape itself Ω,
substituting it with a parametrization described by V .

The shape optimization problem (4) can then be reformulated in the
following parametric form

min
‖V‖C2(Ω0)≤1−ε

J (V , u(V)) s.t. (5), (8)

with V becoming our so-called control variable.

3 First order Fréchet derivative

In order to evaluate the first derivative of the cost functional (7), we need
to provide relations to express the derivatives of some quantities of interest
with respect to V , along the direction Ṽ . This will be denoted as

δṼ(∗) =
〈
d(∗), Ṽ

〉
.

Lemma 3.1 (Fréchet derivative of det (DTV)).

δṼ(det (DTV)) = det (DTV)tr(DT−1
V DṼ). (9)

Proof. Using the definition of the mapping TV and of the Fréchet derivative
along the direction Ṽ , we have

δṼ(det (DTV)) = lim
ε→0

det(DTV + εDṼ)− det(DTV)

ε
.

The first term of the numerator can then be rewritten as follows (I represents
the identity matrix)

det(DTV + εDṼ) = det((DTV)(I + εDT−1
V DṼ))

= det(DTV) det(I + εDT−1
V DṼ)

= det(DTV)(1 + ε tr(DT−1
V DṼ)) +O(ε2).

If we substitute this in the definition above, we get

δṼ(det (DTV)) = lim
ε→0

������
det(DTV) + ε det(DTV)tr(DT−1

V DṼ)−������
det(DTV) +O(ε2)

ε
.

Hence, the proof.
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Lemma 3.2 (Fréchet derivative of MV).

δṼMV = det (DTV)DT−1
V

[
tr(DT−1

V DṼ)I

− DṼDT−1
V −DT−TV DṼT

]
DT−TV .

(10)

Proof. Starting from the definition of MV in (6) and differentiating it brings
to

δṼMV = δṼ(DT−1
V DT−TV det(DTV))

= δṼ(DT−1
V )DT−TV det(DTV)

+DT−1
V δṼ(DT−TV ) det(DTV)

+DT−1
V DT−TV δṼ(det(DTV)).

We need to recover an expression for the terms δṼ(DT−1
V ) and δṼ(DT−TV ).

Starting from the first one, we use once again the definition of derivative to
get

δṼ(DT−1
V ) = lim

ε→0

(DTV + εDṼ)−1 −DT−1
V

ε
.

By re-writing the first term in the numerator as

(DTV + εDṼ)−1 = ((DTV)(I + εDT−1
V DṼ))−1

= (I + εDT−1
V DṼ)−1(DTV)−1

= (I − εDT−1
V DṼ)(DTV)−1 +O(ε2),

and substituting it in the definition above, we get

δṼ(DT−1
V ) = lim

ε→0

�
���DT−1
V − εDT−1

V DṼDT−1
V −����DT−1

V +O(ε2)

ε
,

and finally
δṼ(DT−1

V ) = −DT−1
V DṼDT−1

V . (11)

Following a similar procedure, we recover an analogous result for the second
term:

δṼ(DT−TV ) = −DT−TV DṼTDT−TV . (12)

It is possible now to use the relations (9), (11), (12) to rewrite δṼMV as

δṼMV = −DT−1
V DṼDT−1

V DT−TV det(DTV)

−DT−1
V DT−TV DṼTDT−TV det(DTV)

+DT−1
V DT−TV tr(DT−1

V DṼ) det(DTV),

which, after some rearrangements, gives (10).
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Thanks to the relations proven above, we can provide an expression for
the derivative of J .

Proposition 1. The first order Fréchet derivative of the cost functional (7)
evaluated along the direction Ṽ is given by the formula〈

dJ (V), Ṽ
〉

=
∫

Ω0
∇u(V)δṼMV ∇u(V)dx

+
∫

Ω0
det (DTV)tr(DT−1

V DṼ)dx.
(13)

Proof. We easily get〈
dJ (V), Ṽ

〉
= 〈Ju, δṼu〉+

〈
JV , Ṽ

〉
= 2

∫
Ω0
∇uMV ∇ δṼu dx (A)

+
∫

Ω0
∇uδṼMV ∇u dx

+
∫

Ω0
δṼ(det (DTV)) dx, (B)

(14)

where J∗ denotes the first partial derivative of J with respect to the variable
∗.

We can immediately re-write term B by using (9), in order to get

B =

∫
Ω0

det (DTV)tr(DT−1
V DṼ)dx.

Let us focus now on term A, where it appears the sensitivity of the state u
with respect to the control Ṽ , i.e.,

δṼu =
〈
du(V), Ṽ

〉
.

We note that δṼu|∂Ωin
0

= δṼu|∂Ωout
0

= 0, since the value of u is fixed on the

boundaries and it does not depend on V . This implies that δṼu can be used
as a test function for the weak form of (5), and hence, since u is a solution
of the same equation, ∫

Ω0

∇uMV ∇ δṼu dx = 0.

Thus we can neglect the term A in (14) and retrieve the final expression
(13).
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4 Second order Fréchet derivative

We denote by

δ2
W̃,Ṽ(∗) =

〈
d2(∗)(W̃), Ṽ

〉
the second derivative of a quantity (∗) evaluated along the directions W̃ first
and then Ṽ .

Lemma 4.1 (Second order Fréchet derivative of MV).

δ2
W̃,ṼMV := δṼMVtr(DT−1

V DW̃)− (DT−1
V DW̃)δṼMV − δṼMV(DW̃TDT−TV )

+ det (DTV)DT−1
V

[
−tr(DT−1

V DṼDT−1
V DW̃) I

+ (DṼDT−1
V DW̃DT−1

V ) + (DT−TV DW̃TDT−TV DṼT )
]

DT−TV .

(15)

Proof. We start from (10) and then differentiate again to get

δ2
W̃,ṼMV = δṼ(δW̃MV)

= δṼ

(
det (DTV)DT−1

V

[
tr(DT−1

V DW̃)I

− DW̃DT−1
V −DT−TV DW̃T

]
DT−TV

)
= δṼ(det (DTV)DT−1

V DT−TV ) tr(DT−1
V DW̃) (A)

−DT−1
V DW̃ δṼ(det (DTV)DT−1

V DT−TV ) (B)

−δṼ(det (DTV)DT−1
V DT−TV ) DW̃TDT−TV (C)

+(det (DTV)DT−1
V DT−TV ) δṼ(tr(DT−1

V DW̃)) (D)

−δṼ(DT−1
V DW̃) det (DTV)DT−1

V DT−TV (E)

− det (DTV)DT−1
V DT−TV δṼ(DW̃TDT−TV ). (F)

By using the definition of MV in (6), the factors δṼ(det (DTV)DT−1
V DT−TV )

that appear in the terms A, B, C can be transformed to δṼMV , thus getting

A = δṼMVtr(DT−1
V DW̃)

B = −(DT−1
V DW̃)δṼMV

C = −δṼMV(DW̃TDT−TV ).

Moreover, the linearity of the trace operator allows to commute tr with δṼ
in term D. All that is left to evaluate, then, are the factors

δṼ(DT−1
V DW̃) = δṼ(DT−1

V )DW̃

in D and E, and

δṼ(DW̃TDT−TV ) = DW̃T δṼ(DT−TV )
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in F. For these, the relations (11) and (12) are used again. After some
rearrangements, expression (15) is then recovered.

We are ready to provide an expression for the second derivative of J .

Proposition 2. The second order Fréchet derivative of the cost functional
(7) evaluated along the directions W̃ and Ṽ is given by the formula〈

d2J(V)W̃ , Ṽ
〉

= 2
∫

Ω0
∇uδṼMV ∇ δW̃u dx

+
∫

Ω0
∇uδ2

W̃,ṼMV ∇u dx
+
∫

Ω0
det (DTV)tr(DT−1

V DW̃)tr(DT−1
V DṼ) dx

−
∫

Ω0
det(DTV)tr(DT−1

V DW̃DT−1
V DṼ) dx.

(16)

Proof. Starting from the definition of J and differentiating twice gives the
general formula〈

d2J (V)W̃ , Ṽ
〉

= 〈JuuδW̃u, δṼu〉+
〈
JuVW̃ , δṼu

〉
(A)

+
〈
JVuδW̃u, Ṽ

〉
+
〈
JVVW̃ , Ṽ

〉
(B)

+
〈
Ju, δ2

W̃,Ṽu
〉
, (C)

where J? ∗ denote the second partial derivative of J with respect first to ?
and then to ∗.

The last term C can easily be simplified with the same procedure applied
to the sensitivity term in the first order derivative: since the value of u is
fixed at the border, δ2

W̃,Ṽu vanishes at ∂Ω0, and it can be used as a test

function for (5). Applying Ju results in the weak form of the state equation,
which then shows that C = 0.

Term A too reduces to 0. Considering the constraint induced by (5), i.e.,

e(V , u(V)) = − div(MV ∇u) = 0,

and by differentiating it with respect to V along the direction W̃ , we recover
the expression 1

euδW̃u+ eVW̃ = − div (MV ∇ δW̃u)− div (δW̃MV ∇u) = 0. (17)

Together with the usual boundary condition on δW̃u, (17) can be written as
the following PDE, also named sensitivity equation{

− div (MV ∇ δW̃u)− div (δW̃MV ∇u) = 0 in Ω0

δW̃u = 0 on ∂Ω0.
(18)

1This result is also a consequence of the implicit function theorem [15]. See for example
[3, Par. 1.4.2].
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It can be easily seen that, apart from a factor of 2, term

A = 2

∫
Ω0

[∇ δW̃uMV ∇ δṼu+∇uδW̃MV ∇ δṼu] dx,

corresponds to the weak formulation of (18), where δṼu has been used as a
test function. Since δW̃u must satisfy (18), then, A = 0.

This further simplifies the expression for the second order Fréchet deriva-
tive of J , which is now reduced to the sole term B. Using again the relations
(9), (11) and (12), the proof is concluded.

5 Descent method

In order to solve the shape optimization problem (8), a Descent method has
been set up [3, chap. 2.2]. The basic form of the algorithm is analogous to
the one presented in [6] and is described in Algorithm 1.

Algorithm 1: Generic descent method

Set parameters γ ∈ (0, 1), ε > 0, itmax;1

Start from an initial design Ω0;2

Initialize Ṽ = 0, Ṽ temp = 0;3

for k=0 to itmax do4

Evaluate solution u(Ṽ temp) of (5);5

Evaluate cost functional at current position:6

J new = J (Ṽ temp, u(Ṽ temp));
if (k > 0) and

(
J new − J old > γσ̃old

〈
dJ (Ṽ), Ṽnew

〉)
then7

Halve step size: σ̃new = σ̃old/2;8

else9

Set Ṽ = Ṽ temp, J old = J new;10

Evaluate gradient at current position: dJ (Ṽ);11

Find a descent direction: Ṽnew;12

Find a step size: σ̃new;13

Set σ̃old = σ̃new;14

Update map: Ṽ temp = Ṽ + σ̃newṼnew;15

while (min(det (DTṼtemp)(Ω0)) < ε) do16

Halve step size: σ̃new = σ̃old/2;17

Set σ̃old = σ̃new;18

Update map: Ṽ temp = Ṽ + σ̃newṼnew;19
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The condition min(det (DTVtemp)(Ω0)) > ε must be fulfilled for the map
TV to be a diffeomorphism. The condition that requires to halve the step

size in case J new −J old > γσ̃old
〈
dJ (Ṽ), Ṽnew

〉
, is known as Armijo rule [3,

Par.2.2.1.1], and ensures that the chosen step sizes are admissible.
The methods used to recover the descent direction Ṽnew and the step size

σ̃new determine the algorithm. In this work, three different approaches have
been used, whose definition is given next.

5.1 Steepest Descent

As a first approximation, a representative of the gradient dJ (Ṽ) is chosen
as a descent direction, and the new step size σ̃new depends on the one at the
previous iteration. In this study, an initial step size of σ̄ = 0.3 is used. Lines
12 and 13 in Algorithm 1 are then modified as in Algorithm 2.

Algorithm 2: Steepest Descent: modifications to Algorithm 1

12a Recover H1 representative of dJ (Ṽ), i.e.,

∇JH1 = argmin
‖V‖H1(Ω0)=1

〈
dJ (Ṽ),V

〉
;

12b Set Ṽnew = −∇JH1 ;
13 Set the new step size as: σ̃new = 2σ̃old;

The choice of the H1 representative of the gradient is somewhat arbi-
trary, but indeed it shows a better regularity than their Euclidean or L2

counterparts.

5.2 Employing second order derivative

This approach aims to recover a better approximation of the cost functional
(7) via Taylor expansion by employing information regarding its second order
directional derivative (16). This allows us to choose an optimal step size at
each iteration by solving a (trivial) minimization problem. In this case, step
13 in Algorithm 2 is replaced as in Algorithm 3.

We point out that in order to recover the full second derivative it is nec-
essary to solve the sensitivity equation (18), whose right-hand side depends
on the direction Ṽk. As an alternative, one can neglect the term of (16) that
depends on the sensitivity δW̃u, and employ just partial information of the
second derivative, thus avoiding the need to solve and additional PDE.

All three the variants described have been tested for efficiency and com-
putational cost. The results are discussed in sections 7 and 8.
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Algorithm 3: Higher order information: modifications to Algorithm 2

13a Evaluate first derivative of the cost functional along Ṽnew:

b =
〈
dJ , Ṽnew

〉
;

13b Evaluate second derivative of the cost functional along Ṽnew:

a =
〈
d2J (Ṽnew), Ṽnew

〉
;

13c Find the step size σ̃new by solving: σ̃new = argmin
σ

1

2
σ2a+ σb;

6 Discretization aspects

In order to recover a numerical solution of the problem (8), discrete approx-
imations for both the state variable u and the control variable V need to be
given. The details are described in the following.

State A Finite-Elements approach [17, Chap.4] is used to provide a dis-
cretization of the state variable uh ≈ u. To do this, a set of piecewise linear
Lagrangian basis functions φi is constructed on a triangular grid on the do-
main Ω0. These functions are defined such that φi(xj) = δi,j for each node
xj of the mesh, where δij is the Kronecker delta. Any finite-element function
can then be expressed as a linear combination of these basis functions,

uh =
n∑
i=1

uiφi, (19)

where n is the number of mesh nodes (which corresponds to the number of
basis functions).

Boundary value problems like (5) or (18) can be approximated via a
Galerkin method (again, [17, Chap.4]), which in our case gives rise to a
linear system in the form Au = b, with (u)i = ui, the coefficients in (19).
For example, if we consider (5), we have

Aij =

∫
Ω0

∇φjMV ∇φi dx, (20)

while b = 0 (before boundary conditions are applied). A is also called
stiffness matrix. For (18), we have instead (b)i = −

∫
Ω0
∇uMV ∇φi dx.

Control A similar approach is used also to discretize the control variable
V . We introduce a uniform Cartesian grid that covers the domain Ω0, and
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on it we define a set of m cubic B-splines basis functions, ψi [16, Chap.7.6].
We consider discrete vector fields Vh in the form

Vh =
m∑
i=1

ψi

2∑
d=1

νi,ded, (21)

with ed being the basis vectors of R2. We point out that cubic B-splines basis
functions have a compact support that spans only 4 ∗ 4 = 16 grid cells: this
property has some remarkable effects on the algorithms for the evaluation of
the derivatives of J , as explained in section 7.

7 Cost analysis

The most relevant functions of the algorithm are those responsible of solving
the PDEs (5) and (18), and those evaluating the first (13) and second (16)
directional derivatives of the cost functional J .

PDE solver For solving the State and Sensitivity equations, functions from
the library LehrFEM have been used in order to assemble the matrix related
to the problem at hand, as described in section 6. Build-in Matlab functions
for the solution of the resulting linear systems are employed to retrieve the
approximations uh and δṼuh.

The effort required to solve the systems varies depending on the properties
of matrix (20). A is symmetric and sparse, because MV is symmetric and the
support of any φi is bounded. Therefore, the order of the computational cost
for solving (5) and (18) lies in between O(b2n), for a banded symmetric linear

system with bandwidth b [18], and O(n
3
2 ) for a generic sparse symmetric

matrix [19], given n Finite-Elements basis functions.
The solution u of (5) is used both for retrieving the value of the functional

(7) at the current iteration and for building up the operator dJ . The solution
δW̃u of (18), is used instead to recover the value of d2J along the desired
descent direction, in the case where full information of the second directional
derivative is employed.

Derivatives of J In order to retrieve a representative of the operator dJ ,
we need to evaluate (13) for every basis vector field ψied. This requires
an effort that grows linearly with the number of triangles that compose the
mesh discretizing the domain Ω0, since for any of those the integrand must
be evaluated on a fixed number of quadrature points [20]. On the other
hand, the dependency on the number m of B-splines basis functions is not so
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trivial. In our Matlab code, in order to exploit vectorization, the evaluation
of dJ leads to the construction of a matrix in the form

Bkj =

nQ∑
q=1

nB∑
i=1

ωq∇φi(xq,k)uiδψj
MV(xq,k)∇φi(xq,k)ui, (22)

where ωq is the Gaussian weight for the quadrature point q, nQ is the number
of quadrature points per triangle, xq,k is the position of the quadrature point
q in the triangle k, and nB is the number of FEM basis functions with support
on a triangle (in our case, where piecewise linear φi are used, nB = 3 for
every triangle k). B is then an n × m matrix, but since the support of
ψi is limited (as described in section 6), it is also sparse. In fact, for each
row of (22) (meaning, for each triangle k), the number of non-zero elements
equals the number of splines whose support contains at least one of the
quadrature points of k. The complexity of the algorithm directly depends
on the number of non-zero elements of B. This in its turn depends on the
mutual arrangement of the quadrature points and the support of the splines
basis functions. The more the quadrature points in each element are close
to each other, the higher is the chance of them all residing in the support of
the same spline basis functions, hence the fewer non-zero elements (22) has.
Vice-versa, if the quadrature points are spread apart in the triangle, then
increasing the number of splines basis functions ends up in increasing the
number of non-zero elements of (22). An example of this is shown in Fig.2.
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Figure 2: Depending on how the quadrature points (red dots) are spread
apart in the triangle, refining the B-splines grid (squared dashed line) might
increase the amount of B-splines basis functions ψi whose support contains
at least one quadrature point. In the case described in the top row, refining
the mesh (moving from left to right) does not change the number of cells that
contain a quadrature point (gray squares), but it does in the case below.

Fig.4 describes the effect that the disposition of the quadrature points has
on the sparsity of (22). There, the change in the amount of non-zero elements
for different spline grid refinement levels is reported for various quadrature
schemes. A sketch of the disposition of the quadrature points for each scheme
considered is shown in Fig.3.
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Figure 3: Arrangement of quadrature points inside a reference triangle for
various quadrature schemes. The schemes are labelled as as ”PnOm”, ac-
cording to the LehrFEM library manual: here, n stands for the number of
points used, while m defines the order of accuracy.

It is noticeable how, in the case a simple one-point quadrature scheme is
used (P1O2), the sparsity of the matrix (22) is not affected by an increase in
the amount of splines basis functions. That is due to the fact that, given a
fixed point, the number of basis functions whose support includes that point
is fixed, and only depends on the order of splines used2.

2As pointed out in section 6, the support of each basis function covers 4 ∗ 4 = 16
cells. This also means that, for any given point belonging to a specific cell, then 16 basis
functions have a support that contains it. The number of non-zero elements of (22), in
this case, is in fact 198 ∗ 16 = 3168, since 198 elements were used.
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Figure 4: Number of non-zero elements of (22) for different splines refinement
levels, using various quadrature schemes. The number of elements is kept
fixed to n = 198. Please refer to Fig.3 for a description of the quadrature
points positions.

On the other hand, the algorithm for the evaluation of the second order
derivative exhibits a different behaviour. Analogously to what has been de-
scribed before, an approximation of the integrand in (16) must in fact be
recovered for each quadrature point in every triangle. In particular, this re-
quires the computation of terms like DṼh ≈ DṼ . However, we evaluate the
second derivative along a fixed direction. Thus, for each quadrature point,
DṼh can be computed as a linear combination of the derivatives of the basis
vector fields D(ψied). This allows us to get rid of the dependency of the
computational cost of the algorithm on the actual number of B-splines m,
because the number of those whose support intersect a quadrature point is
constant. This is shown in Fig.5, where an averaged timing of the algorithm
is provided, for different numbers of finite elements n and splines m used.
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Figure 5: Average execution times of the function responsible for the evalu-
ation of the second order directional derivative (16). Experiment conducted
for different number of elements n and splines m. Apart from some noise for
the small mesh sizes, the execution time keeps around the same level even
though the number of splines basis functions used increases, as expected from
the analysis conducted. The quadrature scheme used is P3O3.

8 Convergence rates

As additional information is used in the algorithm, one would expect the
convergence rates to improve accordingly, meaning that the algorithm em-
ploying the full evaluation of (16) behaves better than the one that makes use
of its linear part only, which again is better than the simple Steepest Descent
algorithm. A plot of the convergence results can be seen in Fig.6. Here, the
three methods described in Sec.5 have been tested, and the evolution of their
respective normalized error is reported.
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Figure 6: Convergence history of normalized error of cost functional,∣∣∣J k−Jmin

J 0

∣∣∣, for the three different methods. Jmin is the value of the cost

functional at the exact solution, J k is J evaluated at iteration k.

As expected, the algorithm that employs full information from the second
order derivative converges much faster than the others, followed by the one
that neglects the non-linear part of (16). Also, for the Steepest Descent
method, Armijo rule is often applied, as represented by the ”flat” lines in
the graph. In our experiments, this does not happen with the other two
algorithms.

Given the short amount of iterations before saturation is reached, it is
not simple to assess the actual order of convergence of each method. During
the first iterations, the algorithm that employs full second order information
shows some steepening in the convergence curve slope, which might indicate
superlinear convergence. It is not the case for the one that uses only partial
information, which tends to preserve the same slope until saturation. The
behaviour of the Steepest Descent algorithm is instead widely influenced by
the application of Armijo rule.

9 Further Work

More complex algorithms for the solution of the problem considered (8) can
be investigated. For example, if the whole operator d2J is available, then a
Newton method can be applied in order to retrieve a more accurate descent
direction [3, Chap.2]. Such methods look for the minimum of a second order
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approximation of (7) by solving the equation〈
d2J (Vk), sk

〉
= −dJ (Vk), (23)

and use this to update the solution to (8),

Vk+1 = Vk + sk.

However, as the dimension of the problem increases, storing the whole matrix
representing the approximation of the operator d2J could let some memory
issues arise. Moreover, first experiments in this direction show that d2J
present some ill-conditioning, which makes it necessary to apply some stabi-
lization techniques in order to correctly retrieve a solution to (23).

10 Conclusion

This work is inserted in the set-up of [6]. It aims to expand it by comparing
the properties of various Descent Methods applied to the optimization algo-
rithm used to solve (8). In order to access more refined numerical schemes, a
formula for the second order derivative of the cost functional (16) is derived.
The methods considered use various degree of information from both first and
second order derivatives, in order to retrieve appropriate descent directions
and step sizes for the algorithm to proceed. Both theoretical and empirical
computational costs have been investigated, directing particular attention to
their dependency on the number of finite elements and splines basis functions
employed. By the analysis of those, it emerges that the choice of employing
the full second order directional derivative results in higher accuracy at a
relatively small cost. Evaluating (16), in fact, does not increase the degree of
complexity necessary for (13), but it does provide a much faster convergence
of the error with respect to a basic Steepest Descent algorithm.
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