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“Or if he takes whatever dull job he’s stuck with... and they are all, sooner or later,

dull... and, just to keep himself amused, starts to look for options of Quality, and

secretly pursues these options, just for their own sake, thus making an art out of what

he is doing, he’s likely to discover that he becomes a much more interesting person and

much less of an object to the people around him because his Quality decisions change

him too. And not only the job and him, but others too because the Quality tends to fan

out like waves. The Quality job he didn’t think anyone was going to see is seen, and

the person who sees it feels a little better because of it, and is likely to pass that feeling

on to others, and in that way the Quality tends to keep on going.”

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance,

(William Morrow & Company, 1974)
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The implementation of a solver for a shape optimization problem via pursuing diffeo-

morphism is described, discussed and tested. The problem at hand consists in finding an

optimal shape for a toroidal conductor employed in electromagnetic induction heating.

Electric currents inside the conductor are evaluated using a scalar potential approach,

recovered solving an underlying Partial Differential Equation with a Finite-Element dis-

cretization that has been tuned to take discontinuities into account. The magnetic field

on the object that needs to be heated is instead computed applying Biot-Savart law.

The shape itself is described in a parametric manner, using a map built on B-spline

basis functions. With regards to the optimization algorithm, a steepest descent method

is employed.

The code is written using the template library BETL2 developed at ETH, and it is here

described with a focus on computational performance and memory usage. Relevant

parts of the implementation are tested and validated. Numerical convergence results are

reported and discussed for various experiments conducted.
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Chapter 1

Introduction

Shape optimization belongs to a particular set of mathematical problems in which the

unknown that needs to be recovered is a domain Ω ∈ Rd. In general, the optimization

process consists in adapting the shape of Ω in such a way that it minimizes a cost

functional J (Ω). Often we are interested in monitoring a so-called state variable defined

on the domain, u(Ω), hence the cost functional might also be expressed in terms of u, in

addition to the shape itself: J (Ω, u(Ω)). When u can be recovered by solving a Partial

Differential Equation (PDE), we are dealing with a PDE-constrained shape optimization

problem [3].

This kind of problems finds applications in a broad range of Engineering fields, rang-

ing from aerodynamics to thermodynamics and mechanics. The following examples fall

within this category: finding the shape of a wing that minimizes drag effects, the design

of a thermal conductor which can optimally dissipate heat, or again finding the shape

of an arc which can best support a prescribed load. In these examples, the state vari-

ables would be the velocity field, the temperature distribution, or the displacements,

respectively.

In our work, an application to magnetic heat induction [4, Chap. 2] is analyzed. The

process consists in surrounding an electrically conducting object with a circular-shaped

conductor traversed by current. The current induces a magnetic field inside the con-

ductor, which in turn generates eddy currents in the object itself. Consequently, the

object temperature rises due to resistive heating. Compared to other heating processes,

this procedure has some remarkable advantages, in which no contact with an external

heat source is needed, and for this and other reasons it is widely used in industry. Un-

fortunately, analytic expressions for an optimal shape are limited to very simple model

problems and are, in general, not available for complicated geometries or particular

applications. This makes it necessary to rely on numerical approximations.

1



Chapter 1. Introduction 2

Many numerical schemes for shape optimization are available, and most of them can

be gathered into two major groups: fixed-mesh methods (see for example [7, 8]), and

their counterpart, moving-mesh methods [9, 10]. The latter, as the name suggest, try

to approach an optimal shape by progressively updating an initial meshed domain. An

issue of these methods lies in the fact that they need to recover a way to adequately

update the mesh itself, in a manner such that it does not negatively affect its quality.

On the other hand, fixed mesh methods mostly make use of a map to transform the

original shape into the optimized one. The map itself is then sought via step-by-step

updates throughout the whole optimization algorithm.

The work done by R. Hiptmair and A. Paganini in [6] has been used as a guideline for

this project, which takes care of extending it to a 3D case and presenting the results of

its application. In Chap. 2 a mathematical description of the problem at hand is given,

providing a definition of the variables involved, as well as the equations to retrieve them.

Chap. 3 deals with an extended definition of derivative, that can be applied to our cost

functional. This derivative is employed in the algorithm itself, as described in Chap. 4.

Chap. 5 provides some technical aspects related to the discretization methods introduced

to recover an approximation of the solution. Chap. 6 gives a more detailed insight of

the actual implementation of the code, describing the most relevant classes that have

been used, together with their general relationships and purposes. Chap. 7 introduces

some of the tests conducted to verify the correctness of the code. Chap. 8 presents an

overview of the results from the applications of the code to various examples. Finally,

in Chap. 9 are reported some ideas for further expansion and improvements that could

be applied to this work.



Chapter 2

Problem definition

The problem set-up is the following. A current flows in a circular path through a

conductor, thus creating a magnetic field which is particularly intense in the region

encircled by the conductor itself. The object which we intend to heat via magnetic

induction is placed inside this region. To improve the efficiency of the heating system,

we are interested in modifying the shape of the conductor in such a manner that the

magnetic field is more intense on the surface of the object.

In order to provide a proper mathematical formulation of the problem at hand, we need

to introduce some concepts, which are described next.

2.1 Cost functional

We are interested in monitoring the magnetic field H on the surface ∂D of an object

encircled by a conductor Ω. For a sketch of the possible reciprocal positions of Ω and

∂D, see Fig. 2.1. In particular, we consider the component of H that is tangential to

the surface ∂D,

Ht := H− (H · n)n,

with n being the normal to ∂D. We would like this to be as close as possible to a given

tangential target function p. To this purpose, the cost functional we introduce takes

into account the difference between Ht and p, and is defined in the following manner:

Definition 2.1. Cost functional J

J :=

∫
∂D
‖Ht − p‖2 dx.

3
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Ω

∂D
Σ

Figure 2.1: Sketch of the conductor Ω (here in toroidal shape, as will be used in
this work), surrounding the object we intend to heat via magnetic induction, ∂D (a
simple cylinder). The discontinuity surface Σ is a cross-section of the torus itself, and

represents the area where the current is imposed.

By means of the Biot-Savart law1 [11, Par. 8.1], Def. 2.1 can be rewritten as

J =

∫
∂D

∥∥∥∥µ04π

(∫
Ω
−I(ŷ)×∇x

(
1

‖x− ŷ‖

)
dŷ

)
t

− p

∥∥∥∥2 dx,
where ∇(∗)(·) denotes the gradient of (·) with respect to the variable (∗) (when misun-

derstanding could arise), I(ŷ) indicates the electric current flowing inside the conductor

Ω, and (·)t represents the part of (·) that is tangential to the surface ∂D. Introducing

the electric potential û(ŷ) in Ω \Σ and substituting the relation I(ŷ) = −∇ û(ŷ) in the

formula above, we obtain

J (Ω, û (Ω)) =

∫
∂D

∥∥∥∥∥µ04π

(∫
Ω\Σ
∇ û×∇x

(
1

‖x− ŷ‖

)
dŷ

)
t

− p

∥∥∥∥∥
2

dx. (2.1)

2.2 State equation

Given the domain Ω occupied by the conductor, the resulting electric potential û(Ω) is

retrieved by solving the following Partial Differential Equation (PDE):



−div(∇ û) = 0 in Ω \Σ

∇ û · n∂Ω = 0 on ∂Ω \Σ

[û]Σ = const

[∇ û · n]Σ = 0∫
Σ ∇ û · n dx = I

, (2.2)

1For a more correct physical description, a coupled problem using Maxwell’s equations should be
solved: this is just an approximation based on the assumption that the magnetic field in ∂D has no
influence on the current distribution in Ω. Nonetheless, neglecting this influence has only a minor
impact.
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where n∂Ω is the outer normal with respect to the boundary ∂Ω of the domain Ω, n is

the outer normal with respect to the surface Σ, const is an unknown constant, and I

indicates the imposed current flux across Σ. In general [v̂]Σ (x̂) denotes the jump of v̂

across Σ evaluated at a point x̂ ∈ Σ:

[v̂]Σ (x̂) := v̂+(x̂)− v̂−(x̂) = lim
ε→0

[v̂ (x̂ + εn)− v̂ (x̂− εn)] .

The PDE defined in (2.2) is also called state problem or state equation, and its resulting

solution, û, is referred to as state variable. A sketch of the domain Ω together with its

discontinuity surface Σ is drawn in Fig. 2.1.

2.2.1 Weak formulation

Since the solution û of (2.2) shows a discontinuity across the surface Σ, the canonical

Hilbert space H1(Ω) [15, Par. 6.3] is not suitable. In this respect, we introduce an

enrichment of H1(Ω), defined as follows.

Definition 2.2. Vector space for state variable

H1
Σ(Ω) :=

{
v̂ ∈ H1(Ω \Σ), [v̂]Σ = const

}
.

This allows to consider also functions that present a fixed jump across Σ. The weak

formulation [15, Chap. 8] of (2.2) becomes:

Find û ∈ H1
Σ(Ω) : ∀v̂ ∈ H1

Σ(Ω),

∫
Ω\Σ
∇ û · ∇ v̂ dx̂ = −I [v̂]Σ . (2.3)

Proof. Since the behaviour of the derivative of û is not defined on Σ, we need to split

the domain Ω in two sub-domains Ω+ and Ω− divided by the discontinuity surface Σ,

such that Ω \Σ = Ω+ ∪Ω− and Ω+ ∩Ω− = ∅. We can then multiply the strong form

(2.2) by a generic function v̂ ∈ H1
Σ(Ω) and integrate over the two sub-domains. For ease

of notation, the sum of these two volume integrals will be written as

−
∫
Ω+

div(∇ û) v̂ dx̂−
∫
Ω−

div(∇ û) v̂ dx̂ = −
∫
Ω\Σ

div(∇ û) v̂ dx̂ = 0,
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where the first equation in (2.2) has been considered. Integration by parts leads to∫
Ω\Σ
∇ û · ∇ v̂ dx̂−

∫
∂Ω
∇ û · n∂Ω v̂ dx̂

−
∫
Σ
∇ û+ · n+ v̂+ dx̂−

∫
Σ
∇ û− · n− v̂− dx̂ = 0,

where n∂Ω is the outer normal of the boundary ∂Ω, while n+ and n− denote the in-

ner/outer normals to the surface Σ. Of course, we have n+ = −n−. Since homogeneous

Neumann boundary conditions are imposed on ∂Ω (2.2), we can get rid of the second

term and obtain∫
Ω\Σ
∇ û · ∇ v̂ dx̂−

∫
Σ
∇ û− · n+ v̂− dx̂ +

∫
Σ
∇ û+ · n+ v̂− dx̂ = 0.

The additional boundary conditions allow us to further simplify the equation:∫
Ω\Σ
∇ û · ∇ v̂ dx̂−

∫
Σ
∇ û− · n+ v̂− dx̂ +

∫
Σ
∇ û+ · n+ v̂+ dx̂ = 0

[∇ û·n]Σ=0
=======⇒

∫
Ω\Σ
∇ û · ∇ v̂ dx̂ +

∫
Σ
∇ û · n+ [v̂]Σ dx̂ = 0

[v̂]Σ=const
======⇒

∫
Ω\Σ
∇ û · ∇ v̂ dx̂ + [v̂]Σ

∫
Σ
∇ û · n+ dx̂ = 0

∫
Σ ∇ û·n

+dx̂=I
=========⇒

∫
Ω\Σ
∇ û · ∇ v̂ dx + I[v̂]Σ = 0.

2.2.2 Additional constraint

The problem described in (2.2) is not well-defined: it can easily be noticed that, if û is

a solution, then also û+ c, ∀c ∈ R, satisfies the equations. In order to ensure uniqueness

of solution, we consider the additional constraint∫
Ω
û dx̂ = 0. (2.4)

This constraint is taken into account by means of a Lagrange multiplier method [12].

In the frame of this method, the state equation we need to solve to find û is re-cast

as a saddle-point problem [13], where an additional variable λ (also called Lagrange

multiplier) is introduced as a coefficient of the constraint itself. To this purpose, we
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introduce the Lagrangian function associated to (2.3) and the constraint (2.4),

Lst(û, λ) =
1

2

∫
Ω\Σ
∇ û · ∇ û dx̂ + I [û] + λ

∫
Ω
û dx̂,

and we look for the point (û, λ) ∈ H1
Σ(Ω)×R where the derivatives of Lst with respect

to û and λ are 0 for each direction (v̂, µ) ∈ H1
Σ(Ω) × R. This produces the following

problem:

Find (û, λ) ∈ H1
Σ(Ω)× R : ∀(v̂, µ) ∈ H1

Σ(Ω)× R,
∫
Ω\Σ ∇ û · ∇ v̂ dx̂ + λ

∫
Ω v̂ dx̂ = −I [v̂]Σ

µ
∫
Ω û dx̂ = 0

, (2.5)

which is equivalent to solving (2.3) under the constraint (2.4).

More details about the implementation of the Lagrange multiplier method are given in

Chap. 5.

2.3 Admissible shapes

We define the set of admissible shapes the conductor can take as

Definition 2.3. Set Vad of admissible shapes

Vad := {Ω = TV(Ω0) | TV := I + V, ‖V‖C1(D;R3) ≤ 1− ε},

with ε ∈ R fixed and small.

Here, Ω0 is the initial domain2 which is assumed to have Lipschitz boundary [15,

Par. 1.6], D is a bounded convex domain that includes Ω0, I represents the identity

operator, I(x) = x, and TV is a map that depends on the vector field V. This map is

defined in the following way:

Definition 2.4. Map TV

TV : R3 → R3,

x 7→ TV(x) := x + V(x).

By TV(Ω0) we denote the image set of the map TV restricted to Ω0, as depicted in

Fig. 2.2.

2In our work, the reference domain Ω0 is a torus of outer radius 1 and inner radius 0.3, similar to
the one shown in Fig. 2.1.
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Ω0 TV(Ω0)

TV

Figure 2.2: Sketch of the action of map TV on the initial unmodified domain Ω0, and
of the resulting mapped domain Ω = TV(Ω0).

Furthermore, we assume that the vector field

V : D → R3

satisfies the condition ‖V‖C1(D;R3) < 1, so that TV is a diffeomorphism [1, Lemma 6.13].

As a consequence of this requirement, we have that

det (DTV)(x) > 0 ∀x ∈ R3,

where DTV denotes the Jacobian of TV ,

(DTV)ij =
∂(TV)i
∂xj

= δi,j + (DV)ij ,

with δij being the Kronecker delta3.

2.4 Shape optimization in parametric form

With the change of coordinates induced by the map in Def. 2.4, it is possible to refor-

mulate the problem on an initial reference domain Ω0.

2.4.1 Mapped state equation

In particular, the equation (2.5) used to recover the state becomes:

Find (u, λ) ∈ H1
Σ0

(Ω0)× R : ∀(v, µ) ∈ H1
Σ0

(Ω0)× R,


∫
Ω0\Σ0

∇uMV ∇ v dx + λ
∫
Ω0
|det (DTV)| v dx = −I [v]Σ0

µ
∫
Ω0
|det (DTV)|u dx = 0

, (2.6)

3δi,j = 1 if i = j; δi,j = 0 if i 6= j.
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where Σ0 is the reference discontinuity surface defined on Ω0, while u(x) = û(TV(x)) =

û(x̂), with x ∈ Ω0 and consequently x̂ ∈ Ω. The definition for MV , also called pull-back

matrix, follows.

Definition 2.5. Pull-back matrix

MV := DT−1V DT−TV |det (DTV)| .4 (2.7)

Proof. This can be easily seen by noting that, given a regular enough map x = F (x̃),

defined on a generic domain Ω̃ and such that F (Ω̃) = Ω, it holds∫
Ω
∇u(x)∇ v(x) dx =

∫
Ω̃

(DF−T ∇̃ũ(x̃))(DF−T ∇̃ṽ(x̃)) |det (DF )| dx̃,

where ∇̃ denotes the gradient in x̃ coordinates, and ũ(x̃) = u(F (x̃)) = u(x). In fact,

∂u(x)

∂xi
=
∂u(F (x))

∂x̃1

∂x̃1
∂xi

+
∂u(F (x))

∂x̃2

∂x̃2
∂xi

+
∂u(F (x))

∂x̃3

∂x̃3
∂xi

,

hence, using DF (x) = DF (x̃)−1,

∇u(x) = DF (x)T ∇̃ũ(x̃) = DF (x̃)−T ∇̃ũ(x̃).

Finally, the scaling factor |det (DF )| comes from the change of coordinates inside the

integral: dx = |det (DF )| dx̃. In our case, we just have to substitute Ω̃ = Ω0 \ Σ0 and

F = TV to complete the proof.

2.4.2 Mapped cost functional

Similarly, the cost functional in Def. 2.1 can be re-cast in a form that depends on the

mapping TV or, more precisely, on V:

J (V, u (V)) =∫
∂D

∥∥∥µ04π (∫Ω0\Σ0
|det (DTV)|DT−TV ∇u×∇x

(
1

‖x−TV (y)‖

)
dy
)
t
− p

∥∥∥2 dx. (2.8)

In this way, we have dropped the dependency of J on the shape itself Ω, substituting

it with a parametrization described by V.

4We also point out that MV is symmetric: we have in fact MT
V = (DT−1

V DT−TV )T |det (DTV)| =
(DT−TV )T (DT−1

V )T |det (DTV)| = MV . The consequences of this are described in Par. 5.1.
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The shape optimization problem is then defined in the following parametric form,

min
‖V‖C1(D;R3)≤1−ε

J (V, u(V)) s.t. (2.6), (2.9)

with V becoming our so-called control variable.



Chapter 3

First order Fréchet derivative

The concept of Fréchet derivative can be used to extend the notion of derivative to a

functional defined on a Banach space [15, Par. 6.2]. In this work, it is applied to the

cost functional (2.8) and is employed in the optimization algorithm.

3.1 Fréchet differentiability

Here, the definitions of Fréchet differentiability and Fréchet derivative are given; for a

more detailed discussion, see [3, Par. 1.4.1].

Definition 3.1. Fréchet differentiability Let F : U → R be a functional defined on an

open set U 6= ∅ in a Banach space V . F is said to be Fréchet differentiable at v ∈ U if:

1. The limit

dF (v, h) = lim
ε→0

F (v + εh)− F (v)

ε
∈ R

exists ∀h ∈ V .

2. The functional

F ′(v) : h 3 V 7→ dF (v, h) ∈ R

is bounded and linear (Gâteaux differentiability).

3. It holds that ∣∣F (v + h)− F (v)−
〈
F ′(v), h

〉∣∣ = o(‖h‖V ),

as ‖h‖V → 0. 〈F ′(v), h〉 is the result of F ′(v) evaluated at h.

The functional F ′(v) is called Fréchet derivative of F at v.

11
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For ease of reading, from here on we refer to the Fréchet derivative simply with the term

derivative.

3.2 Relevant derivatives

In order to recover a formula for the first derivative of the cost functional (2.8), we need

to provide relations to express the derivatives of some quantities of interest with respect

to the variable V, along the direction Ṽ. This is denoted as

δṼ(∗) =
〈

(∗)′, Ṽ
〉
.

Lemma 3.2. Fréchet derivative of det (DTV)

δṼ(det (DTV)) = det (DTV)tr(DT−1V DṼ). (3.1)

Proof. According to Def. 3.1, we have:

δṼ(det (DTV)) = lim
ε→0

det(DTV + εDṼ)− det(DTV)

ε
,

where Def. 2.4 has been used. If we consider the property of the determinant, det(AB) =

det(A) det(B), the first term of the numerator can be rewritten as follows (here, I

represents the identity matrix):

det(DTV + εDṼ) = det((DTV)(I + εDT−1V DṼ))

= det(DTV) det(I + εDT−1V DṼ).

We can perform a first-order Taylor expansion on the second factor above to retrieve

det(DTV + εDṼ) = det(DTV)(1 + ε tr(DT−1V DṼ)) +O(ε2).1

If we substitute this in the limit, we obtain

δṼ (det (DTV)) =

lim
ε→0

�����
det(DTV) + εdet(DTV)tr(DT−1V DṼ)−�����

det(DTV) +O(ε2)

ε
,

which also shows how the candidate in (3.1) for the Fréchet derivative provides linear

approximation (Pt. 3 in 3.1). Given the requirements on Ṽ in Def. 2.3, the limit above

1This result comes from the application of Jacobi’s formula [14] for the derivative of the determinant
of a matrix:

(detA(t))′ = tr(adj(A(t)) A′(t)),

with adj(*) being the adjugate matrix of ∗.
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exists (Pt. 1 in 3.1). To complete the proof, we need to check that the operator in (3.1)

is linear and bounded (Pt. 2 in 3.1). Linearity is a direct consequence of the properties

of the trace and derivative operators

δ(αṼ+βW̃)(det (DTV)) = det(DTV)tr(DT−1V D(αṼ + βW̃))

= det(DTV)[αtr(DT−1V DṼ) + βtr(DT−1V DW̃)]

= αδṼ(det (DTV)) + βδW̃(det (DTV)).

Since the operator is linear, continuity ensures boundedness [2]. In Def. 2.3 we require Ṽ
to be differentiable, which means that DṼ is continuous (and so is the trace operator).

This completes the proof.

Lemma 3.3. Fréchet derivative of DT−1V and DT−TV

δṼ(DT−1V ) = −DT−1V (DṼ)DT−1V . (3.2)

δṼ(DT−TV ) = −DT−TV (DṼT )DT−TV . (3.3)

Proof. We first prove (3.2). Again, we employ Def. 3.1 to get

δṼ(DT−1V ) = lim
ε→0

(DTV + εDṼ)−1 −DT−1V
ε

.

By re-writing the first term in the numerator as

(DTV + εDṼ)−1 = ((DTV)(I + εDT−1V DṼ))−1

= (I + εDT−1V DṼ)−1(DTV)−1,

and expanding the Neumann series2 of the first factor, we obtain

(DTV + εDṼ)−1 = (I − εDT−1V DṼ)(DTV)−1 +O(ε2).

Then, substituting this in the definition above,

δṼ(DT−1V ) = lim
ε→0

�
���DT−1V − εDT−1V DṼDT−1V −�

���DT−1V +O(ε2)

ε
,

and the proof is completed. Following an analogous procedure, (3.3) can be recovered

as well.

2Under the assumption that the spectral radius of A is < 1, we have that

(I −A)−1 =

∞∑
n=0

An.
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Lemma 3.4. Fréchet derivative of MV

δṼMV = det (DTV)DT−1V

[
tr(DT−1V DṼ)I

− DṼDT−1V −DT−TV DṼT
]

DT−TV .
(3.4)

Proof. Starting from Def. 2.5 and differentiating it brings to

δṼMV = δṼ(DT−1V DT−TV det(DTV))

= δṼ(DT−1V )DT−TV det(DTV)

+DT−1V δṼ(DT−TV ) det(DTV)

+DT−1V DT−TV δṼ(det(DTV)).

This is achieved by applying the product rule for differentiation, which also holds for

Fréchet derivatives. It is possible now to use the relations (3.1), (3.2), (3.3) to rewrite

δṼMV as

δṼMV = −DT−1V DṼDT−1V DT−TV det(DTV)

−DT−1V DT−TV DṼTDT−TV det(DTV)

+DT−1V DT−TV tr(DT−1V DṼ) det(DTV),

which, after some rearrangements, gives (3.4).

Lemma 3.5. Fréchet derivative of ∇x(‖x− TV(y)‖−1)

δṼ

(
∇x

(
1

‖x− TV(y)‖

))
=

Ṽ
‖x− TV(y)‖3

− 3

[
(x− TV(y)) · Ṽ

]
(x− TV(y))

‖x− TV(y)‖5
. (3.5)

Proof. Remembering that ‖x‖′ = x/ ‖x‖, we can first retrieve

∇x

(
1

‖x− TV(y)‖

)
= − x− TV(y)

‖x− TV(y)‖3
.

Using then the chain rule,

δṼ

(
− x− TV(y)

‖x− TV(y)‖3

)
=

−
δṼ(x− TV(y)) ‖x− TV(y)‖3 − δṼ(‖x− TV(y)‖3)(x− TV(y))

‖x− TV(y)‖6
.

According to Def. 2.4, it is easy to notice that δṼTV(y) = Ṽ(y). This gives us

δṼ

(
− x− TV(y)

‖x− TV(y)‖3

)
=

‖x− TV(y)‖3 Ṽ(y)− 3 ‖x− TV(y)‖
[
(x− TV(y)) · Ṽ

]
(x− TV(y))

‖x− TV(y)‖6
,
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which is the formula we wanted to prove.

3.3 Sensitivity-based formula for the Fréchet derivative of

cost functional

Thanks to the relations proven above, we can provide an expression for the derivative of

the cost functional (2.8) with respect to the control V. With a mild abuse of terminology,

we also refer to it with the term shape derivative.

Proposition 3.6. The first order Fréchet derivative of the cost functional (2.8), evaluated

along the direction Ṽ, is given by the formula〈
J ′(V), Ṽ

〉
= 2

∫
∂D (Ht(u)− p) ·

[
Ht(δṼu)

+
(∫

Ω0\Σ0
δṼA×B dy

)
t

+
(∫

Ω0\Σ0
A× δṼB dy

)
t

]
dx,

(3.6)

where:

A = µ0
4π det (DTV)DT−TV ∇u,

B = − x−TV (y)
‖x−TV (y)‖3

,

δṼA = µ0
4π det (DTV)DT−TV

[
tr(DT−1V DṼ)I −DṼTDT−TV

]
∇u,

δṼB = Ṽ
‖x−TV (y)‖3

− 3
[(x−TV (y))·Ṽ](x−TV (y))

‖x−TV (y)‖5
.

(3.7)

The term

δṼu =
〈
u′(V), Ṽ

〉
(3.8)

is also referred to as sensitivity of the state u with respect to the control Ṽ.

Proof. To prove (3.6), we can follow the analogous procedure presented in [3, Par. 1.6.1].

Through partial differentiation, we easily get〈
J ′(V), Ṽ

〉
=
〈
Ju, δṼu

〉
+
〈
JV , Ṽ

〉
, (3.9)

where (·)∗ denotes the first partial derivative of (·) with respect to the variable ∗. Fo-

cusing on the first term of (3.9) we have, using the chain rule of differentiation,

〈
Ju, δṼu

〉
= 2

∫
∂D

(Ht(u)− p) · (Ht(u)− p)u (δṼu) dx,

but since the operators involved in the evaluation of Ht(u) are linear in u, its derivative

along δṼu is Ht(δṼu) itself. On the other hand, pu cancels out. This gives us the first
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term in (3.6). In general, we can recover a formula for the partial derivative Ju along v:

〈Ju, v〉 = 2

∫
∂D

(Ht(u)− p) ·Ht(v) dx, (3.10)

which will be useful in Sec. 3.4.2. For the second term in (3.9), again, we start with the

chain rule, 〈
JV , Ṽ

〉
= 2

∫
∂D

(Ht(u)− p) ·
(
δṼHt(u)−

�
��δṼp
)
dx. (3.11)

Remembering the definitions of the cost functional (2.8) and of the terms A and B in

(3.7), we can substitute

δṼHt(u) = δṼ

(∫
Ω0\Σ0

A×B dy
)
t

=
(∫

Ω0\Σ0
δṼA×B dy

)
t
+
(∫

Ω0\Σ0
A× δṼB dy

)
t
.

These are the last two terms of (3.6). It can be easily seen that the expression provided

for the derivative of B is exactly the one proved in (3.5); for the derivative of A, instead,

formulas (3.1) and (3.2) have been used:

δṼA = µ0
4π

(
δṼ(det (DTV))DT−TV ∇u+ det (DTV)δṼ(DT−TV )∇u

)
= µ0

4π det (DTV)tr(DT−1V DṼ)DT−TV ∇u
− µ0

4π det (DTV)DT−TV DṼTDT−TV ∇u.

3.4 Adjoint approach

We are interested in describing the action of the whole operator J ′(V). If the formula

(3.6) was used for this purpose, this would imply having to evaluate the sensitivity (3.8)

for every possible direction Ṽ. This can be done by linearizing the constraint imposed

by the state equation. Differentiation of (2.6) with respect to V, in fact, gives:

∀(v, µ) ∈ H1
Σ0

(Ω0)× R3,


∫
Ω0\Σ0

∇ δṼuMV ∇ v dx +
∫
Ω0\Σ0

∇u δṼMV ∇ v dx

+λ̃
∫
Ω0
δṼ(|det (DTV)|)v dx = 0

µ
∫
Ω0
δṼ(|det (DTV)|)u dx +µ

∫
Ω0

(|det (DTV)|)δṼu dx = 0

, (3.12)
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which can be solved to recover (δṼu, λ̃)3. As described in [3, Par. 1.6], though, this

would require to find a solution to a PDE for every choice of Ṽ, which is often unfea-

sible. For this reason, the so-called Adjoint approach [3, Par. 1.6.2] is preferred, whose

characteristics are explained next.

3.4.1 Lagrange function

Similarly to how it has been done with the state equation (2.2) to take into account the

additional constraint (2.4), we can modify the cost functional (2.8) by considering the

constraint imposed by (2.6). One way to do this is to re-cast (2.9) as a saddle-point

problem, following the procedure described in [3, Par. 1.4.6]. Accordingly, we introduce

the corresponding Lagrangian function:

Definition 3.7. Lagrangian function associated to (2.9)

L : (C2(D;R3)×H1
Σ0

(Ω0)× R× (H1
Σ0

(Ω0)
∗)∗ × R)→ R,

(V, u, λ, z, µ) 7→ L(V, u, λ, z, µ) := J (V, u) +
∫
Ω0\Σ0

∇uMV ∇ z dx
+I [z]Σ0

+ λ
∫
Ω0
|det (DTV)| z dx

+µ
∫
Ω0
|det (DTV)|u dx.

(3.13)

Here, (H1
Σ(Ω0)

∗)∗ indicates the double dual space of H1
Σ(Ω0), which can be identified

with H1
Σ(Ω0) itself by means of Riesz representation theorem [3, Par. 1.2]; z ∈ H1

Σ(Ω0)

covers the role of the Lagrangian multiplier with respect to the constraint (2.6).

Solving (2.9) is equivalent to finding the saddle point of L(V, u, λ, z, µ), which can be

done by setting all its partial derivatives to 0. Partial differentiation of L(V, u, λ, z, µ)

with respect to the Lagrangian multipliers µ and z gives the corresponding constraints,

(2.6). Differentiating with respect to λ produces a constraint on z that is analogous to

(2.4). Lastly, differentiations with respect to V and u provide respectively a representa-

tion of the gradient of J , described in Sec. 3.4.3, and an additional equation, presented

in Sec. 3.4.2.

3.4.2 Adjoint equation

We need to find (z, µ) ∈ H1
Σ0

(Ω0)×R such that 〈Lu(V, u, λ, z, µ), v〉 = 0 ∀v ∈ H1
Σ0

(Ω0)

and 〈Lλ(V, u, λ, z, µ), ν〉 = 0 ∀ν ∈ R. It is straightforward to see that this translates

3The exact same result can also be found as a consequence of the implicit function theorem [17]. See
for example [3, Par. 1.4.2].
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into the following saddle-point problem:

Find (z, µ) ∈ H1
Σ0

(Ω0)× R : ∀(v, ν) ∈ H1
Σ0

(Ω0)× R,


∫
Ω0\Σ0

∇ vMV ∇ z dx + µ
∫
Ω0
|det (DTV)| v dx = −〈Ju, v〉

ν
∫
Ω0
|det (DTV)| z dx = 0

. (3.14)

This equation is also referred to as adjoint equation, and its solution z is called adjoint

variable.

3.4.3 Adjoint gradient representation

If we choose (z, µ) as the solutions of (3.14), a simpler and more suitable representation

of the gradient of the cost functional (3.6) can be given that does not make use of the

sensitivity (3.8).

Proposition 3.8. The first order Fréchet derivative of the cost functional (2.8), evaluated

along the direction Ṽ, can also be expressed as〈
J ′(V), Ṽ

〉
=

〈
JV , Ṽ

〉
+
∫
Ω0\Σ0

∇u δṼMV ∇ z

+ λ
∫
Ω0
|det (DTV)| tr(DT−1V DṼ)z dx

+ µ
∫
Ω0
|det (DTV)| tr(DT−1V DṼ)u dx,

(3.15)

with (z, µ) solutions of (3.14) and (u, λ) solutions of (2.6).

Proof. We can immediately notice that, whenever the constraints (2.6) (together with

the equivalent of (2.4) for z) are satisfied, we have that J (V, u) = L(V, u, λ, z, µ),

∀z ∈ H1
Σ0

(Ω0) and ∀λ, µ ∈ R. Moreover, considering u = u(V) and differentiating with

respect to V gives us〈
L′(V, u(V), λ, z, µ), Ṽ

〉
=
〈
Lu(V, u(V), λ, z, µ), δṼu

〉
+
〈
LV(V, u(V), λ, z, µ), Ṽ

〉
,

which is equal to the derivative of J along Ṽ, for the reason previously stated. The

sensitivity term δṼu still appears in this formulation, but it can be easily dropped if z

is chosen as solution of (3.14). Hence, we just need to show that (3.15) corresponds

to
〈
LV , Ṽ

〉
. The first term in (3.14) comes directly from Def. 3.7; for the third and

fourth terms, formula (3.1) has been once again used; for the second, the linearity of

the operators involved has been applied. An expression for δṼMV has previously been

given in (3.4).



Chapter 4

Algorithms

To solve the shape optimization problem (2.9), an algorithm belonging to the class of

descent methods [3, Chap. 2.2] has been set up. In this chapter, its detailed description

is provided.

4.1 Descent method

The basic form of the algorithm is analogous to the one presented in [6]. A pseudo-code

version of it is reported in Alg. 1.

Algorithm 1: Generic descent method

Start from an initial design Ω0;1

Initialize current map V = 0 and current update Ṽ = 0;2

for k=0 to itmax do3

Evaluate solution u(V) of (2.6);4

Evaluate cost functional at updated position: J k = J (V + σ̃Ṽ, u(V + σ̃Ṽ));5

if (k > 0) and update is not admissible according to Armijo rule then6

Halve step size: σ̃ = σ̃/2;7

else8

Set current map V = V + σ̃Ṽ;9

Evaluate gradient at current position: J ′(V);10

Choose a descent direction: Ṽ;11

Choose a step size: σ̃ = σ;12

while
(
min(det (DTV+σ̃Ṽ)(Ω0)) < ε

)
do13

Halve step size: σ̃ = σ̃/2;14

19
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J (V + σṼ)

γσ 〈J ′(V),W〉σ 〈J ′(V),W〉

σ0 σmax

Figure 4.1: Effect of applying Armijo rule for finding an admissible step size. The
range of admissible σ is highlighted in blue, and is influenced by the choice of γ, that
modifies the inclination of the red line. σ̃ in (4.1) is found by progressively halving an

initial choice for the step size.

The reason why the condition min(det (DTV)(Ω0)) > ε must be fulfilled is to ensure that

the map TV remains a diffeomorphism. How strictly this constraint must be respected

is indicated by ε, which is a fixed parameter, just like the initial step size σ.

4.2 Armijo rule

The condition called Armijo rule, which needs to be satisfied from the first iteration on,

ensures that the chosen update step size σ̃ is admissible [3, Par.2.2.1.1], and it can be

expressed as follows:

Find the maximum σ̃ ∈ {σ, σ/2, σ/4, σ/8, · · · } so that

J (V + σ̃Ṽ)− J (V) > γσ̃
〈
J ′(V), Ṽ

〉
. (4.1)

Again, γ ∈ (0, 1) is a fixed parameter that relaxes the condition the closer it gets to 0.

Its effect is described in Fig. 4.1.

4.3 Steepest descent method

In general, the methods used to recover the descent direction Ṽ and the step size σ̃

determine the algorithm. As described above, in this work a fixed initial step size σ is

chosen, while for the update Ṽ, the opposite of a representative of the gradient J ′(V) is

selected. This identifies the algorithm as a steepest descent method. The representative

is found by solving the problem1

(Ṽ,W)∗ = −
〈
J ′(V),W

〉
∀W ∈ (∗) (4.2)

1This procedure provides the so-called Riesz representative in (∗) of the functional −J ′(V).
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for a particular scalar product (·, ·)∗, and then by rescaling it so that
∥∥∥Ṽ∥∥∥

∗
= 12. In

our work, the H1 norm is chosen, since after a few first experiments it has shown better

stability than the L2 or euclidean counterparts. Being HH1 the operator associated to

the H1 scalar product, so that

〈HH1(V),W〉 = (V,W)H1 ∀V,W ∈ H1, (4.3)

the normalized solution to (4.2) can be expressed as

Ṽ = −
H−1
H1(J ′(V))√〈

J ′(V), H−1
H1(J ′(V))

〉 . (4.4)

More information on how to find the discretized solution to (4.2) is given in Sec. 5.2.

2‖·‖∗ is the norm induced by (·, ·)∗, i.e., ‖·‖∗ =
√

(·, ·)∗



Chapter 5

Discretization aspects

In order to recover a numerical solution of the problem (2.9), discrete approximations

for the state variable u, the adjoint variable z and the control variable V need to be

given. The details are described in the following.

5.1 State and adjoint

A Finite-Element Method (FEM) [26, Chap. 4] is used to provide a discretization for

both the state variable uh ≈ u and the adjoint variable zh ≈ z. To do this, a set of

piecewise linear Lagrangian basis functions φi is constructed on a tetrahedral mesh that

covers the 3D domain Ω0. These functions are defined such that φi(xj) = δi,j for each

node xj of the mesh. The purpose is to express our approximations uh and zh as linear

combinations of these basis functions. Unfortunately, both variables still cannot be

adequately represented, since they show a jump discontinuity across the surface Σ0. To

overcome this problem, the set of φi is expanded by considering also a so-called cut-off

basis function, φCO, in a procedure similar to the one described in [27], although very

simplified. This function has the following characteristics:

• [φCO]Σ0
(xi) = 1 ∀xi ∈ Σ0,

• φCO(xi) = 0 ∀xi /∈ Σ0.

A sketch of how such a function could look like in a 1D domain is shown in Fig. 5.1. We

can then approximate state and adjoint as

uh =
n∑
i=1

uiφi + uCOφCO, zh =

n∑
i=1

ziφi + zCOφCO, (5.1)

22
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xi−1 xi
∈ Σ0

xi+1

φCO

... xj−1 xj xj+1

φj

Figure 5.1: Sketch of the behaviour for a generic φj linear basis function (right) and
for the cut-off basis function φCO (left) on a 1D mesh.

where n is the number of mesh nodes (which in our case corresponds to the number of

canonical basis functions).

PDEs like (2.2) or (3.14) can be approximated via a Galerkin method (again, [26,

Chap. 4]), which for our problem gives rise to a linear system in the form Ax = b.

If we consider (2.6), we have

Aij =

∫
Ω0

∇φjMV ∇φi dx, (5.2)

for i, j = 1 : n. Here, A is the classical stiffness matrix. In our case, we need to fringe

it with an additional row/column to take into account the contributions of the cut-off

basis function. Furthermore, another row/column needs to be added in order to consider

also the influence of the constraint (2.4) and build the complete matrix associated to

the saddle-point problem (2.6). This last row represents the equation

n∑
j=1

∫
Ω0

|det (DTV)|ujφj dx +

∫
Ω0

|det (DTV)|uCOφCO dx = 0,

while the last column contains the terms

λ

∫
Ω0

|det (DTV)|φi dx

that are added to the weak formulation (2.5). The system matrix Ast for (2.6) looks as

Ast =



...
...

A ∫
Ω0\Σ0

∇φCOMV ∇φi dx
∫
Ω0
|det (DTV )|φi dx

...
...

· · · ∫
Ω0\Σ0

∇φjMV ∇φCO dx · · · ∫
Ω0\Σ0

∇φCOMV ∇φCO dx
∫
Ω0
|det (DTV )|φCO dx

· · · ∫
Ω0
|det (DTV )|φj dx · · · ∫

Ω0
|det (DTV )|φCO dx 0


,

(5.3)
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where A is the matrix defined in (5.2). Accordingly, the solution vector xst is in

the form [· · · , ui, · · · , uCO, λ]T , with ui and uCO from (5.1) and λ being the La-

grangian multiplier introduced in (2.4), while the right-hand side of the system, bst, is

[· · · , 0, · · · , −I, 0]T , where I is the imposed current, as in (2.2).

The matrix associated to the adjoint equation (3.14) is Aadj = AT
st. However, as pointed

out in Sec. 2.4.1, the pull-back matrix in Def. 2.5 is symmetric. Consequently, also

Ast is symmetric, and the same matrix (5.3) can be used for both state and adjoint

problem. As for the right-hand side, badj = [· · · , −〈Ju, φi〉 , · · · , −〈Ju, φCO〉 , 0]T .

Analogously to the state, the solution vector of the adjoint saddle-point problem xadj is

[· · · , zi, · · · , zCO, µ]T .

5.2 Control

The control variable V too is represented as linear combination of basis functions, al-

though of a different kind. To describe them, we introduce a uniform Cartesian grid

that discretizes a cylindrical domain1 ΩSP surrounding the toroidal domain Ω0, as in

Fig. 5.2. On it, we define a set of m basis functions ψi composed of quadratic B-splines

[25, Chap. 7.6]. We consider discrete vector fields Vh in the form

Vh(x) =

m∑
i=1

ψi(x)

3∑
d=1

νi,d ed =

m∑
i=1

ψi(x)νi, x ∈ ΩSP , (5.4)

with ed being the basis vectors of R3 and νi = (νi,1, νi,2, νi,3)
T . Every Vh is uniquely

characterized by its corresponding coefficients νi.

Spline basis functions definition More in detail, in this work the ψi are defined

on a local cylindrical coordinates system (ρ̂, θ̂, ẑ)T ∈ [0, 1]3 that covers a cell of the grid.

They are expressed as a tensor product of three independent sets of 1D spline functions,

one for each variable: ψ̂ρ(ρ̂), ψ̂θ(θ̂) and ψ̂z(ẑ). In general, the definition for the 1D

splines is given recursively via the Cox-De Boor recursion formula and depends on the

order chosen and on the distribution of control nodes [18, Chap. 3]. In our case, a

simplified expression is available, and it is explicitly reported for splines of order N = 1

1This particular choice for the shape of the splines domain ΩSP has the remarkable advantage of
noticeably simplifying evaluations, and is dictated by the configuration of the initial domain Ω0, which
is highly symmetrical. Nonetheless, a more general approach with an arbitrary domain and grid remains
feasible.
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ΩSP

Ω0

Figure 5.2: Representation of the domain and grid for the spline basis functions ΩSP .
On the left, we can see how the splines grid is placed so to surround the domain Ω0

completely (here drawn in a red dashed line). On the top right, a cross-section of the
grid itself is given, to better show its reciprocal position with Ω0. On the bottom right,

a grid cell is presented in detail.

0 1 0 1

N = 1

ψ̂1 ψ̂2

N = 2

ψ̂1 ψ̂2 ψ̂3

Figure 5.3: Possible shapes for the 1D spline basis functions of order 1 (left) and
2 (right) defined on the interval [0, 1]. It is noticeable how the size of the support of
such functions depends uniquely on the order chosen: splines of order N have support
on N + 1 cells. This property translates also to 3D basis functions created as tensor

products: they have support on (N + 1)3 cells.

and N = 2 in (5.5). Their graph is instead shown in Fig. 5.3.

N = 1 N = 2

ψ̂1(x) = 1− x ψ̂1(x) = (x− 1)2/2

ψ̂2(x) = x ψ̂2(x) = −x2 + x+ 1/2

ψ̂3(x) = x2/2,

(5.5)

with x ∈ [0, 1]. This definition is the same for ψ̂ρ(ρ̂), ψ̂θ(θ̂) and ψ̂z(ẑ).

Maps from local to cylindrical to Cartesian coordinates To describe how the

values of ψ are evaluated starting from the values of ψ̂ρ, ψ̂θ and ψ̂z, we need to introduce

two transformations.



Chapter 5. Discretization 26

• F , the map from cylindrical to Cartesian coordinates:

F : [0,∞)× [0, 2π)× R→ R3,

(ρ, θ, z)T 7→ x = (ρ cos(θ), ρ sin(θ), z)T .
(5.6)

• C, the map from local to cylindrical coordinates:

C : [0, 1]3 → [0,∞)× [0, 2π)× R,

(ρ̂, θ̂, ẑ)T 7→ (ρ, θ, z)T = (ρ0 + ρ̂∆ρ, θ0 + θ̂∆θ, z0 + ẑ∆z)T .
(5.7)

In our work, ρ0, θ0 and z0 are cell-dependent, while ∆ρ, ∆θ and ∆z are constant for

every cell, and they vary according to the level of refinement of the mesh. Using F

and C, it is possible to recover the values of ψi(x) and of its gradient in Cartesian

coordinates, ∇ψi(x) starting from the values of the 1D spline basis functions2 (5.5):

ψi(x) = ψ̂ρj (ρ̂) · ψ̂θk(θ̂) · ψ̂zl (ẑ),
∇ψi(x) = DF−TDC−T ∇̂(ψ̂ρj (ρ̂) · ψ̂θk(θ̂) · ψ̂zl (ẑ))

=


cos(θ)
∆ρ − sin(θ)

ρ∆θ 0
sin(θ)
∆ρ − cos(θ)

ρ∆θ 0

0 0 1
∆z



dψ̂ρj (ρ̂) · ψ̂θk(θ̂) · ψ̂zl (ẑ)
ψ̂ρj (ρ̂) · dψ̂θk(θ̂) · ψ̂zl (ẑ)
ψ̂ρj (ρ̂) · ψ̂θk(θ̂) · dψ̂zl (ẑ)

 ,
(5.8)

with ρ̂, θ̂, ẑ and ρ, θ, z such that x = F ((ρ, θ, z)T ) = F (C((ρ̂, θ̂, ẑ)T )). The writing ∇̂(·)
denotes the gradient in local coordinates (ρ̂, θ̂, ẑ) of (·), while d(·) is the (total) derivative

of (·). By substituting (5.4) in Def. 2.4 it can be seen how formulas (5.8) are necessary

to compute the approximated map TVh and its Jacobian in Cartesian coordinates DTVh .

In fact, we have:

TVh(x) = x + Vh(x)

= x +
∑m

i=1 ψi(x)
∑3

d=1 νi,d ed

= I +
∑m

i=1


νi,1ψi(x)

νi,2ψi(x)

νi,3ψi(x)


= I +

∑m
i=1 νiψi,

DTVh(x) = D(x + Vh(x))

= I +
∑m

i=1

∑3
d=1 νi,d D(ψi(x)ed)

= I +
∑m

i=1


νi,1∇ψi(x)T

νi,2∇ψi(x)T

νi,3∇ψi(x)T


= I +

∑m
i=1 νi∇ψi(x)T .

(5.9)

2The proof for this is similar to the one used for recovering Def. 2.5.
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Gram matrix for H1 scalar product Using the discretization introduced for the

control (5.4), the bilinear form HH1 presented in (4.3) can be substituted with the

so-called Gram matrix [16] associated to the H1 norm, GH1 . We have, in fact,

〈Vh,Wh〉H1 =
∫
ΩSP

[Vh(x) · Wh(x) + DVh(x) : DWh(x)]

=
m∑
i=1

m∑
j=1

∫
ΩSP

[ψi(x)ψj(x) (νi ·wj)

+ (∇ψi(x) · ∇ψj(x)) (νi ·wj)]

=
m∑
i=1

m∑
j=1

∫
ΩSP

(ψi(x)ψj(x) +∇ψi(x) · ∇ψj(x))(νi ·wj)

where wi are the coefficients of W̃. If we define GH1 such that

(GH1)i,j :=

∫
ΩSP

ψi(x)ψj(x) +∇ψi(x) · ∇ψj(x), (5.10)

it is easy to see how

〈Vh,Wh〉H1 =

3∑
d=1

m∑
i=1

m∑
j=1

wj,d(GH1)i,jνi,d =

m∑
i=1

m∑
j=1

(GH1)i,j(νj ·wi). (5.11)

The discretized solution of (4.2) becomes then

(Ṽh)d = −
G−1
H1(J ′h(Vh))d√

(J ′h(Vh))TdG−T
H1 (J ′h(Vh))d

, (5.12)

where (Ṽh)d are the d-components of the coefficients νi in (5.4), while with (J ′h(Vh))d

we denote the evaluations of J ′ at Vh, tested with the spline basis functions ψ that refer

to the d-component of the spline-interpolated vector field.

From (5.9) and (5.11), it is already clear how the fact that the same ψi are used to de-

scribe all three components of the vector field Vh allows some remarkable simplifications

in the computation of the derivatives of (2.8). This and other aspects related to the

actual implementation of the code are discussed next.
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Implementation aspects

The code implementation makes use of the C++ template library BETL2 (Boundary El-

ement Template Library 2 ), [19, 20] developed by Lars Kielhorn and Raffael Casagrande

for the Seminar for Applied Mathematics at ETH Zürich. Although, as the name sug-

gests, BETL2 is originally developed as a tool for Boundary Element applications [21],

among its functionalities there are various methods for building FEM solvers, which

have been widely used in this work.

Next, a detailed description of the implementation is given.

6.1 Most relevant classes

Taking advantage of the perks of an Object-Oriented language like C++, the code has

been subdivided into classes, each with different scopes and purposes. Even though

some of them are made so to be open to generalization and various parts of the code

can be re-used for the development of other tools, many of them remain hard-coded

and application-specific, due to efficiency considerations and time limitations. Here, the

most important ones are described.

ShapeOptimizationSolver This basically represents a Façade class [22] for the whole

shape optimization problem. It is responsible for the initialization of the finite elements

and the splines grid, as well as their respective basis function spaces. While for the finite

element part some built-in functions of BETL2 have been used, the implementation

of the splines is handled by instantiations of SplinesGrid and SplinesBasisFunc,

both internal members of ShapeOptimizationSolver. In addition, this class stores

information about the solutions for state (2.6) and adjoint (3.14) problems, and about

28
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the evolution of the cost functional (2.8). Its main purpose is to run the primary routine

for the optimization process, previously described in Alg. 1 and presented in Lst. 6.1.

1 f o r ( i t e r a t i o n =0; i t e r a t i o n <maxI te ra t i ons ; i t e r a t i o n ++ ) {
2

3 so lveStateEquat ion ( ) ;

4 eva luateCostFunct iona l ( ) ;

5

6 i f ( i t e r a t i o n == 0 | | CheckArmijoRulePassed ( ) ) {
7

8 so lveAdjo intEquat ion ( ) ;

9 eva luateShapeDer ivat ive ( ) ;

10 updateShape ( ) ;

11

12 expor tSo lu t i on ( ) ;

13 }
14

15 std : : cout<<” I t e r a t i o n ”<< i t e r a t i o n <<” concluded . ”<<std : : endl ;

16 }
17

18 // p r in t evo lu t i on o f co s t f u n c t i o n a l

19 pr in tJ ( ) ;

20

Listing 6.1: Main function of ShapeOptimizationSolver.

The output too is handled by the class ShapeOptimizationSolver via the function

exportSolution() reported in Lst. 6.1: it exports relevant information throughout

the optimization process, like the approximations of the mapped domain TVh(Ω0), of

the magnetic field on the surface of the internal object Hh(∂D) and of the solutions

uh, zh to state and adjoint problems. The actual evaluation of these, though, is con-

ducted by invoking the methods of another internal class, ProblemsSolver. Function

updateShape() is responsible also for the check on the positiveness of the determinant as

described in Alg. 1; this control is conducted by computing det (DTV) on various points

inside the splines grid, more details in Lst. A.5. Function checkArmijoRulePassed(),

as the name suggests, applies (4.1) and halves the step size in case this check fails. The

actual code for this is in Lst. 6.2.

1 const numer ic t gamma = 0 . 1 ;

2 const numer ic t l e f t = J ( i t e r a t i o n ) − J ( i t e r a t i o n − 1 ) ;

3 const numer ic t r i g h t = gamma ∗ ( dJ . cwiseProduct ( shapeUpdate ) ) . sum ( ) ;

4

5 i f ( l e f t > r i g h t ) {
6 //remove h a l f o f the update :

7 shapeUpdate ∗= 0 . 5 ;

8 spBas i s . updateCoeffNU ( −shapeUpdate ) ;
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9

10 // keep value o f J s t a t i o n a r y

11 J ( i t e r a t i o n ) = J ( i t e r a t i o n − 1) ;

12

13 re turn f a l s e ;

14 }
15

16 re turn true ;

17

Listing 6.2: Implementation of Armijo rule (4.1).

SplinesGrid It is the class that takes care of the implementation of the uniform

Cartesian splines grid described in Sec. 5.2. It provides methods for the various direct

and inverse mappings from local to cylindrical and global coordinates, described in (5.7)

and (5.6). It also allows for the evaluation of the Jacobians of these mappings, as needed

in (5.8). More information about these methods can be found in Lst. A.1 and Lst. A.2.

SplinesBasisFunc This class works together with SplinesGrid in order to provide

a complete description of the approximated control (5.4) and the spline basis functions

ψi it is built on. The order of the splines used is accepted as a template parameter,

but the only templated methods are the one responsible for the evaluation of the 1D

spline basis functions (5.5) and their derivatives, given a local coordinate (ρ̂, θ̂, ẑ)T .

This makes it extremely simple to extend it to use splines of various orders. The class

is already equipped with an implementation for linear and quadratic splines, the latter

kind used for the largest part of this work. In Lst. 6.3 it can be found an example of

the implementation for splines of order N = 2,

1 // there are 3 types o f s p l i n e s o f order 2 with support on the same c e l l :

(1−x ) ˆ2/2 , −xˆ2+x+1/2 , xˆ2/2

2 r e s u l t s <<0.5∗(1− rho )∗(1− rho ) , − rho∗ rho + rho +0.5 , 0 .5∗ rho∗ rho ,

3 0.5∗(1− th )∗(1− th ) , − th ∗ th + th +0.5 , 0 .5∗ th ∗ th ,

4 0.5∗(1− z )∗(1− z ) , − z ∗ z + z +0.5 , 0 .5∗ z ∗ z ;

5

Listing 6.3: Evaluation of 1D spline basis functions ψ̂ρ(ρ̂), ψ̂θ(θ̂), ψ̂z(ẑ), of order

N = 2.

while in Lst. 6.4 their derivatives are computed.

1 // there are 3 types o f d e r i v a t i v e s o f s p l i n e s o f order 2 with support on

the same c e l l : x−1, −2x+1, x

2 r e s u l t s << rho−1, − 2∗ rho + 1 , rho ,

3 th −1, − 2∗ th + 1 , th ,
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4 z − 1 , − 2 ∗ z + 1 , z ;

5

Listing 6.4: Evaluation of derivatives of 1D spline basis functions dψ̂ρ(ρ̂), dψ̂θ(θ̂),

dψ̂z(ẑ), of order N = 2.

Here, rho, th, z are the local coordinates ρ̂, θ̂, ẑ. Regarding the evaluation of 3D spline

basis functions, the corresponding routine is reported in Lst. 6.5.

1 // F i r s t , get a l l p o s s i b l e e v a l u a t i o n s o f 1D f u n c t i o n s p s i j ( rho ) , p s i k (

theta ) , p s i l ( z ) and t h e i r d e r i v a t i v e s

2 matr ix t< dim , ORDER+1 > tempRes , tempResDeriv ;

3 eva luateSp l ines1DLoca l ( localCoord , tempRes ) ;

4 eva luateSp l inesDer iv1DLoca l ( localCoord , tempResDeriv ) ;

5

6 //Now, eva luate a l l p o s s i b l e p s i i = p s i j ( rho ) ∗ p s i k ( theta ) ∗ p s i l ( z ) and

t h e i r d e r i v a t i v e s wrt rho , theta , z , and s t o r e t h e i r va lue in r e s u l t s

and dResults , r e s p e c t i v e l y

7 i d x t i = 0 ;

8 f o r ( i d x t l =0; l < ORDER+1; l++){
9 f o r ( i d x t k=0; k < ORDER+1; k++){

10 f o r ( i d x t j =0; j < ORDER+1; j++){
11 r e s u l t s ( i ) = tempRes (0 , j ) ∗tempRes (1 , k ) ∗tempRes (2 , l ) ;

12

13 dResults (0 , i )=tempResDeriv (0 , j ) ∗tempRes (1 , k ) ∗tempRes (2 , l ) ;

14 dResults (1 , i )=tempRes (0 , j ) ∗ tempResDeriv (1 , k ) ∗tempRes (2 , l ) ;

15 dResults (2 , i )=tempRes (0 , j ) ∗tempRes (1 , k ) ∗ tempResDeriv (2 , l ) ;

16 i ++;

17 }
18 }
19 }
20 /∗
21 Every column o f r e s u l t s / dResults conta in s the value / g rad i ent o f a 3D s p l i n e

b a s i s f unc t i on p s i i with support on loca lCoord . These s p l i n e s are

cyc l ed in the f o l l o w i n g fash ion , with r e s p e c t to the node they r e f e r to

:

22 −From the cente r to the e x t e r n a l border ( i n c r e a s i n g rho )

23 −Anti−c l o ckw i s e ( i n c r e a s i n g theta )

24 −From bottom to top ( i n c r e s i n g z )

25 ∗/
26

Listing 6.5: Evaluation of 3D spline basis functions ψ(ρ, θ, z) and their gradients.

As stated in the comments in the code above, for efficiency reasons the evaluations are

conducted regardless of the global indices of the 3D spline basis functions they refer

to. Basically, given the local coordinates localCoord, the results from the evaluation
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of every possible 3D basis function whose support includes that coordinates is given. A

map to the global index is then necessary and is returned by function Lst. 6.6, which

receives as input the cell cellIdx the local coordinates fall in.

1 //Number o f 1D s p l i n e b a s i s f u n c t i o n s with support on a c e l l

2 i d x t l c lLength = ORDER+1;

3

4 f o r ( i d x t k = 0 ; k < l c lLength ; k++){
5 // c o n t r i b u t i o n o f idx z to g l o b a l and l o c a l idx :

6 i d x t spIdxZ = ( c e l l I d x (2 )+k ) ∗ splineNumTang ∗ splineNumRad ;

7 i d x t l c l I d x Z = k ∗ l c lLength ∗ l c lLength ;

8

9 f o r ( i d x t j = 0 ; j < l c lLength ; j++){
10 // c o n t r i b u t i o n o f idx theta to g l o b a l and l o c a l idx ( i t h i s p e r i o d i c in

t h i s d i r e c t i o n , hence the % ) :

11 i d x t spIdxTheta = ( ( c e l l I d x (1 )+j ) % splineNumTang ) ∗ splineNumRad ;

12 i d x t l c l IdxTheta = j ∗ l c lLength ;

13

14 f o r ( i d x t i = 0 ; i < l c lLength ; i++){
15 // t h i s i s the index wrt the r e s u l t o f the eva lua t i on o f the s p i n e s

with support on c e l l I d x

16 i d x t l c l I d x = i + lc l IdxTheta + l c l I d x Z ;

17 // t h i s i s the g l o b a l index o f the b a s i s f unc t i on

18 i d x t g lbIdex = ( c e l l I d x (0 )+i ) + spIdxTheta + spIdxZ ;

19 // f i n a l l y , s t o r e in the map

20 mapl2gSpl ineIdx ( l c l I d x ) = glbIdex ;

21 }
22 }
23 }
24

Listing 6.6: Map from local splines evaluations (as returned from the function in

Lst. 6.5) to global index.

In addition to these, SplinesBasisFunc provides various methods for the evaluation

of quantities of interest: in particular, the approximated map TVh and its Jacobian, as

described in (5.9), as well as the Gram matrix (5.10). These and more can be found in

Lst. A.4, Lst. A.3 and Lst. A.5.

ProblemsSolver It is the internal member of shapeOptimizationSolver responsible

for the solution of state and adjoint equations, for the storage of relevant temporary

results, and for the evaluation of the derivative of the cost functional (3.15). In order

to solve both (2.6) and (3.14), first the corresponding linear systems need to be built,

as described in Sec. 5.1. For this part, we make use of various functions provided by
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BETL2 for the discretization of matrix (5.2) and of various linear operators such as

(2.4). The implementation can be found in Lst. 6.7.

1 // SETUP PULLBACK ==============================================

2 // Wil l be used to r e t r i e v e M, used in the eva lua t i on o f b i l i n e a r form A =

i n t (U) Omega0 ( gradU ∗ M ∗ gradV )

3 fem : : Sp l inesPul lback< VOL GRID FACTORY T, SP BASIS FUNC T > alpha (

volGridFac , spBas i s ) ;

4 // This i s the same , but i t ’ s used to recove r the c o n t r i b u t i o n s from the cut

−o f f f unc t i on

5 fem : : Spec i a lSp l i n e sPu l l back< VOL GRID FACTORY T, SP BASIS FUNC T >

alphaFake ( volGridFac , spBas i s ) ;

6

7

8 // ADDITIONAL CONSTRAINTS=======================================

9 // Here the a d d i t i o n a l cond i t i on : i n t ( U ) Omega = i n t ( U ∗ det (DTnu) )

Omega0 i s cons ide r ed

10 typede f fem : : detDTnuFunction< SP BASIS FUNC T > f u n c t o r t ;

11 typede f fem : : Analyt ica lGr idFunct ion< VOL GRID FACTORY T, f u n c t o r t >

a n a l y t i c a l V o l F u n c t i o n t ;

12

13 const f u n c t o r t detDTFunc ( spBas i s ) ;

14 const a n a l y t i c a l V o l F u n c t i o n t detFunc ( volGridFac , detDTFunc ) ;

15

16 // Proceed to the eva lua t i on o f the weights f o r the l i n e a r operator :

17 // I n s t a n t i a t e the l i n e a r ope ra to r s

18 v o l M a s s I n t e g r a l t v o l I n t e g r a l ;

19 v o l I n t e g r a l . compute ( volDH . f e s pa c e ( ) , detFunc ) ;

20 // Store the weights

21 auto& vo l In t eg ra lWe ight s = v o l I n t e g r a l . matrix ( ) ;

22 // Same with the fake ve r s i on ( to r e cove r c o n t r i b u t i o n s from the cut−o f f

b a s i s f unc t i on )

23 vo lFakeMass Integra l t vo lFake In t eg ra l ;

24 vo lFake In t eg ra l . compute ( volDH . f e s pa c e ( ) , detFunc ) ;

25 auto& volFakeIntegra lWeights = vo lFake In t eg ra l . matrix ( ) ;

26

27 // ASSEMBLE MATRIX A============================================

28 const i d x t s i z e I = volDH . numDofs ( ) ;

29 Ah. r e s i z e ( s i z e I + 2 , s i z e I + 2 ) ;

30

31 numer ic t vo l In t r educed = 0 ;

32

33 // Matrix Ah i s cons t ruc ted in the f o l l o w i n g f a s h i o n :

34 // F i r s t 0−>volDH . numDofs ( )−1 rows/ c o l s : same as b i l i n e a r s t i f f n e s s

operator de f i ned on c l a s s i c a l f e s pa c e

35 // Row/Col volDH . numDofs ( ) : c o n t r i b u t i o n s from cut−o f f b a s i s f unc t i on

36 // Row/Col volDH . numDofs ( ) +1: lagrange c o n s t r a i n t

37 s t i f f n e s s O p e r a t o r t Aii , Afake ;
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38 Ai i . compute ( volDH . f e sp ac e ( ) , alpha ) ;

39 Afake . compute ( volDH . f e sp a c e ( ) , alphaFake ) ;

40 Ai i . make sparse ( ) ;

41 Afake . make sparse ( ) ;

42

43 auto& Ai i h = Ai i . matrix ( ) ;

44 auto& Afake h = Afake . matrix ( ) ;

45

46 t r i p l e t L i s t t t r i p l e t L i s t ;

47 t r i p l e t L i s t . r e s e r v e ( Ai i h . nonZeros ( ) + 2∗Afake h . nonZeros ( ) + 2∗
vo l In t eg ra lWe ight s . s i z e ( ) + 2 ) ;

48 Ah. r e s e r v e ( A i i h . nonZeros ( ) + 4∗ vo l In t eg ra lWe ight s . s i z e ( ) ) ;

49

50 //FIRST PART: Const r ibut i ons from Ai i −−−−−−−−−−−−−−−−−−−−−−−−−−
51 f o r ( i d x t k=0; k<Ai i h . o u t e r S i z e ( ) ; ++k ) {
52 f o r ( typename spar s eMatr ix t : : I n n e r I t e r a t o r i t ( Ai i h , k ) ; i t ; ++i t ) {
53 t r i p l e t L i s t . push back ( t r i p l e t t ( i t . row ( ) ,

54 i t . c o l ( ) ,

55 i t . va lue ( ) ) ) ;

56 }
57 }
58

59 //SECOND PART: Contr ibut ions from Afake ( cut−o f f f unc t i on )−−−−−−
60 v e c t o r t Afake reduced ( s i z e I ) ;

61

62 //Reduce Afake along those rows that r ep r e s e n t a node that l i e s on the

d i s c o n t i n u i t y s u r f a c e

63 Afake reduced = Afake h ∗ nodesOnBorder ;

64

65 //And add i t s c o n t r i b u t i o n to the f i r s t a d d i t i o n a l row/ c o l

66 f o r ( i d x t k=0; k<Afake reduced . s i z e ( ) ; ++k ) {
67 i f ( Afake reduced ( k ) != 0) {
68 t r i p l e t L i s t . push back ( t r i p l e t t ( s i z e I ,

69 k ,

70 Afake reduced ( k ) ) ) ;

71 t r i p l e t L i s t . push back ( t r i p l e t t ( k ,

72 s i z e I ,

73 Afake reduced ( k ) ) ) ;

74

75 }
76 }
77 // Evaluate c o n t r i b u t i o n o f cut−o f f f unc t i on t e s t e d with i t s e l f

78 numer ic t Afake reduced reduced = Afake reduced . t ranspose ( ) ∗ nodesOnBorder

;

79

80 //And inc lude that as we l l

81 t r i p l e t L i s t . push back ( t r i p l e t t ( s i z e I ,

82 s i z e I ,
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83 Afake reduced reduced ) ) ;

84

85 //THIRD PART: a d d i t i o n a l c o n s t r a i n t ( lagrange )−−−−−−−−−−−−−−−−−−
86 f o r ( i d x t k=0; k<vo l In t eg ra lWe ight s . s i z e ( ) ; ++k ) {
87 t r i p l e t L i s t . push back ( t r i p l e t t ( s i z e I + 1 ,

88 k ,

89 vo l In t eg ra lWe ight s ( k ) ) ) ;

90 t r i p l e t L i s t . push back ( t r i p l e t t ( k ,

91 s i z e I + 1 ,

92 vo l In t eg ra lWe ight s ( k ) ) ) ;

93 }
94

95 //do not f o r g e t cut−o f f b a s i s f unc t i on c o n t r i b u t i o n to the volume i n t e g a l

96 vo l In t r educed = volFakeIntegra lWeights . t ranspose ( ) ∗ nodesOnBorder ;

97 t r i p l e t L i s t . push back ( t r i p l e t t ( s i z e I + 1 ,

98 s i z e I ,

99 vo l In t r educed ) ) ;

100 t r i p l e t L i s t . push back ( t r i p l e t t ( s i z e I ,

101 s i z e I + 1 ,

102 vo l In t r educed ) ) ;

103

104 //ASSEMBLE A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 //Now that a l l the c o n t r i b u t i o n s have been cons idered , assemble the matrix

106 Ah. setFromTrip le t s ( t r i p l e t L i s t . begin ( ) , t r i p l e t L i s t . end ( ) ) ;

107 Ah. makeCompressed ( ) ;

108

109 //INFO STORAGE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 // In order to prevent re−eva lua t i on o f th ings , s t o r e i n f o o f i n t e r e s t :

111 AhAdj = Ah;

112

Listing 6.7: Function to assemble state problem matrix (5.3) and store it for later use

in the solution of the adjoint problem (3.14).

The code in Lst. 6.7 shows how the stiffness matrix (5.2) is fringed in order to recover

(5.3), according to its definition in Sec. 5.1. Moreover, we can see how the system

matrix assembled here is stored for future use in the solution of the adjoint equation.

For solving the systems themselves, a Sparse LU solver [24] from the library Eigen [23]

is used. This class also takes care of finding a proper representative of the gradient of

J (3.15), following the procedure in Sec. 4.3. The corresponding code is reported in

Lst. 6.8.

1 s o l v e r t s o l v e r ;

2 const auto& H = spBas i s . getGramMatrix ( ) ;

3 s o l v e r . compute ( H ) ;

4

5 const i d x t numSp = spBas i s . getNumBasisFunc ( ) /3 ;
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6

7 dJX = shapeDer iva t ive . segment ( 0 , numSp) ;

8 dJY = shapeDer iva t ive . segment ( numSp , numSp) ;

9 dJZ = shapeDer iva t ive . segment (2∗numSp , numSp) ;

10

11 update . c o l (0 ) = s o l v e r . s o l v e ( dJX ) ;

12 update . c o l (1 ) = s o l v e r . s o l v e ( dJY ) ;

13 update . c o l (2 ) = s o l v e r . s o l v e ( dJZ ) ;

14

15 const numer ic t norm = dJX . dot ( update . c o l (0 ) )

16 +dJY . dot ( update . c o l (1 ) )

17 +dJZ . dot ( update . c o l (2 ) ) ;

18

19 // Res i ze g rad i en t by step s i z e sigma

20 const numer ic t sigma = 0 . 3 ;

21 update ∗= − sigma / s q r t ( norm ) ;

22

23

Listing 6.8: Implementation of (5.12) for the computation of the H1 representative

of J ′.

Such a structure of the code is only possible since the same spline basis functions ψi

are used to describe every component of the vector field Vh, as previously noticed in

Sec. 5.2. Regarding the effect of the approximated operator 〈J ′h(Vh), ψi〉 (stored in

shapeDerivative in Lst. 6.8), it is computed by using methods of its internal members

belonging to classes CostFunctionalIntegrator and StateEqDerivativeEvaluator,

presented next.

CostFunctionalIntegrator The main purpose of this class is to retrieve the approx-

imated values of the cost functional (2.1) and its partial derivatives (3.11), (3.10). Both

of these derivatives are necessary for the evaluation of the gradient of J : the first one

contributes directly to the formula (3.15), while the latter appears in the right-hand

side of the adjoint equation (3.14). The function responsible for this is by far the most

expensive from the computational point of view: in fact, (2.1), (3.11) and (3.10) are de-

fined as an integral on the surface ∂D of a quantity that depends on the magnetic field

H; however, the magnetic field itself is expressed as an integral on the whole domain

Ω0. Hence, it is necessary to perform a double integral, approximated using a Gaussian

quadrature rule [28]. This basically translates into a double nested for loop on two

sets of quadrature points xq ∈ ∂D and yq ∈ Ω0 where the integrand function must be

evaluated. Since they contain many terms in common, in order to spare computational

effort, the integrands of each of the three quantities (2.1), (3.10) and (3.11) are evaluated
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together. Some pseudo-code describing how this function works is described in Alg. 2,

while its actual implementation is reported in Lst. A.6.

Algorithm 2: Main function of CostFunctionalIntegrator

Initialize to 0 the vector for storing values of H(u; xq), ∀xq;15

Initialize to 0 the matrix for storing values of H(φi; xq), ∀i and ∀xq;16

Initialize to 0 the matrix for storing values of
∫
Ω0
δψi(A(u,V)×B(V; xq)), ∀i and ∀xq;17

Initialize the vector containing evaluations of p(xq), ∀xq;18

for each quadrature point yq ∈ Ω0 do19

Evaluate A(u,V; yq) and multiply it by the Gaussian weight wyq ;20

for each FE basis function φi with support on yq do21

Evaluate A(φi,V; yq) and multiply it by the Gaussian weight wyq ;22

Store results in temporary matrix;23

for each spline basis function ψi with support on yq do24

Evaluate δψiA(u,V; yq) and multiply it by the Gaussian weight wyq ;25

Evaluate ∇ψi(yq);26

Store results in temporary matrix;27

Evaluate TV(yq);28

for each quadrature point xq ∈ ∂D do29

Evaluate B(V; xq,yq) (using the pre-evaluated TV(yq));30

Evaluate δψiB(V; xq,yq) (using the pre-evaluated ∇ψi(yq) and TV(yq));31

Evaluate A(u,V; yq)×B(V; xq,yq) (using the pre-evaluated A(u,V; yq)), and32

add it to the corresponding term in H(u; xq);
Evaluate A(φi,V; yq)×B(V; xq,yq) (using the pre-evaluated A(φi,V; yq)),33

and add it to the corresponding terms in H(φi; xq);
Evaluate δψi(A(u,V)×B(V; xq)) (using the pre-evaluated δψiA(u,V; yq) and34

A(u,V; yq)) and add it to the corresponding terms in∫
Ω0
δψi(A(u,V)×B(V; xq))

Evaluate Ht(u; xq)− p(xq);35

Evaluate (Ht(u; xq)− p(xq))2;36

Evaluate (Ht(u; xq)− p(xq)) ·Ht(φi; xq);37

Evaluate (Ht(u; xq)− p(xq)) ·
∫
Ω0
δψi(A(u,V)×B(V; xq));38

Perform reduction of the quantities above using the Gaussian weights wxq to integrate39

on ∂D and recover (2.1), (3.11) and (3.10);

The reason behind the intricacy of Alg. 2 lies in the effort done in order to increase

efficiency. The two for loops on xq and yq have been switched to take advantage of the

fact that many terms in the integrands depend purely on variable y ∈ Ω0, and can then

be pre-computed: in fact, only B defined in (3.7) and its derivative show dependency on

x. Furthermore, all the terms that require splines evaluation are computationally very

demanding1, and are functions solely of y. On the other hand, this results in the need

to store temporary matrices of relevant size. This and other trade-offs between memory

consumption and computational effort are discussed more in detail in Sec. 6.2.

1This is due both to the higher order used for the spline basis functions and the additional complexity
of the mappings (5.7) and (5.6) with respect to those involved in the evaluation of their FE counterparts.
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An additional improvement in the code efficiency can be achieved exploiting the pe-

culiarities of the discretization chosen for the vector field Vh, as previously stated in

Sec. 5.2. For example, considering the evaluation of

δψA = µ0
4π det (DTV)[tr(DT−1V Dψ)I −DT−TV DψT ]DT−TV ∇u

= tr(DT−1V Dψ)A−DT−TV DψTA,
(6.1)

we can notice that, since the same ψ are used to describe all three components of the

vector field Vh, we have

(Dψ)d = ed∇ψ(x)T =⇒

(Dψ)x =


∇ψ(x)T

0

0

 , (Dψ)y =


0

∇ψ(x)T

0

 , (Dψ)z =


0

0

∇ψ(x)T

 ,
where (Dψ)d denotes the Jacobian of ψ when used as a basis function to describe the

d-component of Vh. From this, we get that DT−TV DψT is just

DT−TV (Dψ)Td = DT−TV ∇ψ(x)eTd =⇒

DT−TV (Dψ)Tx =

DT−TV ∇ψ(x) 0 0

 ,

DT−TV (Dψ)Ty =

0 DT−TV ∇ψ(x) 0

 ,

DT−TV (Dψ)Tz =

0 0 DT−TV ∇ψ(x)

 .
If we consider the properties of the trace operator:

tr(DT−1V (Dψ)d) = tr((Dψ)dDT
−1
V ) = tr(((Dψ)dDT

−1
V )T ) = tr(DT−TV (Dψ)Td ),

we can see how this term is given just by the d-component of the vector DT−TV DψT .

The first term in (6.1) is then recovered just by multiplying A by the correct component

of DT−TV ∇ψ. Conversely, the second term is recovered by multiplying DT−TV ∇ψ by

the correct component of A. The corresponding part of the code that performs the

evaluation described above is reported in Lst. 6.9.

1 // F i r s t r e t r i e v e t r a c e

2 const rowMatrix3SP t traceXYZ = DTnuInvT ∗ gradPsi ;

3

4 //To get f i r s t term , mult ip ly A by the c o r r e c t element in t r a c e
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5 const rowMatrix3SP t f i r s t X = A ∗ traceXYZ . row (0) ;

6 const rowMatrix3SP t f i r s t Y = A ∗ traceXYZ . row (1) ;

7 const rowMatrix3SP t f i r s t Z = A ∗ traceXYZ . row (2) ;

8

9 //To get second term , mult ip ly t r a c e by the c o r r e c t element in A

10 const rowMatrix3SP t secondX = traceXYZ ∗ A(0) ;

11 const rowMatrix3SP t secondY = traceXYZ ∗ A(1) ;

12 const rowMatrix3SP t secondZ = traceXYZ ∗ A(2) ;

13

14 //Sum a l l t oge the r and s t o r e

15 dAnu . template block< 3 , numSpPerPoint >( 0 , 0 ) = f i r s t X − secondX ;

16 dAnu . template block< 3 , numSpPerPoint >( 0 , numSpPerPoint ) = f i r s t Y −
secondY ;

17 dAnu . template block< 3 , numSpPerPoint >( 0 , 2∗numSpPerPoint ) = f i r s t Z −
secondZ ;

18

Listing 6.9: Function to retrieve derivative of term A (6.1).

Here, gradPsi is a 3× (N + 1)3 matrix containing all evaluations of gradients of spline

basis functions with support on the point considered2, while DTnuInvT is DT−TV . The

result dAnu is a vector containing the values of (6.1) for each of the spline basis func-

tions, considered as contributions to the x- (first numSpPerPoint elements), y- (second

numSpPerPoint elements) and z-components (last numSpPerPoint elements) of Vh.

StateEqDerivativeEvaluator To complete the evaluation of the gradient of J , ac-

cording to (3.15), three additional terms need to be computed and added to (3.11). This

class is responsible for this. The three terms are

∫
Ω0\Σ0

∇u δψMV ∇ z dx
+ µ

∫
Ω0

det (DTV)tr(DT−1V Dψ)u dx

+ λ
∫
Ω0

det (DTV)tr(DT−1V Dψ)z dx,

(6.2)

and again they must be calculated for every spline basis function ψ. Here too some

simplification can be applied, similar to those involving the evaluation of (3.11), in

particular for the term δψMV defined in (3.4). The integrand of the first integral in

(6.2) can be split into three parts:

∇u δψMV ∇ z = ∇uTDT−1V tr(DT−1V Dψ) det (DTV)DT−TV ∇ z
− ∇uTDT−1V DψDT−1V det (DTV)DT−TV ∇ z
− ∇uTDT−1V DT−TV DψT det (DTV)DT−TV ∇ z.

(6.3)

2As we said in Sec. 5.2, for 3D splines of order N , every point is contained in the support of (N + 1)3

different spline basis functions.
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The left and right factors of (6.3) are common to each of the terms above and can then

be precomputed. Let a = DT−TV ∇u and b = det (DTV)DT−TV ∇ z: we can rewrite the

integrand as

∇u δψMV ∇ z = aT tr(DT−1V Dψ)b− aTDψDT−1V b− aTDT−TV DψTb.

= aT tr(DT−1V Dψ)b− bTDT−TV DψTa− aTDT−TV DψTb.

We have already discussed how tr(DT−1V Dψ) can be simplified: as a consequence, the

first term reduces to multiply the trace by the result of the scalar product between a and

b. The last two terms are very similar, and given the particular form of DT−TV DψT , they

both reduce to perform first a scalar product involving the vector on the left (aT ·∇ψ or

bT · ∇ψ) and then multiply the result by the correct element of the vector on the right

(depending on whether we are considering contribution of ψ to x-, y- or z-components

of Vh). The actual code responsible for this is presented in Lst. 6.10

1 // Evaluate t r a c e

2 const rowMatrix3SP t traceXYZ = DTnuInvT ∗ gradPsi ;

3

4 // mult ip ly by a∗b to get f i r s t term

5 const rowMatrix3SP t f irstXYZ = traceXYZ ∗ DTinvTdetDTgradZ . dot ( gradUDTinv

) ;

6

7 //To get second and t h i r d terms , f i r s t s c a l a r product with vec to r on the

l e f t

8 const rowVectorSP t temp1 = gradUDTinv . t ranspose ( ) ∗ traceXYZ ;

9 const rowVectorSP t temp2 = DTinvTdetDTgradZ . t ranspose ( ) ∗ traceXYZ ;

10 // then mult ip ly by element o f vec to r on the r i g h t

11 const rowMatrix3SP t secondXYZ = DTinvTdetDTgradZ ∗ temp1 ;

12 const rowMatrix3SP t thirdXYZ = gradUDTinv ∗ temp2 ;

13

14 // s t o r e c o n t r i b u t i o n s f o r f i r s t integrand

15 const rowMatrix3SP t a l lToge the r = firstXYZ − secondXYZ − thirdXYZ ;

16 d S t i f f . template segment< numSpPerPoint >(0) = a l lToge the r . row (0) ;

17 d S t i f f . template segment< numSpPerPoint >(numSpPerPoint ) = a l lToge the r . row

(1) ;

18 d S t i f f . template segment< numSpPerPoint >(2∗numSpPerPoint ) = a l lToge the r .

row (2) ;

19

20 const rowMatrix3SP t al lTogetherU = traceXYZ ∗ detDTUw ;

21 dConstrU . template segment< numSpPerPoint >(0) = al lTogetherU . row ( 0 ) ;

22 dConstrU . template segment< numSpPerPoint >(numSpPerPoint ) = al lTogetherU .

row (1) ;

23 dConstrU . template segment< numSpPerPoint >( 2∗numSpPerPoint ) =

al lTogetherU . row (3) ;

24

25 const rowMatrix3SP t a l lTogetherZ = traceXYZ ∗ detDTZw ;
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26 dConstrZ . template segment< numSpPerPoint >(0) = al lTogetherZ . row ( 0 ) ;

27 dConstrZ . template segment< numSpPerPoint >(numSpPerPoint ) = al lTogetherZ .

row (1) ;

28 dConstrZ . template segment< numSpPerPoint >( 2∗numSpPerPoint ) =

al lTogetherZ . row (3) ;

29

Listing 6.10: Function to recover the terms in (6.2).

As the names suggest, gradUDTinv is a = DT−TV ∇u, while DTinvTdetDTgradZ is b =

det (DTV)DT−TV ∇ z; dStiff contains evaluations of the first integrand, while dConstrU

and dConstrZ refer to the second and third ones in (6.2).

6.2 Memory/computation trade-off

In this section, the trade-off between computational load and memory usage regarding

the most important functions described in Sec. 6.1 is discussed. In particular, we focus

our attention on Alg. 2 and on the functions responsible for the splines evaluations.

For the way Alg. 2 is implemented, it needs to store matrices of size Nxq × n and

Nxq×m for the partial derivatives (3.10) and (3.11) respectively, being Nxq the number

of quadrature points on the surface ∂D, n the number of FE basis functions φ, m the

number of spline basis functions ψ. These dimensions grow linearly in the number of

nodes composing the meshes defined on ∂D and on Ω0 or the splines grid. Furthermore,

the matrices themselves are dense, because of the nature of the non-local operator that

appear in J 3. This by far represents the largest bottleneck of the code with regards to

memory consumption. The other matrices of considerable size that need to be assembled

are in fact (5.3) and (5.10). Although their dimensions depend on the number of FE

and spline basis functions respectively, still they present a sparse pattern [26, Chap. 4],

so this dependency is only linear. This is due to the limited support of both the FE and

spline basis functions. A less memory-consuming but more computationally demanding

alternative would consist in performing the double for loop described in Alg. 2 in the

classical manner: the external one sweeping through the quadrature points xq ∈ ∂D and

the internal through the yq ∈ Ω0. This would allow to perform the outer integral as the

loop proceeds, without the need to gather every single contribution first, hence reducing

the storage requirement to a simple vector of size n for (3.10) or m for (3.11). On the

other hand, all the simplifications described in Sec. 6.1 would no longer be feasible,

ending up in a considerable increase in the computational cost.

3We remind that due to Biot-Savart law, the magnetic field in one quadrature point xq ∈ ∂D depends
on the results of an integral defined on the whole domain Ω0. Hence, every FE and spline basis function
contributes actively to the final evaluation of H and its derivatives.



Chapter 7

Validation

Since no analytical solution is available for benchmarking, the following tests have been

conducted in order to check the correctness of the implementation.

7.1 Solution of parametric state equation

As a first control routine, the code regarding the construction of the linear system

representing the approximated mapped state equation (2.6) has been verified, together

with its solution procedure. The verification routine has been conducted as follows:

• Consider a discretized reference domain Ω0.

• Interpolate an arbitrary analytic vector field using spline basis functions, thus

recovering a discretized map TVh .

• Assemble matrix (5.3), using FE basis functions defined on Ω0, and by considering

the effect of the map TVh .

• Solve the linear system associated to (2.6), and recover uh.

• Modify the mesh according to the map Ω = TVh(Ω0).

• Retrieve the canonical isotropic stiffness matrix (Â)i,j =
∫
Ω ∇̂φ̂j∇̂φ̂i dx̂, as well

as the contributions
∫
Ω φ̂i dx̂, using FE basis functions (cut-off included) defined

on the mapped mesh representing Ω.

• Assemble and solve the linear system associated to (2.5) and (2.4) to recover ûh.

• Compare the values of some functionals that depend on u evaluated directly, with

those of the same functionals defined through the mapping TVh .

42
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Figure 7.1: Comparison between reference domain Ω0 (on the left) and mapped
domain Ω = TV(Ω0), with TV obtained interpolating the function (7.1) using splines.
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Number of mesh nodes n

Figure 7.2: Logarithmic plot of the absolute values of the differences between N̂ =√∫
Ω
û2 dx̂ and N =

√∫
Ω0

det DTV u2 dx (blue) and between N̂∇ =
√∫

Ω
∇̂û · ∇̂û dx̂

and N∇ =
√∫

Ω0
∇uMV ∇u dx (black), for meshes with n = 120, 528, 3256, 22704

number of nodes.

The functionals whose values are compared are the norms of û and of its gradient,

respectively: ‖û‖2 =
∫
Ω û

2 dx̂ =
∫
Ω0

det (DTV)u2 dx and ‖∇ û‖2 =
∫
Ω ∇̂û · ∇̂û dx̂ =∫

Ω0
∇uMV ∇u dx. Different levels of mesh refinements on Ω0 (and consequently on

Ω = TV(Ω0)) have been employed, in order to check for convergence. The analytical

function interpolated via splines is

f(x) =

(
c1 sin

(
c2 tan−1

(
x2

x1

))
+ c3

)
x, (7.1)

and its effect once applied to the original domain Ω0 can be seen in Fig. 7.1. The

convergence results for four different levels of mesh refinement are reported in Fig. 7.2.
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Figure 7.3: Sketch of the decomposition of H into z- and radial components. Thanks
to the high symmetry of the problem, an analytical expression for the solution is avail-
able (7.2), and it depends only on coordinates z and r =

√
x2 + y2. Here, x = (x, y, z)T .

The results from Fig. 7.2 show how the difference between the two alternative evaluations

for the norm of u,
√∫

Ω û
2 dx̂ and

√∫
Ω0

det DTV u2 dx, as well as those for the norm

of ∇u,
√∫

Ω ∇̂û · ∇̂û dx̂ and
√∫

Ω0
∇uMV ∇u dx, tend to zero, as the mesh is refined.

Since the available routines from BETL2 are given for exact, this represents a satisfactory

hint for the correctness of the implementation of this part of the code.

7.2 Evaluation of magnetic field

Another test has been conducted to verify the functions responsible for the magnetic field

evaluation. In the case of a circular current loop, a non-trivial analytical formula involv-

ing elliptic integrals of first and second kind [29] is available to compute the magnetic

field also off the central axis1 [30]:

Hz = H0
1

π
√
Q

(
E(k)1−α

2−β2

Q−4α +K(k)
)

ez

Hr = H0
γ

π
√
Q

(
E(k)1+α

2+β2

Q−4α −K(k)
)

er,
(7.2)

being Hz and Hr the z- and radial component of H respectively, which give H = Hz+Hr.

See Fig. 7.3 for a sketch of these components. In (7.2), H0 is the magnetic field intensity

at the center of the loop of radius R and with circulating current I, H0 = Iµ0
2R ; we then

have: α = r/R, β = z/R, γ = z/r, Q = (1 + α)2 + β2, k =
√

4α/Q, with r the radial

component, r =
√
x2 + y2; finally, K(k) and E(k) are the elliptic integrals of first and

1From a simple application of Biot-Savart law, the magnetic field along the central axis can be easily

calculated as H(z) = µ0
4π

2πR2I√
(z2+R2)3

ez.
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second kind, whose definition is in (7.3).

K(k) =
∫ π/2
0

1√
1−k sin2(θ)

dθ

E(k) =
∫ π/2
0

√
1− k sin2(θ) dθ.

(7.3)

The test set-up is as follows:

• Consider a very thin toroidal mesh (radius of cross section ≪ external radius).

• Solve state equation (2.6) to recover uh.

• Evaluate magnetic field H on the surface of an internal object ∂D using own

implementation of Biot-Savart law.

• Evaluate magnetic field Href on the surface of an internal object ∂D using (7.2).

• Evaluate ‖H−Href‖ =
√∫

∂D (H(x)−Href (x))2 dx and thus compare H with

Href .

The code used for the implementation of (7.2) has been written by Oded Stein for his

master thesis [31]. The evaluation has been conducted for different levels of refinement

of the meshes on the toroidal domain Ω0 and on ∂D, as well as for different sizes of the

torus itself: a representation of this is given in Fig. 7.4.

The convergence results reported on Fig. 7.5 show how, after having reached a certain

number of nodes, further refinement of the meshes has no longer an impact on the

convergence of ‖H−Href‖. This is because Href is given for a line current, while

the torus has an inner radius larger than 0. The effect of reducing the inner radius,

however, is significant in diminishing ‖H−Href‖. All these considerations again make

us confident about the reliability of this particular routine.

7.3 Shape derivative evaluation

As a final validation, the evaluation of the gradient of the cost functional (3.6) is tested,

in the following manner:

• Start from a reference shape Ω = TV(Ω0) = Ω0 + V(Ω0).

• Evaluate cost functional J (V).

• Evaluate derivative of cost functional along a direction Ṽ,
〈
J ′(V), Ṽ

〉
.

• Update the map Tν = I + V + hṼ.
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Figure 7.4: Representations of the three different sizes of the torus Ω0 used in the
test described in Sec. 7.2, as well as the internal object ∂D. The external radius of the
torus is always 1, while the radius of the torus cross section (internal radius) is 0.05

(top left), 0.01 (top right) and 0.001 (bottom). Object ∂D is a cube of side 0.4.

• Evaluate cost functional in new position J (V + hṼ).

• Compare the values of J (V+hṼ)−J (V)
h and

〈
J ′(V), Ṽ

〉
as h→ 0.

Also the results of this experiment have been checked for various refinement levels of

the mesh on Ω0, and for different directions Ṽ. One of these is reported in Fig. 7.6. It

is clear that, as the step size h reduces, the value of the derivative approximated with

finite-differences approaches the one computed using our own routine for the evaluation

of the shape derivative as ∼ h−1.

The three validations presented above, together with many others of minor relevance

conducted throughout the writing of the code, allow us to be confident with regards to

the correctness of the implementation, and to proceed with the collection of some results

from actual experiments, which are presented next.
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Figure 7.5: Logarithmic plot of the norm of the error ‖H−Href‖, for meshes defined
on Ω0 with number of nodes nΩ0

= 420, 2184, 13776 (black), nΩ0
= 2020, 10504, 66256

(blue), nΩ0
= 4020, 20904, 131856 (red). External radius of the torus R = 1 for all cases;

internal radius Rin = 0.05 (black), Rin = 0.01 (blue), Rin = 0.001 (red). Tests have
been carried out for meshes defined on ∂D with number of nodes n∂D = 42, 320, 642,
but the difference in the results for this set of meshes is minimal. It is clear how refining
meshes after a certain level has no effect, since the analytical solution refers to a line
current. A great impact can instead be seen on the convergence when the internal

radius of the torus is reduced.
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Figure 7.6: Plots showing the convergence of (J (V + hṼ)− J (V))/h to
〈
J ′(V), Ṽ

〉
as h → 0, for meshes defined on Ω0 with number of nodes nΩ0

= 420 (black), and
nΩ0 = 2184 (blue). On the left, the values of (J (V + hṼ) − J (V))/h (full lines with

dots), and
〈
J ′(V), Ṽ

〉
(dashed lines) are reported. On the right, a log-log plot of the

difference (J (V + hṼ) − J (V))/h −
〈
J ′(V), Ṽ

〉
is given. It is possible to notice how

the error scales as ∼ h−1, as expected from a finite-difference approximation (at least
until saturation is reached). Here, the direction Ṽ is chosen as the H1 representative

of J ′ (5.12).
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Results

Experiments have been conducted to analyze the evolution of the cost functional as the

optimization algorithm proceeds. The collected results have been compared for different

refinement levels of the meshes used, and for different choices of the object ∂D. For all

the tests, the chosen target function p is defined as

p(x) = − c

(
√
z2 + 1)3

ez, (8.1)

of which only the tangential component is considered.

As ∂D, a cube of side 0.6 and a prism with elliptical basis of semi-axes 0.2 and 0.1 have

been used. A representation of both these objects is shown in Fig. 8.1. In Fig. 8.2 the

corresponding evolution of the cost functional is reported. We can see how saturation

tends to be reached quite soon, and the optimization algorithm struggles to reduce the

value of (2.8), which indicates that the initial configuration Ω0 is already relatively

Figure 8.1: Internal objects ∂D used in the experiments. The cube on the left has
side 0.4, while the prism with elliptic basis on the right has semi-axes 0.1 and 0.2, and

height 0.6. Both of them are centered with respect to the torus.

48
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Figure 8.2: Semi-Logarithmic plot of the values of J (V) for meshes defined on Ω0

with number of nodes nΩ0
= 420 (black) and nΩ0

= 3256 (blue and red), at each
iteration of the optimization algorithm. The results on the left refers to ∂D taken as
the cube in Fig. 8.1, while on the right there are those for the prism. The splines grid
has respectively 8× 32× 8 nodes (black and blue) and 12× 60× 12 nodes (red). The
effects of meshes refinement are more pronounced in the case of the cube, probably

because the shape is much less regular and presents wilder angles.

Figure 8.3: Norm of the tangential component of the difference between magnetic
field and target function ‖(H− p)t‖∂D, before and after the optimization process.

close to optimal. Refining the mesh on Ω0 can help to improve the result, to a certain

extent. To overcome saturation, the splines grid can be refined as well: an example

of the consequent improvement is also reported in Fig. 8.2. The reason why in some

steps J is stationary lies in the application of Armijo rule: the flat regions in the graph

represent iterations where the test (4.1) has failed.

In Figg. 8.4 and 8.5, the actual evolution of the shape of the torus Ω0 is presented for

both cases. We can notice how the conductor tends to embrace the shape of the internal

object, to better align the magnetic field to the target function (8.1). A plot of the norm

of (H− p)t on the cube before and after the optimization process is shown in Fig. 8.3.
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Figure 8.4: Evolution of the shape Tνh(Ω0) for the case in which the internal object
∂D is the cube in Fig. 8.1. The reference domain Ω0 is on the top left.
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Figure 8.5: Evolution of the shape Tνh(Ω0) for the case in which the internal object
∂D is the prism with elliptic basis in Fig. 8.1. The reference domain Ω0 is on the top

left.
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Further work

9.1 Parallelization

As already stated in Chap. 6, Alg. 2 represents the bottleneck of the whole program

in terms of computational time required for execution. Due to its nature, however, it

also offers many possibilities in terms of parallelization: each of the iterations of the for

loops over the integration points yq and xq is in fact independent of any of the others.

The easiest way of exploiting this is by directly parallelizing the outer for loop. A fine

grain parallelization can be applied instead to the routines for the splines evaluation,

Lst. 6.3, Lst. 6.4 and Lst. 6.5, which are often called throughout the code and represent

another part that is at the same time easily parallelizable and expensive in terms of

computational cost.

9.2 Pre-evaluation of spline basis functions

In Sec. 6.1 and in Sec. 9.1, we pointed out how demanding the functions for splines

evaluations are. Combining the algorithms described in Lst. 6.3, Lst. 6.4 and Lst. 6.5,

we can see how, in order to recover the values of the splines with support on a point

y and their gradients, we first need to apply to y the inverses of the maps (5.6) and

(5.7); then, the 1D splines must be evaluated; finally, the 3D splines can be computed

from them. This amounts to the application of some non-linear functions (mapping),

plus the evaluation of 3(N + 1) polynomials of order N (1D splines) and as many of

order (N − 1) (derivatives), plus 4(N + 1)3 additional multiplications (3D splines and

derivatives). However, the points where the splines values need to be calculated, (i.e., the

quadrature points yq ∈ Ω0), are always the same throughout the whole algorithm. This

suggests that these values might actually be pre-computed and stored, thus drastically

52
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reducing the amount of mathematical operations that is necessary to perform in various

parts of the code, and in Alg. 2 in particular. The additional memory required to store

these values is proportional to 4Nyq(N+1)3, being Nyq the number of quadrature points

yq ∈ Ω0. This size is independent on m, it grows linearly with the number of nodes

composing the mesh on Ω0, and is hence comparable to the memory used for storing

the system matrix (5.3). Still, it is in general1 much smaller than that used for the

temporary matrices in Alg. 2.

9.3 Higher order information for descent direction

More advanced alternatives to the steepest descent algorithm described in Alg. 1 are

available in order to improve convergence. These in general require more complex infor-

mation coming from higher order derivatives of the cost functional (2.8). For example,

if the second order derivative J ′′(V) of (2.8) was to be evaluated along the direction of

the gradient representative Ṽ chosen with (5.12), a line-optimization problem could be

solved to recover an optimal step size σopt. This is a more effective choice than that of

a fixed σ employed by the classical steepest descent algorithm, and it can be achieved

by solving

σopt := argminσ
1
2σ

2
〈
J ′′(V; Ṽ), Ṽ

〉
+ σ

〈
J ′(V), Ṽ

〉
=⇒ σopt = − 〈J

′(V),Ṽ〉
〈J ′′(V;Ṽ),Ṽ〉 .

(9.1)

Furthermore, if the whole operator J ′′(V) was available, then even a Newton method [3,

Chap. 2] could be implemented. This method employs a linearization of the optimality

condition
〈
J ′(V), Ṽ

〉
= 0 in order to recover a more precise descent direction Ṽ. This

translates into finding the solution of the system〈
J ′′(V), Ṽ

〉
= −J ′(Ṽ). (9.2)

Although both these techniques should show some improvements in terms of conver-

gence, it is also true that they do require more complicated evaluations, and might

consequently significantly increase the computational effort needed.

1Increasing the order of the spline basis functions influences with cubic proportionality this amount,
so this might not be true if splines of very high order are used. Furthermore, we assume the number of
quadrature points xq ∈ ∂D and yq ∈ Ω0 to be comparable. If this is not the case, and Nxq ≪ Nyq ,
again this statement might not be true anymore.
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Conclusion

An application of a shape optimization problem in the field of magnetic heat induction

was implemented and discussed. The problem consisted in finding the domain Ω of

a toroidal conductor traversed by a current, so that the induced magnetic field H on

the surface of an object ∂D is as close as possible to a given target function p. The

cost functional J we were interested in minimizing considers the squared norm of the

difference between H and p.

To evaluate the resulting magnetic field, first a scalar Laplace equation was solved to

recover the electric scalar potential on Ω. This was done using a Finite-Element method,

tailored to consider fixed jump discontinuities by expanding the canonical piecewise

linear Lagrangian basis functions set with a cut-off basis function. Then, the magnetic

field on ∂D was computed applying Biot-Savart law.

The shape Ω was expressed via a parametrization that employs a 3D tensor product of

spline basis functions. These were defined on a Cartesian grid encircling the conductor.

The whole shape optimization problem was cast in parametric form using a change of

coordinates from the initial reference domain Ω0 to the updated one Ω. This identifies

the shape optimization scheme used as a fixed-mesh method.

The optimization algorithm that was chosen belongs to the class of steepest descent

methods, where the solution is approached by progressively following the direction indi-

cated by the H1 representative of the gradient of J . The admissibility of the step size

for each iteration was guaranteed by the application of Armijo rule.

For the actual implementation of the code, the library BETL2 was widely used. This

was conducted with a focus both on the computational effort and on the amount of

memory necessary to run the algorithms, well aware of the trade-off between the two.

C++ was used as a programming language, and the code was structured using basic
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patterns of object-oriented design, when it could be done without affecting the overall

performance.

Validation tests were applied to confirm the correctness of the implementation. The

most relevant ones covered the routines for the evaluation of the solution of the mapped

state equation, of the resulting magnetic field, and of the shape derivative of the cost

functional. All of them provided satisfactory results that were in line with the theoretical

ones.

Some of the results obtained from the various experiments conducted were presented,

with particular attention to the evolution of the cost functional throughout the opti-

mization algorithm, and to the resulting modification of the actual shape, in order to

adapt to different choices of the object ∂D. Some effects related to mesh refinements

and saturation were also discussed.

Further work should be directed towards the implementation of parallelization tech-

niques, since the most expensive algorithm in the code would be perfectly suited for

them, because of its very nature. This should provide a noticeable speed-up at a rel-

atively low overhead cost. Other improvements could be applied to the optimization

algorithm: considering second order shape derivatives should allow for faster conver-

gence, although they would be more demanding in terms of computational cost.
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Additional extracts from the code

In this appendix, other relevant parts of the implementation that were not presented

in Chap. 6 are reported and commented. The aim of this section is to provide a more

complete description of the code for future reference.

The methods here described are divided according to the classes they belong to.

A.1 SplinesGrid

In Lst. A.1 are reported the functions responsible to map coordinates from Cartesian to

cylindrical to local coordinates, as defined in (5.7) and (5.6).

1 //NB: t h i s a l s o t r a n s l a t e s the z component so that every po la r coo rd inate

i s always taken p o s i t i v e

2 void g l oba l 2Cy l indr i ca lCoord ( const v e c t o r 3 t& globalCoord ,

3 v e c t o r 3 t& c y l i n d r i c a l C o o r d ) const {
4

5 numer ic t rho = s q r t ( g lobalCoord (0 ) ∗ globalCoord (0 )

6 + globalCoord (1 ) ∗ globalCoord (1 ) ) ;

7 numer ic t theta = atan2 ( globalCoord (1 ) , g lobalCoord (0 ) ) ;

8

9 //NB a l l theta are taken as p o s i t i v e :

10 i f ( theta < 0) {
11 theta += 2 ∗ PI ;

12 }
13 numer ic t z = globalCoord (2 ) + s ideHa l fLength ;

14

15 c y l i n d r i c a l C o o r d << rho , theta , z ;

16 }
17

18
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19

20 //NB: in order to work , a l l the coo rd ina t e s in c y l i n d r i c a l C o o r d MUST BE

POSITIVE

21 void cy l i nd r i c a l 2Loca lCoo rd ( const v e c t o r 3 t& cy l indr i ca lCoord ,

22 v e c t o r 3 t& loca lCoord ) const {
23

24 numer ic t scaledRho = ( c y l i n d r i c a l C o o r d (0 )−( rad ius −s ideHa l fLength )

) / re fRho ;

25 numer ic t sca ledTheta = c y l i n d r i c a l C o o r d (1 ) / re fTheta ;

26 numer ic t sca ledZ = c y l i n d r i c a l C o o r d (2 ) / r e f Z ;

27

28

29 numer ic t rhoHat = scaledRho − ( i d x t ) ( scaledRho ) ;

30 numer ic t thetaHat = scaledTheta − ( i d x t ) ( sca ledTheta ) ;

31 numer ic t zHat = sca ledZ − ( i d x t ) ( sca ledZ ) ;

32

33 l oca lCoord << rhoHat , thetaHat , zHat ;

34 }
35

Listing A.1: Implementation of maps from cartesian to cylindrical (5.6) and from

cylindrical to local coordinates (5.7).

Lst. A.2 evaluates the inverse transposed Jacobian of these maps, used in the computa-

tion of the gradient of spline basis functions (5.8).

1 void getJacob ianInverseTransposed (

2 const v e c t o r 3 t& cy l indr i ca lCoord ,

3 matr ix3 t& jacob ian ) const {
4

5 numer ic t rho = c y l i n d r i c a l C o o r d (0 ) ;

6 numer ic t theta = c y l i n d r i c a l C o o r d (1 ) ;

7

8 numer ic t s t = s i n ( theta ) ;

9 numer ic t c t = cos ( theta ) ;

10

11 j a cob ian << ct / refRho , −s t /( rho ∗ r e fTheta ) , 0 ,

12 s t / refRho , ct /( rho ∗ r e fTheta ) , 0 ,

13 0 , 0 , 1/ r e f Z ;

14 }
15

Listing A.2: Function to recover inverse transposed Jacobian of map from local to

global coordinates, as appears in (5.8).
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A.2 SplinesBasisFunc

The routine for building the Gram matrix (5.10), is shown in Lst. A.3. This is used in

the evaluation of the H1 gradient representative, as described in Sec. 5.2.

1 template< unsigned i n t ORDER >

2 void Spl inesBas isFunc< ORDER > : : in i t ia l i zeGramMatr ixH1 ( ) {
3

4 // Retr i eve quadrature i n f o

5 const auto& wXi = hexaQuad t : : getWeights ( ) ;

6 //NB: no need to r e s c a l e . The o r i g i n a l r e f e r e n c e hexa i s de f i ned on

[−1 ,1]ˆ3 and hence has a volume o f 2ˆ3 = 8 = scaleX , but s i n c e I ’m

remapping i t to [ 0 , 1 ] ˆ 3 , the volume = sum( weights ) should be 1 , as i t

i s .

7 //However , the coo rd ina t e s f o r hexa i n t e g r a t i o n po in t s are de f i ned on the

r e f e r e n c e domain [−1 ,1 ]ˆ3 , and need to be remapped : so , f i r s t add

(1 , 1 , 1 ) , then d iv id e by 2 to get l o c a l c oo rd ina t e s in [ 0 , 1 ] ˆ 3

8 const matr ix t< 3 , hexaQuad t : : getNumPoints ( ) > x i = 0 .5 ∗ ( hexaQuad t

: : ge tPo int s ( ) + matr ix t< 3 , hexaQuad t : : getNumPoints ( ) > : : Constant

( 1 . ) ) ;

9

10 typede f Eigen : : Tr ip l e t<numeric t> t r i p l e t t ;

11 typede f std : : vector< t r i p l e t t > t r i p l e t L i s t t ;

12 t r i p l e t L i s t t t r i p l e t L i s t ;

13 //At every c e l l , at every i n t e g r a t i o n point , every b a s i s func that

i n t e r s e c t s that po int i s t e s t e d with any other

14 t r i p l e t L i s t . r e s e r v e ( numSpWithSuppOnPoint

15 ∗numSpWithSuppOnPoint

16 ∗ g r i d . getNumberOfCells ( ) ∗ x i . c o l s ( ) ) ;

17 //Every s p l i n e b a s i s f unc t i on support i n t e r s e c t s numSpWithSuppOnPoint

other s p l i n e s b a s i s f u n c t i o n s support

18 grahmMatrix . r e s e r v e ( numSpWithSuppOnPoint

19 ∗ th i s−>getNumBasisFunc ( ) / 3 . ) ;

20

21 //Loop through a l l c e l l s ( a c tua l l y , th ing s change only in the r a d i a l

d i r e c t i o n , so i t i s not nece s sa ry to eva luate c o n t r i b u t i o n s f o r every

s i n g l e c e l l )

22 f o r ( i d x t j =0; j<g r i d . getNumberOfCellsRad ( ) ; j++){
23 i d x 3 t c e l l I d x ;

24 c e l l I d x << j , 0 , 0 ;

25 // loop through a l l quadrature po in t s (NO NEED! Consider reduc ing )

26 f o r ( i d x t i =0; i<x i . c o l s ( ) ; i++){
27 v e c t o r 3 t c y l i n d r i c a l C o o r d ;

28 //map l o c a l to c y l i n d r i c a l c oo rd ina t e s

29 g r i d . l o c a l 2 c y l i n d r i c a l C o o r d ( x i . c o l ( i ) , c e l l I d x , c y l i n d r i c a l C o o r d ) ;

30 // get Jˆ−T

31 matr ix3 t JacInvT ;

32 g r i d . getJacob ianInverseTransposed ( cy l i ndr i ca lCoord , JacInvT ) ;
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33 // determinant o f i n v e r s e i s i n v e r s e o f determinant

34 const numer ic t det = 1 . / ( JacInvT . determinant ( ) ) ;

35 const numer ic t weight = wXi( i ) ∗ det ;

36 // eva luate a l l p o s s i b l e s p l i n e s

37 vec to r t< numSpWithSuppOnPoint > B;

38 th i s−>eva luateSp l ine s3DLoca l ( x i . c o l ( i ) , B ) ;

39 const vec to r t< numSpWithSuppOnPoint > Bw = B ∗ weight ;

40 // eva luate a l l p o s s i b l e s p l i n e g r a d i e n t s

41 matr ix t< 3 , numSpWithSuppOnPoint > gradBtemp ;

42 th i s−>eva luateSp l inesDer iv3DLoca l ( x i . c o l ( i ) , gradBtemp ) ;

43 const matr ix t< 3 , numSpWithSuppOnPoint > gradB = JacInvT ∗
gradBtemp ;

44 const matr ix t< 3 , numSpWithSuppOnPoint > gradBw = gradB ∗ weight ;

45 // eva luate a l l p o s s i b l e products BiBj ( weight inc luded )

46 const matr ix t< numSpWithSuppOnPoint , numSpWithSuppOnPoint > BiBjw

= B ∗ Bw. t ranspose ( ) ;

47 //and a l l p o s s i b l e s c a l a r products gradBi ∗ gradBj ( weight inc luded )

48 const matr ix t< numSpWithSuppOnPoint , numSpWithSuppOnPoint >

gradBigradBjw = gradB . t ranspose ( ) ∗ gradBw ;

49 // then , put them toge the r

50 const matr ix t< numSpWithSuppOnPoint , numSpWithSuppOnPoint >

BiBjplusgradBigradBjw = BiBjw + gradBigradBjw ;

51 //now , loop through the r e s t o f the c e l l s

52 f o r ( i d x t kk=0;kk<g r i d . getNumberOfCellsRad ( ) ; kk++ ) {
53 c e l l I d x (2 ) = kk ;

54 f o r ( i d x t j j =0; j j<g r i d . getNumberOfCellsTang ( ) ; j j ++){
55 c e l l I d x (1 ) = j j ;

56 // get map from l o c a l to g l o b a l s p l i n e index

57 matr ix t< 1 , numSpWithSuppOnPoint > mapl2gSpl ineIdx ;

58 matr ix t< numSpWithSuppOnPoint , dim > dummy;

59 getReductionCoeffNU ( c e l l I d x , dummy, mapl2gSpl ineIdx ) ;

60 //And add c o n t r i b u t i o n s to the Gram matrix

61 f o r ( i d x t i i i =0; i i i <numSpWithSuppOnPoint ; i i i ++){
62 const i d x t mapi i i = mapl2gSpl ineIdx ( i i i ) ;

63 f o r ( i d x t j j j =0; j j j <numSpWithSuppOnPoint ; j j j ++){
64 const i d x t mapj j j = mapl2gSpl ineIdx ( j j j ) ;

65

66 t r i p l e t L i s t . push back ( t r i p l e t t ( mapi i i , mapjjj ,

BiBjplusgradBigradBjw ( i i i , j j j ) ) ) ;

67

68 }//end loop through t e s t s p l i n e b a s i s f u n c t i o n s

69 }//end loop through t r i a l s p l i n e b a s i s f u n c t i o n s

70 }//end loop through ” theta ” c e l l s

71 }//end loop through ”z” c e l l s

72 }//end loop through quadrature po in t s

73 }//end loop through ” rho ” c e l l s

74

75 // i t ’ s f i n a l l y time to assemble the Gram matrix : )
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76 gramMatrix . se tFromTrip le t s ( t r i p l e t L i s t . begin ( ) , t r i p l e t L i s t . end ( ) ) ;

77 gramMatrix . makeCompressed ( ) ;

78

79 }
80

Listing A.3: Routine for assembling Gram matrix (5.10).

Another relevant function of the class SplinesBasisFunc is the one that computes the

determinant of DTV . It can be found in Lst. A.4.

1 void getDTnu ( const v e c t o r 3 t& globalCoord , matr ix3 t& DTnu) const {
2 // trans form coo rd ina t e s :

3 v e c t o r 3 t cy l i ndr i ca lCoord , loca lCoord ;

4 g r i d . g l oba l 2Cy l indr i ca lCoord ( globalCoord , c y l i n d r i c a l C o o r d ) ;

5 g r i d . cy l i nd r i c a l 2Loca lCoo rd ( cy l i ndr i ca lCoord , loca lCoord ) ;

6

7 // get g rad i en t o f a l l p o s s i b l e s p l i n e s eva luated at loca lCoord

8 matr ix t< dim , numSpWithSuppOnPoint > sp l inesGrad ;

9 eva luateSp l inesDer iv3DLoca l ( localCoord , sp l inesGrad ) ;

10 // get index o f the c e l l that conta in s the eva lua t i on po int

11 i d x 3 t c e l l I d x ;

12 g r i d . g e tCe l l I dx ( cy l i ndr i ca lCoord , c e l l I d x ) ;

13 // recove r the c o e f f i c i e n t s that corresponds to the l o c a l e v a l u a t i o n s o f

the s p l i n e s

14 matr ix t< numSpWithSuppOnPoint , dim > redCoeffNU XYZ ;

15 getReductionCoeffNU ( c e l l I d x , redCoeffNU XYZ ) ;

16 // reduce the g r a d i e n t s and recove r the 3x3 matrix D( r t z )V

17 matr ix3 t gradRTZ = spl inesGrad ∗ redCoeffNU XYZ ;

18 // these g r a d i e n t s are eva luated wrt the rho , theta , z l o c a l coord inate s ,

though . In order to get the proper g rad i en t in xyz coord inate s , we need

to mult ip ly by the jacob ian o f the t rans fo rmat ion :

19 matr ix3 t JacInvT ;

20 g r i d . getJacob ianInverseTransposed ( cy l i ndr i ca lCoord , JacInvT ) ;

21 matr ix3 t gradXYZ = JacInvT ∗ gradRTZ ;

22

23 // i n i t i a l i z e DTnu to i d e n t i t y :

24 DTnu << 1 , 0 , 0 ,

25 0 , 1 , 0 ,

26 0 , 0 , 1 ;

27

28 //Add the c o n t r i b u t i o n o f DV to DTnu ( i t needs to be transposed )

29 DTnu += gradXYZ . t ranspose ( ) ;

30 }
31

Listing A.4: Function that recovers det(DTV).



Appendix A. Additional extracts from the code 61

In Lst.A.5, the routine responsible to control the positiveness of det(DTV), as described

in Alg. 1, is illustrated. The check is conducted on all quadrature points of the mesh on

Ω0 used for the various integrations, as well as on those defined on the cells of the grid

on ΩSP for the computation of the Gram matrix. The update step size is halved only

for those spline basis functions responsible for rendering the determinant too small.

1 template< typename QUADRATURE VOL T, typename FESPACE T >

2 void updateCoeffNU ( const FESPACE T& fespace , matr ix t< Eigen : : Dynamic , dim

> & update ) {
3

4 const matr ix t< Eigen : : Dynamic , dim > coeffNU XYZ old = coeffNU XYZ ;

5 // f i r s t o f a l l , update the c o e f f i c i e n t s o f V

6 coeffNU XYZ += update ;

7

8 // t o l e r a n c e : determinant must be l a r g e r than t h i s

9 const numer ic t eps =0.001;

10

11 // r e t r i e v e quadrature po in t s ( f o r both the FE and the s p l i n e s c e l l s )

12 const auto& y i = QUADRATURE VOL T: : ge tPo int s ( ) ;

13 const matr ix t< 3 , hexaQuad t : : getNumPoints ( ) > x i = 0 .5 ∗ ( hexaQuad t

: : ge tPo int s ( ) + matr ix t< 3 , hexaQuad t : : getNumPoints ( ) > : : Constant

( 1 . ) ) ;

14 // i n i t i a l i z e ha lv ing o f s tep s i z e

15 numer ic t d e l t a = 0 . 5 ;

16

17 // f l a g to check i f the determinant i s too smal l somewhere

18 bool negat iveDeterminant = true ;

19

20 whi le ( negat iveDeterminant ) {
21 // get ready to see i f the determinant i s too smal l somewhere

22 negat iveDeterminant = f a l s e ;

23 // t h i s w i l l keep track o f those s p l i n e s that are r e s p o n s i b l e or

r ender ing negat ive the determinant somewhere

24 matr ix t< Eigen : : Dynamic , 1 > spl inesWithSmal lDet ( update . rows ( ) ) ;

25 spl inesWithSmal lDet . s e tZero ( ) ;

26

27 // loop through FE volume elements

28 f o r ( const auto& E : f e s pa c e ) {
29 // map gp to g l o b a l coo rd ina t e s

30 matr ix t< 3 , Eigen : : Dynamic > gpCoordY = E. geometry ( ) . g l o b a l ( y i ) ;

31 f o r ( i d x t i =0; i<gpCoordY . c o l s ( ) ; i++){
32 matr ix3 t DTnu;

33 matr ix t< dim , numSpWithSuppOnPoint > dummy;

34 matr ix t< 1 , numSpWithSuppOnPoint > mapl2gSpl ineIdx ;

35 th i s−>getGradBandDTnu( gpCoordY . c o l ( i ) , dummy, DTnu,

mapl2gSpl ineIdx ) ;

36 // i f you f i n d a very smal l determinant
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37 i f ( DTnu. determinant ( ) < eps ) {
38 negat iveDeterminant = true ;

39 //mark the s p l i n e s that are r e s p o n s i b l e f o r that

40 f o r ( i d x t spIdx =0; spIdx<numSpWithSuppOnPoint ; spIdx++){
41 spl inesWithSmal lDet ( mapl2gSpl ineIdx ( spIdx ) ) = 1 ;

42 }//end loop on inc r iminated s p l i n e s b a s i s func

43 }//end i f det smal l

44 }//end loop on y quadrature po in t s

45 }//end loop on FE elements

46

47 //same th ing c y c l i n g through the sp c e l l s

48 i d x 3 t c e l l I d x ;

49 c e l l I d x . s e tZero ( ) ;

50

51 f o r ( i d x t kk=0;kk<g r i d . getNumberOfCellsRad ( ) ; kk++){
52 c e l l I d x (2 ) = kk ;

53 f o r ( i d x t j j =0; j j<g r i d . getNumberOfCellsTang ( ) ; j j ++){
54 c e l l I d x (1 ) = j j ;

55 f o r ( i d x t i i =0; i i <g r i d . getNumberOfCellsRad ( ) ; i i ++){
56 c e l l I d x (0 ) = i i ;

57 f o r ( i d x t i =0; i<x i . c o l s ( ) ; i++){
58 v e c t o r 3 t globalCoord ;

59 g r i d . loca l2Globa lCoord ( x i . c o l ( i ) , c e l l I d x , g lobalCoord ) ;

60 matr ix3 t DTnu;

61 matr ix t< dim , numSpWithSuppOnPoint > dummy;

62 matr ix t< 1 , numSpWithSuppOnPoint > mapl2gSpl ineIdx ;

63 th i s−>getGradBandDTnu( globalCoord , dummy, DTnu,

mapl2gSpl ineIdx ) ;

64

65 // i f you f i n d a very smal l determinant

66 i f ( DTnu. determinant ( ) < eps ) {
67 negat iveDeterminant = true ;

68 //mark the s p l i n e s that are r e s p o n s i b l e f o r that

69 f o r ( i d x t spIdx =0; spIdx<numSpWithSuppOnPoint ; spIdx++){
70 spl inesWithSmal lDet ( mapl2gSpl ineIdx ( spIdx ) ) =1;

71 }//end loop on inc r iminated s p l i n e s b a s i s func

72 }//end i f det smal l

73 }//end loop on x quadrature po in t s

74 }//end loop on ” rho” c e l l s

75 }//end loop on ” theta ” c e l l s

76 }//end loop on ”z” c e l l s

77

78 // i f some o f the se s p l i n e s make the determinant negat ive

79 i f ( negat iveDeterminant ) {
80 std : : cout<<” Negative determinant found . Corresponding s p l i n e s b a s i s

f u n c t i o n s s c a l e d by ” << d e l t a << std : : endl ;

81 // s c a l e the corre spond ing sp b a s i s f u n c t i o n s c o e f f i c i e n t s

82 coeffNU XYZ −= ( d e l t a ∗ spl inesWithSmal lDet ) . asDiagonal ( ) ∗ update ;
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83 // reduce d e l t a

84 d e l t a ∗= 0 . 5 ;

85 }//end i f smal l det i s found

86 }//end whi l e ( det i s smal l )

87

88 // f i n a l l y , s t o r e the ( even tua l l y modi f i ed ) update

89 update = coeffNU XYZ − coeffNU XYZ old ;

90 }
91

Listing A.5: Function for checking positiveness of det(DTV).

A.3 CostFunctionalIntegrator

Next is reported the implementation of Alg. 2. Due to its intricacy, it has been split in

a few different functions: Lst. A.6 invokes Lst. A.7 to compute the integrands, and then

performs the final scalar products and reductions necessary to retrieve the values of J
and its partial derivatives.

1 void compute ( numer ic t& Jval , c o l V e c t o r t& dJu , c o l V e c t o r t& dJnu ) const {
2 //−w i l l conta in H(U) = A(U) x B. rows −> x , y , z components . c o l s −> x−

i n t e g r a t i o n po int

3 rowMatrix3 t HUxyz ;

4 //−w i l l conta in x , y , z components o f H( Phi ) = A( Phi ) x B. rows −> phi

b a s i s func . c o l s −> x−i n t e g r a t i o n po int

5 matr ix t HPhix , HPhiy , HPhiz ;

6 //−w i l l conta in x , y , z components o f d(AxB) ( Psi ) . rows −> Psi b a s i s func (

that r e f e r s to X,Y and Z components , in order ) . c o l s −> x−i n t e g r a t i o n

po int

7 matr ix t dAxBx , dAxBy , dAxBz ;

8

9 // Evaluate the i n t e r n a l f u n c t i o n s ( i n t e g r a l s over Omega ( y ) )

10 eva lua t e In t e rna lFunc t i on s ( HUxyz , HPhix , HPhiy , HPhiz , dAxBx , dAxBy ,

dAxBz ) ;

11

12 // Prepare to perform dot products to r ecove r J , Ju and Jnu

13 const rowMatrix3 t HUmP = ( 1 . / ( 4∗PI ) ∗ HUxyz) − evalP ;

14 //−r e t r i e v e normal components :

15 const rowVector t nHUmP = ( (HUmP. cwiseProduct ( n ) ) . c o l w i s e ( ) ) . sum ( ) ;

16 const matr ix t nHPhi = ( HPhix ∗ ( ( n . row (0) ) . asDiagonal ( ) ) )

17 +(HPhiy ∗ ( ( n . row (1) ) . asDiagonal ( ) ) )

18 +(HPhiz ∗ ( ( n . row (2) ) . asDiagonal ( ) ) ) ;

19 const matr ix t ndAxB = (dAxBx∗ ( ( n . row (0) ) . asDiagonal ( ) ) )

20 +(dAxBy∗ ( ( n . row (1) ) . asDiagonal ( ) ) )

21 +(dAxBz∗ ( ( n . row (2) ) . asDiagonal ( ) ) ) ;
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22 //−r e t r i e v e t a n g e n t i a l components

23 const rowMatrix3 t HUmPt= HUmP−n ∗(nHUmP. asDiagonal ( ) ) ;

24 const matr ix t HPhixt= HPhix−nHPhi ∗ ( ( n . row (0) ) . asDiagonal ( ) ) ;

25 const matr ix t HPhiyt= HPhiy−nHPhi ∗ ( ( n . row (1) ) . asDiagonal ( ) ) ;

26 const matr ix t HPhizt= HPhiz−nHPhi ∗ ( ( n . row (2) ) . asDiagonal ( ) ) ;

27 const matr ix t dAxBxt= dAxBx−ndAxB∗ ( ( n . row (0) ) . asDiagonal ( ) ) ;

28 const matr ix t dAxByt= dAxBy−ndAxB∗ ( ( n . row (1) ) . asDiagonal ( ) ) ;

29 const matr ix t dAxBzt= dAxBz−ndAxB∗ ( ( n . row (2) ) . asDiagonal ( ) ) ;

30 //−perform dot products

31 const rowVector t HUmPtHUmPt= (HUmPt. c o l w i s e ( ) ) . squaredNorm ( ) ;

32 const matr ix t HUmPtHPhit= HPhixt ∗(HUmPt. row (0) ) . asDiagonal ( )

33 +HPhiyt ∗(HUmPt. row (1) ) . asDiagonal ( )

34 +HPhizt ∗(HUmPt. row (2) ) . asDiagonal ( ) ;

35 const matr ix t HUmPtdAxBt= dAxBxt∗(HUmPt. row (0) ) . asDiagonal ( )

36 +dAxByt∗(HUmPt. row (1) ) . asDiagonal ( )

37 +dAxBzt∗(HUmPt. row (2) ) . asDiagonal ( ) ;

38 // Fina l ly , i n t e g r a t e over dD ( x )

39 Jval = (HUmPtHUmPt. dot ( weightsX ) ) ;

40 dJu = 1 ./ (2∗PI ) ∗ (HUmPtHPhit∗weightsX ) ;

41 dJnu = 1 ./ (2∗PI ) ∗ (HUmPtdAxBt∗weightsX ) ;

42 }
43

Listing A.6: Implementation of Alg. 2 - scalar products and integration on ∂D.

Lst. A.7 takes care of evaluating the integrals over Ω0, recovering their values for each

quadrature point in ∂D and for each basis function φ or ψ.

1 void eva lua t e In t e rna lFunc t i on s ( rowMatrix3 t& HUxyz , matr ix t& HPhix ,

matr ix t& HPhiy , matr ix t& HPhiz , matr ix t& dAxBx , matr ix t& dAxBy ,

matr ix t& dAxBz ) const {
2

3 // Res i ze matr i ce s adequate ly

4 //−dim x num of x−quad po in t s

5 HUxyz . r e s i z e ( 3 , globalCoordX . c o l s ( ) ) ;

6 HUxyz . s e tZero ( ) ;

7 //num of FE b a s i s f u n c t i o n s x num of x−quad po in t s

8 HPhix . r e s i z e ( volFE . numDofs ( ) +1, globalCoordX . c o l s ( ) ) ;

9 HPhiy . r e s i z e ( volFE . numDofs ( ) +1, globalCoordX . c o l s ( ) ) ;

10 HPhiz . r e s i z e ( volFE . numDofs ( ) +1, globalCoordX . c o l s ( ) ) ;

11 HPhix . s e tZero ( ) ; HPhiy . s e tZero ( ) ; HPhiz . s e tZero ( ) ;

12 //num of SP b a s i s f u n c t i o n s x num of x−quad po in t s

13 dAxBx . r e s i z e ( numSpBasisFunc , globalCoordX . c o l s ( ) ) ;

14 dAxBy . r e s i z e ( numSpBasisFunc , globalCoordX . c o l s ( ) ) ;

15 dAxBz . r e s i z e ( numSpBasisFunc , globalCoordX . c o l s ( ) ) ;

16 dAxBx . se tZero ( ) ; dAxBy . se tZero ( ) ; dAxBz . s e tZero ( ) ;

17

18 // recove r i n f o on y quad−po in t s
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19 const auto& y i = QUADRULE VOL T : : ge tPo int s ( ) ;

20 const auto& wYi = QUADRULE VOL T : : getWeights ( ) ;

21 const numer ic t sca leY = QUADRULE VOL T : : g e tSca l e ( ) ;

22

23 // s t a r t loop over f i n i t e e lements

24 f o r ( const auto& E : volFE ) {
25 //map l o c a l i n t e g r a t i o n po in t s to g l o b a l coo rd ina t e s

26 const rowMatrix3 t globalCoordY = E. geometry ( ) . g l o b a l ( y i ) ;

27

28 // eva luate i n t e g r a t i o n c o e f f i c i e n t s = gaussWeight ∗ sca leY ∗ | detJhat |
29 const Eigen : : Matrix< numeric t , 1 , gpPerVolElement > weightsY =

30 sca leY ∗ wYi . cwiseProduct ( E. geometry ( ) .

template integrat ionElement< gpPerVolElement >( y i ) ) . t ranspose ( ) ;

31

32 // −Recover map from l o c a l to g l o b a l i ndece s o f FE b a s i s f u n c t i o n s

33 const auto i n d i c e s = volFE . i n d i c e s ( E ) ;

34

35 // f o r each o f the y−quad po in t s o f t h i s element ,

36 f o r ( i d x t i =0; i<gpPerVolElement ; i++ ) {
37

38 // Compute a l l terms that depend pure ly on y :

39

40 // −eva luate term A(nu , u ; y ) and i t s d e r i v a t i v e s wrt u and nu ; a l s o

r e cove r map from l2g index o f SP b a s i s f unc t i on

41 // −term dAu(nu , Phi ; y ) f o r the g e n e r i c FE b a s i s f unc t i on Phi

42 // −term dAnu( Psi , u ; y ) f o r the g e n e r i c SP b a s i s f unc t i on Psi

43 v e c t o r 3 t A;

44 Eigen : : Matrix< numeric t , 3 , numDofsTest > dAu ;

45 Eigen : : Matrix< numeric t , 3 , 3∗numSpPerPoint > dAnu ;

46 Eigen : : Matrix< numeric t , 1 , numSpPerPoint > mapl2gSpl ineIdx ;

47 evaluateAandDA ( globalCoordY . c o l ( i ) , y i . c o l ( i ) , E, weightsY ( i ) , A

, dAu , dAnu , mapl2gSpl ineIdx ) ;

48

49 // −eva luate s p l i n e b a s i s f u n c t i o n s Psi at y ( w i l l be used to

eva luate B) −> qu i t e heavy , and only depends on y , so precompute

50 Eigen : : Matrix< numeric t , 1 , numSpPerPoint > Psi ;

51 v e c t o r 3 t TnuY;

52 spBas i s . mapCoordAndGetSpBasisFunc ( globalCoordY . c o l ( i ) , TnuY, Psi

) ;

53

54 // f o r each o f the x−quad po in t s

55 f o r ( i d x t j = 0 ; j<globalCoordX . c o l s ( ) ; j++ ) {
56

57 //−eva luate term B(nu) and term dB( Psi ) f o r the g e n e r i c SP b a s i s

f unc t i on Psi

58 v e c t o r 3 t B;

59 Eigen : : Matrix< numeric t , 3 , 3∗numSpPerPoint > dB ;

60 evaluateBandDB ( globalCoordX . c o l ( j ) ,TnuY, Psi ,B, dB) ;
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61

62 // −eva luate c r o s s products and s t o r e c o n t r i b u t i o n s :

63 //For H(U)

64 HUxyz . c o l ( j ) += A. c r o s s ( B ) ;

65

66 //For H( Phi )

67 f o r ( const auto idx : i n d i c e s ) {
68 const v e c t o r 3 t dAuCrossB = ( dAu . c o l ( idx . l o c a l ( ) ) ) . c r o s s ( B )

;

69

70 const auto phiGlobalIdx = idx . g l o b a l ( ) ;

71 HPhix ( phiGlobalIdx , j ) += dAuCrossB (0) ;

72 HPhiy ( phiGlobalIdx , j ) += dAuCrossB (1) ;

73 HPhiz ( phiGlobalIdx , j ) += dAuCrossB (2) ;

74 }//end loop over l o c a l FE b a s i s f u n c t i o n s

75

76

77 //For dnu(H( Psi ) )

78 f o r ( i d x t xyz = 0 ; xyz<3; xyz++ ) {
79 const i d x t lclIdxTemp = xyz∗numSpPerPoint ;

80 const i d x t glbIdxTemp = xyz∗numSpBasisFunc /3 ;

81

82 f o r ( i d x t i i = 0 ; i i <numSpPerPoint ; i i++ ) {
83 const i d x t l c l I d x = lclIdxTemp+i i ;

84 const i d x t gbl Idx = glbIdxTemp+mapl2gSpl ineIdx ( i i ) ;

85

86 const v e c t o r 3 t dAcrossBplusACrossdB = (dAnu . c o l ( l c l I d x ) ) . c r o s s

(B) + A. c r o s s (dB . c o l ( l c l I d x ) ) ;

87 dAxBx( gblIdx , j ) += dAcrossBplusACrossdB (0) ;

88 dAxBy( gblIdx , j ) += dAcrossBplusACrossdB (1) ;

89 dAxBz( gblIdx , j ) += dAcrossBplusACrossdB (2) ;

90 }//end loop l o c a l SP b a s i s func

91 }//end loop over x−y−z r e l a t e d SP b a s i s func

92 }//end loop x−i n t e g r a t i o n po in t s

93 }//end loop y−i n t e g r a t i o n po in t s

94 }//end loop elements }
95

Listing A.7: Implementation of Alg. 2 - Evaluation of integrands.

Lst. A.7 invokes two more internal functions: evaluateAandDA is the one responsible

for evaluating term A in (3.7) and its derivative, and has been described in Lst. 6.9;

evaluateBandDB computes the value of B in (3.7) and the corresponding derivative.

The related code is reported in Lst. A.8.

1 void evaluateBandDB ( const v e c t o r 3 t& x , const v e c t o r 3 t& y , const Eigen : :

Matrix< numeric t , 1 , numSpPerPoint >& Psi , v e c t o r 3 t& B, Eigen : :

Matrix< numeric t , 3 , 3∗numSpPerPoint >& dB ) const {
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2 // −F i r s t get y−x

3 B = y − x ;

4 // −And a few norms that w i l l get u s e f u l l a t e r on

5 const numer ic t norm = B. norm ( ) ;

6 const numer ic t norm2 = norm∗norm ;

7 const numer ic t norm3 = norm∗norm∗norm ;

8

9 typede f Eigen : : Matrix< numeric t , 3 , numSpPerPoint > rowMatrix3SP t ;

10 typede f Eigen : : Matrix< numeric t , 1 , numSpPerPoint > rowVectorSP t ;

11

12 // −Star t normal i z ing B

13 B ∗= 1./ norm ;

14 // −And Psi : t h i s w i l l prov ide the f i r s t term o f dB .

15 // −due to the cho i c e o f the SP b a s i s func t i ons , Ps i = ( Psi , 0 , 0 ) ’ f o r

x−r e l a t e d SP , (0 , Psi , 0 ) ’ f o r y , and so on

16 const rowVectorSP t Psireduced = Psi / norm3 ;

17

18 // −This i s u s e f u l f o r the second term :

19 // −the s c a l a r product (y−x ) ∗( Ps i ) , i s j u s t the product o f the x−x

components ( f o r x−r e l a t e d SP) , o f the y−y f o r y , and so on

20 // −t h i s i s a c t u a l l y −3/|y−x |ˆ4 ∗ (y−x ) ∗( Ps i ) , s i n c e I r e s c a l e d both B

and Psi .

21 const rowMatrix3SP t sca l a rProduc t s = (−3.∗B) ∗ Psireduced ;

22 // −now I need to mult ip ly again by B ( which i s a l r eady normalized , so

to r e cove r the / | y−x |ˆ 5 )

23 dB . template block< 3 , numSpPerPoint >( 0 , 0 ) = B ∗
s ca l a rProduct s . row (0) ; // f o r x−r e l a t e d SP b a s i s func

24 dB . template block< 3 , numSpPerPoint >( 0 , numSpPerPoint ) = B ∗
s ca l a rProduct s . row (1) ; // f o r y−r e l a t e d SP b a s i s func

25 dB . template block< 3 , numSpPerPoint >( 0 , 2∗numSpPerPoint ) = B ∗
s ca l a rProduct s . row (2) ; // f o r z−r e l a t e d SP b a s i s func

26 // −F i n a l l y add the f i r s t term to the r i g h t rows

27 dB . row (0) . segment (0 , numSpPerPoint )+= Psireduced ;

28 dB . row (1) . segment ( numSpPerPoint , numSpPerPoint )+= Psireduced ;

29 dB . row (2) . segment (2∗ numSpPerPoint , numSpPerPoint )+= Psireduced ;

30 //B should be d iv ided by normˆ3 , so ad jus t i t :

31 B ∗= 1/norm2 ;

32 }
33

Listing A.8: Implementation of Alg. 2 - Evaluation of B and its derivative (3.7).
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[30] Dragan V. Redžić. The magnetic field of a static circular current loop: a new

derivation. European Journal of Physics, Vol. 27 , No. 5, 2006.

[31] O. Stein. A Boundary Element Method for Eddy Currents. Master thesis. Supervi-

sor: Prof. Dr. Ralf Hiptmair, ETH Zürich. Zürich, April, 2015
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