
Non-equidistant approximate DFT

based on Z-splines

Bachelor Thesis

by

Claude J. Gittelson
supervised by

Prof. R. Hiptmair

Department of Mathematics
Eidgenössische Technische Hochschule

CH-8092 Zürich, Switzerland

June 2006

Abstract

In this paper, we consider an algorithm that efficiently evaluates a
trigonometric polynomial at arbitrarily spaced nodes. It is based on the
approximation of the polynomial by a function we can evaluate easily. We
are particularly interested in the case where we interpolate the trigono-
metric polynomial using high-order cardinal interpolation kernels known
as Z-splines, which we construct and study in a general setting.

Introduction

We are interested in the fast evaluation of a trigonometric polynomial

f(xj) =
∑

k

f̂k e−2πikxj .

For equidistant xj , this can be done with the well-known FFT algorithm. In
[5], G. Steidl describes an algorithm that efficiently evaluates f at arbitrary xj .
The idea is to approximate f(xj) by

s(xj) =
∑

l

glψ(nxj − l) ,

which can be evaluated efficiently if ψ has compact support. G. Steidl suggests
two possibilities for ψ: truncated Gaussian bells and B-splines. We will study
this algorithm with compactly supported high-order cardinal splines called Z-
splines.

Throughout this paper, we will restrict ourselves to one dimension. For a
multidimensional treatment of this algorithm, see [2, Section 2].

In Section 1, we review the various Fourier transforms that appear later on,
i.e. the continuous Fourier transform, Fourier series, and the discrete Fourier
transform. We also prove the Poisson summation formula, which we use repeat-
edly in our analysis.

1



2 1 FOURIER TRANSFORMS

Section 2 develops cardinal interpolation theory in a general setting. In
particular, we relate properties of the interpolation kernel and the interpolation
operator. In the following section, we construct Z-splines as an example for
high-order cardinal interpolation kernels.

In Section 4, we formulate and analyze our evaluation algorithm for trigono-
metric polynomials in a general form. Section 4.6 specializes our results to the
case of cardinal interpolation. In Section 4.7, we look at a ‘dual’ algorithm for
evaluating

fj =
∑

k

f̂(ξk) e−2πijξk ,

where the nodes are spaced equally in the time domain and arbitrarily in the
frequency domain. For a more general version of this algorithm, in which the
nodes are arbitrary in both time and frequency domains, see [2, Section 3].

Section 5 is an overview of our MATLAB implementation of the above al-
gorithms using Z-splines. Finally, in Section 6, we present a series of numeri-
cal experiments. These show that the approximate evaluation of trigonometric
polynomials with Z-splines does not converge as fast as with truncated Gaussian
bells or B-splines.

Notation

We will use the convenient MATLAB notation for intervals in Z, that is,

n = a : b :⇔ n ∈ {a, a + 1, . . . , b} .

It will also be useful to denote by

Zn :=
{
−

⌊n

2

⌋
, . . . ,−

⌊n

2

⌋
+ n− 1

}
=

{
k ∈ Z ; −n

2
≤ k <

n

2

}

the n whole numbers of smallest magnitude. Furthermore, Pn(X) will denote
the vector space of polynomials of degree ≤ n on X and Pn := Pn(R).

1 Fourier transforms

Throughout this paper, we will use various types of Fourier transforms. In
this section, we define these and state a few important properties, mainly to
set our notation and conventionsi. For simplicity, we restrict ourselves to the
one-dimensional case. All of the functionsii in this section are assumed to be
complex valued.

1.1 The continuous Fourier transform

Our convention for the continuous Fourier transform is

ϕ̂(k) :=
∫ ∞

−∞
ϕ(x) e2πikx dx . (1.1)

iWe use the factors e2πikx and e−2πikx instead of e−ikx and eikx, which are more commonly
seen in mathematical literature.

iiunvaryingly named ϕ



1.2 Fourier series 3

The inverse transform is

ϕ(x) =
∫ ∞

−∞
ϕ̂(k) e−2πikx dk , (1.2)

since the functions x 7→ e2πikx are orthogonal with respect to the standard
L2-inner product, that is,

∫ ∞

−∞
e2πikx e−2πilx dx = δ(k − l) , (1.3)

where δ refers to the Dirac distribution.
The Plancherel theorem for our choice of Fourier transform is

‖ϕ‖L2(R) = ‖ϕ̂‖L2(R) . (1.4)

1.2 Fourier series

If ϕ is T -periodic, we define its Fourier series as

ϕ(x) =
∑

k∈Z
ϕ̂k e−2πikx/T , (1.5)

where the Fourier coefficients are

ϕ̂k :=
1
T

∫ T/2

−T/2

ϕ(x) e2πikx/T dx . (1.6)

Equation (1.5) follows from the orthonormality of the e2πikx/T ,

1
T

∫ T/2

−T/2

e2πikx/T e−2πilx/T dx = δkl , (1.7)

where δkl is the Kronecker delta. Pointwise convergence holds if ϕ is piecewise
C1 and ϕ(x) = 1

2 (ϕ(x−) + ϕ(x+)) at discontinuities.
Parseval’s theorem states that

1
T

∫ T/2

−T/2

|ϕ(x)|2 dx =
∑

k∈Z
|ϕ̂k|2 . (1.8)

1.3 The discrete Fourier transform

Similarly, we define the discrete Fourier transform of length n as

ϕ̂k =
1
n

∑

j∈Zn

ϕj e2πikj/n (1.9)

for k ∈ Zn and (ϕj)j∈Zn ∈ Cn. Since

1
n

∑

j∈Zn

e2πikj/n e−2πilj/n = δkl , (1.10)



4 2 CARDINAL INTERPOLATION THEORY

the inverse transform is

ϕj =
∑

k∈Zn

ϕ̂k e−2πikj/n . (1.11)

Both the discrete Fourier transform and its inverse can be computed in O(n log n)
time using a fast Fourier transform (FFT) algorithm; see for example [1].

Parseval’s theorem for the discrete Fourier transform is

1
n

∑

j∈Zn

|ϕj |2 =
∑

k∈Zn

|ϕ̂k|2 . (1.12)

1.4 The Poisson summation formula

The Poisson summation formula relates the continuous Fourier transform to its
discrete counterparts by expressing the periodization of a function as a Fourier
series. It is used frequently throughout this paper.

Proposition 1.1. For ϕ : R → C integrable and piecewise C1 and ϕ(x) =
1
2 (ϕ(x−) + ϕ(x+)) at discontinuities,

∑

j∈Z
ϕ(x− jT ) =

1
T

∑

k∈Z
ϕ̂

(
k

T

)
e−2πikx/T ,

where ϕ̂ is the continuous Fourier transform (1.1) of ϕ and T > 0.

Proof. Since the left-hand side is T -periodic, the assumptions imply pointwise
convergence of the Fourier series

∑
k∈Z ck e−2πikx/T with

ck =
1
T

∑

j∈Z

∫ T/2

−T/2

ϕ(x−jT ) e2πikx/T dx =
1
T

∫ ∞

−∞
ϕ(y) e2πiky/T dy =

1
T

ϕ̂

(
k

T

)
.

We can switch integration and summation in the first step because ϕ is inte-
grable.

2 Cardinal interpolation theory

2.1 Cardinal interpolation operators

In this section, we study some properties of cardinal interpolation operators
and, in particular, link these properties to those of the interpolation kernel. In
Section 3.3, we will specialize our results to Z-spline interpolation kernels.

Let ψ ∈ L1(R) be piecewise C1 with ψ(x) = 1
2 (ψ(x−) + ψ(x+)) at disconti-

nuities and h > 0. Also, let Cpw(R,Rd) denote the space of piecewise continuous
functions from R to Rd. We will call the operator Ih

ψ : Cpw(R,Rd) → Cpw(R,Rd)
defined by (

Ih
ψu

)
(x) :=

∑

j∈Z
u(jh)ψ

(x

h
− j

)
(2.1)

a cardinal interpolation operator if (Ih
ψu)(jh) = u(jh) for all j ∈ Z. In this

situation, the function ψ is the cardinal interpolation kernel of Ih
ψ.



2.1 Cardinal interpolation operators 5

Proposition 2.1. For any h > 0, the following conditions are equivalent:

(i) Ih
ψ is a cardinal interpolation operator,

(ii) I1
ψ is a cardinal interpolation operator,

(iii) ψ(j) = δj0 for j ∈ Z.

Proof. (i)⇔(ii) follows from (Ih
ψu)(x) =

∑
j∈Z u(jh)ψ

(
x
h − j

)
= (I1

ψuh)(x
h ),

where uh(x) := u(xh).
(ii)⇒(iii) follows from (2.1) if u(j) = δj0, since u(j) = (I1

ψu)(j) = ψ(j).
(iii)⇒(ii) is implied by (2.1), (I1

ψu)(j) =
∑

l∈Z u(l)δjl = u(j).

Proposition 2.1 states that cardinal interpolation kernels are characterized
by (iii). If ψ and ϕ are cardinal interpolation kernels, then (I1

ψϕ)(x) = ψ(x) by
(2.1) since ϕ(j) = δj0. Also, Ih

ψ = Ih
ψ ◦ Ih

ϕ for all h > 0 because

(
Ih
ψIh

ϕu
)
(x) =

∑

j∈Z

(
Ih
ϕu

)
(jh)ψ

(x

h
− j

)
=

∑

j∈Z
u(jh)ψ

(x

h
− j

)
=

(
Ih
ψu

)
(x) .

In particular, Ih
ψ is a projection.

We will consider the case d = 1; the general case follows from componentwise
application of the one-dimensional results.

Often, we will require ψ to have compact support. This allows an efficient
evaluation of Ih

ψu and, more importantly for theoretical purposes, it ensures a
certain regularity of the Fourier transform ψ̂. By the Paley-Wiener theorem,iii

ψ̂ will be an entire analytic function of exponential type in this situation.
It turns out that the interpolation property (Ih

ψu)(jh) = u(jh) is not im-
portant for our interpolation results; these are in fact approximation results
that hold for any Ih

ψ defined as in (2.1) with certain polynomial-preservation
properties. We define the approximation order accordingly.

Definition 2.2. The operator Ih
ψ is of order ν iff it acts as the identity on Pν−1.

Clearly, this is equivalent to the discrete moment conservation property
∑

j∈Z
(jh)nψ

(x

h
− j

)
= xn for n = 0 : ν − 1 . (2.2)

Proposition 2.3. If I1
ψ is of order ν, then so are Ih

ψ for all h > 0.

Proof.
∑

j∈Z
(jh)nψ

(x

h
− j

)
= hn

∑

j∈Z
jnψ

(x

h
− j

)
= hn

(x

h

)n

= xn .

We will say that ψ is of order ν if Ih
ψ is for any, and therefore all, h > 0.

The following theorem gives a rather elementary L∞ estimate based on a Taylor
series expansion.iv

iiisee for example [3, Theorem 7.23]
ivIn fact, all of the interpolation results in this section are based on Taylor series expansions.



6 2 CARDINAL INTERPOLATION THEORY

Theorem 2.4. If ψ has compact support supp ψ ⊆ [−m,m] and Ih
ψ is of order

ν, then there is a constant c = c(ν, ψ) such that for all u ∈ Cν(R),
∥∥u− Ih

ψu
∥∥
∞ ≤ chν

∥∥∥u(ν)
∥∥∥
∞

.

Proof. A simple calculation gives us

∑

j∈Z
(x− jh)n

ψ
(x

h
− j

)
=

n∑

k=0

(
n
k

)
xn−k(−1)k

∑

j∈Z
(jh)kψ

(x

h
− j

)

=
n∑

k=0

(
n
k

)
xn−k(−x)k = (x− x)n = δn0

(2.3)

for n ≤ ν − 1. A Taylor series expansion about x ∈ R shows

u(x)− (
Ih
ψu

)
(x) = f(x)−

∑

j∈Z
u(jh)ψ

(x

h
− j

)

(2.2),n=0
=

∑

j∈Z

(
ν−1∑
p=1

u(p)(x)
p!

(jh− x)p + rj(h)

)
ψ

(x

h
− j

)

(2.3)
=

bx/hc+m∑

j=dx/he−m

rj(h)ψ
(x

h
− j

)
.

The estimate now follows from

|rj(h)| =
∣∣∣∣
u(ν)(ξ)

ν!
(jh− x)ν

∣∣∣∣ ≤
∥∥∥u(ν)

∥∥∥
∞

mν

ν!
hν .

2.2 Characterization of high-order kernels

For the following theorems, we need to know the Fourier transform of an inter-
polated function.

Lemma 2.5. For u ∈ Cpw(R) such that û satisfies the conditions of Proposition
1.1 and h > 0,

(̂
Ih
ψu

)
(k) =

(∑

r∈Z
û
(
k +

r

h

))
ψ̂(hk) ∀k ∈ R .

Proof. The calculation
∫ ∞

−∞
ψ

(x

h
− j

)
e2πikx dx = h

∫ ∞

−∞
ψ(y) e2πikh(y+j) dy = hψ̂(kh) e2πikjh

and Proposition 1.1 imply

(̂
Ih
ψu

)
(k) = h

∑

j∈Z
u(jh) e2πikjh ψ̂(hk) =

∑

r∈Z
û
(
k +

r

h

)
ψ̂(hk) .



2.2 Characterization of high-order kernels 7

We will switch to the frequency domain to show an estimate in the Sobolev
norm, similar to G. Strang and G. Fix in [6]. For any s ∈ R, the Sobolev norm
is given by

‖v‖2Hs :=
∫ ∞

−∞
|v̂(k)|2 (1 + k2)sdk (2.4)

where the Fourier transform v̂ is defined as in (1.1). The space Hs(R) is the set
of all distributions v for which ‖v‖Hs is finite, endowed with the obvious Hilbert
space structure.

The following theorem is similar to [6, Theorem 1]. Apart from our restric-
tion to the one-dimensional case, the difference is that our first two conditions
are slightly stronger. This gives us an interpolation result as the third condition
instead of a ‘best possible approximation’-type result.

Theorem 2.6. For ψ ∈ Hη(R) with compact support and 0 ≤ η ≤ ν − 1, the
following conditions are equivalent:

(i) I1
ψ is of order ν,

(ii) ψ̂(n)(k) = δk0δn0 for k ∈ Z and 0 ≤ n ≤ ν − 1,

(iii) for all s ≤ η, there is a constant c such that for all h > 0 and all u ∈ L2(R)
with supp û ⊆ [− 1

2h , 1
2h

]
,

∥∥u− Ih
ψu

∥∥
Hs ≤ chν−s ‖u‖Hν .

Note that in (iii), the requirement supp û ⊆ [− 1
2h , 1

2h

]
implies that u is

an entire function by the Paley-Wiener theorem.v Furthermore, u ∈ L2 implies
û ∈ L2 by Plancherel’s theorem, so in particular u ∈ Hν(R)∩Cpw(R). Therefore,
‖u‖Hν and Ih

ψu are well-defined and ‖u‖Hν < ∞.

Proof. Using the Poisson summation formula, Proposition 1.1, for x = 0, we get

∑

j∈Z
jnψ(x− j) =

∑

k∈Z

∫ ∞

−∞
(−y)nψ(x + y) e2πiky dy

=
∑

k∈Z

1
(−2πi)n

(
d
dk

)n(
ψ̂(k) e−2πikx

)

=
∑

k∈Z

1
(−2πi)n

n∑

l=0

(
n
l

)
ψ̂(l)(k)(−2πix)n−l e−2πikx

(2.5)

(ii)⇒(i). By (ii), the last term in (2.5) is xn for 0 ≤ n ≤ ν − 1.
(i)⇒(ii). For n = 0, (2.5) and (i) imply

1 =
∑

j∈Z
ψ(x− j) =

∑

k∈Z
ψ̂(k) e−2πikx ,

vsee for example [3, Theorem 7.23]



8 2 CARDINAL INTERPOLATION THEORY

so ψ̂(k) = δk0. Assuming ψ̂(l)(k) = δk0δl0 for l ≤ n− 1 and n ≤ ν− 1, (2.5) and
(i) imply

xn =
∑

j∈Z
jnψ(x− j) =

∑

k∈Z

1
(−2πi)n

(
δk0(−2πix)n + ψ̂(n)(k)

)
e−2πikx

= xn +
∑

k∈Z

1
(−2πi)n

ψ̂(n)(k) e−2πikx ,

so ψ̂(n)(k) = 0 for n ≥ 1, which shows (ii).
(iii)⇒(ii). We shall assume h ≤ 1 and use (iii) for û = χ[−1/2,1/2]. By Lemma
2.5, (iii) gives us

h−2(ν−1)
∥∥u− Ih

ψu
∥∥2

H0 = h−2(ν−1)
∑

r∈Z

∫ 1
2h

− 1
2h

∣∣∣δr0 − ψ̂(r + hk)
∣∣∣
2

dk → 0 , h → 0 .

Expanding ψ̂ in a Taylor series about r and using h ≤ 1 leads to

∫ 1
2

− 1
2

∣∣∣∣∣
ν−1∑
n=0

δr0δn0 − ψ̂(n)(r)
n!

hn−ν+1kn + O(h)

∣∣∣∣∣

2

dk → 0 , h → 0

for all r ∈ Z. This implies ψ̂(n)(r) = δr0δn0 for n = 0 : ν − 1.
(ii)⇒(iii). By Lemma 2.5, since supp û ⊆ [− 1

2h , 1
2h

]
,

∥∥u− Ih
ψu

∥∥2

Hs =
∫ ∞

−∞

∣∣∣∣∣û(k)−
∑

r∈Z
û
(
k +

r

h

)
ψ̂(hk)

∣∣∣∣∣

2

(1 + k2)sdk

=
∑

r∈Z

∫ 1
2h

− 1
2h

|û(k)|2
∣∣∣δr0 − ψ̂(r + hk)

∣∣∣
2 (

1 + h−2 (r + hk)2
)s

dk .

(2.6)

We will estimate the last term separately for r = 0 and r 6= 0. In the former

case, using ψ̂(ξ)
(ii)
= 1 + O(ξν), we have

∫ 1
2h

− 1
2h

|û(k)|2
∣∣∣1− ψ̂(hk)

∣∣∣
2

(1 + k2)sdk .
∫ 1

2h

− 1
2h

|û(k)|2 |hk|2ν (1 + k2)sdk

≤
∫ 1

2h

− 1
2h

|û(k)|2 |hk|2(ν−s) (1 + k2)sdk

≤ h2(ν−s)

∫ 1
2h

− 1
2h

|û(k)|2 (1 + k2)νdk

with a constant depending only on ψ and ν.
For r 6= 0, we will expand ψ̂ in a Taylor series about r; by (ii), this is just

the remainder term,

ψ̂(hk + r) =
ψ̂(ν)(ϑr(k))

ν!
(hk)ν ,

where for each k, ϑr(k) is between r and r + hk. Since |hk| ≤ 1
2 and r 6= 0,

|r + hk| ≤ 3
2 |ϑr(k)|. Therefore, we can estimate the sum in (2.6) over Z\{0} up



2.3 ‘p-convergence’ 9

to a constant factor by

∫ 1
2h

− 1
2h

|û(k)|2 h−2s |hk|2ν
∑

r∈Z\{0}

∣∣∣ψ̂(ν)(ϑr(k))
∣∣∣
2

|ϑr(k)|2s dk .

As in the proof of [6, Theorem 1], we can bound the sum in this term by a
constant for s ≤ η.

Note that the restrictions on u in (iii) are very limiting, much more limiting
than in [6, Theorem 1]. This significantly weakens the implications (i),(ii)⇒(iii);
however, it does no harm to (iii)⇒(ii). So Theorem 2.6 is not as much an error
estimate as it is a characterization of high-order cardinal interpolation kernels.

2.3 ‘p-convergence’

The above estimates address the convergence of cardinal interpolation with a
single ψ as h goes to zero. We would also like to study convergence for a sequence
of kernels ψ of increasing order, with fixed h, similar to p-convergence in finite
element theory.

Theorem 2.6 tells us that the Fourier transforms of high-order cardinal in-
terpolation kernels are one at zero and vanish at every nonzero whole number.
In this sense, they approximate the rectangular function rect := χ(−1/2,1/2) at
least near Z.

Theorem 2.7. Let ψ ∈ L2(R) be bounded and compactly supported and γ ≤ 1;
also, let R0 :=

(−γ
2 , γ

2

)
and R := R0 + Z. Then for all h > 0 and u ∈ L2 with

supp û ⊆ 1
hR0, û bounded and piecewise continuously differentiable,vi

∥∥u− Ih
ψu

∥∥
L2(R)

≤ ‖u‖L2(R) max
|k|≤ γ

2


∑

j∈Z

∣∣∣δj0 − ψ̂(j + k)
∣∣∣
2




1
2

and ∥∥u− Ih
ψu

∥∥
L2(R)

≤ 1√
h
‖û‖L∞(R)

∥∥∥rect−ψ̂
∥∥∥

L2(R)
.

Proof. Let k ∈ (− 1
2h , 1

2h

)
and j ∈ Z. By Lemma 2.5, since supp û ⊆ 1

hR0,

(
û− Îh

ψu
)(

k + j
h

)
= û(k)δj0− û(k)ψ̂(j +hk) = û(k)(rect(j +hk)− ψ̂(j +hk)) .

In particular,
(
û− Îh

ψu
)(

k + j
h

)
= 0 for k 6∈ 1

hR0. Therefore,

∥∥∥û− Îh
ψu

∥∥∥
2

L2(R)
=

∥∥∥û− Îh
ψu

∥∥∥
2

L2(R)
=

∑

j∈Z

∫
1
h R0

|û(k)|2
∣∣∣(rect−ψ̂)(j + hk)

∣∣∣
2

dk

≤ ‖û‖2L∞( 1
h R0)

∫

R

∣∣∣(rect−ψ̂)(ξ)
∣∣∣
2 dξ

h

viThese assumptions can be weakened if we use a weaker form of the Poisson summation
formula than Proposition 1.1.



10 2 CARDINAL INTERPOLATION THEORY

where we can switch summation and integration by the monotone convergence
theorem. Since the last term is finite, û− Îh

ψu ∈ L2(R) and the second estimate
follows from Plancherel’s identity (1.4).

The first inequality follows from the opposite estimate in the last step, i.e.

∥∥∥û− Îh
ψu

∥∥∥
2

L2(R)
≤ ‖û‖2L2( 1

h R0)
max
|k|≤ γ

2

∑

j∈Z

∣∣∣δj0 − ψ̂(j + k)
∣∣∣
2

and Plancherel’s identity.

If (ψn)n∈N is a sequence of kernels with ψ̂n → rect in L2(R), for example if
ψn → sinc in L2(R) where sinc(x) := sin(πx)

πx is the (inverse) Fourier transform of
rect, then by the second estimate, Ih

ψn
u → u in L2 when n →∞ for u satisfying

the assumptions of Theorem 2.7. We will see that, under some further assump-
tions on (ψn)n∈N, we get exponential convergence. We will restrict ourselves to
the second estimate; a similar analysis holds for the first.

Consider a set Ψ ⊆ L2(R) of compactly supported cardinal interpolation
kernels. If there exists a c0 such that for all ν ∈ N and all ψ ∈ Ψ with ψ of
order ν, ∥∥∥∥∥

ψ̂(ν)

ν!

∥∥∥∥∥
L∞(R0)

≤ c0 , (2.7)

then by Theorem 2.6 and a Taylor series expansion around 0,
∥∥∥1− ψ̂

∥∥∥
L∞(R0)

≤ c0

(γ

2

)ν

,

and therefore ∥∥∥1− ψ̂
∥∥∥

L2(R0)
≤ c0

√
γ

(γ

2

)ν

.

If we can bound the tails of ψ̂ uniformly by

∥∥∥ψ̂
∥∥∥

L2(R\R0)
≤ c1

(γ

2

)p(ν)

, (2.8)

then Theorem 2.7 implies

∥∥u− Ih
ψu

∥∥
L2(R)

≤ c√
h
‖û‖L∞(R)

(γ

2

)min(ν+ 1
2 ,p(ν))

(2.9)

for all u that satisfy the conditions in Theorem 2.7. If p is linear, this gives us
exponential convergence for ν →∞.

In particular, if (2.7) and (2.8) hold for γ = 1, we can set h = 1 and û = rect.
In this situation, u = sinc and, since I1

ψ sinc = ψ,vii (2.9) translates to

‖sinc−ψ‖L2(R) ≤ c

(
1
2

)min(ν+ 1
2 ,p(ν))

. (2.10)

Therefore, high-order cardinal interpolation kernels approximate sinc.

viisee the remark after Proposition 2.1



11

3 Z-splines

3.1 Definition

In this section, we will construct cardinal splinesviii Zm,q ∈ Cq−1(R) with com-
pact support supp Zm,q ⊆ [−m,m]. We will denote the corresponding interpo-
lation operator by Ih

m,q := Ih
Zm,q

, so for f ∈ Cpw(R),

(
Ih
m,qf

)
(x) =

∑

j∈Z
f(jh)Zm,q

(x

h
− j

)
, (3.1)

and Im := Im,m. For the moment, we will set h = 1 and assume f ∈ Cs(R) for
large enough s.

Consider the Taylor series expansion of f about 0,

f(j) ≈
2m−2∑
p=0

f (p)(0)
p!

jp , j = −(m− 1) : m− 1 . (3.2)

Up to order 2m− 1, the 2m− 1 values {f(j)}(m−1)
j=−(m−1) depend linearly on the

2m− 1 values {f (p)(0)}2m−2
p=0 . By solving for the latter, we get

f (p)(0) ≈
m−1∑

j=−(m−1)

a
(m)
p,j f(j) , p = 0 : 2m− 2 (3.3)

for some a
(m)
p,j . Also, using supp Zm,q ⊆ [−m,m] and the continuity of Zm,q,

(3.1) implies

(
I1
m,qf

)(p)
(0) =

m−1∑

j=−(m−1)

Z(p)
m,q(−j)f(j) , p = 0 : q − 1 . (3.4)

We therefore require

Z(p)
m,q(j) =

{
a
(m)
p,−j , |j| ≤ m− 1

0, |j| ≥ m
, p = 0 : q − 1 (3.5)

for all j ∈ Z. Note that this defines q conditions for Zm,q at every j ∈ Z, so for
any interval [j, j + 1] there is a unique polynomial of degree 2q− 1 that satisfies
(3.5) at j and j + 1.

Definition 3.1 (Z-spline). The Z-spline Zm,q of order (m, q) ∈ N2, q ≤ 2m−1,
is the piecewise polynomial of degree 2q − 1 that satisfies (3.5) for all j ∈ Z.
The standard Z-spline is Zm := Zm,m.

The above construction can be generalized to nonequispaced nodes and
bounded domains; see [4, Section 3].

viiii.e. piecewise polynomial cardinal interpolation kernels



12 3 Z-SPLINES

−4 −2 0 2 4

0

0.5

1 Z1(x)

−4 −2 0 2 4

0

0.5

1 Ẑ1(k)

−4 −2 0 2 4

0

0.5

1 Z2(x)

−4 −2 0 2 4

0

0.5

1 Ẑ2(k)

−4 −2 0 2 4

0

0.5

1 Z3(x)

−4 −2 0 2 4

0

0.5

1 Ẑ3(k)

−4 −2 0 2 4

0

0.5

1 Z4(x)

−4 −2 0 2 4

0

0.5

1 Ẑ4(k)

Figure 3.1: The first four standard Z-splines (left) and their Fourier transforms
(right).



3.2 Construction in matrix form 13

3.2 Construction in matrix form

For an explicit construction of the Z-spline Zm,q, we need to translate the
above arguments to matrix form. Let Fm := {f(j)}(m−1)

j=−(m−1) and F ′m :=
{f (p)(0)}2m−2

p=0 . The Taylor series expansion (3.2) can be written as

Fm ≈ VmDmF ′m , (3.6)

where Dm is a diagonal matrix with [Dm]l,l = 1
(l−1)! and Vm is a Vandermonde

matrix with [Vm]l,p = (l −m)p−1. Therefore,

F ′m ≈ AmFm for Am := D−1
m V −1

m . (3.7)

Am is the finite difference matrix ; it is related to a
(m)
p,j by [Am]p+1,m+j = a

(m)
p,j .

Using (3.5), we can evaluate Zm,q on [j, j + 1], j ∈ Z, by Hermite-Birkhoff
interpolation with

Z(p)
m,q(i) =

{
[Am]p+1,m−i, |i| ≤ m− 1
0, |i| ≥ m

, p = 0 : q − 1 (3.8)

for i ∈ {j, j + 1}.
There exist explicit formulas for Am = D−1

m V −1
m . Clearly, D−1

m is just the
diagonal matrix with entries [D−1

m ]l,l = (l−1)!. The inverse of the Vandermonde
matrix Vm is

[V −1
m ]p,l =

(−1)l+1

(2m− 1− l)!(l − 1)!
vp,l , (3.9)

where vp,l is the coefficient of xl−1 in the polynomial

(x + m− 1)(x + m− 2) · · · (x− (m− 1))
x + m− p

.

Example 3.2. The first few finite difference matrices are

A1 =
(
1
)

A2 =




0 1 0
− 1

2 0 1
2

1 −2 1


 A3 =




0 0 1 0 0
1
12 − 2

3 0 2
3 − 1

12
− 1

12
4
3 − 5

2
4
3 − 1

12
− 1

2 1 0 −1 1
2

1 −4 6 −4 1




See Section 5.1 for a MATLAB implementation of Z-splines.

3.3 Properties

Let us first summarize a few elementary properties of Z-splines.

Proposition 3.3. Z-splines satisfy

1. Zm,q is unique

2. Zm,q ∈ Cq−1(R) and Zm,q|(j,j+1) ∈ C∞ (j, j + 1) for all j ∈ Z
3. supp Zm,q = [−m,m]



14 3 Z-SPLINES

4. Zm,q ∈ Hq(R)

5. Zm,q(j) = δj0 for j ∈ Z

6. Zm,q(−x) = Zm,q(x)

Proof. The first 3 properties are clear. Point 4 follows from properties 2 and
3 by the compatibility condition for Sobolev spaces. Point 5 follows from (3.2)
for j = 0: f(0) = f (0)(0) implies a

(m)
0,j = δj0 in (3.3).

To prove the symmetry of Zm,q, i.e. property 6, we will show Z
(p)
m,q(−j) =

(−1)pZ
(p)
m,q(j) for p = 0 : q − 1. Note that, for µ(x) := −x and f ∈ Cq−1,

(f ◦ µ)(p) = (−1)pf (p) ◦ µ. If f ∈ P2m−2, equation (3.2) is exact and therefore
so is (3.3).

m−1∑

j=−(m−1)

a
(m)
p,j f(j) = f (p)(0) = (−1)p(f ◦ µ)(p)(0) = (−1)p

m−1∑

j=−(m−1)

a
(m)
p,j f(−j)

for all f ∈ P2m−2 implies a
(m)
p,−j = (−1)pa

(m)
p,j for p = 0 : 2m − 2 and the claim

follows from (3.5).

By Proposition 2.1, property 5 implies that Ih
m,q is a cardinal interpolation

operator, i.e. (Ih
m,qf)(jh) = f(jh) for all j ∈ Z.

Looking at the construction of Z-splines in Section 3.1, in particular the
Taylor expansion in (3.2) and the interpolation requirement (3.5), we might
predict a high order interpolation property. The following theorem states that
the order of Zm,q is indeed min(2m − 1, 2q), so Z-splines give us interpolation
kernels of arbitrary order.

Theorem 3.4. The interpolation operator Ih
m,q is of order min(2m− 1, 2q).

Proof. First let h = 1. For f ∈ P2m−2, equation (3.2) is exact and therefore so
is (3.3). By (3.5), it follows that

(
I1
m,qf

)(p)
(j) = f (p)(j) , ∀j ∈ Z , p = 0 : q − 1 .

For f ∈ P2q−1, since f |[j,j+1],
(
I1
m,qf

) |[j,j+1] ∈ P2q−1 [j, j + 1], this implies
f |[j,j+1] =

(
I1
m,qf

) |[j,j+1]. For general h > 0, the claim follows from Propo-
sition 2.3.

Theorem 3.4 lets us apply results from Section 2 to get more concrete inter-
polation estimates.

Theorem 3.5. Let ν := min(2m− 1, 2q).

1. Ẑ
(n)
m,q(k) = δk0δn0 for k ∈ Z and 0 ≤ n ≤ ν − 1 or n odd.

2. There is a constant c = c(ν) such that for all u ∈ Cν(R),

∥∥u− Ih
m,qu

∥∥
∞ ≤ chν

∥∥∥u(ν)
∥∥∥
∞

.



15

3. For all s ≤ q, there is a constant c such that for all h > 0 and all u ∈ L2(R)
with supp û ⊆ [− 1

2h , 1
2h

]
,

∥∥u− Ih
m,qu

∥∥
Hs(R)

≤ chν−s ‖u‖Hν(R) .

Proof. 1. For 0 ≤ n ≤ ν − 1, this follows from Theorem 3.4. For n odd, it
follows from the symmetry of Z-splines, Proposition 3.3.6.

2. This follows from Theorem 3.4 and Theorem 2.4.

3. This is a consequence of Theorem 3.4 and Theorem 2.6.

Note that, for a given m, choosing q = m maximizes ν; there seems to be no
gain in setting q > m. So for a given support, the interpolation order is highest
for the standard Z-spline.

There is, however, at least a heuristic reason for setting m > q. In (3.3), we
get a better approximation of f (p) for larger m. So, even though interpolation
is only exact for polynomials of degree at most 2q − 1, the derivatives of Ih

m,qf
at the nodes hZ are better approximations of the derivatives of f for arbitrary
f if m is large. The numerical experiments in Section 6.1 show that it can make
sense to use Ih

m,q with m > q.

4 DFT Algorithm

4.1 Derivation and general formulation

We are interested in the fast evaluation of a 1-periodic trigonometric polynomial

f(x) =
∑

k∈ZN

f̂k e−2πikx (4.1)

at arbitrary xj ∈ R, j = 1 : N . For some n ≥ N and ψ : R → R, we will
approximate f by

s(x) :=
∑

l∈Z
glψ(nx− l) . (4.2)

The evaluation of s is efficient if ψ has (small enough) compact support in R;
more precisely, we require supp ψ ⊆ [−m,m] for some m ∈ N.

We first need to transform s to the frequency domain. We require s to be
1-periodic. This is the case iff gl+rn = gl for all r ∈ Z, l ∈ Zn. The Poisson
summation formula, Proposition 1.1, implies

s(x) =
∑

l∈Zn

gl

∑

r∈Z
ψ(nx− l − nr) =

∑

l∈Zn

gl
1
n

∑

k∈Z
ψ̂

(
k

n

)
e−2πik(x−l/n) ,

where ψ̂ is the continuous Fourier transform of ψ defined in (1.1). Note that,
if we switch the order of summation and write e−2πik(x−l/n) = e2πikl/n e−2πikx,
we get (1.9), the formula for the discrete Fourier transform. Let (ĝk)k∈Zn be
the discrete Fourier transform of (gl)l∈Zn . If ĝk+rn, r, n ∈ Z, is computed



16 4 DFT ALGORITHM

analogously, it is clear that ĝk+rn = ĝk. So if we set ψ̂k := ψ̂
(

k
n

)
for k ∈ Z,

somewhat abusing our notation, we get

s(x) =
∑

k∈Z
ψ̂kĝk e−2πikx . (4.3)

We can now let s approximate f by choosing appropriate ĝk. For more
generality, we’ll first consider an intermediate approximation

s1(x) :=
∑

k∈Z
ϕ̂kĝk e−2πikx , (4.4)

where ϕ̂k ≈ ψ̂k and ϕ̂k 6= 0 for k ∈ ZN . For s1 to approximate f , we set

ĝk :=

{
f̂k

ϕ̂k
, k ∈ ZN

0, k ∈ Zn\ZN

. (4.5)

This gives us

f(x) ≈ s1(x) ≈ s(x) =
bnxc+m∑

l=dnxe−m

glψ(nx− l) . (4.6)

These considerations lead to the following algorithm for the approximate
evaluation of f at arbitrary xj . Note that we have not yet chosen ϕ̂k.

Algorithm 4.1. Parameters: a ∈ [1,∞), m ∈ N.
Input: N ∈ N, n := aN , xj ∈ R (j = 1 : Ñ), f̂k ∈ C (k ∈ ZN ).

0. (Precomputation) calculate ϕ̂k for k ∈ ZN and evaluate ψ(nxj − l) for
l = dnxje −m : bnxjc+ m, j = 1 : Ñ .

1. For k ∈ ZN compute

ĝk :=
f̂k

ϕ̂k

and set ĝk := 0 for k ∈ Zn\ZN .

2. Calculate
gl :=

∑

k∈ZN

ĝk e−2πikl/n

by reduced FFT for l ∈ Zn.

3. For j = 1 : Ñ computeix

s(xj) =
bnxc+m∑

l=dnxe−m

glψ(nxj − l) .

ixThe index in gl is taken modulo n.



4.2 Matrix form 17

Note that Algorithm 4.1 evaluates f at an arbitrary number Ñ of points.
For simplicity, we will assume Ñ = N , i.e. that the number of evaluation points
coincides with the length of the trigonometric polynomial f .

Clearly, step 1 requires just N multiplications and step 3 uses at most
(2m + 1)N multiplications and additions. The FFT in step 2 has complex-
ity O(n log n), so the overall complexity of the algorithm is O(n log n + mN).
Introducing the oversampling factor

a :=
n

N
(4.7)

to eliminate n, we can write the complexity of Algorithm 4.1 as

O(aN log N + (a log a + m)N) . (4.8)

In step 0, which we consider to be precomputation, we need up to (2m + 1)N
evaluations of ψ; we also need to compute ϕ̂k for N values of k. Both calculations
are clearly independent of f ; however, the former depends on xj , so one cannot
always consider this to be precomputation. If the evaluation of ψ requires mβ

time, this adds a factor O(mβ+1N) to the total complexity.
If the evaluation of ψ is considered precomputation, Algorithm 4.1 requires

O(aN) memory for the Fourier transform (see [1, Section 7.2]) and (at least)
O(mN) to evaluate ψ, since all of the evaluations are done beforehand and
stored. However, if ψ is evaluated in step 3, the memory usage can be reduced
to O(N + m) for the evaluation; see Code 5.5 for details.

4.2 Matrix form

It will be useful to formulate the above algorithm in matrix form. If f̂ :=
(f̂k)k∈ZN

∈ CN and f := (f(xj))j=1:N ∈ CN , then (4.1) simply states

f = Af̂ for A ∈ CN×N , Ajk = e−2πikxj . (4.9)

Algorithm 4.1 approximates this matrix-vector multiplication by

f = Af̂ ≈ BψFnDϕ̂ f̂ , (4.10)

where

Dϕ̂ ∈ Cn×N , [Dϕ̂]ik :=
{

1
ϕ̂k

, i = k + bn
2 c − bN

2 c
0, otherwise

,

Fn ∈ Cn×n , [Fn]lk := e−2πikl/n ,

Bψ ∈ CN×n , [Bψ]jl := ψ(nxj − l) .

Dϕ̂ is essentially a diagonal matrix containing the factors 1
ϕ̂k

, Fn is the Fourier
matrix for the inverse discrete Fourier transform (1.11) of length n, and Bψ

contains all the necessary evaluations of ψ.

4.3 An error estimate

Theorem 4.2 gives bounds for the error in the max-norm and the L2-norm. We
will use the following norms for f :

‖f̂‖l1 :=
∑

k∈ZN

∣∣∣f̂k

∣∣∣ and ‖f‖L2 :=
∫ 1/2

−1/2

|f(x)|2 dx . (4.11)



18 4 DFT ALGORITHM

Theorem 4.2. For the norms defined above,

sup
x∈R

|f(x)− s(x)| ≤ ‖f̂‖l1 max
k∈ZN




∣∣∣∣∣
ϕ̂k − ψ̂k

ϕ̂k

∣∣∣∣∣ +
∑

r∈Z\{0}

∣∣∣∣∣
ψ̂k+rn

ϕ̂k

∣∣∣∣∣




and

‖f(x)− s(x)‖2L2 ≤ ‖f‖2L2 max
k∈ZN




∣∣∣∣∣
ϕ̂k − ψ̂k

ϕ̂k

∣∣∣∣∣

2

+
∑

r∈Z\{0}

∣∣∣∣∣
ψ̂k+rn

ϕ̂k

∣∣∣∣∣

2

 .

Proof.

f(x)− s(x)
(4.3)
=

∑

k∈ZN

f̂k e−2πikx−
∑

k∈Z
ψ̂kĝk e−2πikx

(4.5)
=

∑

k∈ZN

f̂k e−2πikx−
∑

k∈ZN

f̂k

ϕ̂k

∑

r∈Z
ψ̂k+rn e−2πi(k+rn)x

=
∑

k∈ZN

f̂k


 ϕ̂k − ψ̂k

ψ̂k

e−2πikx +
∑

r∈Z\{0}

ψ̂k+rn

ϕ̂k
e−2πi(k+rn)x


 .

The first inequality now follows from the triangle inequality.
By Parseval’s theorem (1.8), taking Fourier coefficients from the above cal-

culation,

‖f − s‖L2 =
∑

k∈ZN

|f̂k|2



∣∣∣∣∣
ϕ̂k − ψ̂k

ϕ̂k

∣∣∣∣∣

2

+
∑

r∈Z\{0}

∣∣∣∣∣
ψ̂k+rn

ϕ̂k

∣∣∣∣∣

2

 .

The second inequality now follows like the first, since ‖f‖2L2 =
∑

k|f̂k|2 by
(1.8).

In [5], G. Steidl uses a different approach. She splits the error into two
components,

|f(x)− s(x)| ≤ |f(x)− s1(x)|+ |s1(x)− s(x)| ,

and estimates these separately. This has the advantage that the estimate is
independent of ψ̂, which is important, for example, when ψ is the truncation of
some function ϕ and ϕ̂k = ϕ̂

(
k
n

)
. In this situation, ϕ̂ may be much simpler than

ψ̂. In general, however, it seems unnatural to introduce ϕ̂k into the estimate
for k 6∈ ZN , since these values do not appear in Algorithm 4.1.

4.4 A natural choice for ϕ̂k

It is natural to choose ϕ̂k := ψ̂k for k ∈ ZN . In this situation, we can simplify
the estimates in Theorem 4.2 to the following:

Corollary 4.3. If ϕ̂k = ψ̂k for k ∈ ZN ,

sup
x∈R

|f(x)− s(x)| ≤ ‖f̂‖l1 max
|k|≤ 1

2a

∑

r∈Z\{0}

∣∣∣∣∣
ψ̂(k + r)

ψ̂(k)

∣∣∣∣∣



4.5 Another possibility: interpolation 19

and

‖f(x)− s(x)‖2L2 ≤ ‖f‖2L2 max
|k|≤ 1

2a

∑

r∈Z\{0}

∣∣∣∣∣
ψ̂(k + rn)

ψ̂(k)

∣∣∣∣∣

2

.

Proof. Set ϕ̂k = ψ̂k = ψ̂
(

k
n

)
in Theorem 4.2 and use 1

nZN ⊆ [− 1
2a , 1

2a

]
.

Consider Algorithm 4.1 for a sequence (ψm)m∈N with suppψm ⊆ [−m, m].
Let’s assume that we can estimate ψ̂m by

∣∣∣ψ̂m(k + r)
∣∣∣ ≤ (c(a)r)−p(m) for |k| ≤ 1

2a
, r ∈ Z\{0} , (4.12)

where p and c are some functions with p(m) > 1. If min|k|≤ 1
2a

∣∣∣ψ̂m(k)
∣∣∣ ≥ c0, it

follows that

∑

r∈Z\{0}

∣∣∣∣∣
ψ̂m(k + r)

ψ̂m(k)

∣∣∣∣∣ ≤
2
c0

c(a)−p(m)
∞∑

r=1

r−p(m) ≤ 2
c0

c(a)−p(m) p(m)
p(m)− 1

,

so if p(m) ≥ p0 > 1 and min|k|≤ 1
2

∣∣∣ψ̂m(k)
∣∣∣ ≥ c0,

|f(x)− s(x)| ≤ C‖f̂‖l1c(a)−p(m) (4.13)

with C = C(c0, p0) = 2p0
c0(p0−1) . In the linear case, (4.12) and (4.13) simplify to

∣∣∣ψ̂m(k + r)
∣∣∣ ≤ (ηar)−γm =⇒ |f(x)− s(x)| ≤ C‖f̂‖l1(ηa)−γm (4.14)

for k and r as in (4.12). We can therefore expect exponential convergence in m
for any large enough a, with a convergence rate roughly similar to log a.

Of course, a similar estimate holds for the term in the second inequality of
Corollary 4.3, and the analogous argument gives us the same convergence rate
in the L2-norm if p0 > 1

2 .
Note that the constants in Corollary 4.3 and estimate (4.13) only depend

on properties of (ψ̂m)m∈N and the parameters m and a. In particular, they are
independent of N , apart from a hidden N in ‖f̂‖l1 .

4.5 Another possibility: interpolation

If the xj are almost equidistant, that is if dist(xj ,
1
nZn) is small, it makes sense

to choose ϕ̂k such that s( i
n ) = f( i

n ) for i ∈ Z. Note that this dictates a value
for n.

If ϕ̂k are the coefficients of a trigonometric polynomial

ϕ(x) :=
∑

k∈Zn

ϕ̂k

n
e−2πikx/n , (4.15)

then s1 = f , since

s1(x)
(4.4)
=

∑

k∈Zn

ϕ̂kĝk e−2πikx (4.5)
=

∑

k∈ZN

f̂k e−2πikx = f(x) . (4.16)



20 4 DFT ALGORITHM

We can transform s1 to the time domain by

s1(x)
(4.4)
=

∑

k∈Zn

ϕ̂kĝk e−2πikx (1.9)
=

∑

k,l∈Zn

ϕ̂k

n
gl e−2πik(x−l/n)

(4.15)
=

∑

l∈Zn

glϕ(nx− l) .

(4.17)

If we set

ϕ̂k :=
∑

l∈Zn

(∑

r∈Z
ψ(l − nr)

)
e2πikl/n (4.18)

for k ∈ Zn, then ϕ(x) interpolates
∑

r∈Z ψ(x− nr) since

ϕ(i)
(4.15)
=

∑

k,l∈Zn

1
n

(∑

r∈Z
ψ(l − nr)

)
e2πik(l−i)/n (1.10)

=
∑

r∈Z
ψ(i− nr) (4.19)

for i ∈ Z. Therefore,

s

(
i

n

)
=

∑

l∈Zn

gl

∑

r∈Z
ψ(i− l− nr) =

∑

l∈Zn

glϕ(i− l) = s1

(
i

n

)
= f

(
i

n

)
. (4.20)

4.6 Algorithm 4.1 with cardinal interpolation

Let ψ be a cardinal interpolation kernel as in Section 2, for example a Z-spline
defined in Section 3.1, and let s interpolate f , i.e. s = I

1/n
ψ f .

Comparing (4.2) to (2.1), we see that gl = f
(

l
n

)
. Since (ĝk)k∈Zn is the

discrete Fourier transform of (gl)l∈Zn , ĝk = f̂k for k ∈ ZN and zero otherwise.
Equivalently, since ψ(j) = δj0 for j ∈ Z by Proposition 2.1, equation (4.18)
implies that setting ϕ̂k = 1 for k ∈ Zn ensures that s interpolates f .

By these considerations, we can simplify Algorithm 4.1 using cardinal inter-
polation.

Algorithm 4.4. Parameters: a ∈ [1,∞), m ∈ N.
Input: N ∈ N, n := aN , xj ∈ R (j = 1 : N), f̂k ∈ C (k ∈ ZN ).

0. (Precomputation) evaluate ψ(nxj − l) for l = dnxje − m : bnxjc + m,
j = 1 : N .

1. Calculate
gl :=

∑

k∈ZN

f̂k e−2πikl/n

by reduced FFT for l ∈ Zn.

2. For j = 1 : N computex

s(xj) =
bnxc+m∑

l=dnxe−m

glψ(nxj − l) .

xThe index in gl is taken modulo n.



4.7 Dual algorithm 21

The following Corollary specializes the error estimates in Theorem 4.2 to the
case of cardinal interpolation. Note the similarities to the estimates in Theorem
2.7.

Corollary 4.5. If ϕ̂k = 1 for all k ∈ ZN ,

sup
x∈R

|f(x)− s(x)| ≤ ‖f̂‖l1 max
|k|≤ 1

2a

∑

r∈Z

∣∣∣δr0 − ψ̂(k + r)
∣∣∣

and

‖f(x)− s(x)‖2L2 ≤ ‖f‖2L2 max
|k|≤ 1

2a

∑

r∈Z

∣∣∣δr0 − ψ̂(k + r)
∣∣∣
2

.

Proof. Set ϕ̂k = 1 in Theorem 4.2 and use 1
nZN ⊆ [− 1

2a , 1
2a

]
.

By Theorem 2.6, each of the terms in the first sum is asymptotically bounded
by a−ν if ψ is of order ν. However, this is not enough to bound the entire sum.
Note nevertheless that the estimates in Theorem 4.5 are independent of N . See
Section 6.2 for numerical calculations of these error estimates for Z-splines.

4.7 Dual algorithm

In some situations, we may need to evaluate (4.1) with equidistant nodes in time
but nonequispaced nodes in the frequency domain. In this section, we show how
to use the above considerations on the evaluation of (4.1) to evaluate

fj =
N∑

k=1

f̂(ξk) e−2πijξk (4.21)

at j ∈ ZN . For f̂ := (f̂(ξk))k=1:N ∈ CN and f := (fj)j∈ZN ∈ CN , using the
matrices introduced in Section 4.2, (4.21) relates f and f̂ by

f = AT f̂ . (4.22)

If we approximate A as in Section 4.2,

f = AT f̂ ≈ DT
ϕ̂FnBT

ψ f̂ , (4.23)

we get the following algorithm for the efficient evaluation of (4.21):

Algorithm 4.6. Parameters: a ∈ [1,∞), m ∈ N.
Input: N ∈ N, n := aN , ξk ∈ R, f̂(ξk) ∈ C (k ∈ ZN ).

0. (Precomputation) calculate ϕ̂j for j ∈ ZN and evaluate ψ(nξk − l) for
l = dnξke −m : bnξkc+ m, k = 1 : N .

1. For l ∈ Zn compute

hl :=
N∑

k=1

f̂(ξk)
∑

r∈Z
ψ(nξk − l − nr) .



22 4 DFT ALGORITHM

2. Calculate by FFT of length n for j ∈ Zn

ĥj :=
∑

l∈Zn

hl e−2πijl/n .

3. For j ∈ ZN compute

fj ≈ sj =
ĥj

ϕ̂j
.

Apparently, the steps in Algorithm 4.6 are similar to those in Algorithm 4.1
in reverse order. The two are, in a sense, dual. They clearly have the same
complexity, O(aN log N + (a log a + m)N). We will see that they share several
other properties.

First of all, Algorithm 4.6 is also particularly simple in the case of cardinal
interpolation. If I

1/n
ψ is the cardinal interpolation operator (2.1) with kernel ψ

and grid length 1
n , and ϕ̂j = 1 for all j ∈ ZN as in Section 4.6, then

sj =
N∑

k=1

f̂(ξk)
∑

l∈Z
ψ(nξk − l) e−2πijl/n =

N∑

k=1

f̂(ξk)
(
I
1/n
ψ e−2πij·

)
(ξk) . (4.24)

So, in this situation, we are evaluating (4.21) simply by interpolating the expo-
nential function using equispaced nodes.

Furthermore, the first error estimate in Theorem 4.2 also applies to Algo-
rithm 4.6.

Theorem 4.7. For all j ∈ ZN ,

|fj − sj | ≤ ‖f̂‖l1




∣∣∣∣∣
ϕ̂j − ψ̂j

ϕ̂j

∣∣∣∣∣ +
∑

r∈Z\{0}

∣∣∣∣∣
ψ̂j+rn

ϕ̂j

∣∣∣∣∣


 .

Proof. Inserting the definitions of ĥj and hl into the last step of Algorithm 4.6,
we get

sj =
1
ϕ̂j

∑

l∈Z

N∑

k=1

f̂(ξk)ψ(nξk − l) e−2πijl/n

=
N∑

k=1

f̂(ξk) e−2πijξk

(
1
ϕ̂j

∑

l∈Z
ψ(nξk − l) e2πij(ξk−l/n)

)
.

By the Poisson summation formula, Proposition 1.1,

∑

l∈Z
ψ(nξk − l) e2πij(ξk−l/n) =

∑

r∈Z
ψ̂

(
j

n
+ r

)
e−2πirnξk .

The claim follows from abbreviating ψ̂j+rn = ψ̂
(

j
n + r

)
.

Therefore, arguments analogous to those in Section 4.4 suggest exponential
convergence of Algorithm 4.6 at the same rate as Algorithm 4.1 if ϕ̂j = ψ̂j .



23

5 MATLAB implementation

In this section, we look more closely at a MATLAB implementation of our
DFT algorithm with Z-splines. We first discuss algorithms for constructing and
evaluating Z-splines, then go over to our implementations of Algorithms 4.1 and
4.6 with Z-splines.

5.1 Construction and evaluation of Z-splines

Since we defined Z-splines (Definition 3.1) through their derivatives at the in-
terpolation nodes, it is natural to use Hermite-Birkhoff (fully Hermite) inter-
polation to evaluate them. Indeed, we use divided differences to carry out the
Hermite Birkhoff interpolation and calculate coefficients necessary for the actual
evaluation, which is done later using Horner’s backwards recursion algorithm.

The following code calculates the coefficients for a Z-spline and stores them
in a suitable structure.

Code 5.1. function zs = zsmake(mq)

%ZSMAKE calculate coefficients for Z-spline

% zs = ZSMAKE([m q]) or zs = ZSMAKE(m) (default q=m) returns a structure

% zs, which can be evaluated at x by zs.val(x) or zs.vali(x,intx). See

% ZSEVAL and ZSEVALINTX for details.

% use standard Z-spline (q=m) if no q is given; q denotes the number of

% function values/derivatives that are used to evaluate Z-splines. Note

% that a Z-spline is a piecewise polynomial of degree 2*q-1 and is q-1

% times differentiable.

m = mq(1);

q = mq(length(mq));

% initialize Z-spline structure. zs.cc(j+m+1,:) are the polynomial

% coefficients for the Z-spline in [j,j+1) in the Newton divided

% differences diagram, j=-m:m-1.

zs.m = m;

zs.q = q;

zs.cc = zeros(2*m,2*q);

% calculate finite difference matrix

A = zeros(q,2*m+1);

A(:,2*m:-1:2) = fdmat(m,q);

% on every interval [j,j+1), j=-m:m-1, use hermite interpolation to

% calculate coefficients of Z-spline.

for j=-m:m-1

% N is a Newton diagram containing divided differences

N = zeros(2*q);

N(1:q,1) = A(1,m+j+1);

N(q+1:2*q,1) = A(1,m+j+2);

% calculate entries in Newton diagram

for k=2:q

N(1:q-k+1,k) = A(k,m+j+1)/factorial(k-1);



24 5 MATLAB IMPLEMENTATION

N(q+1:2*q-k+1,k) = A(k,m+j+2)/factorial(k-1);

for i=q-k+2:q

N(i,k) = (N(i+1,k-1)-N(i,k-1));

end

end

for k=q+1:2*q

for i=1:2*q-k+1

N(i,k) = (N(i+1,k-1)-N(i,k-1));

end

end

% the coefficients are in the first row

zs.cc(j+m+1,:) = N(1,:);

end

% define evaluation algorithms

zs.val = @(x) zseval(zs,x);

zs.vali = @(x,intx) zsevalintx(zs,x,intx);

In Code 5.1, a function fdmat is called, which calculates the finite difference
matrix as described in Section 3.2. We include this straightforward code mainly
for completeness.

Code 5.2. function A = fdmat(m,q)

%FDMAT calculate finite difference matrix

% A = FDMAT(m,q) returns the first q rows of the mth finite difference

% matrix.

%

% The bulk of the effort goes into calculating coefficients of given

% polynomials; these are stored in the variable U. The inverse of the

% Vandermonde matrix is W.*U, where W stores certain factors. The finite

% difference matrix is then given by A=D*(W.*U) for a diagonal matrix D.

% use default (maximal) value for q if none is given

if nargin==1 || q<=0 || q>=2*m

q = 2*m-1;

end

% the pth column of the Vandermonde matrix is s.^(p-1)

s = -m+1:m-1;

% initialize polynomials as a cell array

P = cell(2*m-1,1);

for k = 1:2*m-1

P{k} = 1;

end

% calculate coefficients of polynomials

for p = 1:2*m-1

for k = [1:p-1,p+1:2*m-1]

P{k} = conv(P{k},[1,-s(p)]);

end

end



5.1 Construction and evaluation of Z-splines 25

% assemble matrix U (U contains coefficients of the polynomials P)

U = zeros(2*m-1);

for k = 1:2*m-1

U(2*m-1:-1:1,k) = P{k}’;

end

% construct W

w = (-1).^(2:2*m)./(factorial(2*m-2:-1:0).*factorial(0:2*m-2));

W = w(ones(q,1),:);

% calculate finite difference matrix

D = diag(factorial(0:q-1));

A = D*(W.*U(1:q,:));

As mentioned above, the actual evaluation of a Z-spline is done with Horner’s
algorithm on every interval [j,j+1). Before we can apply this, however, we need
to calculate in which of these intervals the argument x lies, or, if x is a matrix,
in which interval each of its elements lies.

Code 5.3. function y = zseval(zs, x)

%ZSEVAL evaluate Z-spline zs at x

% y = ZSEVAL(zs,x) where zs is a structure created by ZSMAKE evaluates

% the Z-spline zs at the elements of x.

%

% Note that both ZSEVAL and ZSEVALINTX evaluate Z-splines. The

% difference is that ZSEVAL calculates intx while ZSEVALINTX takes it as

% an argument. The former is more flexible; the latter is a bit faster,

% but meant for use only in ADFTZ.

% intx denotes which x need to be evaluated on which interval.

% intx{j+m+1} = {i; floor(x(i)) = j} .

intx = cell(1,2*zs.m);

for i=1:numel(x)

j = floor(x(i));

if (-zs.m<=j) && (j<zs.m)

intx{j+zs.m+1} = [intx{j+zs.m+1},i];

end

end

% initialize solution vector y

y = zeros(size(x));

% on each interval [j,j+1),j=-m:m-1, evaluate Z-spline at x(intx{j+m+1}).

for j=-zs.m:zs.m-1

P = [j*ones(1,zs.q), (j+1)*ones(1,zs.q)];

y(intx{j+zs.m+1}) = zs.cc(j+zs.m+1,2*zs.q);

for p=2*zs.q-1:-1:1

y(intx{j+zs.m+1}) = y(intx{j+zs.m+1}).*(x(intx{j+zs.m+1})-P(p))...

+ zs.cc(j+zs.m+1,p);

end

end



26 5 MATLAB IMPLEMENTATION

5.2 Implementation of Algorithm 4.1

Before looking at our MATLAB implementation of Algorithm 4.1, let’s refor-
mulate it in a manner more accessible to implementation.

Algorithm 5.4.
function adft(f, x, a,m, ϕ̂)

N ← length(f)
n ← aN
g ← fft

(
f
ϕ̂

)
. gl :=

∑
k∈ZN

f̂k

ϕ̂k
e−2πikl/n for l ∈ Zn

for j ← 1 to N do
X ← nx(j)− bnx(j)c − (−m : m) . evaluation points of ψ
G ← g(bnx(j)c+ (−m : m) mod n)
s(j) ← 〈G,ψ(X)〉 . s(xj) :=

∑bnxc+m
l=dnxe−m glψ(nxj − l)

end for
return s

end function

Code 5.5 is an implementation of Algorithm 4.1 similar to Algorithm 5.4,
with ψ equal to a Z-spline Zm,q. It uses cardinal interpolation as described in
Section 4.6, i.e. ϕ̂k = 1 for all k ∈ ZN , so it is actually an implementation of
Algorithm 4.4, which is a special case of Algorithm 4.1.

For efficiency, the for loop in Algorithm 5.4 is evaluated in blocks instead of
separately for every j. The code is faster for large block sizes, but it uses less
memory for small blocks.

There is a difficulty in the evaluation of Z-splines that comes from their
piecewise definition. We could use Code 5.3, but have elected to take advantage
of the extra knowledge we have on where we need to evaluate a Z-spline. We
call a code similar to the one above, that does not, however, construct the cell
array intx but instead takes it as an argument in matrix form.

Code 5.5. function s = adftz(fc, x, a, zs, mbs)

%ADFTZ approximate dft with Z-splines

% s = ADFTZ(fc,x,a,zs,mbs) or s = ADFTZ(fc,x,a,zs) (default mbs =

% numel(x)) or s = ADFTZ(fc,x,a,[m q],...) or s = ADFTZ(fc,x,a,m,...)

% (default q = m) uses Z-splines to calculate an approximate discrete

% Fourier transfrom of fc, a trigonometric polynomial given in symmetric

% form, at arbitrarily spaced x in R. The parameter a denotes the

% oversampling factor, that is, n=a*length(fc) Z-splines are used to

% interpolate fc at equidistant nodes. The Z-splines are either given by

% the structure zs, which should be generated with ZSMAKE, or is

% constructed from the parameters m and q; they have (translated) support

% [-m,m] and are piecewise polynomials of degree 2*q-1 in C^(q-1),

% where q and m satisfy 1 <= q <= 2*m-1.

%

% Since the evaluation of Z-splines at all of the necessary values can

% use a lot of memory, this code evaluates the Z-splines in blocks of

% size at most mbs. This limits the memory usage to about 60*m*mbs

% bytes for evaluation and 8*a*length(fc) bytes for FFT.

% if parameters [m q] of Z-spline are given, construct the Z-spline.

% Coefficients necessary for evaluation are stored in the struct zs.

if isa(zs,’numeric’)



5.2 Implementation of Algorithm 4.1 27

zs = zsmake(zs);

end

% initialize constants and solution

N = length(fc); % length of trigonometric polynomial

n = floor(N*a); % number of nodes

n0 = floor(n/2); % first node is at -n0/n

Nx = numel(x); % length of x, often Nx=N

s = zeros(size(x)); % solution

supp = -zs.m+1:zs.m; % nodes in support of Z-spline

% f is approximated by f(x) = sum_j g(j)*z(n*x-j), where z is the Z-spline.

% The coefficients g are calculated using fft and the fourier coefficients

% fc.

g = symfft(fc,n);

% calculate blocks for evaluation. block stores the first index (in x) of

% each block, plus an extra value to end the last block.

if nargin < 5 || ~isa(mbs,’numeric’)

mbs = Nx;

end

block = [1:mbs:Nx,Nx+1];

blocksize = diff(block);

% start evaluating blocks

for k=1:(length(block)-1)

% evaluate x(blockid) in this loop

blockid = block(k):(block(k+1)-1);

% find the required evaluations of the (standard) Z-spline around 0; the

% actual evaluation is not done until later. X denotes the arguments for

% the Z-spline; G stores the coefficients in the formula

% f(x) = sum_j g(j)*z(n*x-j) .

nx = n*x(blockid)’;

fnx = floor(nx);

dnx = nx - fnx;

X = dnx(:,ones(2*zs.m,1)) - supp(ones(blocksize(k),1),:);

fnx = fnx + n0;

idg = fnx(:,ones(2*zs.m,1)) + supp(ones(blocksize(k),1),:);

G = g(mod(idg,n)+1);

% for technical reasons, we need to know in which interval

% [-m,-m+1),...,[0,1),...,[m-1,m)

% that X(i) is. More precisely,

% intX(j+m+1,:) = {i; floor(X(i)) = j} .

% Note that X is actually a matrix, so the index of X(j,h) is

% i=j+blocksize(k)*(h-1), ie X(i) = X(j,h) for this i.

I = blocksize(k)*(2*zs.m-1:-1:0)’;

J = 1:blocksize(k);

intX = J(ones(1,2*zs.m),:) + I(:,ones(1,blocksize(k)));

% finally, we can evaluate

% s = f(x) = sum_j g(j)*z(n*x-j)

% for this block.



28 5 MATLAB IMPLEMENTATION

s(blockid) = sum(G.*zs.vali(X,intX),2);

end

5.3 Implementation of (dual) Algorithm 4.6

Our implementation of Algorithm 4.6 is similar to that of Algorithm 4.1, which
we covered Section 5.2 above. We include it mainly for completeness.

Algorithm 5.6.
function dualadft(f, ξ, a,m, ϕ̂)

N ← length(f)
n ← aN
h ← 0
for k ← 1 to N do

Ψ ← ψ(nξ(k)− bnξ(k)c − (−m : m)) . values of ψ
I ← bnξ(k)c+ (−m : m) mod n . indices of h affected by ξk

h(I) ← h(I) + f(k)Ψ . hl ← hl + f̂(ξk)
∑

r∈Z ψ(nξk − l − nr)
end for
ĥ ← fft(h) . ĥj :=

∑
l∈Zn

hl e−2πijl/n

s = ĥ
ϕ̂ . where ĥ ← ĥ(ZN )

return s
end function

Code 5.7 is an implementation of Algorithm 4.6 similar to Algorithm 5.6. It
uses Z-splines for ψ and ϕ̂j = 1 for all j ∈ Z and therefore has similar properties
to Code 5.5, which we discussed above.

Code 5.7. function s = dualadftz(fc, x, a, zs, mbs)

%DUALADFTZ dual approximate dft with Z-splines

% s = DUALADFTZ(fc,x,a,zs,mbs) (or variations as in ADFTZ) uses Z-splines

% to approximate an inverse discrete Fourier transform for arbitrarily

% spaced frequencies x of the vecter fc (with length(fc) = length(x)).

% The other arguments are the same as in ADFTZ.

% if parameters [m q] of Z-spline are given, construct the Z-spline.

% Coefficients necessary for evaluation are stored in the struct zs.

if isa(zs,’numeric’)

zs = zsmake(zs);

end

% initialize constants and solution

N = length(fc); % length of x and fc

N0 = floor(N/2); % half of that

n = floor(N*a); % number of nodes

n0 = floor(n/2); % first node is at -n0/n

h = zeros(1,n); % will store evaluations of psi

supp = -zs.m+1:zs.m; % nodes in support of Z-spline

% calculate blocks for evaluation. block stores the first index (in x) of

% each block, plus an extra value to end the last block.

if nargin < 5 || ~isa(mbs,’numeric’)

mbs = N;

end



29

block = [1:mbs:N,N+1];

blocksize = diff(block);

% start evaluating blocks

for k=1:(length(block)-1)

% evaluate x(blockid) in this loop

blockid = block(k):(block(k+1)-1);

% find the required evaluations of the (standard) Z-spline around 0; the

% actual evaluation is not done until later. X denotes the arguments for

% the Z-spline;

nx = n*x(blockid)’;

fnx = floor(nx);

dnx = nx - fnx;

X = dnx(:,ones(2*zs.m,1)) - supp(ones(blocksize(k),1),:);

fnx = fnx + n0;

% for technical reasons, we need to know in which interval

% [-m,-m+1),...,[0,1),...,[m-1,m)

% that X(i) is. More precisely,

% intX(j+m+1,:) = {i; floor(X(i)) = j} .

% Note that X is actually a matrix, so the index of X(j,h) is

% i=j+blocksize(k)*(h-1), ie X(i) = X(j,h) for this i.

I = blocksize(k)*(2*zs.m-1:-1:0)’;

J = 1:blocksize(k);

intX = J(ones(1,2*zs.m),:) + I(:,ones(1,blocksize(k)));

% evaluate z(n*x-j) for this block

Z = zs.vali(X,intX);

% sum the values of z(n*x-j) over x

for j=1:blocksize(k)

idh = mod(fnx(j)+supp,n)+1;

h(idh) = h(idh) + fc(blockid(j))*Z(j,:);

end

end

% the solution is just the (inverse) discrete fourier transform of h

S = symfft(h);

s = S(1-N0+n0:n0-N0+N);

6 Numerical experiments

6.1 Z-spline interpolation

h-convergence

In this section, we study the estimates from Section 2 for Z-splines. By Theorem
3.4, the Z-spline Zm,q is of order min(2m−1, 2q). Therefore, for smooth enough
arguments, Theorem 2.4 bounds the L∞-error by chmin(2m−1,2q).

We will say that a cardinal interpolation kernel ψ has algebraic h-convergence
rate γ in the norm ‖·‖, iff for all smooth enough u, there is a c independent of



30 6 NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7 8
0

5

10

15

m

co
nv

er
ge

nc
e 

ra
te

 

 

L∞

L2

2m−1

Figure 6.1: Algebraic h-convergence rate for interpolation of cos(x) with stan-
dard Z-splines Zm.

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

h−1

L2  e
rr

or

 

 
m = 2
m = 4
m = 8
m = 16

Figure 6.2: L2 interpolation error for 1
1+x2 on the interval [−3, 3] using standard

Z-splines Zm.



6.1 Z-spline interpolation 31

1 2 3 4 5 6 7 8
0

5

10

15

q

co
nv

er
ge

nc
e 

ra
te

 

 

L∞

L2

min(2m−1,2q)

Figure 6.3: Algebraic h-convergence rate for interpolation of cos(x) with Z-
splines Zm,q for m = 8.

h for which ∥∥u− Ih
ψu

∥∥ ≤ chγ . (6.1)

By the remarks above, theory predicts an algebraic h-convergence rate of min(2m−
1, 2q) for the Z-spline Zm,q in the L∞-norm.

Figure 6.1 shows that this estimate for the convergence rate is very accurate
for standard Z-splines Zm. In fact, as could be expected, the same convergence
rate holds for the L2-norm. The errors in Figure 6.1 refer to the interpolation of
cos(x) on a bounded interval. We estimated the convergence rates by the slopes
of least-square lines through numerical estimates of the errors for various grid
sizes h.

In Figure 6.2, we interpolated

f(x) :=
1

1 + x2
(6.2)

over the interval [−3, 3]. f is a meromorphic function with poles at {−i, i}.
Apparently, these singularities limit the convergence around zero for large grid
sizes h. However, after this pre-asymptotic effect, we seem to regain the expected
convergence with increasing convergence rates for higher order Z-splines.

Figure 6.3 shows the h-convergence rates for Z-splines Zm,q with fixed m = 8.
We used the same function, cos(x), and the same estimates as in Figure 6.1 to
calculate these convergence rates. Surprisingly, we get much better results than
expected; the maximal convergence rate 2m − 1 is reached for q < m, in this
case for q = 5 when m = 8!

This effect is also visible in Figure 6.4. Here, we consider the interpolation
of f as in Figure 6.2, but with fixed m = 12 and various q instead of always



32 6 NUMERICAL EXPERIMENTS

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

h−1

L2  e
rr

or

 

 
m=12,q=2
m=12,q=4
m=12,q=8
m=12,q=16
m=16,q=16

Figure 6.4: L2 interpolation error for 1
1+x2 on the interval [−3, 3] using Z-splines

Z12,q for various q.



6.1 Z-spline interpolation 33

10
0

10
1

10
−1

10
0

m

L2  e
rr

or

Figure 6.5: L2-convergence of Z-splines Zm to sinc on the interval [−50, 50].

setting q = m. Apparently, the error for q = 2 is only slightly better than in
Figure 6.2, but for q = 4, the error is almost as small as for the optimal q. The
solutions for q = 8 < m and q = 16 > m are indistinguishable. This indicates
that there is some q0 < m such that for all q0 ≤ q ≤ 2m − 1, the interpolation
error for Zm,q is as small as that for Zm. So not only does the error not get
better for q > m, it reaches this optimal level for some q < m.

Note that the flattening of the curves at an error of about 10−15 in Figure
6.4 and others is due to numerical effects; we are only calculating to an accuracy
of this order of magnitude.

p-convergence

In Section 2.3, we saw that under certain conditions, cardinal interpolation ker-
nels approximate sinc. More precisely, we predicted exponential convergence of
a sequence of kernels (ψn)n∈N to sinc in the L2-norm. However, this signifi-
cantly restricts the supports of ψn; since sinc only falls as 1

n , the support of ψn

must increase exponentially in order to get exponential convergence. Clearly,
this is not the case for (Zm)m∈N. Accordingly, as Figure 6.5 shows, Z-splines
do not converge to sinc exponentially in the L2-norm; the convergence is only
algebraic, and at an extremely slow rate.

Theorem 2.7 predicts that if we decrease the grid spacing h, the convergence
rate improves, since we can decrease γ and still satisfy the assumptions of the
theorem.xi Indeed, Figure 6.6 shows that Ih

m sinc converges to sinc exponentially
in the L2-norm for m → ∞ when h is small enough, i.e. for h < h0 there is a

xiIn the case of sinc, we can simply set γ = h.



34 6 NUMERICAL EXPERIMENTS

2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

m

L2  e
rr

or

 

 
h=1
h=1/2
h=1/4
h=1/8
h=1/16

Figure 6.6: L2 interpolation error for sinc on the interval [−20, 20] using stan-
dard Z-splines Zm and various grid sizes.

c ∈ R and γ > 0 such that
∥∥sinc−Ih

m sinc
∥∥

L2 ≤ c e−γm .

We saw above that interpolation with Zm,q is as accurate as interpolation
with Zm for some q < m. In Figure 6.7, we consider the L2-convergence of
I
1/4
m,q sinc to sinc as m → ∞ and q = min(m, qmax). Apparently, if we limit q

this way, we no longer have convergence. Of course, for m ≤ qmax, the situation
is identical to that in Figure 6.6. At some point m̄, though, the error flattens
and stays constant for m ≥ m̄. Interestingly, m̄ can be significantly larger than
qmax. For example, for h = 1

4 , when qmax = 5, m̄ = 12 and the error reaches
about 10−11. If qmax = 7, the convergence of I

1/4
m,q is indistinguishable from

that of I
1/4
m up to the precision of our calculations. These results depend on

the choice of h and, to a lesser extent, on the regularity of the function being
interpolated.

We have seen that we get exponential convergence for the entire function
sinc. To what extent does this carry over to less regular functions? Figure 6.8
shows that it does not. We consider here the same situation as in Figure 6.6,
but with f(x) := 1

1+x2 in place of sinc. This function is analytic on all of R,
but we still do not have exponential convergence. In fact, for large h, Ih

mf does
not seem to converge to f in L2 at all.

6.2 Error estimates for Z-splines

In Corollaries 4.3 and 4.5, we estimated the error of Algorithm 4.1 in various
norms for various choices of ϕ̂. We would like to study the terms that appear in



6.2 Error estimates for Z-splines 35

2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

m

L2  e
rr

or

 

 
q

max
=1

q
max

=3

q
max

=5

q
max

=7

Figure 6.7: L2 interpolation error for sinc on the interval [−20, 20] using Z-
splines Zm,q with q := min(m, qmax) and h = 1

4 .

2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

m

L2  e
rr

or

 

 

h=1
h=1/2
h=1/4
h=1/8
h=1/16

Figure 6.8: L2 interpolation error for 1
1+x2 on the interval [−3, 3] using standard

Z-splines Zm and various grid sizes.



36 6 NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7 8
10

−15

10
−10

10
−5

10
0

a

 

 
E1(a, 10, 10)
E2(a, 10, 10)

Ê1(a, 10, 10)

Ê2(a, 10, 10)

Figure 6.9: Terms in (6.3) for Z10 and various a.

these estimates for Z-splines. Note that similar terms appear in Theorem 2.7 and
Theorem 4.7, so these considerations have a wider scope than just Algorithm
4.1.

The terms we are interested in are:

E1(a,m, q) := max
|k|≤ 1

2a

∑

r∈Z

∣∣∣δr0 − Ẑm,q(k + r)
∣∣∣

E2(a,m, q) := max
|k|≤ 1

2a

(∑

r∈Z

∣∣∣δr0 − Ẑm,q(k + r)
∣∣∣
2
) 1

2

Ê1(a,m, q) := max
|k|≤ 1

2a

∑

r∈Z\{0}

∣∣∣∣∣
Ẑm,q(k + r)

Ẑm,q(k)

∣∣∣∣∣

Ê2(a,m, q) := max
|k|≤ 1

2a


 ∑

r∈Z\{0}

∣∣∣∣∣
Ẑm,q(k + rn)

Ẑm,q(k)

∣∣∣∣∣

2



1
2

(6.3)

Our goal is to compare the error estimates given by Corollary 4.5 for Algo-
rithm 4.4 to the estimates in Corollary 4.3 for Algorithm 4.1 with ϕ̂k = Ẑm,q

(
k
n

)
.

The former contain the terms E1 and E2 and the latter are identical, but with
E1 and E2 replaced by Ê1 and Ê2.

Figure 6.9 plots the terms in equation (6.3) for m = q = 10 as functions of the
oversampling factor a. We are approximating max|k|≤ 1

2a
F (k) simply by F

(
1
2a

)
.

This assumes some monotonicity, which is implied by the monotonicity of the
graphs in Figure 6.9. In Figure 6.10, we plot the terms in equation (6.3) for
a = 3 constant as a function of m, where we always set q = m. In accordance



6.3 Convergence of Algorithm 4.1 37

2 4 6 8 10 12 14 16 18 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m

 

 
E1(3, m, m)
E2(3, m, m)

Ê1(3, m, m)

Ê2(3, m, m)

Figure 6.10: Terms in (6.3) for a = 3 and various standard Z-splines.

with our results from Section 6.1 above, we have exponential convergence as
m →∞ and some slower convergence for a →∞, i.e. h → 0.

Both plots show that all of the terms in equation (6.3) are very close together.
In particular, Ei and Êi seem to converge towards each other as a → ∞ or
m → ∞. This indicates that our two choices for ϕ̂ in Algorithm 4.1 have the
same convergence properties. Therefore, we can get around calculating Ẑm,q

with no loss of accuracy by using Algorithm 4.4, which simply interpolates the
trigonometric polynomial we want to evaluate.

6.3 Convergence of Algorithm 4.1

In this section, we compare the convergence of Algorithm 4.1 with Z-splines to
the other possibilities mentioned in the introduction: truncated Gaussian bells
and B-splines. Our disappointing conclusion is that the algorithm works well
with Z-splines, but not as well as with the standard choices of ψ.

As Section 6.2 indicates, Algorithm 4.1 has identical convergence properties
for both choices of ϕ̂ we considered above. We will therefore restrict ourselves to
the choice which seems most natural for a given ψ, that is, cardinal interpolation
as described in Section 4.6 for Z-splines and ϕ̂k = ψ̂

(
k
n

)
for truncated Gaussian

bells and B-splines.
For simplicity, we will restrict ourselves to standard Z-splines. The perfor-

mance of Algorithm 4.1 with Zm,q for q 6= m is analogous to that of cardinal
interpolation discussed in Section 6.1. Of course, in the case of Algorithm 4.4,
the two are identical since this version of the DFT algorithm simply interpolates
the trigonometric polynomial.

We consider Algorithm 4.1 not with a single ψ but with a sequence (ψm)m∈N,



38 6 NUMERICAL EXPERIMENTS

2 4 6 8 10 12 14 16 18 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m

 

 
Z−splines
Gaussian bells
B−splines

Figure 6.11: L∞-convergence of Algorithm 4.1 with oversampling factor a = 2.5

2 4 6 8 10 12
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m

 

 
Z−splines
Gaussian bells
B−splines

Figure 6.12: L∞-convergence of Algorithm 4.1 with oversampling factor a = 5



6.3 Convergence of Algorithm 4.1 39

where supp ψm = [−m,m]. For Z-splines, of course, ψm = Zm. For truncated
Gaussian bells,

ψm(x) =
1√
b

e−πx2/b χ[−m,m](x) with b =
2am

2a− 1
.

This is the choice of b recommended by G. Steidl in [5]. Finally, for B-splines,
ψm is the B-spline B2m of order 2m.

In Figure 6.11, we plot the maximal error of Algorithm 4.1 with a reason-
able oversampling factor of a = 2.5. More precisely, the error is the maximal
deviation of the approximate evaluation of a random complex trigonometric
polynomial of length N = 128 at N random points.

Apparently, the convergence of Algorithm 4.1 with Z-splines is far slower
than with Gaussian bells or B-splines. As Figure 6.12 shows, Z-splines man-
age to catch up with Gaussian bells for large oversampling factors a, but the
convergence rate of B-splines seems out of reach.

As expected, we have perfect exponential convergence in both cases. In our
further experiments, we will gauge the accuracy of Algorithm 4.1 for various
parameters by this convergence rate. More precisely, for given (ψm)m∈N, a and
N , Algorithm 4.1 has exponential convergence rate γ iff for all trigonometric
polynomials f of length N , there is a c ∈ R such that

E∞(f, a, ψm) ≤ c e−γm (6.4)

for all m ∈ N, where E∞(f, a, ψm) is the L∞-error for the approximate evalua-
tion of f using Algorithm 4.1 with ψ = ψm and oversampling factor a.

In the following experiments, we use E∞(f, a, ψm) for random trigonometric
polynomials f to approximate γ. Our estimate for γ is the slope of the least
squares line approximating the maxima over ten polynomials f of log E∞(f, a, ψm)
for various m.

In Section 4.4, we saw that, under certain conditions, the convergence rate
γ is independent of N . In Figure 6.13, we plot the (approximate) convergence
rates of Algorithm 4.1 for N equal to the powers of two between 26 = 64 and
212 = 4096 and least-square lines for these data points. Clearly, for all choices
of ψ, the convergence rates are independent of N . We can therefore restrict
ourselves to N = 128 without loss of generality.

Figure 6.14 shows the dependence of the convergence rate γ on the oversam-
pling factor a. The circles are the numerical approximations of γ described above
and the lines are estimates of the convergence rates given by the first estimate
in Corollary 4.3. This estimate actually does not apply to our choice of ϕ̂ for
Z-splines, but, as discussed in Section 6.2, it does hold at least asymptotically.

This plot confirms the disappointing performance of Algorithm 4.1 with
Z-splines suggested by Figures 6.11 and 6.12. For reasonablexii oversampling
factors a, the convergence with Z-splines is much slower than with truncated
Gaussian bells or with B-splines. For larger a, the convergence rate with Z-
splines is higher than with Gaussian bells, but it never reaches the convergence
rate of Algorithm 4.1 with B-splines.

xiismall



40 6 NUMERICAL EXPERIMENTS

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

N

co
nv

er
ge

nc
e 

ra
te

 

 

Z−splines
Gaussian bells
B−splines

Figure 6.13: Exponential convergence rate γ of Algorithm 4.1 with a = 3 for
various N . The circles are numerical experiments and the lines are least-square
approximations.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

oversampling factor a

co
nv

er
ge

nc
e 

ra
te

 

 

Z−splines
Gaussian bells
B−splines

Figure 6.14: Exponential convergence rate γ of Algorithm 4.1 for various over-
sampling factors a. The circles are numerical experiments and the lines are error
estimates using Ê1 from (6.3) as in Corollary 4.3.



6.4 Complexity of Algorithm 4.1 41

1000 2000 3000 4000 5000 6000 7000 8000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N

se
co

nd
s

 

 
direct evaluation
approx. with Z

12

approx. with Z
12,7

Figure 6.15: Performance of Algorithm 4.1 with Z-splines, to an accuracy of
10−10.

6.4 Complexity of Algorithm 4.1

By (4.8), Algorithm 4.1 evaluates a trigonometric polynomial of length N in
O(N log N) time instead of O(N2) required for a direct evaluation. Figure 6.15
shows what a difference this makes.

We plot the time required to evaluate a random trigonometric polynomial
of length N with maxk|f̂k| ≤ 1 at N random points using a direct evaluation
and Algorithm 4.1. We used an oversampling factor a = 4 and Z-splines Z12

and Z12,7, both of which lead to an accuracy of 10−10 in the max-norm. The
times include the evaluation, but not the construction, of the Z-splines.xiii This
experiment was carried out on an IBM ThinkPad T40p laptop computer with
the MATLAB codes from Section 5.

Clearly, even for small N , Algorithm 4.1 is much faster than direct evalu-
ation. Also, there is a significant advantage to using Z12,7 instead of Z12, as
discussed in Section 6.1.

xiiiIn fact, the evaluation of Z-splines accounts for most of the time plotted in Figure 6.15.



42 REFERENCES

References

[1] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial review and
state of the art. Signal Processing, 19:259–299, 1990.

[2] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequi-
spaced date: A tutorial. In J. J. Benedetto and P. Ferreira, editors, Modern
Sampling Theory: Mathematics and Applications, chapter 12, pages 253–
274. Birkhäuser Basel, 2001.

[3] W. Rudin. Functional Analysis. McGraw-Hill, second edition, 1991.

[4] J. T. B. Sagredo. Z-splines: Moment conserving cardinal spline interpolation
of compact support for arbitrarily spaced data. Research Report 2003-10,
Seminar für Angewandte Mathematik, ETHZ, August 2003.

[5] G. Steidl. A note on fast Fourier transforms for nonequidistant grids. Ad-
vances in Computational Mathematics, 9:337–352, 1998.

[6] G. Strang and G. Fix. A Fourier analysis of the finite element variational
method. In Constructive aspects of functional analysis, volume 2, pages
793–840. Centro Internationale Matematico Estivo, 1971.


	Fourier transforms
	The continuous Fourier transform
	Fourier series
	The discrete Fourier transform
	The Poisson summation formula

	Cardinal interpolation theory
	Cardinal interpolation operators
	Characterization of high-order kernels
	`p-convergence'

	Z-splines
	Definition
	Construction in matrix form
	Properties

	DFT Algorithm
	Derivation and general formulation
	Matrix form
	An error estimate
	A natural choice for k
	Another possibility: interpolation
	Algorithm 4.1 with cardinal interpolation
	Dual algorithm

	MATLAB implementation
	Construction and evaluation of Z-splines
	Implementation of Algorithm 4.1
	Implementation of (dual) Algorithm 4.6

	Numerical experiments
	Z-spline interpolation
	Error estimates for Z-splines
	Convergence of Algorithm 4.1
	Complexity of Algorithm 4.1


