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Motivation

Generator circuit breakers
I translational motion

Electric engines
I rotation
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Maxwell’s Equations

div B = 0 curl E +
∂B
∂t

= 0

div E =
ρ

ε0
curl B− 1

c2
∂E
∂t

= µ0(jf + ji).

⇓ jf = σE, c→∞


Quasistatic model for

slowly varying Electric fields
(High conductivities)

Eddy Current Model

div B = 0 curl E +
∂B
∂t

= 0

curl B = µ0
(
σE + ji) div E =

ρ

ε0
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Maxwells equations are invariant under Lorentz transformation if E and
B transform as

Ẽ = γ(E + V× B)− (γ − 1)(E · V̂)V̂

B̃ = γ

(
B− V× E

c2

)
− (γ − 1)(B · V̂)V̂

γ :=
1√

1− v2/c2
V̂ = V̂/|V̂|

⇓ c→∞
Ẽ = E + V× B

B̃ = B

It can be shown that the eddy current model is also invariant under
Rotation!!!
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Two eddy current formulations

Temporal gauged Potential formulation :

curl
1
µ

curl A + σ
∂A
∂t

= ji

A(t = 0) = 0

curl A× n = 0 on ∂Ω

H-formulation :

curl
1
σ

curlH+ µ
∂H
∂t

= curl
1
σ

ji

H(t = 0) = 0

H = 0 on ∂Ω
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Two eddy current formulations

Temporal gauged Potential formulation (Rest frame):

curl
1
µ

curl A + σ
∂A
∂t

= ji + σV× curl A

A(t = 0) = 0

curl A× n = 0 on ∂Ω

H-formulation (Rest frame):

curl
1
σ

curlH+ µ
∂H
∂t

= curl
1
σ

ji + curl (µV×H)

H(t = 0) = 0

H = 0 on ∂Ω
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Two eddy current formulations
Temporal gauged Potential formulation (Moving frame) :

˜curl
1
µ

˜curlÃ + σ
∂Ã
∂t

= j̃i

Ã(t = 0) = 0
˜curlÃ× n = 0 on ∂Ω

H-formulation (Moving frame):

˜curl
1
σ

˜curlH̃+ µ
∂H̃
∂t

= ˜curl
1
σ

j̃i

H̃(t = 0) = 0

H̃ = 0 on ∂Ω

Note: If ji is smooth enough, 1
µ curl A = H

⇒ Do the same simulation and compare the two models (Primal &
Dual formulation).

Raffael Casagrande (ETH Zürich) Sliding Interfaces for Eddy Current April 17th, 2013 8 / 25



Transformation laws
The coordinates of the moving frame (x̃) are related to the rest frame
(x) by

x = T(t)x̃ + r(t).

T: Rotation matrix.

Transformation laws

TẼ = E + V× B TB̃ = B

Tj̃i = ji TH̃ = H

Tj̃f = jf TṼ = −V

TÃ = A− T
∫ t

0
TT grad (V · A)

⇒ Use transformation laws to derive transmission conditions at sliding
interface.
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TÃ = A− T
∫ t

0
TT grad (V · A)

⇒ Use transformation laws to derive transmission conditions at sliding
interface.

Raffael Casagrande (ETH Zürich) Sliding Interfaces for Eddy Current April 17th, 2013 9 / 25



Outline

1 Introduction
Motivation

2 Deriving the eddy current model
Maxwell’s Equations in a moving frame
The eddy current model in a moving frame

3 Discontinuous Galerkin Formulation
DG Theory
Aspects of the implementation

4 Results and Conclusion

Raffael Casagrande (ETH Zürich) Sliding Interfaces for Eddy Current April 17th, 2013 10 / 25



DG Formulation of the Eddy Current Model

σ
∂A
∂t

+ curl
1
µ

curl A = ji

curl A× n = 0 on ∂Ω

DG Variational formulation

Find A(i)
h ∈ Vh, i = 1, . . . ,N such that for all A′

h ∈ Vh, we have(
σ

A(i+1)
h − A(i)

h
δt

,A′
h

)
+ aSWIP

h (A(i+1)
h ,A′

h) =
(

ji,(i+1),A′
h

)
Where Vh :=

[
Pk

3(Th)
]3, Pk

d(Th) :=
{

v ∈ L2(Ω)
∣∣ ∀T ∈ Th, v|t ∈ Pk

d(T)
}

.
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Symmetric-Weighted-Interior-Penalty Bilinear form
aSWIP

h

aSWIP
h (Ah,A′

h) =

∫
Ω

1
µ

curlh Ah · curlh A′
h

−
∑

F∈F i
h

∫
F

{
1
µ

curlh Ah

}
ω

·
[
A′

h
]

T

−
∑

F∈F i
h

∫
F

{
1
µ

curlh A′
h

}
ω

· [Ah]T

+
∑

F∈F i
h

ηγµ,F
hF

∫
F

[Ah]T ·
[
A′

h
]

T

{Ah}ω = ω1Ah,1 + ω2Ah,2, [Ah]T = nF × (Ah,1 − Ah,2) (1)

ω1 =
µ1

µ1 + µ2
, ω2 =

µ2

µ1 + µ2
, γµ,F =

2
µ1 + µ2

(2)

Raffael Casagrande (ETH Zürich) Sliding Interfaces for Eddy Current April 17th, 2013 12 / 25



Convergence
Under regularity conditions on the mesh sequence (matching) and
assuming the exact solution A is smooth enough we can prove

∥∥∥√σ(A(N) − A(N)
h )
∥∥∥

L2(Ω)
+

(
Cstabδt

N∑
i=1

∣∣∣A(i) − A(i)
h

∣∣∣2
SWIP

)1/2

≤

Ct
1/2
F

(
C1hk + C2δt

)
where C1 = maxt∈[0,tF] |A(t)|Hk+1(Ω) and C2 = maxt∈[0,tF]

∥∥∥∂2A(t)
∂t2

∥∥∥
L2(Ω)

The

constants C1,C2 and C are independent of h and δt.

|A|SWIP :=

∥∥∥∥ 1
√
µ

curlh A
∥∥∥∥2

L2(Ω)

+
∑

F∈Fh

γmu,F

hF
‖[A]T‖

2
L2(F)

1/2
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Aspects of the implementation

In comparison to FEM, DG has much more degrees of freedom
I Use DG only along the non-matching interfaces.

Incorporate the transformation formulas for the moving frame into
the DG fluxes.

I No convective terms appear
2D spatial discretization:

I 1st order Edge functions of the first kind for vectorial problem.
I 1st order Lagrange elements for scalar problem.

Use NGSolve and Netgen.
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Convergence analysis with analytical solution
Construct an analytical radial solution, Hz = Hz(|x|) to 2D scalar
H-formulation (TE).
Let Ω1 rotate at ω = 20rad/s.
Measure rate of convergence in L2 and SWIP-norm.

(a) The subdomains Ω1 and Ω2 (b) The solution at time
t = 0.05 sec(δt = 0.0005,
h = 0.0361371)
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(a) δt convergence, h = 0.0180874 (b) h convergence, δt = 2.5e− 4
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Comparison with F. Rapetti et al.

F. Rapetti used Mortar Method to deal with non-conforming mesh.
2D, scalar H-formulation (Transverse magnetic).
Simulation time: 0.2s.
ji = 0
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(a) DG, background shows |curl2DHz| (b) Mortar method

Figure: Visualization of curl2DHz for ω = 630rad/s
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(a) DG, background shows |curl2DHz| (b) Mortar method

Figure: Visualization of curl2DHz for ω = 6300rad/s
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Complex rotational setting

Circle rotating in square (as before).
Compare H-formulation with temporal gauged A-formulation by
measuring

∥∥∥ 1
µ curl2D A−Hz

∥∥∥
L2(Ω)

.

I A: 2D vector
I H: 1D scalar

Excitation by impressed current ji = (4y,−2x).
ω = 4π, tend = 1.
TÃ = A− T

∫ t
0 TT grad (V · A)
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(Movies)
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Convergence

Figure: δt convergence at tend = 1 (one full rotation), h = 0.0254402.
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Conclusion

DG approach is a viable alternative to Mortar methods for
simulating sliding interfaces.
The H-formulation is equivalent to the temporal gauged potential
formulation if the correct transformation rules are used.
O(h) and O(t) convergence was proven for a system at rest.

Outlook
I Coulomb gauged potential formulation: No time integration is

needed
I Extension to 3D
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Questions ?
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