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Chapter 1

Introduction

In this chapter we introduce the fundamental physical and mathematical ideas
and structures on which the other chapters build. The central objects here are
the time-dependent Schrödinger equation and a non-adiabatic potential.

1.1 The time-dependent Schrödinger equation

Time-dependent problems in quantum physics are governed by the time-dependent
Schrödinger equation:

i~
∂

∂t
|ϕ〉 = H |ϕ〉 . (1.1)

The Hamiltonian of the system in consideration is given by H, and the function
ϕ (x, t) represents the wave function dependent on position x and time t. In d
space dimensions this is

ϕ : Rd × R→ C
(x, t) 7→ ϕ (x, t) .

There are various mathematical restrictions on what is a valid wave-function.
For example ϕ has to be square-integrable. Most of these preconditions have
little importance for us.
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1.2 Semiclassical scaling

We use the semiclassical scaling, where ε > 0 is a real parameter 1. The equation
still keeps its mathematical form:

iε2 ∂

∂t
|ψ〉 = H |ψ〉 . (1.2)

It’s well known that we get the classical dynamics from the limit ~→ 0. The
same holds of course for the semiclassical parameter ε and for bigger ε we get
an increasing amount of quantum effects.

The Hamiltonian operator H is composed of two parts, the kinetic operator T
and the potential operator V . Thus we can split H as H = T + V with the
following definitions for both operators. The mass m which is present in the
common definition of the kinetic operator is included in the parameter ε.

T := −1

2
ε4 ∂

2

∂x2

V := V (x)

(1.3)

The potential is a real valued function depending only on space but not on time.
This static potential results from the Born-Oppenheimer approximation for the
electronic structure problem. For a more detailed theoretical background see for
example reference [16]. Assume the potential is given by:

V : Rd → R
x 7→ V (x)

(1.4)

then this allows us to solve the Schrödinger equation by separation of variables
and obtain an analytical result for the time propagation of a quantum state
|ψ (t)〉

|ψ (t)〉 = e−
i
ε2
Ht |ψ (0)〉 . (1.5)

The solutions to this time propagation have fine details. A typical wavepacket
is highly oscillatory with a wavelength O

(
ε2
)

localised in space with O (ε) and
moving with a velocity of O (1). This tiny structures are a challenge for the
algorithms simulating them. We would need a very fine grid and thus a huge
bunch of grid nodes.

1Other authors use ε or even ~ (without its physical meaning and value) for the quantity
we denote by ε2.
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Figure 1.1: Example of an avoided crossing of two energy levels.

1.3 Non-adiabatic potentials, avoided crossings

Non-adiabatic potentials are potentials that consist of multiple energy levels.
These energy levels may intersect each other, but we are interested in a situation
that is called an avoided crossing. That is, the two energy surfaces always stay
in a minimal distance. We call this distance the energy gap and denote it by δ.
A very simple example of such an avoided crossing with only two energy levels
is shown in figure 1.1.

Based on the class of physical potential in consideration we have a strict monotone
order of the eigenvalues for all x in our space 2.

λ0 (x) > λ1 (x) > . . . > λN−1 (x) ∀x (1.6)

This global consistent order allows us to sort the eigenvalues and the correspond-
ing eigenvectors uniquely in decreasing order.

For a more elaborate study of the mathematical details and a classification of
different types of avoided crossings see reference [8].

We are now interested what happens with an incoming wave-packet |ψ〉 while it
traverses the narrow part. The magnitude δ of the energy gap plays an important
role in this process.

1.4 A vector of states

For the study of avoided crossings of the energy levels we are interested in vector
valued states |Ψ〉. Each component of this vector represents a part of the wave
function being on the corresponding energy surface.

To describe the dynamics of these states, we need to generalize the Schrödinger
equation to a vector valued version. This is not difficult to do, basically the
extended equation looks exactly like (1.2) but with the difference that H is a

2This is a fairly strong assumption that can be replaced by much weaker formulations more
suitable for mathematical analysis. But for our purpose it is sufficient and these details don’t
really matter.
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matrix now. Let’s write down this in more detail because we will refer to it over
and over again.

Assume we deal with N different states hence |Ψ〉 consists of N components
ϕi (x). And the Hamiltonian becomes a real valued symmetric N ×N matrix.
This gives the following expression for the time-dependent Schrödinger equation

iε2 ∂

∂t

∣∣∣∣∣∣∣
 ϕ0

...
ϕN−1

〉 =

 H


∣∣∣∣∣∣∣
 ϕ0

...
ϕN−1

〉
︸ ︷︷ ︸

|Ψ〉

. (1.7)

1.5 The potential

In the case of a non-adiabatic potential with multiple energy levels, the potential
V becomes a matrix. We assume that V depends on space x but not on time t,
thus it is time-independent.

The matrix representing V is symmetric and with entries vi,j ≡ vj,i ∈ R. We
may write a general unspecified potential as

V (x) =:

 v0,0 (x) · · · v0,N−1 (x)
...

...
vN−1,0 (x) · · · vN−1,N−1 (x)

 (1.8)

where each of the matrix entries vi,j (x) is a real valued function

vi,j : Rd → R
x 7→ vi,j (x)

on its own. These functions are assumed to be smooth.

1.5.1 Diagonalization of the potential

We are much more interested in the potential’s eigenvalues which are the energy
levels of our system. A well known result from linear algebra tells us that sym-
metric matrices always have only real eigenvalues. Therefore we can diagonalize
this matrix and obtain pure real eigenvalues λi (x) that depend on the space
variable x.

The diagonalization itself is performed by orthogonal matrices, the same theorem
as above guarantees that we have a full set of orthogonal eigenvectors νi (x)
which depend of course on x too.
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Given the full set of eigenvalues λ0 (x) , . . . , λN−1 (x) and the corresponding
eigenvectors of V (x) denoted by ν0 (x) , . . . , νN−1 (x) the spectral decomposition
of the potential’s matrix reads

Λ (x) = M−1 (x)V (x)M (x) (1.9)

where the matrix Λ is diagonal with the eigenvalues λi on its diagonal. The
transformation matrix M is orthogonal and contains the eigenvectors as columns:

M :=
(
ν0 (x) , . . . , νN−1 (x)

)
. (1.10)

The special case for 2 energy levels

A general potential that only contains two energy levels is given by a symmetric
two by two matrix. In this case we can write down the eigenvalues for the
potential in closed form. The following formulae are defined in more detail in
[11]. Suppose the potential matrix is given by

V (x) :=

(
v1 v2

v2 −v1

)
(1.11)

with trace Tr (V ) = 0. Then we define a θ as

θ :=
1

2
arctan

(
v2

v1

)
. (1.12)

For the numerical computation we have to use the atan2 function to get the
signs correct. Finally we can write the two eigenvectors as

ν0 :=

(
cos (θ)
sin (θ)

)
ν1 :=

(
− sin (θ)
cos (θ)

)
. (1.13)

Obviously they are orthogonal and normed. Remember that if we sort the λi we
have to change the order of the eigenvectors as well. It’s not guaranteed that ν0

always belongs to λ0.

1.5.2 Basis transformations of states

For various calculations later on we need to be able to transform states from
and to the eigenbasis. This is in principle a trivial process of linear algebra, but
lets briefly note the important points.

The transformation from the eigenbasis to the canonical basis will be important
when we set up the initial values for a simulation. Assume we have a wave
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function |ϕe〉 given in the eigenbasis. The transformed state in the canonical
basis is given by

|ϕc〉 = M |ϕe〉 (1.14)

where M contains the column vectors νi.

The opposite transformation becomes important when evaluating observables.
Given a state |ϕc〉 in the canonical basis, the image of the transformation into
the eigenbasis is

|ϕe〉 = MT |ϕc〉 (1.15)

where we simplified M−1 = MT for real orthogonal matrices.

1.6 The matrix exponential

The exact time propagator for the Schrödinger equation is e−
i
ε2
Ht as shown in

equation (1.2). If the Hamiltonian is matrix valued then this expression becomes
a matrix exponential. For that reason we need to think about some aspects of
this topic too.

1.6.1 Symbolic matrix exponential

Given a general 2×2 square matrix M ∈ C2×2 we can derive an analytical closed
form expression for its exponential. We now try to find an explicit formula for
the exponential exp (M) of this matrix. For brevity we just show the formula.
A detailed derivation and the proof can be found in reference [2].

Assume that our matrix looks like

M :=

(
a b
c d

)
(1.16)

with four possibly complex entries. Then

eM = e
a+d
2

(
cosh (∆) + a−d

2
sinh(∆)

∆ b sinh(∆)
∆

c sinh(∆)
∆ cosh (∆)− a−d

2
sinh(∆)

∆

)
(1.17)

where ∆ is a discriminant of the form

∆ :=
1

2

√
(a− d)

2
+ 4bc . (1.18)
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In the case of ∆ = 0 we need to be careful because of a possible division by zero
and therefore consider a special case

eM = e
a+d
2

(
1 + a−d

2 b
c 1− a−d

2

)
. (1.19)

1.6.2 Numerical matrix exponential

For matrices of size bigger than 2 by 2 there is no applicable symbolic expression
we could use. Hence the only possible solution is a numerical approximation.
There are many such approximations known in literature, see for example the
excellent survey of standard methods in reference [14, 15].

In our implementation we just use the primitive function expm based on Padé
approximation available in scipy [13]. But any other method like for example
Krylov methods can be used.

The general process of computing the matrix exponential of V (x) numerically
for all grid nodes γ is shown in figure 1.2. We start with evaluating the matrix V
of scalar functions at all grid nodes γ. These values are stored in a suitable data
structure. Then we slice this block to get the matrix that belongs to a single
node γl. The exponential of this small N ×N matrix is computed numerically,
for example by expm. After we did this for all grid nodes we can glue together all
the exponentials and arrive at a data structure identical to what we began with.

Figure 1.2: Computation of the matrix exponential.
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Chapter 2

Time propagation by
operator splitting

In this chapter we will present an algorithm based on an analytical approximation
of the matrix exponential in the time propagation operator.

The analytic explicit time propagation for an initial value of the time-dependent
Schrödinger equation (1.2) can be written as

|ψ (x, t)〉 = exp

(
− i

ε2
Ht

)
|ψ (x, 0)〉 (2.1)

In our case the Hamiltonian H is a square matrix of small size. Let’s write this
expression in a more detailed fashion

exp

(
− i

ε2
Ht

)
= exp

(
− i

ε2
(T + V ) t

)
= exp

(
−i
ε2
Tt+

−i
ε2
V t

)
(2.2)

where the kinetic and potential operators T and V are given by (1.3).

2.1 Operator splitting

Given a linear ordinary differential equation

u̇ = (A+B)u

u (0) = u0

(2.3)

with explicit solution
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u (t) = e(A+B)t · u0 (2.4)

If A and B were matrices it’s not possible to calculate the exponential in general.
Only if A and B commute we can apply the Baker-Campbell-Hausdorff formula
and write e(A+B) as eAeB . However in our application the two operators T and
V do never commute.

A possible approximation is an operator splitting. See reference [12] and [5] for
the details of this ansatz. A time-stepping scheme for small but finite time steps
τ is:

u (t+ τ) ≈ e 1
2 τBeτAe

1
2 τBu (t) . (2.5)

This is called a symmetric Lie-Trotter splitting. Now we apply this scheme to the
equation (2.1) with A := − i

ε2T and B := − i
ε2V . This yields for the propagation

operator

e
1
2 τ
−i
ε2
V eτ

−i
ε2
T e

1
2 τ
−i
ε2
V +O

(
τ3
)

(2.6)

which is of locally third order. The approximative time propagation of the
Schrödinger equation reads then

|ψ (t+ τ)〉 = e−
i

2ε2
τV e−

i
ε2
τT e−

i
2ε2

τV |ψ (t)〉 (2.7)

2.2 The propagation algorithm

With the operator splitting we gained the chance to perform each of these three
propagation steps individually. This comes in handy, we can utilize the fact
that the kinetic operator T is diagonal in momentum space while the potential
V is diagonal in position space. Thus we switch to momentum space for the

propagation by e−
i
ε2
τT and back to position space afterwards. This change of

basis is done by a Fourier transformation and can be performed efficiently by
a fast Fourier transform algorithm. With all these parts put together the time
propagation now reads

|ψ (x, t+ τ)〉 = e−
i

2ε2
τV (x)F−1

(
e−

i
ε2
τT (ω)F

(
e−

i
2ε2

τV (x) |ψ (x, t)〉
))

(2.8)

where F (·) denotes a formal Fourier transformation. This formula describes how
to advance a single time step of duration τ . The whole algorithm consists of as
many iterations of this formula as desired.
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A further simplification of (2.8) is possible when we take into account the exact
expression for T given by equation (1.3) with the mass m set to 1. The result is

e−
i
ε2
τT (ω) = e−iε

2τT̃ (ω) with T̃ := − 1
2
∂2

∂x2 .

Both the kinetic as well as the potential operator are time-independent and we
can precalculate their exponentials. This reduces the per iteration cost of the
time- stepping algorithm by a big amount.

The expression − i
2ε2 τV (x) easily evaluates to a scalar for any given x. This

won’t cause any troubles in the exponential. For the kinetic operator we need to
go to Fourier space. Using the linearity of F and the above definition for T̃ :

F
(
−iε2τ T̃

)
= −iε2τF

(
T̃
)

= −iε2τF
(
−1

2

∂2

∂x2

)

As known from Fourier theory it holds that F
(
f (n) (x)

)
= (iω)

n F (f (x)) for
the nth derivatives of a suitable function f and with ω being the Fourier variable.
Use of this identity gives

F
(
−1

2

∂2

∂x2
f (x)

)
= −1

2
(iω)

2 F (f (x))

If we now simplify this result further, we get F
(
T̃
)

= − 1
2 (iω)

2
and thus

F
(
−iε2τ T̃

)
= − i

2
ε2τω2 (2.9)

We got rid of the partial derivatives in the exponent at the cost of an additional
real scalar ω. Finally we introduce the following notation

Te (ω) := exp

(
−1

2
iε2τω2

)
Ve (x) := exp

(
− i

2ε2
τV (x)

) (2.10)

for the precalculated propagation operators. Both exponentials only contain
numbers. With these definitions the algorithm given by equation (2.8) becomes

ψn+1 (x) = Ve (x)F−1
(
Te (ω)F

(
Ve (x) · ψn (x)

)︸ ︷︷ ︸
ψ̂n(ω)

)
(2.11)

where ψn is a short notation for ψ (x, t = nτ) with n denoting the number of
the current time step.
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2.2.1 The discretized space

For the numerical simulation we first define the computational domain Ω ∈ Rd.
In our case where we deal with only one space dimension and d = 1, this domain
is simply an interval on the real line. Without loss of generality we can assume
Ω to be centred around the origin and bounded by α. To simplify further, also
with respect to the Fourier transformation, we write the constant α as a multiple
of π and denote the scaling factor by f ∈ R.

Ω := [−fπ, fπ] (2.12)

The domain is still part of the continuum. For the numerical computation we
need to discretize the space and introduce a grid on Ω. Denote the number of
grid nodes by n and the grid spacing by h. Then a grid Γ is given by

Γ := {γ0 < γ1 < . . . < γN−1} (2.13)

γ0 ≡ −fπ and γN−1 ≡ fπ (2.14)

with equidistant grid nodes γi ∈ Ω. Additionally to the grid in position space
we need a grid in the Fourier space for computing Te (ω). Suppose the number

n of grid nodes is given as a power of 2, then we have n = 2k. Now the grid Γ̂ in
Fourier space is given as

Γ̂ := {ω0 < ω1 < . . . < ωN−1} (2.15)

ω0 := 1− 2k−1 and ωN−1 := 2k−1 (2.16)

Depending on the implementation of the discrete Fourier transform we want to
use we have to shift the nodes with negative sign and reorder the set Γ̂.

2.2.2 Discretized time evolution operators

The time propagation operator exponentials Te and Ve given by equation (2.10)
become

T̃e (ω̃) := exp

(
−1

2
iε2τ ω̃2

)
Ṽe (γ) := exp

(
− i

2ε2
τV (γ)

) (2.17)

where ω̃ := ω
n and ω ∈ Γ̂ when transformed to discretized space.
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2.2.3 Pseudo code

With the results from the last sections we are ready to write down a pseudo code
for the time propagation of a |ψ〉 which solves the scalar semiclassical Schrödinger
equation (1.2). The algorithm 1 shows a straight forward implementation of
(2.11). The exponentials of the operators are evaluated and stored in a vectorized
fashion simultaneously for all grid nodes γi.

Algorithm 1 Time propagation with operator splitting of H for |ψ〉
Require: The precalculated operator exponentials from (2.10)

// Propagate with the potential V
ψ′ := Ve · ψ
// Fourier transform

ψ̂′ := F (ψ′)
// Propagate with the kinetic operator T

ψ̂′′ := Te · ψ̂′
// Apply inverse Fourier transform

ψ′′ := F−1
(
ψ̂′′
)

// Propagate again with the potential V
ψ(k+1) := Ve · ψ′′
return ψ(k+1)

2.3 Vector valued states

In the last section we only considered the simpler case with a potential function
and a scalar state |ψ〉. Now we want to extend the theory to matrix valued
potentials like (1.8) together with vector valued states |Ψ〉 defined by (1.7). The
goal of this effort is to get an extended version of algorithm 1 that handles this
more general case.

The question is now which parts we have to generalize. Because we defined the
Lie-Trotter splitting in an abstract context, the formula (2.7) stays the same.
The only things that change are the exponentials therein that become now matrix
exponentials. Hence we have to derive new formulae analogous to the ones of
definition (2.10).

With the generalized definitions of Te and Ve the core of the time propagation
algorithm as given in (2.11) is still valid and can be reused.

2.3.1 Propagation operator exponentials

Assume our state |Ψ〉 consists of N components ϕ0, . . . , ϕN−1. Thus the Hamil-
tonian operator H has to be a N ×N matrix 1. We may split H = T + V and

1Don’t confuse this with the matrix representation Hi,j := 〈φi |H |φj〉 of a Hamiltonian
operator H for a given set of basis functions φ0, . . . , φk.
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write

H =

 T0

. . .

TN−1

+

 v0,0 (x) · · · v0,N−1 (x)
...

...
vN−1,0 (x) · · · vN−1,N−1 (x)

 (2.18)

where we used the definition of T given by (1.3) and the potential matrix
introduced in (1.8). We can simplify the first matrix by assuming that all the Ti
are identical operators.

With this last step, the exponential e−
i
ε2
τT of the diagonal kinetic operator

matrix T becomes rather easy and the problem reduces to what we did in the last
section. The solution for a single component is given by Te of (2.10). Therefore
we get

Te := exp

(
− i

ε2
τT

)
=

 Te
. . .

Te

 (2.19)

For the potential operator matrix the process is much more difficult as V (x) is
in general not diagonal. Here we really need full-fledged matrix exponentials for

e−
i

2ε2
τV (x) without any possibilities for simplification. For the special case where

N = 2 we can use the analytical formula for the matrix exponential given by
(1.17) and adapt it for symmetric matrices. Otherwise where N > 2 numerical
techniques have to be used. For the sake of completeness we note:

Ve := exp

(
− i

2ε2
τV (x)

)
= exp

− i

2ε2
τ

 V (x)

 (2.20)

Both, Te and Ve are again matrices of the same dimension as H. Putting all
the parts together we arrive at

Ψn+1 (x) = Ve (x)F−1
(
Te (ω)F

(
Ve (x) ·Ψn (x)

)︸ ︷︷ ︸
Ψ̂n(ω)

)
(2.21)

which is a time-stepping scheme analogous to (2.11) but applicable to the
Schrödinger equation (1.7) with vectorial states |Ψ〉.

2.3.2 Pseudo code

With the last result we can start to write down a pseudo code for the time
propagation of a |Ψ〉. The algorithm 2 shows a straight forward implementation
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of (2.21). The values for Te and Ve are precomputed for all grid nodes γi. We
need to be careful with the formal matrix multiplications this time. Of course
we do not build the matrix for Te but rather multiply by the same Te all the
time. This is equivalent to the redefinition Te := Te.

Algorithm 2 Time propagation with operator splitting of H for |Ψ〉
Require: The precalculated operator exponentials from (2.19) and (2.20)

Ψ(k) = {ϕ0, . . . , ϕN−1}
// Propagate with the potential V
Ψ′ := {0, . . . , 0}
for r := 0 to N − 1 do

for c := 0 to N − 1 do
Ψ′r := Ψ′r + Ver,c ·Ψ(k)

c

end for
end for
// Fourier transform the components

Ψ̂′ := {0, . . . , 0}
for r := 0 to N − 1 do

Ψ̂′r := F (Ψ′r)
end for
// Propagate with the kinetic operator T
for r := 0 to N − 1 do

Ψ̂′′r := Te · Ψ̂′r
end for
// Apply inverse Fourier transform to the components
Ψ′′ := {0, . . . , 0}
for r := 0 to N − 1 do

Ψ′′r := F−1
(

Ψ̂′′r

)
end for
// Propagate again with the potential V
Ψ(k+1) := {0, . . . , 0}
for r := 0 to N − 1 do

for c := 0 to N − 1 do
Ψ

(k+1)
r := Ψ

(k+1)
r + Ver,c ·Ψ′′c

end for
end for
return Ψ(k+1)

2.4 Initial values

We just finished building an algorithm that can perform the time evolution of
any given initial state. It’s time to pay attention to these initial values and
elaborate how we have to define them properly.

In the case of multiple energy levels λi we need to specify the initial values with
extra care. In most cases we want to start with a single Gaussian wavepacket
on only one energy level and nothing on the others. This Gaussian wavepacket
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λ1(x)

λ0(x)p

q

Figure 2.1: Example of Gaussian initial values on the upper energy level.

we start with is localized around position q and may have a momentum that is
localized in momentum space around p. For an example how this could look like
see figure 2.1 where we start with a right travelling packet on the left side of the
avoided crossing.

It’s apparent that the initial values are given in the eigenbasis of the potential
V . But the simulation takes place in the canonical basis thus the initial values
have to be transformed. This happens with a simple linear basis transformation
from the eigenbasis into the canonical basis. The orthogonal matrix M that
performs this task is given by the eigenvectors of our potential. We defined this
transformation together with the inverse in the section 1.5.2.

As starting point of the time-stepping algorithm (2) we write now for the values
Ψ0 (x) just before our iteration first takes place

Ψ0 (x) := M |ΨIV〉 (2.22)

where |ΨIV〉 are the given initial values in the eigenbasis. Even if we start in
most situations with a single Gaussian packet, the initial values can be arbitrary
and different on each energy surface. In general they don’t have to be localized
wavepackets at all.

2.5 Observables

In this section we will look into the calculation of observables like the different
energies and norms. Note that we always use the complex scalar product 〈·, ·〉
here.

2.5.1 The norm of a wavepacket

The norm of a wavepacket is particularly interesting because it can be interpreted
as the probability density for finding the particle in a specified infinitesimal
volume element.

To calculate the norm of a wavepacket |Φ〉 we start from the definition and use
again a transformation to Fourier space and Parseval’s identity. This gives us
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‖Ψ (x) ‖2L2 := 〈Ψ |Ψ〉 =
〈

Ψ̂
∣∣∣ Ψ̂〉 = ‖Ψ̂ (ω) ‖2L2 (2.23)

In the discretized space we evaluate Ψ at the grid nodes Γ and get a vector with
n entries.

‖Ψ (Γ) ‖22 = 〈Ψ (Γ) ,Ψ (Γ)〉

=

n∑
i

Ψ (γi)Ψ (γi)

=
2πf

n2

n∑
k

Ψ̂ (ωk)Ψ̂ (ωk)

=
2πf

n2
〈Ψ̂ (ωk) , Ψ̂ (ωk)〉

= ‖Ψ̂(Γ̂)‖22

(2.24)

where we used a discrete Fourier transformation. Further, with the square
removed by taking the root, we get

‖Ψ̂(Γ̂)‖2 =

√
2πf

n
‖Ψ̂ (ω) ‖2 (2.25)

This is the formula we use in the code because it’s much cheaper to calculate
the norm in Fourier space.

Notice that for the case of vector valued wave functions the norm of a single com-
ponent ϕi is exactly the probability for finding the particle on the corresponding
energy level Ei.

2.5.2 Energy of a wavepacket

The energy of a quantum wavepacket |Ψ〉 is given by the following integral

E = 〈Ψ |H |Ψ〉 (2.26)

Hence we investigate the detailed structure of this expression with the aim to
easily calculate it’s value. First we explicitly split the expression into the parts
for potential and kinetic energy

〈Ψ |H |Ψ〉 = 〈Ψ |T |Ψ〉+ 〈Ψ |V |Ψ〉 (2.27)

and then we plug in the operators’ definitions given by (1.3). This yields
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〈Ψ |H |Ψ〉 =

〈
Ψ

∣∣∣∣−1

2
ε4 ∂

2

∂x2

∣∣∣∣Ψ〉+ 〈Ψ |V (x) |Ψ〉 (2.28)

The first summand which represents the kinetic energy Ekin can be simplified
using linearity

Ekin = −1

2
ε4

〈
Ψ

∣∣∣∣ ∂2

∂x2

∣∣∣∣Ψ〉
and by transformation to Fourier space

= −1

2
ε4
〈
F (Ψ)

∣∣∣ (iω)
2
∣∣∣F (Ψ)

〉
=

1

2
ε4
〈
Ψ (ω)

∣∣ω2
∣∣Ψ (ω)

〉
Finally we get the following formula for the kinetic energy of a wavepacket |Ψ〉

Ekin =
1

2
ε4

∫
ω

Ψ̂ (ω) · ω2 · Ψ̂ (ω) dω (2.29)

While we were able to simplify the expression for the kinetic energy quite a lot
this is not possible in the same manner for a general potential V (x).Thus we
just apply Parseval’s equality and write

Epot = 〈Ψ |V (x) |Ψ〉
= 〈F (Ψ (x)) | F (V (x) Ψ (x))〉

=

∫
ω

F (Ψ (x))F (V (x) Ψ (x)) dω (2.30)

2.5.3 Energy of a vector valued wavepacket

In the case of vector valued wavepackets |Ψ〉 we have to think carefully what to
compute. The basic equation (2.27) is still valid but we have to use the matrix
valued operators T and V

E = 〈Ψ |T |Ψ〉+ 〈Ψ |V |Ψ〉 (2.31)

The computation of both energies has to be carried out in the canonical basis
because we need the operators T and V whose representations we only know
there. On the other hand we are interested in the energy of the wavepacket |Ψ〉
and its components ϕi measured in the eigenbasis. Thus there is an additional
basis transformation M involved which drops out in the scalar case. Of course
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the overall energy is independent of any particular basis, but the energy of a
component ϕi is not. In analogy to (2.29) and (2.30) we can write

Ekin =

〈 ϕ0

...
ϕN−1


∣∣∣∣∣∣∣MT

T . . .

T

M

∣∣∣∣∣∣∣
 ϕ0

...
ϕN−1

〉 (2.32)

and

Epot =

〈 ϕ0

...
ϕN−1


∣∣∣∣∣∣∣MT

 V (x)

M

∣∣∣∣∣∣∣
 ϕ0

...
ϕN−1

〉 (2.33)

For the calculation of the energy of a single component ϕi of |Ψ〉 we transform
and measure according to this formula

Eipot =

〈 0
ϕi
0

∣∣∣∣∣∣MTVM

∣∣∣∣∣∣
 0
ϕi
0

〉 (2.34)

for the potential energy or its identical counterpart with the operator V replaced
by T for kinetic energy. In any case it holds that

Etotal = Ekin + Epot

=

N−1∑
i=0

Eikin +

N−1∑
i=0

Eipot

= constant

(2.35)

We have conservation of energy as the system is self-contained.

2.5.4 Energy computations in discretized space

For the energies we get within discretized space the following formulae where we
again build a vector from evaluating the function ψ on the grid nodes Γ:

Ekin =
2πf

n2

1

2
ε4〈F (ψ(Γ)), ω2F (ψ(Γ))〉 (2.36)

and

Epot =
2πf

n2
〈F (ψ(Γ)), V (x)F (ψ(Γ))〉 (2.37)
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For a vectorial wavepacket |Ψ〉 we have

Epot =
2πf

n2
〈F (ϕi) ,F (ϕ̃i)〉 (2.38)

where (ϕ̃0, . . . , ϕ̃N−1) T := Ψ̃ = VΨ for the potential energy. To calculate the
kinetic energy we apply the above formula (2.36) to each component ψi of Ψ
separately.

Of course the Fourier transformation F (·) has to be interpreted as a discrete
Fourier transformation. The discrete Fourier transformation is then implemented
as an FFT algorithm.
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Chapter 3

Semiclassical wavepackets

3.1 Definition of semiclassical wavepackets

In this section we present a particular form of wavepackets defined by G. Hage-
dorn, see for example [6, 7] and particularly [9].

These wavepackets are a general class of orthonormal basis functions for an
L2
(
Rd
)

space. For the d dimensional space they are defined as follows. Let
q ∈ Rd be the position and p ∈ Rd the momentum vector of the package. Further
there are complex matrices P,Q ∈ Cd×d which obey the following important
relations

QTP − PTQ = 0

QHP − PHQ = 2i1 .
(3.1)

With these parameters we can now define the ground state wave function φ0

depending on arbitrary but fixed parameters as

φ0 [P,Q, p, q] (x) :=
(
πε2
)− d4 det (Q)

− 1
2

· exp

(
i

2ε2
〈(x− q) , PQ−1 (x− q)〉+

i

ε2
〈p, (x− q)〉

) (3.2)

where x ∈ Rd. Also ε enters this equation with a constant numerical value during
all computations1.

The eigenfunctions of the harmonic oscillator are contained as special cases in
the more general formulae for these wavepackets.

1In contrast to some other authors we use the notation of P := iB and Q := A and q := a
for the position and p := η for the momentum. The motivation for this change are the equations
of motion of P and Q that become the classical equations.
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For the semiclassical wavepackets we can define and use ladder operators in the
same manner as one does for the harmonic oscillator. This analogy builds on
the fact that these wavepackets diagonalize the general quadratic Hamiltonian.
Before we define these operators, let’s restrict the dimension of the position
space to one. This way we can avoid some difficulties that have no relevance for
us now.

3.1.1 Restriction to one space dimension

The restriction to one space dimension where d = 1 simplifies things a lot because
the vectors p and q and especially the matrices P and Q all reduce to scalar
values. Further we don’t need to bother with multi-index notation for k.

First we simplify the ground state (3.2) to the one dimensional case:

φ0 [P,Q, p, q] (x) :=
(
πε2
)− 1

4 Q−
1
2 exp

(
i

2ε2
PQ−1 (x− q)2

+
i

ε2
p (x− q)

)
.

(3.3)

3.1.2 Ladder operators

Now let’s take a closer look at the ladder operators. As mentioned above
there exists a lowering operator L and a raising operator R for semiclassical
wavepackets. We will use these ladder operators later for defining the wave
functions φk of higher states k ≥ 1. The ladder operators are defined as:

R = − i√
2ε2

(
P (x− q)− iε2Q

(
∂

∂x
− p
))

L =
i√
2ε2

(
P (x− q)− iε2Q

(
∂

∂x
− p
))

.

(3.4)

It exists a lowest state which can not be lowered further by L. This state is the
zero state and acts as the bottom of this ladder:

Lφ0 = 0 . (3.5)

On the other hand we can apply the raising operator to the ground state and
create φ1:

φ1 = Rφ0 . (3.6)

In much the same way we can create φk for arbitrary k by applying R multiple
times. To be more concrete, the following formulae bring the different states
into relation:
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φk+1 =
1√
k + 1

Rφk

φk−1 =
1√
k
Lφk .

(3.7)

To get the state φk from the given φ0 we have to let R act k times. Together
with the prefactors this yields

φk :=
1√
k!
Rkφ0 . (3.8)

Finally we can give an analytical closed form for φk

φk [P,Q, p, q] (x) := 2−
k
2 (k!)

− 1
2
(
πε2
)− 1

4 Q−
k+1
2 Q

k
2 ·Hk

(
ε−1 |Q|−1

(x− q)
)

· exp

(
i

2ε2
PQ−1 (x− q)2

+
i

ε2
p (x− q)

)
(3.9)

where Hk (ξ) is the Hermite polynomial 2 of degree k.

To end this section, let’s emphasize again the close relationship to the eigenfunc-
tions of the harmonic oscillator. Suppose P = i, Q = 1, choose the origin as
position and assume the wavepacket has no momentum, thus p = q = 0. Further,
assume ε = 1. If we now plug these values in (3.9) we get

|ϕk〉 =
Hk (x) e−

x2

2

π
1
4 2

k
2

√
k!

(3.11)

which is exactly the well known expression for the harmonic oscillator.

3.1.3 Numerical evaluation of basis functions

For the numerical simulation we will need to evaluate the functions φk (x) at
some discrete grid nodes xi. This seems to be a trivial task as we have a closed
form expression for φk given by equation (3.9). Although there is this expression
for all k it’s a bad idea to use it directly. One critical point in this formula is
the factorial. It will soon result in a numerical overflow even for relatively small
k. Therefore we need a better approach.

2We use the following definition for the Hermite polynomials:

Hk (ξ) := (−1)k eξ
2
(
∂

∂ξ

)k
e−ξ

2
(3.10)
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An idea is to evaluate the ground state and recursively calculate the higher states
based on these values. The essential three term recursion can be obtained as
follows. We start with the function for φ0 which we can evaluate numerically
without much troubles. It is just a Gaussian exponential. (Note that we omit a

factor of Q−
1
2 for the moment.)

Applying the raising operator R once results in:

φ1 (x) = Q−1

√
2

ε2
(x− q) · φ0 (3.12)

and for the general case we get the following three term recursion

φk+1 (x) =

√
2

ε2

1√
k + 1

Q−1 (x− q)φk (x)−
√

k

k + 1
Q−1Qφk−1 (x) . (3.13)

This is exactly how the calculation is implemented in an efficient and numerically
stable way. Because later we will need the values for all φk from k = 0 up to a
maximum kmax =: K, it’s not a disadvantage but rather a big benefit that we
have to evaluate all previous functions for any φk.

Algorithm 3 Evaluate basis functions φk (x) of semiclassical wavepackets

Require: A set of grid or quadrature nodes x
Require: A set Π := {P,Q, p, q} of parameters

// Base cases

β0 := π−
1
4 ε−

1
2 · exp

(
i
ε2

(
1
2PQ

−1 (x− q)2
+ p (x− q)

))
β1 := Q−1

√
2
ε2 (x− q) · β0

// Inductive steps
for k := 2 to K − 1 do

βk := Q−1
√

2
ε2

1√
k
· (x− q) · βk−1 −Q−1Q

√
k−1
k · βk−2

end for
return B := (β0, . . . , βK−1) T

In praxis we do not call algorithm 3 for each grid node xi ∈ Γ but use vectorization
and calculate B for all nodes simultaneously.

3.2 Definition of scalar wavepackets

After we have defined a basis set {φ0, φ1, . . .} for the infinite dimensional Hilbert
space of states we can now define the exact form of a state |Φ〉. Each state is
represented by a linear combination of the basis functions φk. Of course the
basis functions are valid states too.
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Assume we truncate the Hilbert space and use finite many basis functions. Let
K be the maximal number of basis functions. Further let S ∈ C be a global
phase. Any wavepacket can now be written as

|Φ (x)〉 := e
iS
ε2

K−1∑
k=0

ckφk (x) (3.14)

where ck ∈ C are the coefficients of this linear combination. We can collect them
in a vector c := (c0, . . . , cK−1) T. For later reference, we call the set

Π := {P,Q, S, p, q} (3.15)

of variables the Hagedorn parameters of a wavepacket |Φ〉 of form (3.14). This
set includes the four parameters P , Q, p and q that come from the basis functions
φk given by equation (3.9) as well as the global phase that enters the above
linear combination. These values play an important role in the wavepacket based
algorithms we’ll discuss in the next two chapters.

3.3 Definition of vector valued wavepackets

For the quantum dynamics with semiclassical wavepackets in the case of the vector
valued Schrödinger equation as defined by formula (1.7) we need a wavepacket
|Ψ〉 that is vector valued as well. Such a packet |Ψ〉 can be build as a vector of
multiple scalar semiclassical packets. Assume that the Hamiltonian H in (1.7)
is a N × N matrix, thus there are N energy levels and |Ψ〉 needs to have N
components too. Formally we define

|Ψ〉 :=

∣∣∣∣∣∣∣
 Φ0 (x)

...
ΦN−1 (x)

〉 (3.16)

where each of the Φi is of the form defined in (3.14).

All Φi share the same parameters P , Q, global phase S, average momentum q
and average position p. We will call a wavepacket that fulfils this condition a
homogeneous wavepacket. Equivalently we can say the only thing that differs
between the Φi is the vector of coefficients c. Therefore we add an index i to
the notation, ci stands for the coefficient vector of the component Φi. Thus a
semiclassical wavepacket suitable for solving (1.7) has the important property
that it is fully characterized by

• a single set Π of parameters P , Q, S, p and q.

• a vector ci of coefficients for each component Φi.
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(a) (b)

(c) (d)

(e)

Figure 3.1: Hagedorn wavepackets Ψ with increasing momentum. The plots
show the real (blue), imaginary (green) part and the absolute value (red) of |Ψ〉.
(a) q = 0.0 and p = 0.0 (b) q = 0.0 and p = 0.25 (c) q = 0.0 and p = 0.5 (d)
q = 0.0 and p = 1.0 (e) q = 0.0 and p = 2.0
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3.4 Extended vector valued wavepackets

For advanced applications we may extend the definition (3.16) of a state |Ψ〉 and
release the main restriction. In contrast to the homogeneous wavepackets of the
last section we allow that each component Φi has it’s very own set of parameters
P , Q, S, p and q. We will call such a wavepacket an inhomogeneous wavepacket.
To be able to distinguish the different variables, an index i is added also to the
parameters. Thus a wavepacket is fully characterized by

• a set Πi of parameters Pi, Qi, Si, pi and qi for each component Φi.

• a vector ci of coefficients for each component Φi.

3.5 Numerical evaluation of wavepackets

The numerical evaluation of a wavepacket |Ψ〉 on given grid nodes xi is not
difficult. We just evaluate all the basis functions φk and assemble the parts. If
we are in the case of (3.16) we can do this once and use the values for all N
components of |Ψ〉. Otherwise we have to evaluate the basis functions individually
for each component n as they differ by their Hagedorn parameters. Now we
multiply these values with the coefficients cn for each component. Finally we

have to multiply with the phase exponential e(
iS
ε2

). For an extended wavepacket
we have to keep in mind that each component n has its own phase Sn. The
algorithm 4 shows this procedure in the most general form. The outer for
loop iterates over all components of |Ψ〉 while the inner loop is responsible for
evaluating the basis functions φnk with the given per component set of Hagedorn
parameters. This part can be implemented efficiently according to algorithm 3.

Algorithm 4 Evaluate a vectorial wavepacket |Ψ〉 on a set of nodes

Require: A set of grid or quadrature nodes x
Require: An arbitrary (in)homogeneous wavepacket Ψ

// Iterate over all components of |Ψ〉
for n = 0 to N − 1 do

given Πn as {Pn, Qn, Sn, pn, qn}
// Evaluate the basis for component n
for k = 0 to K − 1 do
βk := φk [Pn, Qn, pn, qn] (x)

end for
// Calculate the exponential of the phase
πn := exp

(
iSn
ε2

)
// Assemble the component Φn
Φn := πn ·

∑K
k=0 c

n
kβk

end for
return (Φ0, . . . ,ΦN−1) T
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Chapter 4

A wavepacket based
algorithm

With the detailed insight from the last chapter we now move on and see how
we can use semiclassical wavepackets to solve the vector valued Schrödinger
equation as defined by (1.7). In this chapter we will study an algorithm that
was presented in reference [3]. It uses the semiclassical wavepackets from the
last chapter to simulate the time evolution of an initial wavepacket.

4.1 Splitting the Schrödinger equation

The linear time dependent Schrödinger equation as defined by (1.2) with a
splitting of the Hamiltonian operator H into a kinetic and a potential part as in
equation (1.3) can be written as two separate equations.

The first equation that contains only the kinetic operator T describes the time
evolution of a free particle:

iε2 ∂Ψ

∂t
= −1

2
ε4 ∂

2

∂x2
Ψ . (4.1)

The other part contains only the potential V (x) and reads:

iε2 ∂Ψ

∂t
= V (x) Ψ . (4.2)

4.1.1 Splitting of the potential

The next step is to additionally decompose the potential. We split V into a local
quadratic Taylor approximation U (x) and the non-quadratic remainder W (x)
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as:

V (x) = U (x) +W (x) . (4.3)

This yields two new potential equations that replace (4.2), one with the quadratic
part of the potential which, of course, describes an harmonic oscillator:

iε2 ∂Ψ

∂t
= U (x) Ψ . (4.4)

The other equation contains all the bulky pieces that remain after the splitting:

iε2 ∂Ψ

∂t
= W (x) Ψ . (4.5)

4.2 Propositions about exact propagation

The benefit of this two levels of decomposition becomes obvious once we recall
that the aim is to propagate semiclassical wavepackets. It turns out that two
out of these three parts can be solved exactly. In this section we closely follow
reference [3].

We can solve the free particle equation (4.1) exactly. The important point is
that if the wave function has the form of a semiclassical wavepacket defined by
equation (3.9) then the coefficients ci won’t change during time propagation.
For the time evolution during a single time step τ we get the following equations

q (t+ τ) = q (t) + τp (t)

Q (t+ τ) = Q (t) + τP (t)

S (t+ τ) = S (t) +
1

2
τp (t) Tp (t)

(4.6)

with p and P being constant.

In a similar way we can solve the quadratic potential equation (4.4) exactly
without changing the packet’s coefficients ci. The time evolution this time reads

p (t+ τ) = p (t)− τ∇U (q (t))

P (t+ τ) = P (t)− τ∇2U (q (t))Q (t)

S (t+ τ) = S (t)− τU (q (t))

(4.7)

where q and Q stay the same.

37



During these two parts we only change the parameters P , Q and the phase S
besides the position q and momentum p of the wavepacket but we never touch
the coefficients ci.

In the third step which deals with equation (4.5) however, we can no longer keep
the coefficients ci constant. But in this turn, we can fix the five parameters and
solely update the coefficients. The starting point is the following variational
approximation

〈φk, iε2 ∂u

∂t
−Wu〉 = 0 ∀k (4.8)

on the Hilbert space M defined by

M := {v ∈ L2
(
Rd
)

: v (x) =

K−1∑
k=0

ckφk (x)} . (4.9)

This is the space spanned by all functions defined by (3.9) with identical and
fixed parameters P , Q, p and q. Equivalently to (4.8) we can solve the following
system of linear ordinary differential equations

iε2 dck
dt

=

K−1∑
l=0

fk,lcl (4.10)

where fk,l := 〈φk |W |φl〉 and we collect all these f into a Hermitian matrix F
which is the matrix representation of the non-quadratic remainder W over the
basis {φi}i. The solution to (4.10) is then simply given by

c (t+ τ) = exp

(
− iτ
ε2
F

)
c (t) (4.11)

and describes the time evolution of the coefficients in the potential’s remainder.

For the exact details and the proofs about this splitting and the separate time
evolutions we refer to section 2 of [3].

4.2.1 The matrix representation

One last step remains before we can put together the algorithm. In the last
paragraph above we need the matrix denoted by F . The definition gives us this
equation:

fk,l := 〈φk |W |φl〉 =

∫
Rd
φk (x)W (x)φl (x) dx (4.12)
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which looks like any integration problem. We now want to find an efficient way
to calculate this integral for all k and l or, in other words, set up the matrix
F . The integral containing W can almost never be solved analytically thus the
integral is approximated by quadrature. Because we will need the results at
different places, let’s look at a much broader setup of this problem.

4.3 Analytical integration and quadrature

Suppose we have the wave function |Φi〉 of a component as defined by (3.14).
Recall then for the basis functions we have orthogonality: 〈φm |φn〉 = δm,n. The
two kets |Φi〉 and |Φj〉 must have the same Hagedorn parameters for the time
being, but of course they can have different coefficients. Thus we add upper
indices to the coefficients. For a general but sufficiently smooth function

f : R→ R
x 7→ f (x)

we want to transform the following expression into an integral

〈Φi | f |Φj〉 =

〈
e
iS
ε2

∑
k

cikφk

∣∣∣∣∣ f
∣∣∣∣∣ e iSε2 ∑

k

cjkφk

〉

= e
−iS
ε2 e

iS
ε2︸ ︷︷ ︸

=1

〈∑
k

cikφk

∣∣∣∣∣ f
∣∣∣∣∣∑
k

cjkφk

〉
=
∑
k,l

cikc
j
l 〈φk | f |φl〉

=
∑
k,l

cikc
j
l

∫
R
φk (x)f (x)φl (x) dx

where we exploited the fact that the complex inner product is sesquilinear and
the global phase cancels out.

To deal with the numerics, the integral is approximated by a high order Gauss-
Hermite quadrature with weights ωr and nodes γr.

∫
R
φk (x)f (x)φl (x) dx ≈

∑
r

f (γr)φk (γr)φl (γr)ωr (4.13)

If we now put all the parts together then the whole formula becomes

〈Φi | f |Φj〉 =
∑
k,l

cikc
j
l

∑
r

f (γr)φk (γr)φl (γr)ωr . (4.14)
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A straight forward implementation to calculate these integrals could look like
the code shown in snippet 5. This is very inefficient, we can do much better and
replace two of the loops by implicit vectorized calculations.

Algorithm 5 Inefficient version of the quadrature of I := 〈Φi | f |Φj〉
Require: Quadrature rule with ρ pairs (γr, ωr).
I := 0
for k = 0 to K − 1 do

for l = 0 to K − 1 do
Ik,l := 0
// Iterate over all pairs (γr, ωr)
for r = 0 to ρ− 1 do
Ik,l := Ik,l + f (γr)φk (γr)φl (γr)ωr

end for
// Multiply with the prefactors

I := I + cikc
j
l · Ik,l

end for
end for
return I

Suppose all K basis functions are collected in a vector ϕ := (φ0, . . . , φK−1) T

and the coefficients in the same manner c := (c0, . . . , cK−1) T. While the vector
ϕ is identical for both |Φi〉 and |Φj〉, the vector c is different and we write ci

and cj respectively. With this data structure we get

〈Φi | f |Φj〉 =

∫
Φi

HfΦjdx =

∫ (
ciTϕ

)
HfcjTϕdx

=

∫
ϕHcifcjTϕdx =

∫
ciHϕfϕTcjdx

= ciH
(∫

ϕfϕTdx

)
cj = ciH

(∫
fϕϕTdx

)
cj .

(4.15)

Notice that ϕϕT is a K ×K matrix. Further as f is independent of k and l and
scalar we can factor it out

F̃ (x) := fϕϕT = f (x)


...

. . . φk (x)φl (x) . . .
...

 (4.16)

so the integral is essentially matrix valued. Let’s note again this major result

〈Φi | f |Φj〉 = ciH
(∫

F̃ (x) dx

)
︸ ︷︷ ︸

F

cj (4.17)
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If the expression above is approximated by the quadrature it becomes

〈Φi | f |Φj〉 ≈ ciH
(

ρ∑
r

ωrF̃ (γr)

)
cj (4.18)

with the sum having matrices as summands. This is precisely the way an efficient
implementation works. Even if we construct all the matrices F̃ (γi) this is not
too expensive as each one is just a rank one matrix and the vectors ϕ (γi) are
available already in a vectorized data structure.

4.3.1 Building the matrix

So far we only considered the quadrature of 〈Φ | f |Φ〉. But there is an implicit
connection to our question on how to build the matrix F . It just drops out as a
byproduct of the above improved formulae for integration!

This becomes very obvious once we write ϕ := (|φ0〉 , . . . , |φK−1〉) T. If we now
plug this into ϕfϕT from above we get

 〈φ0 | f |φ0〉 . . . 〈φ0 | f |φK−1〉
...

...
〈φK−1 | f |φ0〉 . . . 〈φK−1 | f |φK−1〉

 =: F (4.19)

which is the matrix F we wanted. We only need to replace f (x) by the non-
quadratic remainder W (x) to get the matrix needed in (4.11).

The procedure 6 shows an implementation for constructing the matrix F . In
the step where we retrieve the basis evaluated on the quadrature nodes γ we
use algorithm 3. The evaluation of f on all nodes does not require a for loop
because f itself is implemented in a way that allows vectorized data processing1.

Based on algorithm 6 the procedure 7 shows a possible efficient implementation
for the quadrature shown in (4.18).

4.3.2 Quadrature in general

In the quadrature introduced in the last section we always assumed that there is
a quadrature rule with suitable nodes and weights. But we never specified how
to get the nodes. The quadrature rule is a high order Gauss-Hermite quadrature
which is build to exactly integrate expressions of the form

1For vectorized evaluation of a function f (x) the following identity holds

f ((x0, . . . , xn)) ≡ (f (x0) , . . . , f (xn)) (4.20)
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Algorithm 6 Build the matrix F := (〈φi | f |φj〉)i,j
Require: Quadrature rule with L pairs (γl, ωl).
Require: The scalar function f (x)

// Evaluate the function f for all quadrature nodes γ
(v0, . . . , vL−1) := f ((γ0, . . . , γL−1))
// Evaluate the basis functions for all quadrature nodes γ
B := (β0, . . . , βK−1)
// Set up a zero matrix
F ∈ RK×K , F := 0
// Iterate over all pairs (γl, ωl)
for l = 0 to L− 1 do
F := F + vlε ·BHB · ωl

end for
return F

Algorithm 7 Efficient version of the quadrature of I := 〈Φi | f |Φj〉
Require: Quadrature rule with L pairs (γl, ωl).
Require: The scalar function f (x)

Build the matrix F by algorithm 6
// Multiply by the coefficients
I := ciHFcj

return I

∫
R
e−x

2︸︷︷︸
w(x)

f (x) dx ≈
n∑
i=0

ωif (γi) (4.21)

The nodes γi are the roots of the Hermite polynomial Hn (x) and the weights ωi
are given by

ωi =
2n−1n!

√
π

n2Hn−1(xi)2
. (4.22)

For the details see [1]. Of course we can never calculate the quadrature nodes
this way. The roots of a polynomial are very ill-conditioned even for medium
degrees. Hence we need another more stable way for finding the quadrature nodes.
The Golub-Welsch algorithm that is superior to the above formula calculates
the nodes from the eigenvalues of an orthogonal matrix. This computation is
numerically stable also for quadratures of high order that need many nodes. For
more details on how this algorithm works see reference [4].

The next problem we face is that we are only implicitly in the case of (4.21).

The integrand we want to integrate has the form g := e−x
2

f (x), but we only
know g as a whole and can not separate the exponential from f as required for
applying the quadrature rule. Thus our integral looks like the right hand side of
(4.23).
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Figure 4.1: Example of transformed Qauss-Hermite quadrature weights.

∫
R
e−x

2

f (x) dx =

∫
R
g (x) dx (4.23)

We can never calculate e−x
2

explicitly nor divide this factor out. This would
result in major numerical issues.

A possible work around is to use Hermite functions2 hn (x) and modify the
weights ω to fit our purpose. Thus changing the weights like:

ω′i :=
1

hn (γi)
2
n
. (4.25)

Figure 4.1 shows an example of all pairs (γi, ω
′
i) for a given quadrature rule of

order n = 32.

However, the nodes still deserve our attention. As we see in the figure 4.1 the
nodes are centred around 0. This is correct for integrating with a weighting
function w (x) = e−x

2

. But the Gaussian exponential present in our wavepacket’s
basis functions given by (3.3) is shifted away from 0 by an amount q. Hence we
have to shift and spread the quadrature nodes as well:

γ′i := q + ε|Q|γi . (4.26)

2We use the following definition for the Hermite functions:

hk (ξ) :=
1√(

2kk!
√
π
) e− ξ2

2 hk (ξ) (4.24)

of degree k.
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Figure 4.2: Example of a quadrature for a given wavepacket Ψ with. Plotted is
the real (blue) and imaginary (green) part as well as the absolute value (red) of
the wavepacket. The black dots are the quadrature nodes. The magenta curve
shows the Gaussian we get for a wavepacket with the same Hagedorn parameters
Π but c0 = 1 and ck>0 = 0.

The figure 4.2 shows an example of a quadrature for an arbitrary homogeneous
wavepacket |Ψ〉 with parameters Π = (i, 3, 0, 0.4, 2) and coefficients c0 = 0.25,
c1 = 0.3 and c4 = 0.1.

Anytime we need quadrature nodes and weights, we’ll use the pairs (γ′i, ω
′
i). After

this lengthy section about integration we return to the propagation algorithm.

4.4 The original time propagation algorithm

Let us now review the time propagation algorithm briefly. The algorithm as
defined in section 3.3 of reference [3] is constructed for the propagation of
semiclassical wavepackets as defined by (3.14) in an arbitrary number of space
dimensions. It integrates the three steps (4.6), (4.7) and (4.11) and combines
them into a propagation algorithm suitable for general potentials.

Given the parameters P (j), Q(j), the phase S(j) and the position q(j) and
momentum p(j) of the state |Φ〉 at time t(j) := jτ then the algorithm 8 will
compute the same values one time step τ later. We omitted the mass matrix M
here that is present in ref. [3]. The whole algorithm essentially only propagates
the Hagedorn parameters and the coefficients in time.
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Algorithm 8 Time propagation of scalar wavepackets |Φ〉
Require: A semiclassical wavepacket |Φ (t)〉 with its Hagedorn parameters

// Propagate with the kinetic operator

q(j+
1
2 ) := q(j) + τ

2p
(j)

Q(j+ 1
2 ) := Q(j) + τ

2P
(j)

S(j+ 1
2 ,−) := S(j) + τ

4p
(j)Tp(j)

// Propagate with the local quadratic potential
p(j+1) := p(j) − τ ∇V

(
q(j+1/2)

)
P (j+1) := P (j) − τ ∇2V

(
q(j+1/2)

)
Q(j+1/2)

S(j+1/2,+) := S(j+1/2,−) − τ V
(
q(j+1/2)

)
// Propagate with the non-quadratic remainder
// Assemble the matrix F
Fk,l := 〈φk |W (x) |φl〉 ∀k, l ∈ 0, . . . ,K − 1
// And propagate the coefficients
c(j+1) := exp

(
−τ i

ε2F
(j+1/2)

)
c(j)

// Propagate with the kinetic operator again
q(j+1) := q(j+1/2) + τ

2p
(j+1)

Q(j+1) := Q(j+1/2) + τ
2P

(j+1)

S(j+1) := S(j+1/2,+) + τ
4p

(j+1)Tp(j+1)

return |Φ (t+ τ)〉

4.5 The propagation algorithm for vector valued
wavepackets

In this section we discuss what parts have to be altered in the algorithm 8 such
that we can propagate the vector valued wavepackets given by (3.16).

What changes when we plug in the vector |Ψ〉? First of all, the potential V is
now a matrix and we have to define carefully what we mean e.g. by ∇V . The
vector of wavepackets defined by (3.16) has N states. Thus we have N vectors
c0, . . . , cN−1 each containing the coefficients cnk of the component n. On the
other hand we have just a single set of Hagedorn parameters P , Q, S, p and q.
From this first glance we can identify the two core points. Who is responsible
for propagating the parameters and how do we have to modify the matrix F to
fully reflect the existence of multiple coefficient vectors.

4.5.1 Splitting of the potential matrix

First we choose a so called leading component index χ ∈ {0, . . . , N−1}. Then the
energy level λχ is the one responsible for propagating the Hagedorn parameters
of our wavepacket. Thus this energy level λχ (x) takes over the role of the scalar
potential function V (x) from section 4.4.

We split the potential eigenvalue λχ (x) into a local quadratic part uχ and a
non-quadratic remainder wχ. This is done via a simple Taylor series expansion
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up to second order around a given point q.

uχ (x) = λχ (q) +∇λχ (q) (x− q) +
1

2
(x− q) T∇2λχ (q) (x− q)

wχ (x) = λχ (x)− uχ (x) .
(4.27)

For a potential in one space dimension that therefore depends only on one single
variable, say x, this reduces to

uχ (x) = λχ|x=q +
d

dx
λχ|x=q (x− q) +

1

2

d2

dx2
λχ|x=q (x− q)2

wχ (x) = λχ (x)− uχ (x) .

(4.28)

We can now write the potential matrix as a pure quadratic diagonal part U plus
a non-quadratic remainder matrix W :

V =

uχ 0
. . .

0 uχ

+

v0,0 − uχ . . . v0,N−1

...
. . .

...
vN−1,0 . . . vN−1,N−1 − uχ

 . (4.29)

The first part U is not used explicitly in the propagation algorithm. We just
propagate one set of Hagedorn parameters and this can be done with uχ solely.
But the non-quadratic part W is used for altering and mixing the coefficients
ci of all components Φi of |Ψ〉. This is the answer to the first of the questions
posed above.

4.5.2 Extending the handling of coefficients

For finding an answer to the second question too, we elaborate on how to build
the matrix F this time. To begin with we construct a new data structure for
the coefficients. As said above, our |Ψ〉 consists of N components each of them
having a vector ci with the K coefficients corresponding to Φi. We can stack
all these column vectors and build a block vector C with all coefficients of all
components inside

C :=
(
c00, . . . , c

0
K−1 . . . cN−1

0 , . . . , cN−1
K−1

)
T . (4.30)

This vector has NK entries. A compatible matrix F of size NK ×NK is now
needed. The matrix is in block form too and we can even calculate all the K×K
blocks individually.
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F :=

 F0,0 . . . F0,N−1

...
...

FN−1,0 . . . FN−1,N−1

 . (4.31)

Each of the Fi,j is nothing else than the matrix F known from (4.12). But we
have to be careful with the middle part of the braket. This time, our W from
(4.29) is a matrix thus we can’t simply build F from identical copies of F even
if the basis function φk are the same for all Fi,j . Instead we have to distribute
the individual entries Wi,j of W across the blocks of F. Thus each block Fi,j of

(4.31) is given by
∫
R F̃i,j (x) dx where

F̃i,j (x) := Wi,j (x)


...

. . . φk (x)φl (x) . . .
...

 . (4.32)

For all the individual blocks we could use algorithm 6, fed with the appropriate
entry Wi,j of the non-quadratic remainder matrix W , to build the submatrices
Fi,j . A basic explicit implementation of these formulae is given in the algorithm
9 below.

Algorithm 9 Build the homogeneous block matrix F := (Fr,c)r,c

Require: A homogeneous wavepacket Ψ
Require: W a N ×N matrix of scalar functions

// Initialize F as the zero-matrix
F ∈ RNK×NK , F := 0
// Evaluate the basis functions for all quadrature nodes γ with algorithm 3
given Π as {P,Q, S, p, q}
B := (β0, . . . , βK−1)
// Iterate over all row and column blocks of this matrix
for r = 0 to N − 1 do

for c = 0 to N − 1 do
// Evaluate the function Wr,c for all quadrature nodes γ
(v0, . . . , vL−1) := Wr,c ((γ0, . . . , γL−1))
// Set up a zero matrix
F ∈ RK×K , F := 0
// Iterate over all pairs (γl, ωl)
for l = 0 to L− 1 do
F := F + vlε ·BHB · ωl

end for
// Insert the block F into the block matrix F
Fr,c := F

end for
end for
return F
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4.5.3 Pseudo code for the time propagation

Now we are ready to write a new code which is able to propagate |Ψ〉. This
algorithm is a generalization of the time propagation given in algorithm 8. The
core concepts stay the same, but the details are a little bit more complex as we
saw in the last sections.

Algorithm 10 Time propagation of a homogeneous wavepacket |Ψ〉
Require: A semiclassical wavepacket |Ψ (t)〉
Require: The set Π of Hagedorn parameters of Ψ

// Propagate with the kinetic operator

q(j+
1
2 ) := q(j) + τ

2p
(j)

Q(j+ 1
2 ) := Q(j) + τ

2P
(j)

S(j+ 1
2 ,−) := S(j) + τ

4p
(j)Tp(j)

// Propagate with the local quadratic potential
p(j+1) := p(j) − τ ∇λχ

(
q(j+1/2)

)
P (j+1) := P (j) − τ ∇2λχ

(
q(j+1/2)

)
Q(j+1/2)

S(j+1/2,+) := S(j+1/2,−) − τ λχ
(
q(j+1/2)

)
// Propagate with the non-quadratic remainder
// Stack the coefficient vectors cn of all components
C(j) :=

(
c0, . . . , cN−1

)
T

// Assemble the block matrix F using algorithm 9
F(j+1/2) := (Fr,c)r,c ∀r, c ∈ 0, . . . , N − 1

// Propagate the coefficients
C(j+1) := exp

(
−τ i

ε2 F(j+1/2)
)
C(j)

// Split the coefficients(
c0, . . . , cN−1

)
:= C(j+1)

// Propagate with the kinetic operator again
q(j+1) := q(j+1/2) + τ

2p
(j+1)

Q(j+1) := Q(j+1/2) + τ
2P

(j+1)

S(j+1) := S(j+1/2,+) + τ
4p

(j+1)Tp(j+1)

return |Ψ (t+ τ)〉

4.6 Basis transformations

For some calculations we should be able to transform the wavepacket from
the canonical basis to the eigenbasis of the given potential V and vice versa.
For example we set the initial values in the potentials’ eigenbasis but perform
the simulation in the canonical basis. So we now investigate how such a basis
transformation works.

Given a wavepacket as usual in the form of (3.16). Further assume the matrix
M ∈ RN×N to be the matrix that diagonalizes the potential according to (1.9).
The general form of (1.10) can be written with all the entries as
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M :=

 m0,0 · · · m0,N−1

...
...

mN−1,0 · · · mN−1,N−1

 . (4.33)

In the following we try to transform |Ψ〉 to the eigenbasis. We start with
calculating M |Ψ〉, the action of M on Ψ.

|Ψ′〉 = M |Ψ〉

=

 m0,0 · · · m0,N−1

...
...

mN−1,0 · · · mN−1,N−1


∣∣∣∣∣∣∣
 Φ0

...
ΦN−1

〉

=

∣∣∣∣∣∣∣
 m0,0Φ0+ · · · +m0,N−1ΦN−1

...
mN−1,0Φ0+ · · · +mN−1,N−1ΦN−1

〉 .

(4.34)

For the next steps we just consider the jth component of this last expression.

mj,0Φ0 + · · ·+mj,N−1ΦN−1 = mj,0e
iS
ε2

∑
k0

c0k0φk0 + · · ·+mj,N−1e
iS
ε2

∑
kN−1

cN−1
kN−1

φkN−1

= e
iS
ε2

∑
k0

mj,0c
0
k0φk0 + · · ·+

∑
kN−1

mj,N−1c
N−1
kN−1

φkN−1


= e

iS
ε2

∑
k

(
mj,0c

0
k + · · ·+mj,N−1c

N−1
k

)
φk

= e
iS
ε2

∑
k

N−1∑
l

mj,lc
l
k︸ ︷︷ ︸

c′k

φk =: e
iS
ε2 Φ′j .

(4.35)

From the last line we see that we can represent the components of the transformed
wavepacket |Ψ′〉 again in Hagedorn form with unchanged basis functions φi (x).
However, this is not enough to transform the wavepacket to the potential’s
eigenbasis as we missed the point that all mi,j depend on x! Hence we additionally
need to project the above result to the subspace spanned by the basis functions
φi (x). This is done as usual with the inner product.

Denote the coefficients of the jth component of the final wavepacket with dji .
Then we can write:
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djp =
〈
φp
∣∣Φ′j〉

=

〈
φp (x)

∣∣∣∣∣∑
k

N−1∑
l

mj,l (x) clkφk (x)

〉

djp =
∑
k

N−1∑
l

clk 〈φp (x) |mj,l (x)φk (x)〉 .

(4.36)

The part in the braket is just another inner product and, from the definition, we
write it as an integral:

〈φp (x) |mj,l (x)φk (x)〉 =

∫
R
φp (x)mj,l (x)φk (x) dx . (4.37)

We will calculate this integral by means of quadrature again. A straight forward
implementation that calculates djp for all p ∈ 0 . . .K − 1 and j ∈ 0 . . . N − 1
could be given by the code snippet (11). Here we assume a basis size of K.

Algorithm 11 Simple version of the basis transformation integral for |Ψ〉
for j = 0 to N − 1 do

for p = 0 to K − 1 do
djp := 0
for k = 0 to K − 1 do

for l = 0 to N − 1 do
djp := djp + clk

∫
R φp (x)mj,l (x)φk (x) dx

end for
end for

end for
end for

It would be cumbersome and very inefficient to implement the calculation this
way. Thus let’s try to reformulate the problem as a matrix multiplication
such that we can perform it efficiently. First, we can interchange the order of
summation and notice that m depends on j and l but (of course) not on p and
k. This allows us to calculate the vector of the coefficients dj for fixed j as a
sum over matrix multiplications.


...
djp
...

 =

N−1∑
l


...

. . . 〈ϕp |mj,lϕk〉 . . .
...




...
cl
...

 j = 1 . . . N − 1 . (4.38)

We can do much better and assemble a big matrix to perform the calculations
for all the j components of |Ψe〉 simultaneously.
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 d0

...
dN−1

 =

 〈ϕ |m0,0 |ϕ〉 . . . 〈ϕ |m0,N−1 |ϕ〉
...

...
〈ϕ |mN−1,0 |ϕ〉 . . . 〈ϕ |mN−1,N−1 |ϕ〉


 c0

...
cN−1


(4.39)

The block matrix, let’s call it F, is of size NK ×NK with N2 individual blocks
of size K ×K. The vectors ϕ consist of all the K basis functions. Because the
wavepacket is homogeneous all the ϕ are equivalent thus in fact we have only a
single ϕ.

Finally we see that the transformation to the eigenbasis is nothing else than
multiplication with a big matrix where each matrix element is an integral which
can easily be carried out by quadrature. We already met matrices of this
structure in section 4.5.2 hence we can use the algorithm 9 to construct our
matrix F. We only need to call the algorithm with the argument M instead of
W .

4.7 Norm calculation for wavepackets

This section deals with the calculation of norms. Suppose we have got a
wavepacket as defined by (3.14) and now we want to compute the norm ‖Φ‖2 of
this wavepacket. From the definition we derive:

‖Φ‖2 = 〈Φ |Φ〉 =

〈
e
iS
ε2

∑
k

ckφk

∣∣∣∣∣ e iSε2 ∑
l

clφl

〉

=

〈∑
k

ckφk

∣∣∣∣∣∑
l

clφl

〉
=
∑
k

ck
∑
l

cl 〈φk |φl〉︸ ︷︷ ︸
=δk,l

=
∑
k,l

ckclδk,l =
∑
k

ckck

= ‖c‖2 .

(4.40)

Remember that 〈· | ·〉 is sesquilinear. Therefore the global phase cancels out.
Additionally we used orthogonality of the basis functions φi.

4.7.1 Norm calculation for vectorial wavepackets

Now we do the same calculation but for homogeneous vector valued wavepackets
of the form defined by (3.16). This case can easily be reduced to the previous
one. Again we start from the basic definition of the norm.
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‖Ψ‖2 = 〈Ψ |Ψ〉 =

〈 Φ0

...
ΦN−1


∣∣∣∣∣∣∣
 Φ0

...
ΦN−1

〉

=

N−1∑
i

〈Φi |Φi〉 =

N−1∑
i

‖Φi‖2

=

N−1∑
i

‖ci‖2 .

(4.41)

From the last line we see that the norm is nothing else than the sum of the
squared norms of each component. This makes the computation as well as the
implementation trivial.

4.8 Potential and kinetic energies

In this section we want to have a closer look at the different energies and the
calculations thereof.

4.8.1 Potential energy

The potential energy of a wavepacket |Ψ〉 that feels the potential V (x) is per
definition given as 〈Ψ |V |Ψ〉. In our case, |Ψ〉 is a vector of N components and
the potential is a matrix valued function as defined by (1.8) or alternatively a
matrix of scalar functions.

If we go back to the definition, the potential energy is expressed by

〈Ψ |V |Ψ〉 =

〈 Φ0

...
ΦN−1


∣∣∣∣∣∣∣
 v0,0 (x) . . . v0,N (x)

...
...

vN−1,0 (x) . . . vN−1,N−1 (x)


∣∣∣∣∣∣∣
 Φ0

...
ΦN−1

〉

=

〈 Φ0

...
ΦN−1


∣∣∣∣∣∣∣

∑
v0,iΦi
...∑

vN−1,iΦi

〉
(4.42)

and with a little bit additional linear algebra we get the more handy result

〈Ψ |V |Ψ〉 =

N−1∑
i

N−1∑
j

〈Φi | vi,j |Φj〉 (4.43)
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thus effectively splitting the integral into a sum of integrals with only single
components involved.

This simple case occurs when both components in the bra and the ket are
identical, i.e. 〈Φi | vi,i |Φi〉. And the more difficult case is 〈Φi | vi,j |Φj〉 where
the off diagonal terms of V appear. Their effect is obviously some kind of mixing
the different components Φi and Φj and we will find the coefficient vectors of
both, ci and cj in the resulting formula.

Both integrals can be handled by the algorithm 7 where we have to supply the
correct vi,j (x) for f .

Notice that formula (4.43) is valid in the canonical basis. And we are interested
in the energies of the components Φi as they are in the eigenbasis. To overcome
this restriction we just transform to the eigenbasis by the equation (1.9):

〈Ψ |V |Ψ〉 =
〈
Ψ
∣∣M (x) Λ (x)M−1 (x)

∣∣Ψ〉
=
〈
ΨM

∣∣Λ (x)
∣∣MTΨ

〉
= 〈Ψ′ |Λ (x) |Ψ′〉 .

(4.44)

Notice that |Ψ′〉 is not in the potential’s eigenbasis yet because a projection to
the subspace spanned by all Hagedorn basis functions φk is still missing. Thus
we need the multiplication by F that also includes the transformation by M :

〈Ψ |V |Ψ〉 = 〈FΨ |Λ (x) |FΨ〉
= 〈Ψe |Λ (x) |Ψe〉 .

(4.45)

This finally results in

Epot =

N−1∑
i

〈Φei |λi |Φei 〉 (4.46)

where we are left with just a single sum over the diagonal components. From this
transformation we see that the overall potential energy is constant independently
of the basis. But of course the potential energies of the components Φi are not.

4.8.2 Kinetic energy

The kinetic part of the energy of a homogeneous semiclassical wavepacket is
given by

Ekin = 〈Ψ |T |Ψ〉 (4.47)
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where T is the kinetic operator as given by definition (1.3). Recalling that |Ψ〉
contains several states Φi, we have to extend the above expression as follows

〈Ψ |T |Ψ〉 =

〈 Φ0

...
ΦN−1


∣∣∣∣∣∣∣
T 0

. . .

0 T


∣∣∣∣∣∣∣
 Φ0

...
ΦN−1

〉

=

〈 Φ0

...
ΦN−1


∣∣∣∣∣∣∣
 TΦ0

...
TΦN−1

〉

=

N−1∑
i=0

〈Φi |T |Φi〉 . (4.48)

From the fact that T is diagonal it becomes clear that the calculation of the
kinetic energy can be achieved by component wise integration for each state.

To finish the calculation of kinetic energies we need to know the action of the
kinetic operator T on a wavepacket Φi. This is not as easy as for the potential
where V (x) just acts by multiplication. In the following we use linearity of the
sum and the differential operator

TΦ = −1

2
ε4 ∂

2

∂x2
Φ (x)

= −1

2
ε4 ∂

2

∂x2
e
iS
ε2

K−1∑
k=0

ckφk

= −1

2
ε4e

iS
ε2

K−1∑
k=0

ck
∂2

∂x2
φk (x) .

(4.49)

With algorithm 12 we can calculate the action of T ′ := −iε2 ∂
∂x on Φ. Here the

operator T ′ is a square root of T up to the prefactor 1
2 . We can apply it to both

the bra and the ket of (4.48) individually:

Ekin =
∑
i

〈Φi |T |Φi〉

=
∑
i

〈
Φi

∣∣∣∣T ′H(1

2

)
T ′
∣∣∣∣Φi〉

=
∑
i

1

2
〈T ′Φi |T ′Φi〉

=
1

2

∑
i

‖T ′Φi‖2 .

(4.50)
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Finally we need to transform the whole calculation to the eigenbasis. This is
not difficult. The last step shows that we can calculate the kinetic energy as
the norm of the coefficients of a transformed wavepacket T ′Φ individually for
each component. This allows us to transfer the wavepacket |Ψ〉 to the eigenbasis
before we apply T ′.

Algorithm 12 Calculate the action of T ′ on a wavepacket Φ

Require: A wavepacket Φ with coefficients ck
// Initialize a zero vector of length K + 1
d := (0, . . . , 0)
// Base cases
d0 := d0 + pc0

d1 := d1 +
√

ε2

2 Pc0

// Inductive steps
for k := 1 to K do
dk := dk + pck

dk+1 := dk+1 +
√
k + 1

√
ε2

2 Pck

dk−1 := dk−1 +
√
k
√

ε2

2 Pck
end for
return c := (d0, . . . , dK−1)
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Chapter 5

Generalizing the
wavepacket based algorithm

In this chapter we will extend further the ideas from the last chapter. Most
concepts carry over if we generalize the necessary details as appropriate. Though
some pitfalls appear at the theoretical computations as well as in the implemen-
tation.

5.1 Inhomogeneous wavepackets

When we release the restriction of chapter 4 that every wavepacket |Ψ〉 can only
have a single set of Hagedorn parameters, all concepts of the last chapter remain
valid. But some of the details become more complicated. In this chapter we’ll
spot these small differences and present the more general formulae.

So let’s take the first step and drop the homogeneity restriction. For the rest
of this chapter the wavepackets |Ψ〉 take the form defined by (3.16) where each
component Φi is an expression as defined by (3.14). And every Φi possesses it’s
own set of Hagedorn parameters. Hence our wavepackets are now inhomogeneous
ones.

5.2 Inner products, integrals and quadrature

5.2.1 An analytical ansatz

The inner product of two semiclassical wavepackets which have different sets
of Hagedorn parameters denoted by {Pk, Qk, Sk, pk, qk} and {Pl, Ql, Sl, pl, ql}
respectively is written as usual as

〈
φk
∣∣φl〉. This is the expression we want

to evaluate now and we can even write down a closed form solution based on
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induction and the recursion relation for Hermite polynomials. The expression
for the ground states φ0 acts as induction base and is given by

〈
φk0
∣∣φl0〉 =

√
−2i

Q2P1 − P2Q1

· exp

(
i

2ε2

Q2Q1 (p2 − p1)
2

+ P2P1 (q2 − q1)
2(

Q2P1 − P2Q1

)
− i

ε2

(q2 − q1)
(
Q2P1p2 − P2Q1p1

)(
Q2P1 − P2Q1

) )
. (5.1)

For the inner product of higher level functions φi the whole thing gets much
more complicated:

〈
φkk
∣∣φll〉 =

1√
l!k!

2−
l+k
2

〈
φk0
∣∣φl0〉 · (iP1Q2 − iQ1P2

)− l+k2 ·
min(l,k)∑
j=0

((
l

j

)(
k

j

)
j!4j

(
iQ2P1 − iQ1P2

) k−j
2 (iQ2P1 − iQ1P2)

l−j
2

·Hk−j

(
1

ε2

P1 (q1 − q2) +Q1 (p1 − p2)√
Q2P1 −Q1P2

√
P1Q2 −Q1P2

)

·Hl−j

(
− 1

ε2

−P2 (q1 − q2) +Q2 (p1 − p2)
√
Q2P1 −Q1P2

√
P1Q2 −Q1P2

))
. (5.2)

For the proofs of these formulae see reference [10].

Despite we can evaluate the inner product and have a closed form solution for
arbitrary wave functions, these formulae are unsuitable for numerical calculation.
There are several reasons but for example the factorials and binomial coefficients
lead to overflow even for relatively small k and l. Further the sum may be
numerically unstable. Thus we need to find a better way to perform these
calculations.

5.2.2 Quadrature rules for the product of basis functions

First we notice that each φ which is given by (3.9) is represented through a
mathematical expression of the general form

C · Pn (ξ) · exp (θ) (5.3)

consisting of an arbitrary constant C ∈ C, a polynomial Pn (·) of degree n and
an exponential exp (·).

We try a new Ansatz for calculating the inner product. Evaluating the braket〈
φk
∣∣φl〉 results in a multiplication of two expressions of the form (5.3):
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〈
φk
∣∣φl〉 =

∫
R
CkPnk (ξk) exp (θk)ClPnl (ξl) exp (θl) dx

=

∫
R
CkClPnk

(
ξk
)
Pnl (ξl) exp

(
θk
)

exp (θl) dx .

(5.4)

The parts in this expression can be combined by same type. With Gauss Hermite
quadrature in mind we are especially interested in the exponential parts. They
have a general form like

exp (θ) = exp
(
s · (x−m)

2
+ · · ·

)
. (5.5)

Therefore lets take a closer look at these parts. Our first step consists of combining
the exponentials and distribute the complex conjugate onto the variables affected.

exp

(
i

2ε2
PkQ

−1
k (x− qk)

2
+

i

ε2
pk (x− qk)

)
· exp

(
i

2ε2
PlQ

−1
l (x− ql)2

+
i

ε2
pl (x− ql)

)
= exp

(
i

2ε2
PkQ

−1
k (x− qk)

2
+

i

ε2
pk (x− qk) +

i

2ε2
PlQ

−1
l (x− ql)2

+
i

ε2
pl (x− ql)

)
= exp

(
− i

2ε2
PkQ

−1
k (x− qk)

2 − i

ε2
pk (x− qk) +

i

2ε2
PlQ

−1
l (x− ql)2

+
i

ε2
pl (x− ql)

)
.

(5.6)

For the sake of readability we define the following variables

rk := PkQ
−1
k

rl := PlQ
−1
l .

(5.7)

Plugging these into the equation (5.6) above and expanding the squares we get
for the exponent

i

ε2

(
−1

2
(rk − rl)x2 + (rkqk − rlql)x−

1

2

(
rkq

2
k + rlq

2
l

)
+ (pl − pk)x+ pkqk − plql

)
.

(5.8)

To get back to a form along the lines of (5.5) we have to complete the square

i

ε2

((
x2−2

rkqk − rlql
rk − rl︸ ︷︷ ︸

q0

x+q2
0−q2

0

)(
−rk − rl

2

)
− 1

2

(
rkq

2
k + rlq

2
l

)
+ · · ·

)
(5.9)
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which gives

i

ε2

(
1

2
(rl − rk) (x− q0)

2
+

1

2
(rk − rl) q2

0 −
1

2

(
rkq

2
k + rlq

2
l

)
+ · · ·

)
. (5.10)

Finally we got just a new expression which has the general form shown in (5.5).
In this expression, q0 represents the mean of the Gaussian function while the
prefactor defines the variance or spread. With this results we can now go on
and adapt the Gauss-Hermite quadrature for the case of unequal Hagedorn
parameters and compute the value of an arbitrary integral

〈
φk
∣∣φl〉. As usual

we have to transform the quadrature nodes such that they lie in the important
region of space. For this we define the following variables

rl :=
Pl
Ql

rk :=
Pk
Qk

r0 :=
1

2
(rl − rk)

q0 := <rlql − rkqk
rl − rk

Q0 :=
1√
=r0

(5.11)

Now we transform the nodes γi according to the weighted position mean q0 and
the parameter Q0 which changes the spread of the nodes. This yields

γ′i := q0 + ε · <Q0 · γi (5.12)

for the new quadrature nodes which are located in the space around where the
product of φk and φl is maximal. A procedure that calculates the adapted
quadrature results as necessary is given by algorithm 13.

We should get back to the homogeneous case if we choose the sets Πk and Πl of
Hagedorn parameters identical.

5.2.3 Integrals of whole components

Suppose the wave function |Φi〉 of a component is given as defined by (3.14).
For an arbitrary but sufficiently smooth real valued function

f : R→ R
x 7→ f (x)
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Algorithm 13 Mixing two sets Πr and Πc of Hagedorn parameters

Require: Two sets Πr and Πc of Hagedorn parameters
Require: A quadrature rule (γi, ωi)

// Apply the mixing formula to the parameters
rr := Pr

Qr

rc := Pc
Qc

r0 := 1
2 (rr − rc)

q0 := < rrqr−rcqcrr−rc
Q0 := 1√

=r0
// And shift the quadrature nodes
γ′ := q0 + ε<Q0γ
return q0 and Q0 and γ′

we want to simplify the following expression 〈Φk | f |Φl〉. But in contrast to the
derivation (4.13) we have to mind the fact the the different components Φi may
belong to two different parameter families. That is, they have different Hagedorn
parameters. Denote by φi the functions of the form (3.9) that build the base of
Φi then we can write:

〈Φk | f |Φl〉 =

〈
e
iSk

ε2

∑
i

cki φ
k
i

∣∣∣∣∣ f
∣∣∣∣∣ e iSlε2 ∑

i

cliφ
l
i

〉

= e−
iSk

ε2 e
iSl

ε2︸ ︷︷ ︸
6=1

〈∑
i

cki φ
k
i

∣∣∣∣∣ f
∣∣∣∣∣∑

i

cliφ
l
i

〉

= e
i
ε2

(Sl−Sk)
∑
i,j

cki c
l
j

〈
φki
∣∣ f ∣∣φlj〉

= e
i
ε2

(Sl−Sk)
∑
i,j

cki c
l
j

∫
R
φki (x)f (x)φlj (x) dx .

Notice that the phases don’t cancel out anymore as each Φi has it’s own phase of
different magnitude. We finally reduced the calculation of 〈Ψ | f |Ψ〉 to a sum of
more simple integrals

〈
φli
∣∣ f ∣∣φkj 〉 over products of basis functions. This integral

can now be evaluated by the means of numerical quadrature. We can use 7 for
this purpose but have to replace the algorithm that is responsible for calculating
F .

Integrals of whole wavepackets |Ψ〉 can now be split into sums of integrals over
components. That is, we have

〈Ψ |M |Ψ〉 =
∑
i,j

〈Φi |Mi,j |Φj〉 (5.13)

where M is a N ×N matrix of scalar functions. We will use this identity for
simplifying the calculation of energies.
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Figure 5.1: Example of a quadrature for a given wavepacket Ψ. The component
Φ0Φ0 (magenta) and Φ1Φ1 (cyan) are shown together with their product Φ0Φ1

(blue). The quadrature nodes have the color of the component defining them.

The figure 5.1 shows the quadrature of an inhomogeneous wavepacket |Ψ〉 that has
two components Φ0 and Φ1. The Hagedorn parameters are Π0 = (i, 3, 0, 0.4, 3.2)
and Π0 = (i, 1.2, 0, 0.4, 2.8) and it’s coefficients are c0 = (0, 0.3, 0.4, 0, 0, 0.6, 0.2)
and c0 = (0, 0.8, 0.7, 0.4). We can see the effect of the algorithm 13 that mixes
the cyan and the magenta nodes yielding the blue ones which fit best to the
product of the components Φi.

5.3 The propagation algorithm for inhomogeneous
wavepackets

In this section we will discuss the same two central points that have to be
resolved for expanding algorithm 10 to inhomogeneous wavepackets. The most
parts are straight forward and obvious but we face some difficulties too. Let’s
begin with the easy part, the potential splitting.

5.3.1 Splitting of the potential matrix

For an inhomogeneous vector valued wavepacket |Ψ〉 we drop the concept of a
leading index χ. Instead, each energy level λi is responsible for propagating the
Hagedorn parameters of the packet’s component Φi. Because of this reason we
have to perform the quadratic Taylor approximation for all N eigenvalues. Let’s
restrict to one space dimension right now. Then the approximations read
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ui (x) = λi|x=q +
d

dx
λi|x=q (x− q) +

1

2

d2

dx2
λi|x=q (x− q)2

wi (x) = λi (x)− ui (x) ∀i ∈ 0, . . . , N − 1

(5.14)

where q is the point around which the Taylor expansion is centred.

We can write the potential matrix as a pure quadratic diagonal part U plus a
non-quadratic remainder matrix W once again:

V =

u0 0
. . .

0 uN−1

+

v0,0 − u0 . . . v0,N−1

...
. . .

...
vN−1,0 . . . vN−1,N−1 − uN−1

 . (5.15)

But this time, the matrix U is not just a scaled identity. And we really use
all it’s entries. The part W again serves as the matrix for the calculation of F
required in an adapted version of formula (4.11). We will use W in the algorithm
14 where we explicitly build this matrix F.

5.3.2 The coefficients

We stack the coefficient vectors cn of the N components Φn in the same way as
shown in (4.30). Thus we need again a matrix F analogous to the one shown in
(4.31) for the time evolution of C. This time we have to take extra care because
of the different Hagedorn parameters of each Φ. Basically this prevents us from
reusing the evaluated basis functions for all blocks Fr,c of F. And we must not
forget the global phase that does not cancel out this time.

It becomes immediately clear that this algorithm 14 is more expensive than
algorithm 9, for example we have to evaluate the basis for the two components
Φi and Φj over and over again as they differ by their Hagedorn parameters.

5.3.3 Pseudo code for the time propagation

With the preparations of the last section we can now construct an algorithm
for the time propagation of an inhomogeneous wavepacket |Ψ〉. This algorithm
is a generalization of the time propagation given in algorithm 10 to allow for
different families of parameters. The core concepts carry over, but the details
are a little bit more complex as we saw in the last sections.

5.4 Basis transformation

Basis transformations from and to the eigenbasis work in principle exactly like
defined in section 4.6. We can again write this as a matrix multiplication with a
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Algorithm 14 Build the inhomogeneous block matrix F := (Fr,c)r,c

Require: A inhomogeneous wavepacket Ψ
Require: W a N ×N matrix of scalar functions

// Initialize F as the zero-matrix
F ∈ RNK×NK , F := 0
// Iterate over all row and column blocks of this matrix
for r = 0 to N − 1 do

for c = 0 to N − 1 do
// Retrieve the Hagedorn parameters
given Πr as {Pr, Qr, Sr, pr, qr}
given Πc as {Pc, Qc, Sc, pc, qc}
Apply the mixing formula to the parameters according to procedure 13
// Evaluate the function Wr,c for all quadrature nodes γ′

(v0, . . . , vL−1) := Wr,c

((
γ′0, . . . , γ

′
L−1

))
// Evaluate the basis functions for all quadrature nodes γ′

// Apply algorithm 3 for Πr and Πc individually
Br :=

(
βr0 , . . . , β

r
K−1

)
Bc :=

(
βc0, . . . , β

c
K−1

)
// Do not forget the non-vanishing phase
πr,c := exp

(
i
ε2

(
Sc − Sr

))
// Set up a zero matrix
F ∈ RK×K , F := 0
// Iterate over all L quadrature pairs (γ′l, ωl)
for l = 0 to L− 1 do
F := F + vlεMQ ·BrHBc · ωl

end for
// Insert the block F into the block matrix F
Fr,c := πr,c · F

end for
end for
return F
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Algorithm 15 Time propagation of a inhomogeneous wavepacket |Ψ〉
Require: A semiclassical wavepacket |Ψ (t)〉
Require: The sets Π0, . . .ΠN−1 of Hagedorn parameters of Ψ

// Propagate with the kinetic operator
for n := 0 to N − 1 do

q
(j+ 1

2 )
n := q

(j)
n + τ

2p
(j)
n

Q
(j+ 1

2 )
n := Q

(j)
n + τ

2P
(j)
n

S
(j+ 1

2 ,−)
n := S

(j)
n + τ

4p
(j)
n

Tp
(j)
n

end for
// Propagate with the local quadratic potential
for n := 0 to N − 1 do

p
(j+1)
n := p

(j)
n − τ ∇λn

(
q

(j+1/2)
n

)
P

(j+1)
n := P

(j)
n − τ ∇2λn

(
q

(j+1/2)
n

)
Q

(j+1/2)
n

S
(j+1/2,+)
n := S

(j+1/2,−)
n − τ λn

(
q

(j+1/2)
n

)
end for
// Propagate with the non-quadratic remainder
// Stack the coefficient vectors cn of all components
C(j) :=

(
c0, . . . , cN−1

)
T

// Assemble the matrix F using algorithm 14
F(j+1/2) := (Fr,c)r,c ∀r, c ∈ 0, . . . , N − 1

// Propagate the coefficients
C(j+1) := exp

(
−τ i

ε2 F(j+1/2)
)
C(j)

// Split the coefficients(
c0, . . . , cN−1

)
:= C(j+1)

// Propagate with the kinetic operator again
for n := 0 to N − 1 do
q

(j+1)
n := q

(j+1/2)
n + τ

2p
(j+1)
n

Q
(j+1)
n := Q

(j+1/2)
n + τ

2P
(j+1)
n

S
(j+1)
n := S

(j+1/2,+)
n + τ

4p
(j+1)
n

Tp
(j+1)
n

end for
return |Ψ (t+ τ)〉
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big block matrix F:

 d0

...
dN−1

 =

 〈ϕ0 |m0,0 |ϕ0〉 . . . 〈ϕ0 |m0,N−1 |ϕN−1〉
...

...
〈ϕN−1 |mN−1,0 |ϕ0〉 . . . 〈ϕN−1 |mN−1,N−1 |ϕN−1〉


 c0

...
cN−1


where each ϕn collects the basis functions φk of component Φn in a vector
and di denotes the transformed coefficient vectors. This time all ϕn differ
because we deal with inhomogeneous wavepackets. Only for the calculation of
the submatrices we now switch to algorithm 14 instead of 9 in the homogeneous
case.

5.5 Observables

The calculation of observables is roughly the same as with homogeneous wavepack-
ets but we encounter some details which are not present in the less general version.
However, we will only outline the changes with respect to the corresponding
section in chapter 4.

5.5.1 Norm calculation

The calculation of the norm of our wavepackets is as simple as in the homogeneous
case. We only need the inner products for all components. And the nice thing
is that all the integrals consist of only bras and kets with an equal family of
parameters

‖Ψ‖2 = 〈Ψ |Ψ〉 =

N−1∑
i

〈Φi |Φi〉 =

N−1∑
i

‖ci‖2 . (5.16)

The only tricky part here may be the transformation to the eigenbasis to get the
norms of all components we are interested in. But this change of basis can be
done easily as shown in 5.4.

5.5.2 Potential and kinetic energy

We are interested in the energies of the wavepacket and its components in the
eigenbasis. Hence we need the generalized basis transformation defined above
here too. Besides this, everything remains valid and especially the formulae
(4.46) and (4.50) for the potential and the kinetic energy still hold.
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Chapter 6

Simulation results

In this chapter we present some selected simulations in more detail and show
some of the results1.

6.1 The harmonic oscillator

The harmonic oscillator is probably the most basic non-trivial potential that
fulfils the necessary smoothness assumptions. Of course we can solve this model
entirely by analytical calculations. But because of this property it’s an excellent
starting point for testing and calibrating new simulation codes.

V (x) :=

(
1
2σx

2 0
0 1

2σx
2

)
σ = 0.05 (6.1)

This potential is already diagonal, thus we can not expect any interaction of the
two components of |Ψ〉. Figure 6.1 shows the time evolution of the energies of a
wavepacket on each level. The image looks like we expected it.

Let’s now look at more interesting potentials in the next sections.

6.2 A simple avoided crossing

In this section we present some results for a potential that has a simple single
avoided crossing. We used several different values for the energy gap δ. The
potential is given by the following matrix:

1Many more simulation results can be found at:
http://n.ethz.ch/~raoulb/research/bachelor_thesis/simulations/
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Figure 6.1: The time evolution of the energies of an initial wavepacket on each
level.

V (x) :=

(
1
2 tanh (x) δ

2
δ
2 − 1

2 tanh (x)

)
. (6.2)

The two energy levels of this potential are

λ0 =

√
tanh (x)

2
+ δ2

2
λ1 = −

√
tanh (x)

2
+ δ2

2
(6.3)

Figure 6.2 shows these two energy levels for the parameter δ set to 0.05.

This potential is a standard example for avoided crossings and consists of nothing
but the essential properties a crossing has.

The simulation starts with an incoming Gaussian wavepacket on the upper
level. An initial momentum pointing to the right (positive x axis) is used in the
following.

We did several simulations within a wide range of the parameters ε and δ. Some
of these simulations are shown here. Let’s compare the operator splitting based
method with the wavepacket based one. Here we used homogeneous wavepackets
with the leading components χ set to the upper energy level.

Figures 6.3 and 6.4 show the energies and the norms of Ψ and it’s components
Φ0 on the upper level and Φ1 on the lower one for several simulation runs
based on operator splitting. The figures 6.5 and 6.6 show the simulation results
obtained by using semiclassical wavepackets and identical initial conditions. Both
algorithms yield the same energy curves within the limits of optical comparison.
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Figure 6.2: Plot of the energy levels of the potential given by equation (6.2).
The parameter δ equals 0.05.

From the plots of the norms we can estimate the part of the wavepacket that
remains on the respective energy level after the packet has crossed the narrow
part in the middle. While for the smallest δ most of the packet jumps over to
the lower energy level we see that for a bigger energy gap δ almost no transition
takes place.

Finally we can say that the wavepacket based algorithm works very well in this
case.

It may be interesting to see the time evolution of the Hagedorn parameters Π
and the coefficients ci of a wavepacket |Ψ〉. In the figure 6.7 we see the evolution
of the parameters. The figures 6.8 and 6.9 show the first and last four coefficients
of both components Φi. The general setup of the simulation corresponds to the
example in the above figures 6.5c and 6.6c

6.3 Two avoided crossings in series

After we have seen the simulation results for a single avoided crossing let’s look
at another interesting question. That is, what happens if we have multiple of
these avoided crossings in series. When entering the second one, the wavepacket
is already scattered to both energy levels. But first we define the potential:

V (x) :=

(
1
2 tanh (x− σ) tanh (x+ σ) δ

2
δ
2 − 1

2 tanh (x− σ) tanh (x+ σ)

)
σ = 3 .

(6.4)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Plots of the energies of the wavepacket’s individual components Φi.
These results were obtained by the operator splitting method. (a) ε = 0.1 and
δ = 0.1ε (b) ε = 0.1 and δ = 0.5ε (c) ε = 0.1 and δ = 1.0ε (d) ε = 0.1 and
δ = 1.5ε (e) ε = 0.1 and δ = 2.0ε
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Plots of the norms of the wavepacket’s individual components Φi.
These results were obtained by the operator splitting method. (a) ε = 0.1 and
δ = 0.1ε (b) ε = 0.1 and δ = 0.5ε (c) ε = 0.1 and δ = 1.0ε (d) ε = 0.1 and
δ = 1.5ε (e) ε = 0.1 and δ = 2.0ε
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Plots of the energies of the wavepacket’s individual components
Φi. These results were obtained by propagating wavepackets. (a) ε = 0.1 and
δ = 0.1ε (b) ε = 0.1 and δ = 0.5ε (c) ε = 0.1 and δ = 1.0ε (d) ε = 0.1 and
δ = 1.5ε (e) ε = 0.1 and δ = 2.0ε
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Plots of the norms of the wavepacket’s individual components Φi.
These results were obtained by propagating wavepackets. (a) ε = 0.1 and
δ = 0.1ε (b) ε = 0.1 and δ = 0.5ε (c) ε = 0.1 and δ = 1.0ε (d) ε = 0.1 and
δ = 1.5ε (e) ε = 0.1 and δ = 2.0ε
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Figure 6.7: Plot of the time evolution of the Hagedorn parameters P , Q, S, p
and q. Mind the scales!
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Figure 6.8: Plot of the time evolution of the first 4 coefficients c0, c1, c2, c3 for
both components. The blue and the green line are the real and the imaginary
part, and the red one is the absolute value. Mind the scales!
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Figure 6.9: Plot of the time evolution of the last 4 coefficients c−4, c−3, c−2, c−1

for both components. The blue and the green line are the real and the imaginary
part, and the red one is the absolute value. Mind the scales!
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Figure 6.10: Plot of the energy levels of the potential given by equation (6.4).
The parameter δ equals 0.05.

The parameter σ determines the location of the avoided crossings. For an even
longer series we could use a product of more factors:

V0,0 (x) :=
∏
i

tanh (x− σi) (6.5)

for an arbitrary set {σi}i and V1,1 := −V0,0. However let’s return to the simplest
case of only two narrow parts. The two energy levels of this potential are given
by:

λ = ±

√
tanh (x− σ)

2
tanh (x+ σ)

2
+ δ2

2
. (6.6)

Figure 6.10 shows these two energy levels for the parameter δ set to 0.05. The
effect of the parameter δ is shown in the plot 6.11 for multiple values ranging
from 0.5ε up to 10ε. For bigger δ we get an increasing energy gap and also much
smoother insections.

The figures in 6.12 show the energy evolution of a wavepacket traversing the
potential shown in 6.10. The norms of the individual components are shown
on figure 6.13 and we can see how most of the packet jumps over to the lower
level at the first crossing and back to the upper at the second one. For big δ
the packet does almost not react to the lower level’s bumps. These results were
obtained by the operator splitting ansatz which works very well here.

For this potential the wavepacket based algorithm breaks down as soon as the
packet arrives at the second crossing for yet unknown reasons. This is true at
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Figure 6.11: The effect of the parameter δ on the energy levels.

least for small values of δ. For big δ the time evolution gets better and better.
But we can not resolve the interesting details for small ε and δ. We used a basis
of size K = 64. One might think that the basis is just too small but other tests
with K = 128 and even K = 256 showed the same issues. The algorithm broke
down just a few timesteps later. Hence we can conclude that the algorithm does
not work in this configuration for yet unknown reasons.

6.4 A potential with three energy levels

Finally we want to look at a potential with three energy levels. This also tests
the numerical abilities of our code as we can not do analytical calculations for
this matrix and the implementation falls back to pure numerical algorithms.
First of all, this is the matrix we use:

V (x) :=

tanh (x+ σ) + tanh (x− σ) δ1 δ2
δ1 − tanh (x+ σ) 0
δ2 0 1− tanh (x− σ)

 .

(6.7)

For this potential we can no longer give an analytical closed form expression for
the eigenvalues. Hence we use numerical eigenvalue calculation. The procedure
is very similar to what we sketched in figure 1.2. Figure 6.15 shows all three
energy levels λ0 (x), λ1 (x), λ2 (x) for the parameters δ1 = δ2 = δ set to 0.05.

In this asymmetric energy landscape we expect a rich set of different transitions
between all levels. Figure 6.17 shows the energy curves for a Gaussian wavepacket
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Plots of the energies of the wavepacket’s individual components Φi.
These results were obtained by the operator splitting method. (The legend for
these figures is shown in 6.3f) (a) ε = 0.2 and δ = 0.5ε (b) ε = 0.2 and δ = 1.0ε
(c) ε = 0.2 and δ = 1.5ε (d) ε = 0.2 and δ = 2.0ε (e) ε = 0.2 and δ = 2.5ε (f)
ε = 0.2 and δ = 4.0ε
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Plots of the norms of the wavepacket’s individual components Φi.
These results were obtained by the operator splitting method. (The legend for
these figures is shown in 6.4f) (a) ε = 0.2 and δ = 0.5ε (b) ε = 0.2 and δ = 1.0ε
(c) ε = 0.2 and δ = 1.5ε (d) ε = 0.2 and δ = 2.0ε (e) ε = 0.2 and δ = 2.5ε (f)
ε = 0.2 and δ = 4.0ε
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Plots of the energies of the wavepacket’s individual components
Φi. These results were obtained by propagating wavepackets. (The legend for
these figures is shown in 6.3f) (a) ε = 0.2 and δ = 0.5ε (b) ε = 0.2 and δ = 1.0ε
(c) ε = 0.2 and δ = 1.5ε (d) ε = 0.2 and δ = 2.0ε (e) ε = 0.2 and δ = 2.5ε (f)
ε = 0.2 and δ = 4.0ε
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Figure 6.15: Plot of the energy levels of the potential given by equation (6.7).
The parameters δi equal 0.05.

in different initial situations entering the potential from the left or the right. The
simulations are all done with the operator splitting method. A reason for this is
that the wavepackets break down already for the much simpler case presented in
6.14.

The figures in table 6.18 show the evolution of the norms of all components Φi
of |Ψ〉. From these plots we can estimate the transitions that take place. The
plots correspond to the ones in figure 6.17.

(a) (b)

Figure 6.16: Legends of the figures 6.17 and 6.18.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Plots of the energies of the wavepacket’s individual components
Φi. (The legend for these figure is shown in 6.16a) (a) A wavepacket |Ψ〉 on the
upper most level coming from the left. (b) A wavepacket |Ψ〉 on the upper most
level coming from the right. (c) A wavepacket |Ψ〉 on the middle level coming
from the left. (d) A wavepacket |Ψ〉 on the middle level coming from the right.
(e) A wavepacket |Ψ〉 on the lowest level coming from the left. (f) A wavepacket
|Ψ〉 on the lowest level coming from the right.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Plots of the norms of the wavepacket’s individual components Φi.
(The legend for these figure is shown in 6.16b) (a) A wavepacket |Ψ〉 on the
upper most level coming from the left. (b) A wavepacket |Ψ〉 on the upper most
level coming from the right. (c) A wavepacket |Ψ〉 on the middle level coming
from the left. (d) A wavepacket |Ψ〉 on the middle level coming from the right.
(e) A wavepacket |Ψ〉 on the lowest level coming from the left. (f) A wavepacket
|Ψ〉 on the lowest level coming from the right.
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Appendix A

Code documentation

In this chapter we describe structure of the source code1.

The remaining sections contain a description of all classes and their member
methods and instance variables. For the implementation details we refer to the
source code.

1A recent version of the source code can be found at:
http://n.ethz.ch/~raoulb/research/bachelor_thesis/src/
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A.1 Class MatrixPotential

Subclasses: MatrixPotential1S, MatrixPotential2S, MatrixPotentialMS

This class represents a potential V (x). The potential is given as an analytical
expression. Some calculations with the potential are supported. For example
calculation of eigenvalues and exponentials and numerical evaluation. Further,
there are methods for splitting the potential into a Taylor expansion and for
basis transformations between canonical and eigenbasis.

A.1.1 Methods

init (self )

Create a new MatrixPotential instance for a given potential matrix V (x).

Raises
NotImplementedError This is an abstract base class.

str (self )

Put the number of components and the analytical expression (the matrix) into
a printable string.

Raises
NotImplementedError This is an abstract base class.

get number components(self )

Return Value
The number N of components the potential supports.

Raises
NotImplementedError This is an abstract base class.

evaluate at(self, nodes, component=None)

Evaluate the potential matrix elementwise at some given grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the potential

at.

component: The component Vi,j that gets evaluated or None to
evaluate all.

Raises
NotImplementedError This is an abstract base class.
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calculate eigenvalues(self )

Calculate the eigenvalues λi (x) of the potential V (x).

Raises
NotImplementedError This is an abstract base class.

evaluate eigenvalues at(self, nodes, diagonal component=None)

Evaluate the eigenvalues λi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the

eigenvalues at.

diagonal component: The index i of the eigenvalue λi that gets
evaluated or None to evaluate all.

Raises
NotImplementedError This is an abstract base class.

calculate eigenvectors(self )

Calculate the eigenvectors νi (x) of the potential V (x).

Raises
NotImplementedError This is an abstract base class.

evaluate eigenvectors at(self, nodes)

Evaluate the eigenvectors νi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvectors at.

Raises
NotImplementedError This is an abstract base class.

project to eigen(self, nodes, values, basis=None)

Project a given vector from the canonical basis to the eigenbasis of the
potential.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basisvectors νi. Allows to use this function for
external data, similar to a static function.

Raises
NotImplementedError This is an abstract base class.
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project to canonical(self, nodes, values, basis=None)

Project a given vector from the potential’s eigenbasis to the canonical basis.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basis vectors νi. Allows to use this function for
external data, similar to a static function.

Raises
NotImplementedError This is an abstract base class.

calculate exponential(self, factor=1)

Calculate the matrix exponential E = exp (αM).

Parameters
factor: A prefactor α in the exponential.

Raises
NotImplementedError This is an abstract base class.

evaluate exponential at(self, nodes)

Evaluate the exponential of the potential matrix V at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the exponential at.

Raises
NotImplementedError This is an abstract base class.

calculate jacobian(self )

Calculate the Jacobian matrix for each component Vi,j of the potential. For
potentials which depend only one variable x, this equals the first derivative.

Raises
NotImplementedError This is an abstract base class.

evaluate jacobian at(self, nodes, component=None)

Evaluate the Jacobian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Jacobian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Jacobian is evaluated. (Defaults
to None to evaluate all)

Raises
NotImplementedError This is an abstract base class.
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calculate hessian(self )

Calculate the Hessian matrix for each component Vi,j of the potential. For
potentials which depend only one variable x, this equals the second derivative.

Raises
NotImplementedError This is an abstract base class.

evaluate hessian at(self, nodes, component=None)

Evaluate the Hessian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Hessian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Hessian is evaluated. (Or None to
evaluate all)

Raises
NotImplementedError This is an abstract base class.

calculate local quadratic(self, diagonal component=None)

Calculate the local quadratic approximation matrix U of the potential’s
eigenvalues in Λ. This function is used for the homogeneous case and takes
into account the leading component χ.

Parameters
diagonal component: Specifies the index i of the eigenvalue λi

that gets expanded into a Taylor series ui.

Raises
NotImplementedError This is an abstract base class.

evaluate local quadratic at(self, nodes)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the homogeneous case and takes into account the leading component χ.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

Raises
NotImplementedError This is an abstract base class.
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calculate local remainder(self, diagonal component=0)

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the homogeneous case and takes into account the leading
component χ.

Parameters
diagonal component: Specifies the index χ of the leading

component λχ.

Raises
NotImplementedError This is an abstract base class.

evaluate local remainder at(self, position, nodes, component=None)

Numerically evaluate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalues in Λ at the given nodes
γ. This function is used for the homogeneous and the inhomogeneous case and
just evaluates the remainder matrix W .

Parameters
position: The point q where the Taylor series is computed.

nodes: The grid nodes γ we want to evaluate the potential
at.

component: The component (i, j) of the remainder matrix W
that is evaluated.

Raises
NotImplementedError This is an abstract base class.

calculate local quadratic multi(self )

Calculate the local quadratic approximation matrix U of all the potential’s
eigenvalues in Λ. This function is used for the inhomogeneous case.

Raises
NotImplementedError This is an abstract base class.

evaluate local quadratic multi at(self, nodes, component=None)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the inhomogeneous case.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

component: The component (i, j) of the quadratic approximation
matrix U that is evaluated.

Raises
NotImplementedError This is an abstract base class.
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calculate local remainder multi(self )

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the inhomogeneous case.

Raises
NotImplementedError This is an abstract base class.
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A.2 Class MatrixPotential1S

MatrixPotential

MatrixPotential1S

This class represents a scalar potential V (x). The potential is given as an
analytical 1×1 matrix expression. Some symbolic calculations with the potential
are supported. For example calculation of eigenvalues and exponentials and
numerical evaluation. Further, there are methods for splitting the potential
into a Taylor expansion and for basis transformations between canonical and
eigenbasis.

A.2.1 Methods

init (self, expression)

Create a new MatrixPotential1S instance for a given potential matrix V (x).

Parameters
expression: An expression representing the potential.

Overrides: MatrixPotential. init

str (self )

Put the number of components and the analytical expression (the matrix) into
a printable string.

Overrides: MatrixPotential. str

get number components(self )

Return Value
The number N of components the potential supports. In the one
dimensional case, it’s just 1.

Overrides: MatrixPotential.get number components

evaluate at(self, nodes, component=0)

Evaluate the potential matrix elementwise at some given grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the potential

at.

component: The component Vi,j that gets evaluated or None to
evaluate all.

Return Value
A list with the single entry evaluated at the nodes.

Overrides: MatrixPotential.evaluate at
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calculate eigenvalues(self )

Calculate the eigenvalue λ0 (x) of the potential V (x). In the scalar case this
is just the matrix entry V0,0.

Note: Note: the eigenvalues are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvalues

evaluate eigenvalues at(self, nodes, diagonal component=None)

Evaluate the eigenvalue λ0 (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the

eigenvalue at.

diagonal component: Dummy parameter that has no effect here.

Return Value
A list with the single eigenvalue evaluated at the nodes.

Overrides: MatrixPotential.evaluate eigenvalues at

calculate eigenvectors(self )

Calculate the eigenvector ν0 (x) of the potential V (x). In the scalar case this
is just the value 1.

Note: The eigenvectors are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvectors

evaluate eigenvectors at(self, nodes)

Evaluate the eigenvector ν0 (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvector at.

Return Value
A list with the eigenvector evaluated at the given nodes.

Overrides: MatrixPotential.evaluate eigenvectors at
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project to eigen(self, nodes, values, basis=None)

Project a given vector from the canonical basis to the eigenbasis of the
potential.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basisvectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
This method does nothing and returns the values.

Overrides: MatrixPotential.project to eigen

project to canonical(self, nodes, values, basis=None)

Project a given vector from the potential’s eigenbasis to the canonical basis.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basis vectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
This method does nothing and returns the values.

Overrides: MatrixPotential.project to canonical

calculate exponential(self, factor=1)

Calculate the matrix exponential E = exp (αM). In this case the matrix is of
size 1× 1 thus the exponential simplifies to the scalar exponential function.

Parameters
factor: A prefactor α in the exponential.

Overrides: MatrixPotential.calculate exponential

evaluate exponential at(self, nodes)

Evaluate the exponential of the potential matrix V at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the exponential at.

Return Value
The numerical approximation of the matrix exponential at the
given grid nodes.

Overrides: MatrixPotential.evaluate exponential at
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calculate jacobian(self )

Calculate the Jacobian matrix for the component V0,0 of the potential. For
potentials which depend only on one variable x, this equals the first derivative.

Overrides: MatrixPotential.calculate jacobian

evaluate jacobian at(self, nodes, component=None)

Evaluate the potential’s Jacobian at some grid nodes γ.

Parameters
nodes: The grid nodes γ the Jacobian gets evaluated at.

component: Dummy parameter that has no effect here.

Return Value
The value of the potential’s Jacobian at the given nodes.

Overrides: MatrixPotential.evaluate jacobian at

calculate hessian(self )

Calculate the Hessian matrix for component V0,0 of the potential. For
potentials which depend only on one variable x, this equals the second
derivative.

Overrides: MatrixPotential.calculate hessian

evaluate hessian at(self, nodes, component=None)

Evaluate the potential’s Hessian at some grid nodes γ.

Parameters
nodes: The grid nodes γ the Hessian gets evaluated at.

component: Dummy parameter that has no effect here.

Return Value
The value of the potential’s Hessian at the given nodes.

Overrides: MatrixPotential.evaluate hessian at

calculate local quadratic(self, diagonal component=0)

Calculate the local quadratic approximation U of the potential’s eigenvalue λ.

Parameters
diagonal component: Dummy parameter that has no effect here.

Overrides: MatrixPotential.calculate local quadratic
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evaluate local quadratic at(self, nodes)

Numerically evaluate the local quadratic approximation U of the potential’s
eigenvalue λ at the given grid nodes γ. This function is used for the
homogeneous case.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

Return Value
An array containing the values of U at the nodes γ.

Overrides: MatrixPotential.evaluate local quadratic at

calculate local remainder(self, diagonal component=0)

Calculate the non-quadratic remainder W of the quadratic approximation U
of the potential’s eigenvalue λ. This function is used for the homogeneous case
and takes into account the leading component χ.

Parameters
diagonal component: Dummy parameter that has no effect here.

Overrides: MatrixPotential.calculate local remainder

evaluate local remainder at(self, position, nodes, component=None)

Numerically evaluate the non-quadratic remainder W of the quadratic
approximation U of the potential’s eigenvalue λ at the given nodes γ. This
function is used for the homogeneous and the inhomogeneous case and just
evaluates the remainder W .

Parameters
position: The point q where the Taylor series is computed.

nodes: The grid nodes γ we want to evaluate the potential
at.

component: Dummy parameter that has no effect here.

Return Value
A list with a single entry consisting of an array containing the
values of W at the nodes γ.

Overrides: MatrixPotential.evaluate local remainder at

calculate local quadratic multi(self )

Calculate the local quadratic approximation U of the potential’s eigenvalue λ.
This function is used for the inhomogeneous case.

Raises
ValueError There are no inhomogeneous wavepackets with a

single component.

Overrides: MatrixPotential.calculate local quadratic multi
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evaluate local quadratic multi at(self, nodes, component=None)

Numerically evaluate the local quadratic approximation U of the potential’s
eigenvalue λ at the given grid nodes γ. This function is used for the
inhomogeneous case.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

component: Dummy parameter that has no effect here.

Raises
ValueError There are no inhomogeneous wavepackets with a

single component.

Overrides: MatrixPotential.evaluate local quadratic multi at

calculate local remainder multi(self )

Calculate the non-quadratic remainder W of the quadratic approximation U of
the potential’s eigenvalue λ. This function is used for the inhomogeneous case.

Raises
ValueError There are no inhomogeneous wavepackets with a

single component.

Overrides: MatrixPotential.calculate local remainder multi

A.2.2 Instance Variables

Name Description
x The variable x that represents position space.
potential The matrix of the potential V (x).
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A.3 Class MatrixPotential2S

MatrixPotential

MatrixPotential2S

This class represents a matrix potential V (x). The potential is given as an
analytical 2 × 2 matrix expression. Some symbolical calculations with the
potential are supported. For example calculation of eigenvalues and exponentials
and numerical evaluation. Further, there are methods for splitting the potential
into a Taylor expansion and for basis transformations between canonical and
eigenbasis.

A.3.1 Methods

init (self, expression)

Create a new MatrixPotential2S instance for a given potential matrix V (x).

Parameters
expression: An expression representing the potential.

Overrides: MatrixPotential. init

str (self )

Put the number of components and the analytical expression (the matrix) into
a printable string.

Overrides: MatrixPotential. str

get number components(self )

Return Value
The number N of components the potential supports. This is also
the size of the matrix. In the current case it’s 2.

Overrides: MatrixPotential.get number components
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evaluate at(self, nodes, component=None, as matrix=False)

Evaluate the potential matrix elementwise at some given grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the potential

at.

component: The component Vi,j that gets evaluated or None to
evaluate all.

as matrix: Dummy parameter which has no effect here.

Return Value
A list with the 4 entries evaluated at the nodes.

Overrides: MatrixPotential.evaluate at

calculate eigenvalues(self )

Calculate the two eigenvalues λi (x) of the potential V (x). We can do this by
symbolical calculations. The multiplicities are taken into account.

Note: Note: the eigenvalues are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvalues

evaluate eigenvalues at(self, nodes, component=None, as matrix=False)

Evaluate the eigenvalues λi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvalues

at.

component: The index i of the eigenvalue λi that gets evaluated.

as matrix: Returns the whole matrix Λ instead of only a list
with the eigenvalues λi.

Return Value
A sorted list with 2 entries for the two eigenvalues evaluated at the
nodes. Or a single value if a component was specified.

Overrides: MatrixPotential.evaluate eigenvalues at

calculate eigenvectors(self )

Calculate the two eigenvectors νi (x) of the potential V (x). We can do this by
symbolical calculations.

Note: The eigenvectors are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvectors
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evaluate eigenvectors at(self, nodes)

Evaluate the eigenvectors νi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvectors at.

Return Value
A list with the two eigenvectors evaluated at the given nodes.

Overrides: MatrixPotential.evaluate eigenvectors at

project to eigen(self, nodes, values, basis=None)

Project a given vector from the canonical basis to the eigenbasis of the
potential.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basisvectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
Returned is another list containing the projection of the values
into the eigenbasis.

Overrides: MatrixPotential.project to eigen

project to canonical(self, nodes, values, basis=None)

Project a given vector from the potential’s eigenbasis to the canonical basis.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basis vectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
Returned is another list containing the projection of the values
into the eigenbasis.

Overrides: MatrixPotential.project to canonical

calculate exponential(self, factor=1)

Calculate the matrix exponential E = exp (αM). In this case the matrix is of
size 2× 2 thus the general exponential can be calculated analytically.

Parameters
factor: A prefactor α in the exponential.

Overrides: MatrixPotential.calculate exponential
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evaluate exponential at(self, nodes)

Evaluate the exponential of the potential matrix V at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the exponential at.

Return Value
The numerical approximation of the matrix exponential at the
given grid nodes.

Overrides: MatrixPotential.evaluate exponential at

calculate jacobian(self )

Calculate the Jacobian matrix for each component Vi,j of the potential. For
potentials which depend only on one variable x, this equals the first derivative.

Overrides: MatrixPotential.calculate jacobian

evaluate jacobian at(self, nodes, component=None)

Evaluate the Jacobian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Jacobian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Jacobian is evaluated. (Defaults
to None to evaluate all)

Return Value
Either a list or a single value depending on the optional
parameters.

Overrides: MatrixPotential.evaluate jacobian at

calculate hessian(self )

Calculate the Hessian matrix for each component Vi,j of the potential. For
potentials which depend only on one variable x, this equals the second
derivative.

Overrides: MatrixPotential.calculate hessian
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evaluate hessian at(self, nodes, component=None)

Evaluate the Hessian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Hessian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Hessian is evaluated. (Or None to
evaluate all)

Return Value
Either a list or a single value depending on the optional
parameters.

Overrides: MatrixPotential.evaluate hessian at

calculate local quadratic(self, diagonal component)

Calculate the local quadratic approximation matrix U of the potential’s
eigenvalues in Λ. This function is used for the homogeneous case and takes
into account the leading component χ.

Parameters
diagonal component: Specifies the index i of the eigenvalue λi

that gets expanded into a Taylor series ui.

Overrides: MatrixPotential.calculate local quadratic

evaluate local quadratic at(self, nodes)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the homogeneous case and takes into account the leading component χ.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

Return Value
A list of arrays containing the values of Ui,j at the nodes γ.

Overrides: MatrixPotential.evaluate local quadratic at

calculate local remainder(self, diagonal component)

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the homogeneous case and takes into account the leading
component χ.

Parameters
diagonal component: Specifies the index χ of the leading

component λχ.

Overrides: MatrixPotential.calculate local remainder
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evaluate local remainder at(self, position, nodes, component=None)

Numerically evaluate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalues in Λ at the given nodes
γ. This function is used for the homogeneous and the inhomogeneous case and
just evaluates the remainder matrix W .

Parameters
position: The point q where the Taylor series is computed.

nodes: The grid nodes γ we want to evaluate the potential
at.

component: The component (i, j) of the remainder matrix W
that is evaluated.

Return Value
A list with a single entry consisting of an array containing the
values of W at the nodes γ.

Overrides: MatrixPotential.evaluate local remainder at

calculate local quadratic multi(self )

Calculate the local quadratic approximation matrix U of all the potential’s
eigenvalues in Λ. This function is used for the inhomogeneous case.

Overrides: MatrixPotential.calculate local quadratic multi

evaluate local quadratic multi at(self, nodes, component=None)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the inhomogeneous case.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

component: The component (i, j) of the quadratic approximation
matrix U that is evaluated.

Return Value
A list of arrays or a single array containing the values of Ui,j at
the nodes γ.

Overrides: MatrixPotential.evaluate local quadratic multi at

calculate local remainder multi(self )

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the inhomogeneous case.

Overrides: MatrixPotential.calculate local remainder multi
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A.3.2 Instance Variables

Name Description
x The variable x that represents position space.
potential The matrix of the potential V (x).

103



A.4 Class MatrixPotentialMS

MatrixPotential

MatrixPotentialMS

This class represents a matrix potential V (x). The potential is given as an
analytical expression with a matrix of size bigger than 2 × 2. Some calcula-
tions with the potential are supported. For example calculation of eigenvalues
and exponentials and numerical evaluation. Further, there are methods for
splitting the potential into a Taylor expansion and for basis transformations
between canonical and eigenbasis. All methods use numerical techniques because
symbolical calculations are unfeasible.

A.4.1 Methods

init (self, expression)

Create a new MatrixPotentialMS instance for a given potential matrix V (x).

Parameters
expression: An expression representing the potential.

Overrides: MatrixPotential. init

str (self )

Put the number of components and the analytical expression (the matrix) into
a printable string.

Overrides: MatrixPotential. str

get number components(self )

Return Value
The number N of components the potential supports. This is also
the size of the matrix.

Overrides: MatrixPotential.get number components

evaluate at(self, nodes, component=None)

Evaluate the potential matrix elementwise at some given grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the potential

at.

component: The component Vi,j that gets evaluated or None to
evaluate all.

Return Value
A list with the N2 entries evaluated at the nodes.

Overrides: MatrixPotential.evaluate at
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calculate eigenvalues(self )

Calculate the eigenvalues λi (x) of the potential V (x). We do the calculations
with numerical tools. The multiplicities are taken into account.

Note: Note: the eigenvalues are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvalues

evaluate eigenvalues at(self, nodes, component=None)

Evaluate the eigenvalues λi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvalues

at.

component: The index i of the eigenvalue λi that gets evaluated.

Return Value
A sorted list with N entries for all the eigenvalues evaluated at the
nodes. Or a single value if a component was specified.

Overrides: MatrixPotential.evaluate eigenvalues at

calculate eigenvectors(self )

Calculate the two eigenvectors νi (x) of the potential V (x). We do the
calculations with numerical tools.

Note: The eigenvectors are memoized for later reuse.

Overrides: MatrixPotential.calculate eigenvectors

evaluate eigenvectors at(self, nodes)

Evaluate the eigenvectors νi (x) at some grid nodes γ.

Parameters
nodes: The grid nodes γ we want to evaluate the eigenvectors at.

Return Value
A list with the N eigenvectors evaluated at the given nodes.

Overrides: MatrixPotential.evaluate eigenvectors at
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project to eigen(self, nodes, values, basis=None)

Project a given vector from the canonical basis to the eigenbasis of the
potential.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basisvectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
Returned is another list containing the projection of the values
into the eigenbasis.

Overrides: MatrixPotential.project to eigen

project to canonical(self, nodes, values, basis=None)

Project a given vector from the potential’s eigenbasis to the canonical basis.

Parameters
nodes: The grid nodes γ for the pointwise transformation.

values: The list of vectors ϕi containing the values we want to
transform.

basis: A list of basis vectors νi. Allows to use this function for
external data, similar to a static function.

Return Value
Returned is another list containing the projection of the values
into the eigenbasis.

Overrides: MatrixPotential.project to canonical

calculate exponential(self, factor=1)

Calculate the matrix exponential E = exp (αM). In the case where the matrix
is of size bigger than 2× 2 symbolical calculations become unfeasible. We use
numerical approximations to determine the matrix exponential.

Parameters
factor: A prefactor α in the exponential.

Overrides: MatrixPotential.calculate exponential
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evaluate exponential at(self, nodes)

Evaluate the exponential of the potential matrix V at some grid nodes γ. For
matrices of size > 2 we do completely numerical exponentiation.

Parameters
nodes: The grid nodes γ we want to evaluate the exponential at.

Return Value
The numerical approximation of the matrix exponential at the
given grid nodes.

Overrides: MatrixPotential.evaluate exponential at

calculate jacobian(self )

Calculate the Jacobian matrix for each component Vi,j of the potential. For
potentials which depend only one variable x, this equals the first derivative.

Overrides: MatrixPotential.calculate jacobian

evaluate jacobian at(self, nodes, component=None)

Evaluate the Jacobian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Jacobian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Jacobian is evaluated. (Defaults
to None to evaluate all)

Return Value
Either a list or a single value depending on the optional
parameters.

Overrides: MatrixPotential.evaluate jacobian at

calculate hessian(self )

Calculate the Hessian matrix for each component Vi,j of the potential. For
potentials which depend only one variable x, this equals the second derivative.

Overrides: MatrixPotential.calculate hessian
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evaluate hessian at(self, nodes, component=None)

Evaluate the Hessian at some grid nodes γ for each component Vi,j of the
potential.

Parameters
nodes: The grid nodes γ the Hessian gets evaluated at.

component: The index tuple (i, j) that specifies the potential’s
entry of which the Hessian is evaluated. (Or None to
evaluate all)

Return Value
Either a list or a single value depending on the optional
parameters.

Overrides: MatrixPotential.evaluate hessian at

calculate local quadratic(self, diagonal component)

Calculate the local quadratic approximation matrix U of the potential’s
eigenvalues in Λ. This function is used for the homogeneous case and takes
into account the leading component χ.

Parameters
diagonal component: Specifies the index i of the eigenvalue λi

that gets expanded into a Taylor series ui.

Overrides: MatrixPotential.calculate local quadratic

evaluate local quadratic at(self, nodes)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the homogeneous case and takes into account the leading component χ.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

Return Value
A list of arrays containing the values of Ui,j at the nodes γ.

Overrides: MatrixPotential.evaluate local quadratic at

calculate local remainder(self, diagonal component)

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the homogeneous case and takes into account the leading
component χ.

Parameters
diagonal component: Specifies the index χ of the leading

component λχ.

Overrides: MatrixPotential.calculate local remainder
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evaluate local remainder at(self, position, nodes, component=None)

Numerically evaluate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalues in Λ at the given nodes
γ. This function is used for the homogeneous and the inhomogeneous case and
just evaluates the remainder matrix W .

Parameters
position: The point q where the Taylor series is computed.

nodes: The grid nodes γ we want to evaluate the potential
at.

component: The component (i, j) of the remainder matrix W
that is evaluated.

Return Value
A list with a single entry consisting of an array containing the
values of W at the nodes γ.

Overrides: MatrixPotential.evaluate local remainder at

calculate local quadratic multi(self )

Calculate the local quadratic approximation matrix U of all the potential’s
eigenvalues in Λ. This function is used for the inhomogeneous case.

Overrides: MatrixPotential.calculate local quadratic multi

evaluate local quadratic multi at(self, nodes, component=None)

Numerically evaluate the local quadratic approximation matrix U of the
potential’s eigenvalues in Λ at the given grid nodes γ. This function is used
for the inhomogeneous case.

Parameters
nodes: The grid nodes γ we want to evaluate the quadratic

approximation at.

component: The component (i, j) of the quadratic approximation
matrix U that is evaluated.

Return Value
A list of arrays or a single array containing the values of Ui,j at
the nodes γ.

Overrides: MatrixPotential.evaluate local quadratic multi at

calculate local remainder multi(self )

Calculate the non-quadratic remainder matrix W of the quadratic
approximation matrix U of the potential’s eigenvalue matrix Λ. This function
is used for the inhomogeneous case.

Overrides: MatrixPotential.calculate local remainder multi
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A.4.2 Instance Variables

Name Description
x The variable x that represents position space.
potential The matrix of the potential V (x).
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A.5 Class PotentialFactory

A factory for MatrixPotential instances. We decide which subclass of the abstract
base class MatrixPotential to instantiate according to the size of the potential’s
matrix. For a 1 × 1 matrix we can use the class MatrixPotential1S which
implements simplified scalar symbolic calculations. In the case of a 2× 2 matrix
we use the class MatrixPotential2S that implements the full symbolic calculations
for matrices. And for matrices of size bigger than 2× 2 symbolic calculations
are unfeasible and we have to fall back to pure numerical methods implemented
in MatrixPotentialMS.

A.5.1 Methods

create potential(potential expression)

Static method that creates a MatrixPotential instance and decides which
subclass to instantiate depending on the given potential expression.

Parameters
potential expression: The symbolic potential matrix given.

Return Value
An adequate MatrixPotential instance.

Raises
ValueError If the potential matrix is not square.
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A.6 Class HagedornWavepacket

This class represents homogeneous vector valued wavepackets |Ψ〉.

A.6.1 Methods

init (self, number components, basis size)

Initialize the HagedornWavepacket object that represents |Ψ〉.
Parameters

number components: The number N of components
Φ0, . . . ,ΦN−1 the vector Ψ has got.

basis size: The number K of basis functions
φ0, . . . , φK−1.

Raises
ValueError For N < 1 or K < 2.

str (self )

Return Value
A string describing the Hagedorn wavepacket.

get number components(self )

Return Value
The number N of components the wavepacket Ψ has.

set coefficients(self, values, component=None)

Update the coefficients c of Ψ.

Parameters
values: The new values of the coefficients ci of Φi.

component: The index i of the component we want to update
with new coefficients.

Raises
ValueError For invalid indices i.

Note: This function can either set new coefficients for a single component Φi
only if the component attribute is set or for all components simultaneously if
values is a list of arrays.
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set coefficient(self, component, index, value)

Set a single coefficient cik of the specified component Φi of |Ψ〉.
Parameters

component: The index i of the component Φi we want to update.

index: The index k of the coefficient cik we want to update.

value: The new value of the coefficient cik.

Raises
ValueError For invalid indices i or k.

get coefficients(self, component=None)

Returns the coefficients ci for some components Φi of |Ψ〉.
Parameters

component: The index i of the coefficients ci we want to get.

Return Value
The coefficients ci either for all components Φi or for a specified
one.

get coefficient vector(self )

Return Value
The coefficients ci of all components Φi as a single long column
vector.

set coefficient vector(self, vector)

Set the coefficients for all components Φi simultaneously.

Parameters
vector: The coefficients of all components as a single long

column vector.

get parameters(self )

Get the Hagedorn parameters Π of the wavepacket Ψ.

Return Value
The Hagedorn parameters P , Q, S, p, q of Ψ in this order.

set parameters(self, parameters)

Set the Hagedorn parameters Π of the wavepacket Ψ.

Parameters
parameters: The Hagedorn parameters P , Q, S, p, q of Ψ in this

order.
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set quadrator(self, quadrator)

Set the Quadrator instance used for quadrature.

Parameters
quadrator: The new Quadrator instance. May be None to use a

dafault one of order K + 4.

evaluate base at(self, nodes)

Evaluate the Hagedorn functions φk recursively at the given nodes γ.

Parameters
nodes: The nodes γ at which the Hagedorn functions are

evaluated.

Return Value
Returns a two dimensional array H where the entry H[k, i] is the
value of the k-th Hagedorn function evaluated at the node i.

evaluate at(self, nodes, component=None, prefactor=False)

Evaluate the Hagedorn wavepacket Ψ at the given nodes γ.

Parameters
nodes: The nodes γ at which the Hagedorn wavepacket gets

evaluated.

component: The index i of a single component Φi to evaluate.
(Defaults to for evaluating all components.)

prefactor: Whether to include a factor of det (Q)
− 1

2 .

Return Value
A list of arrays or a single array containing the values of the Φi at
the nodes γ.

quadrate(self, function, summed=False)

Performs the quadrature of 〈Ψ | f |Ψ〉 for a general f .

Parameters
function: A real-valued function f(x) : R→ RN×N

summed: Whether to sum up the individual integrals
〈Φi | fi,j |Φj〉.

Return Value
The value of 〈Ψ | f |Ψ〉. This is either a scalar value or a list of N2

scalar elements.
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matrix(self, function)

Calculate the matrix representation of 〈Ψ | f |Ψ〉.
Parameters

function: A function with two arguments f : (q, x)→ R.

Return Value
A square matrix of size NK ×NK.

get norm(self, component=None, summed=False)

Calculate the L2 norm of the wavepacket |Ψ〉.
Parameters

component: The component Φi of which the norm is calculated.

summed: Whether to sum up the norms of the individual
components Φi.

Return Value
A list containing the norms of all components Φi or the overall
norm of Ψ.

potential energy(self, potential, summed=False)

Calculate the potential energy 〈Ψ |V |Ψ〉 of the wavepacket componentwise.

Parameters
potential: The potential energy operator V as function.

summed: Whether to sum up the individual integrals
〈Φi |Vi,j |Φj〉.

Return Value
The potential energy of the wavepacket’s components Φi or the
overall potential energy of Ψ.

kinetic energy(self, summed=False)

Calculate the kinetic energy 〈Ψ |T |Ψ〉 of the wavepacket componentwise.

Parameters
summed: Whether to sum up the individual integrals

〈Φi |Ti,j |Φj〉.
Return Value

The kinetic energy of the wavepacket’s components Φi or the
overall kinetic energy of Ψ.
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grady(self, component)

Calculate the effect of −iε2 ∂
∂x on a component Φi of the Hagedorn wavepacket

Ψ.

Parameters
component: The index i of the component Φi on which we apply

the above operator.

Return Value
The modified coefficients.

project to canonical(self, potential)

Project the Hagedorn wavepacket into the canonical basis.

Parameters
potential: The potential V whose eigenvectors νl are used for

the transformation.

Note: This function is expensive and destructive! It modifies the coefficients
of the self instance.

project to eigen(self, potential)

Project the Hagedorn wavepacket into the eigenbasis of a given potential V .

Parameters
potential: The potential V whose eigenvectors νl are used for

the transformation.

Note: This function is expensive and destructive! It modifies the coefficients
of the self instance.

A.6.2 Instance Variables

Name Description
number components Number of components Φi the wavepacket |Ψ〉 has

got.
basis size Size of the basis from which we construct the

wavepacket.
coefficients The coefficients ci of the linear combination for

each component Φk.
quadrator An object that provides nodes γ and weights ω for

Gauss-Hermite quadrature.
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A.7 Class HagedornMultiWavepacket

This class represents inhomogeneous vector valued wavepackets |Ψ〉.

A.7.1 Methods

init (self, number components, basis size)

Initialize the HagedornMultiWavepacket object that represents |Ψ〉.
Parameters

number components: The number N of components
Φ0, . . . ,ΦN−1 the vector Ψ has got.

basis size: The number K of basis functions
Φ0, . . . ,ΦK−1.

Raises
ValueError For N < 1 or K < 2.

str (self )

Return Value
A string describing the Hagedorn wavepacket.

get number components(self )

Return Value
The number N of components the wavepacket Ψ has.

set coefficients(self, values, component=None)

Update the coefficients c of Ψ.

Parameters
values: The new values of the coefficients ci of Φi.

component: The index i of the component we want to update
with new coefficients.

Raises
ValueError For invalid indices i.

Note: This function can either set new coefficients for a single component Φi
only if the component attribute is set or for all components simultaneously if
values is a list of arrays.
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set coefficient(self, component, index, value)

Set a single coefficient cik of the specified component Φi of |Ψ〉.
Parameters

component: The index i of the component Φi we want to update.

index: The index k of the coefficient cik we want to update.

value: The new value of the coefficient cik.

Raises
ValueError For invalid indices i or k.

get coefficients(self, component=None)

Returns the coefficients ci for some components Φi of |Ψ〉.
Parameters

component: The index i of the coefficients ci we want to get.

Return Value
The coefficients ci either for all components Φi or for a specified
one.

get coefficient vector(self )

Return Value
The coefficients ci of all components Φi as a single long column
vector.

set coefficient vector(self, vector)

Set the coefficients for all components Φi simultaneously.

Parameters
vector: The coefficients of all components as a single long

column vector.

get parameters(self, component=None)

Get the Hagedorn parameters Πi of each component Φi of the wavepacket Ψ.

Parameters
component: The index i of the component whose parameters Πi

we want to get.

Return Value
A list with all the sets Πi or a single set.
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set parameters(self, parameters, component=None)

Set the Hagedorn parameters Πi of each component Φi of the wavepacket Ψ.

Parameters
parameters: A list or a single set of Hagedorn parameters.

component: The index i of the component whose parameters Πi

we want to update.

set quadrator(self, quadrator)

Set the Quadrator instance used for quadrature.

Parameters
quadrator: The new Quadrator instance. May be None to use a

dafault one of order K + 4.

evaluate base at(self, nodes, component, prefactor=False)

Evaluate the Hagedorn functions Φk recursively at the given nodes γ.

Parameters
nodes: The nodes γ at which the Hagedorn functions are

evaluated.

component: The index i of the component whose basis functions
φik we want to evaluate.

prefactor: Whether to include a factor of det (Qi)
− 1

2 .

Return Value
Returns a two dimensional array H where the entry H[k, i] is the
value of the k-th Hagedorn function evaluated at the node i.

evaluate at(self, nodes, component=None, prefactor=False)

Evaluate the Hagedorn wavepacket Ψ at the given nodes γ.

Parameters
nodes: The nodes γ at which the Hagedorn wavepacket gets

evaluated.

component: The index i of a single component Φi to evaluate.
(Defaults to None for evaluating all components.)

prefactor: Whether to include a factor of det (Qi)
− 1

2 .

Return Value
A list of arrays or a single array containing the values of the Φi at
the nodes γ.
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quadrate(self, function, summed=False)

Performs the quadrature of 〈Ψ | f |Ψ〉 for a general f .

Parameters
function: A real-valued function f(x) : R→ RN×N

summed: Whether to sum up the individual integrals
〈Φi | fi,j |Φj〉.

Return Value
The value of 〈Ψ | f |Ψ〉. This is either a scalar value or a list of N2

scalar elements.

matrix(self, function)

Calculate the matrix representation of 〈Ψ | f |Ψ〉.
Parameters

function: A function with two arguments f : (q, x)→ R.

Return Value
A square matrix of size NK ×NK.

get norm(self, component=None, summed=False)

Calculate the L2 norm of the wavepacket |Ψ〉.
Parameters

component: The component Φi of which the norm is calculated.

summed: Whether to sum up the norms of the individual
components Φi.

Return Value
A list containing the norms of all components Φi or the overall
norm of Ψ.

potential energy(self, potential, summed=False)

Calculate the potential energy 〈Ψ |V |Ψ〉 of the wavepacket componentwise.

Parameters
potential: The potential energy operator V as function.

summed: Whether to sum up the individual integrals
〈Φi |Vi,j |Φj〉.

Return Value
The potential energy of the wavepacket’s components Φi or the
overall potential energy of Ψ.
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kinetic energy(self, summed=False)

Calculate the kinetic energy 〈Ψ |T |Ψ〉 of the wavepacket componentwise.

Parameters
summed: Whether to sum up the individual integrals

〈Φi |Ti,j |Φj〉.
Return Value

The kinetic energy of the wavepacket’s components Φi or the
overall kinetic energy of Ψ.

grady(self, component)

Calculate the effect of −iε2 ∂
∂x on a component Φi of the Hagedorn wavepacket

Ψ.

Parameters
component: The index i of the component Φi on which we apply

the above operator.

Return Value
The modified coefficients.

project to canonical(self, potential)

Project the Hagedorn wavepacket into the canonical basis.

Parameters
potential: The potential V whose eigenvectors νl are used for

the transformation.

Note: This function is expensive and destructive! It modifies the coefficients
of the self instance.

project to eigen(self, potential)

Project the Hagedorn wavepacket into the eigenbasis of a given potential V .

Parameters
potential: The potential V whose eigenvectors νl are used for

the transformation.

Note: This function is expensive and destructive! It modifies the coefficients
of the self instance.

A.7.2 Instance Variables

Name Description
number components Number of components Φi the wavepacket |Ψ〉 has

got.
basis size Size of the basis from which we construct the

wavepacket.
parameters Data structure that contains the Hagedorn para-

meters Πi of each component Φi.
continued on next page
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Name Description
coefficients The coefficients ci of the linear combination for

each component Φi.
quadrator An object that provides nodes γ and weights ω for

Gauss-Hermite quadrature.
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A.8 Class WaveFunction

This class represents a vector valued quantum state |Ψ〉 as used in the vector
valued time-dependent Schroedinger equation. The state |Ψ〉 is composed of
ψ0, . . . , ψN−1 where ψi is a single wavefunction component.

A.8.1 Methods

init (self, nodes, values)

Initialize the WaveFunction object that represents the vector of states |Ψ〉.
Parameters

nodes: The grid nodes to which the numerical values of ψi
belong to.

values: A list with the numerical values of each component ψi
sampled at the given nodes.

str (self )

Return Value
A string that describes the wavefunction |Ψ〉.

get number components(self )

Return Value
The number of components ψi the vector |Ψ〉 consists of.

get nodes(self )

Return Value
The grid nodes γ the wave function values belong to.

get values(self )

Return the wave function values for each component of |Ψ〉.
Return Value

A list with the values of all components ψi evaluated on the grid
nodes γ.

set values(self, values)

Assign new function values for each component of |Ψ〉.
Parameters

values: A list with the new values of all the ψi.

Raises
ValueError If the list values has the wrong number of entries.
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get norm(self, values=None, summed=False, component=None)

Calculate the L2 norm of the whole vector |Ψ〉 or some individual components
ψi. The calculation is done in momentum space.

Parameters
values: Allows to use this function for external data, similar

to a static function.

summed: Whether to sum up the norms of the individual
components.

component: The component ψi of which the norm is calculated.

Return Value
The L2 norm of |Ψ〉 or a list of the L2 norms of all components ψi.
(Depending on the optional arguments.)

kinetic energy(self, kinetic, summed=False)

Calculate the kinetic energy Ekin := 〈Ψ |T |Ψ〉 of the different components.

Parameters
kinetic: The kinetic energy operator T .

summed: Whether to sum up the kinetic energies of the
individual components.

Return Value
A list with the kinetic energies of the individual components or
the overall kinetic energy of the wavefunction. (Depending on the
optional arguments.)

potential energy(self, potential, summed=False)

Calculate the potential energy Epot := 〈Ψ |V |Ψ〉 of the different components.

Parameters
potential: The potential energy operator V .

summed: Whether to sum up the potential energies of the
individual components.

Return Value
A list with the potential energies of the individual components or
the overall potential energy of the wavefunction. (Depending on
the optional arguments.)
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A.9 Class Propagator

Subclasses: FourierPropagator, HagedornPropagator, HagedornMultiPropaga-
tor

Propagators can numerically simulate the time evolution of quantum states as
described by the time-dependent Schrödinger equation.

A.9.1 Methods

init (self )

Initialize a new Propagator instance.

Raises
NotImplementedError This is an abstract base class.

str (self )

Prepare a printable string representing the Propagator instance.

Raises
NotImplementedError This is an abstract base class.

get number components(self )

Return Value
The number of components of |Ψ〉.

Raises
NotImplementedError This is an abstract base class.

get potential(self )

Return Value
The embedded MatrixPotential instance.

Raises
NotImplementedError This is an abstract base class.

get wavefunction(self )

Return Value
Create a WaveFunction instance representing the wave function
evaluated on a given grid.

Raises
NotImplementedError This is an abstract base class.

Note: This function can have an additional parameter for providing the grid.
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propagate(self )

Given the wave function Ψ at time t, calculate the new Ψ at time t+ τ . We
do exactly one timestep τ here.

Raises
NotImplementedError This is an abstract base class.
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A.10 Class FourierPropagator

Propagator

FourierPropagator

This class can numerically propagate given initial values |Ψ〉 in a potential surface
V (x). The propagation is done with a Strang splitting of the time propagation
operator.

A.10.1 Methods

init (self, potential, initial values)

Initialize a new FourierPropagator instance. Precalculate also the grid and
the propagation operators.

Parameters
potential: The potential the state |Ψ〉 feels during the

time propagation.

initial values: The initial values |Ψ (t = 0)〉 given in the
canonical basis.

Raises
ValueError If the number of components of |Ψ〉 does not match

the number of energy levels λi of the potential.

Overrides: Propagator. init

str (self )

Prepare a printable string representing the Propagator instance.

Overrides: Propagator. str

get number components(self )

Return Value
The number of components of |Ψ〉.

Overrides: Propagator.get number components

get potential(self )

Return Value
The MatrixPotential instance used for time propagation.

Overrides: Propagator.get potential
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get wavefunction(self )

Return Value
The WaveFunction instance that stores the current wave function
data.

Overrides: Propagator.get wavefunction

get operators(self )

Return Value
Return the numerical expressions of the propagation operators T
and V .

propagate(self )

Given the wave function values Ψ at time t, calculate new values at time t+ τ .
We perform exactly one timestep τ here.

Overrides: Propagator.propagate

kinetic energy(self, summed=False)

This method just delegates the calculation of kinetic energies to the embedded
WaveFunction object.

Parameters
summed: Whether to sum up the kinetic energies of the individual

components.

Return Value
The kinetic energies.

Overrides: Propagator.kinetic energy

potential energy(self, summed=False)

This method just delegates the calculation of potential energies to the
embedded WaveFunction object.

Parameters
summed: Whether to sum up the potential energies of the

individual components.

Return Value
The potential energies.

Overrides: Propagator.potential energy

A.10.2 Instance Variables

Name Description
potential The embedded MatrixPotential instance represent-

ing the potential V .
continued on next page
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Name Description
Psi The initial values of the components ψi sampled

at the given nodes.
nodes The position space nodes γ.
V The potential operator V defined in position space.
omega The momentum space nodes ω.
T The kinetic operator T defined in momentum

space.
TE Exponential exp (T ) of T used in the Strang split-

ting.
VE Exponential exp (V ) of V used in the Strang split-

ting.

129



A.11 Class HagedornPropagator

Propagator

HagedornPropagator

This class can numerically propagate given initial values |Ψ〉 in a potential V (x).
The propagation is done for a given homogeneous Hagedorn wavepacket.

A.11.1 Methods

init (self, potential, packet, leading component)

Initialize a new HagedornPropagator instance.

Parameters
potential: The potential the wavepacket |Ψ〉 feels

during the time propagation.

packet: The initial homogeneous Hagedorn
wavepacket we propagate in time.

leading component: The leading component index χ.

Raises
ValueError If the number of components of |Ψ〉 does not match

the number of energy levels λi of the potential.

Overrides: Propagator. init

str (self )

Prepare a printable string representing the HagedornPropagator instance.

Overrides: Propagator. str

get number components(self )

Return Value
The number N of components Φi of |Ψ〉.

Overrides: Propagator.get number components

get potential(self )

Return Value
The MatrixPotential instance used for time propagation.

Overrides: Propagator.get potential
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get wavepacket(self )

Return Value
The HagedornWavepacket instance that represents the current
wavepacket |Ψ〉.

get wavefunction(self, nodes)

Construct a WaveFunction object which contains the components Φi of the
Hagedorn wavepacket evaluated at the given nodes γ.

Parameters
nodes: The nodes γ on which the Hagedorn wavepacket is

evaluated.

Return Value
A WaveFunction instance representing the values of the current
|Ψ〉.

Note: This method is quite expensive.

Overrides: Propagator.get wavefunction

propagate(self )

Given the wavepacket Ψ at time t, calculate a new wavepacket at time t+ τ .
We perform exactly one timestep τ here.

Overrides: Propagator.propagate

A.11.2 Instance Variables

Name Description
potential The potential V (x) the packet feels.
number components Number N of components the wavepacket |Ψ〉 has

got.
leading The leading component χ is the index of the eigen-

value of the potential that is responsible for propa-
gating the Hagedorn parameters.

packet The Hagedorn wavepacket.
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A.12 Class HagedornMultiPropagator

Propagator

HagedornMultiPropagator

This class can numerically propagate given initial values |Ψ〉 in a potential V (x).
The propagation is done for a given inhomogeneous Hagedorn wavepacket.

A.12.1 Methods

init (self, potential, packet)

Initialize a new HagedornMultiPropagator instance.

Parameters
potential: The potential the wavepacket |Ψ〉 feels during the

time propagation.

packet: The initial inhomogeneous Hagedorn wavepacket we
propagate in time.

Raises
ValueError If the number of components of |Ψ〉 does not match

the number of energy levels λi of the potential.

Overrides: Propagator. init

str (self )

Prepare a printable string representing the HagedornMultiPropagator instance.

Overrides: Propagator. str

get number components(self )

Return Value
The number N of components Φi of |Ψ〉.

Overrides: Propagator.get number components

get potential(self )

Return Value
The MatrixPotential instance used for time propagation.

Overrides: Propagator.get potential

get wavepacket(self )

Return Value
The HagedornMultiWavepacket instance that represents the
current wavepacket |Ψ〉.

132



get wavefunction(self, nodes)

Construct a WaveFunction object which contains the components Φi of the
Hagedorn wavepacket evaluated at the given nodes γ.

Parameters
nodes: The nodes γ on which the Hagedorn wavepacket is

evaluated.

Return Value
A WaveFunction instance representing the values of the current
|Ψ〉.

Note: This method is quite expensive.

Overrides: Propagator.get wavefunction

propagate(self )

Given the wavepacket Ψ at time t, calculate a new wavepacket at time t+ τ .
We perform exactly one timestep τ here.

Overrides: Propagator.propagate

A.12.2 Instance Variables

Name Description
potential The potential V (x) the packet feels.
number components Number N of components the wavepacket |Ψ〉 has

got.
packet The Hagedorn wavepacket.
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A.13 Class Quadrator

This class is an abstract interface to a Gauss-Hermite quadrature rule tailored
at the needs of Hagedorn wavepackets.

A.13.1 Methods

init (self, order)

Initialize a new quadrature rule.

Parameters
order: The order R of the Gauss-Hermite quadrature.

Raises
ValueError If the order is less then 2.

str (self )

get order(self )

Return Value
The order R of the quadrature.

get number nodes(self )

Return Value
The number of quadrature nodes.

get nodes(self )

Return Value
An array containing the quadrature nodes γi.

get weights(self )

Return Value
An array containing the quadrature weights ωi.

hermite recursion(self, nodes)

Evaluate the Hermite functions recursively up to the order R on the given
nodes.

Parameters
nodes: The points at which the Hermite functions are evaluated.

Return Value
Returns a twodimensional array H where the entry H[k, i] is the
value of the k-th Hermite function evaluated at the node i.

134



A.13.2 Instance Variables

Name Description
order The order R of the Gauss-Hermite quadrature.
nodes The quadrature nodes γi.
weights The quadrature weights ωi.
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A.14 Module Parameters

This is the configuration file for the multistate simulation code. All available
configuration parameters can be set here. This file is imported from the simulation
code. For configuring the code, just modifiy the values here.

A.14.1 Variables

Name Description
algorithm The algorithm used for time propagation, can be

one of: fourier | hagedorn | multihagedorn.

potential The potential V (x) used in the simulation. See
the PotentialLibrary for available potentials.

T Perform a simulation in the time interval [0, T ].

dt Duration of a single time step τ .

eps The parameter ε in the semiclassical scaling.

delta A variable that is used in the definition of some
potentials.

coefficients A list of N lists of (k, ck) tuples that set the
coefficient ck of the basis function φk. The i-th
list contains the coefficients ci of the component
Φi of the initial wavepacket Ψ.

parameters A list of the Hagedorn parameter sets Πi of
component Φi of the initial wavepacket Ψ.

ngn The Number of grid nodes γi in position space.
Value: 4096

f Scaling factor f for the computational domain Ω
in position space. The interval in the position
space is given by [−fπ, fπ].
Value: 5.0

basis size The number K of basis functions φk used for
Hagedorn wavepackets Φ.
Value: 64

leading component The leading component index χ of the eigenvalue
λχ that governs the propagation of the Hagedorn
parameters Π for homogeneous wavepackets.
Value: 0

outfile nodes Filename of the output file that contains the grid
nodes γi.
Value: ’nodes.dat’

continued on next page
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Name Description
outfile wavefunction Filename of the output file that contains the

wavefunction ψi.
Value: ’wavefunction.dat’

outfile energies Filename of the output file that contains the
energies E.
Value: ’energies.dat’

outfile operators Filename of the output file that contains the
operators T and V .
Value: ’operators.dat’

outfile parameters Filename of the output file that contains the
Hagedorn parameters Πi.
Value: ’parameters.dat’

outfile coefficients Filename of the output file that contains the
Hagedorn coefficients ci.
Value: ’coefficients.dat’

write nth Write data to disk only each n-th timestep.
Value: 1

137



A.15 Module PotentialLibrary

This file contains some ready made potentials. They are stored as tupels of
variables and expressions. The expression need to be a sympy ’Matrix’ object,
even if it’s only a 1× 1 matrix.

A.15.1 Variables

Name Description
x Position space variables. Currently only one space

dimension is supported.
Value: x

quadratic Simple harmonic potential.
Potential: (

1
2σx

2
)

(A.1)

where σ = 0.05.
pert quadratic Perturbed harmonic potential.

Potential: (
1
2σx

2 + 1
2ε

2x2
)

(A.2)

where σ = 0.05.
quartic A simple fourth order anharmonic potential.

Potential: (
1
4σx

4
)

(A.3)

where σ = 0.05.
cos waves A potential consisting of a cosine wave.

Potential: (
α(1− cos(γx))

)
(A.4)

where α = 1.0 and γ = 1.0.
double well A double well potential.

Potential: (
σ(x2 − 1)2

)
(A.5)

where σ = 1.0.
eckart The Eckart potential.

Potential: (
σ 1

cosh( xa )
2

)
(A.6)

where σ = 100 · 3.8088e−4 and
a = 1.0/(2.0 · 0.52917721018).

wall A smooth unitstep like wall.
Potential: (

arctan(σx) + π
2

)
(A.7)

where σ = 10.0.
continued on next page
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Name Description
v shape A narrow ’V’-like potential.

Potential: (
1
2

√
9
16ε

2 + tanh(x)2

)
. (A.8)

two quadratic Double harmonic potential for two components.
Potential: (

1
2σx

2 0
0 1

2σx
2

)
(A.9)

where σ = 0.05.
two quartic Double quartic anharmonic potential for two

components.
Potential: (

1
4σx

4 0
0 1

8σx
4

)
(A.10)

where σ = 1.0.
matrix1 diag Diagonalized single avoided crossing.

Potential:√ 9
16ε

2 + tanh(x)2 0

0 −
√

9
16ε

2 + tanh(x)2

 .

(A.11)

delta gap A potential with a single avoided crossing.
Potential:

1

2

(
tanh(x) δ

δ − tanh(x)

)
. (A.12)

two crossings A potential with two avoided crossings in series.
Potential:

1

2

(
Θ δ
δ −Θ

)
(A.13)

where Θ := tanh(x− ρ) tanh(x+ ρ) and ρ = 3.0.
three quadratic Decoupled harmonic potentials for three

components.
Potential: 1

2σx
2 0 0

0 1
2σx

2 0
0 0 1

2σx
2

 (A.14)

where σ = 0.05.
continued on next page
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Name Description
three states A potential with three energy levels and multiple

crossings.
Potential: Θ + Ξ δ1 δ2

δ1 −Θ 0
δ2 0 1− Ξ

 (A.15)

where

Θ := tanh(x+ ρ) and Ξ := tanh(x− ρ)

and ρ = 3.0.
four powers Harmonic and higher order anharmonic potentials

for four components.
Potential:

1
2σx

2 0 0 0
0 1

4σx
4 0 0

0 0 1
6σx

6 0
0 0 0 1

8σx
8

 (A.16)

where σ = 0.05.
five quadratic Decoupled harmonic potentials for five

components.
Potential:

1
2σx

2 0 0 0 0
0 1

2σx
2 0 0 0

0 0 1
2σx

2 0 0
0 0 0 1

2σx
2 0

0 0 0 0 1
2σx

2

 (A.17)

where σ = 0.05.
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A.16 Class SimulationLoop

This class acts as the main simulation loop. It owns a propagator that propagates
a set of initial values during a time evolution. All values are read from the
Parameters.py file.

A.16.1 Methods

init (self )

Create a new simulation loop instance.

add fourier propagator(self )

Set up a Fourier propagator for the simulation loop. Set the potential and
initial values according to the configuration.

Raises
ValueError For invalid or missing input data.

add hagedorn propagator(self )

Set up a Hagedorn propagator for the simulation loop. Set the potential and
initial values according to the configuration.

Raises
ValueError For invalid or missing input data.

add multi hagedorn propagator(self )

Set up a multi Hagedorn propagator for the simulation loop. Set the potential
and initial values according to the configuration.

Raises
ValueError For invalid or missing input data.

run fourier propagator(self )

Run the simulation loop for a number of time steps. The number of steps is
calculated in the initialize function.

run hagedorn propagator(self )

Run the simulation loop for a number of time steps. The number of steps is
calculated in the initialize function.

run multi hagedorn propagator(self )

Run the simulation loop for a number of time steps. The number of steps is
calculated in the initialize function.
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end simulation(self )

Do the necessary cleanup after a simulation. For example request the
serializer to write the data and close the output files.

A.16.2 Instance Variables

Name Description
propagator The time propagator instance driving the simula-

tion.
serializer A Serializer instance for saving simulation results.
nsteps The number of time steps we will perform.
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A.17 Class Serializer

A serializer class that can save various simulation results into data files. The
output files can be processed further for producing e.g. plots.

A.17.1 Methods

init (self )

Set up a new Serializer instance. The output files are created and opened.

set interval(self, value)

Set the interval (time steps) at which the data gets written to the disk.

Parameters
value: Skip that number of time steps before writing data again.

finalize(self )

Close the open output files.

save nodes(self, nodes)

Save the grid nodes to a file.

save wavefunction(self, wavefunction)

Save a WaveFunction instance. The output is suitable for the plotting
routines.

Parameters
wavefunction: The WaveFunction instance to save.

save energies(self, energies)

Save the kinetic and potential energies to a file.

Parameters
energies: A tuple (ekin, epot) containing the energies.

save operators(self, operators)

Save the kinetic and potential operator to a file.

Parameters
operators: The operators to save.
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save coefficients(self, coefficients)

Save the coefficients of the Hagedorn wavepacket to a file.

Parameters
coefficients: The coefficients of the Hagedorn wavepacket.

save parameters(self, parameters)

Save the parameters of the Hagedorn wavepacket to a file.

Parameters
parameters: The parameters of the Hagedorn wavepacket.
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