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Chapter 1

Introduction

The topic of this thesis is the time propagation of semi-classical wavepackets in
special potentials which feature avoided crossings. We extend the formalism and
the algorithms to the multi-dimensional case and finally show some applications.
The work is a continuation of some earlier work [5, 2].
In this first chapter we introduce the basic situation and the various physical and
mathematical ingredients. The main object of our studies is the time-dependent
Schrödinger equation. The Hamiltonian of the physical systems in consideration
consists of the usual kinetic operator part and a potential part. In the current
studies this potential part has a special form and models energy hypersurfaces.
We threat the fully non-adiabatic case where we allow multiple energy levels.

1.1 The non-adiabatic potential

First we introduce the potentials that are part of the Hamiltonian of our system.
In the non-adiabatic case the potential V has multiple energy levels and the
particles may switch between these surfaces. The transition probabilities are one
of the things we are most interested in.
A potential with N energy levels is given by a symmetric real-valued N × N
matrix:

V(x) :=

 v0,0 · · · v0,N−1

...
...

vN−1,0 · · · vN−1,N−1

 (1.1)

where each entry vr,c is a multi-variate function depending on x. The energy
levels are then given through the eigenvalues λi(x) which we collect in the matrix:

Λ(x) :=

λ0(x)
. . .

λN−1(x)

 . (1.2)

These levels can of course intersect on a complicated subset of space. But we are
most interested in the case where they do not touch but always keep a minimal
distance between each other. This also excludes fully degenerate cases with
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Figure 1.1: A two-dimensional potential having two energy levels with a conical
avoided crossing. (Type 3 avoided crossing according to [9].)

eigenvalues of higher multiplicity. Therefore it is possible to sort the energy
levels like:

λ0(x) > λ1(x) > · · · > λi(x) > · · · > λN−1(x) (1.3)

independently of x. The situation where two energy levels come closer to each
other in a (small) region of space but do not intersect is called an avoided crossing.
An example of a two-dimensional non-adiabatic potential with two energy levels
is shown in figure 1.1.
Given a non-adiabatic potential by its matrix V(x) the diagonalisation process
can be written as follows:

Λ(x) = M−1(x)V(x)M(x) (1.4)

and Λ(x) is the diagonalised version containing the different energy levels λi(x).
This is often called the adiabatic basis, exhibiting no coupling between the energy
levels λi(x). The linear transformation is then given by the matrix:

M(x) :=


...

...
ν0(x) · · · νN−1(x)

...
...

 (1.5)

where we stacked the eigenvectors νi as columns. We will need this eigentrans-
formation later during the computation of observables.

1.2 The wavefunction

The next objects we introduce are wavefunctions which are omnipresent in
quantum physics and chemistry. We work in D space dimensions of flat Euclidean

8



space. Let x0, x1, . . . , xD−1 denote the basis directions and x ∈ RD be an
arbitrary point in this space.
The wavefunction ψ depends on position x and time t. Formally we define the
wavefunction to be:

ψ : RD × R→ C
(x, t) 7→ ψ (x, t) = z

(1.6)

and use the following Dirac braket notation:

|ψ〉 := ψ (x, t) = ψ (x0, . . . , xD−1, t) . (1.7)

Often we will omit the explicit time dependence and consider only a static picture
at a fixed time t0 where the wavefunction is given as:

ψ : RD → C
x 7→ ψ(x) = z .

(1.8)

For performing simulations within non-adiabatic potentials we need compatible
wavefunctions. In our case this implies that the wavefunction must have N
components:

ψ :=

 ψ0

...
ψN−1

 (1.9)

with each component ψi complying with (1.6). Such a wavefunction is appropriate
for a N -level potential. After an eigentransformation we can interpret each ψi
as the probability distribution on the energy level λi.

1.3 The time-dependent Schrödinger equation

The next subject to look at is the time-dependent Schrödinger equation. It is the
governing equation for all time-dependent quantum mechanical phenomena. This
equation describes the time evolution of a wavefunction. The partial differential
equation can be written as:

i~
∂

∂t
|ψ〉 = H |ψ〉 (1.10)

where H denotes the Hamiltonian operator and ~ is the Planck constant. However
we do not use this version directly but study a rescaled version. What we use
is the so-called semi-classical scaling of the Schrödinger equation. Instead of ~
we introduce a real-valued parameter consistently denoted by ε which is strictly
positive 1. This parameter usually takes values in the range of about 0.001 up to
0.1. It is worthwhile to note that in the limit ε→ 0 we are back in the classical
world and for bigger ε we get more and more quantum effects.

1Other authors use ε or even ~ (without its physical meaning and value) for the quantity
we denote by ε2.
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The rescaled Schrödinger equation still keeps its mathematical form and looks
like:

iε2 ∂

∂t
|ψ〉 = H |ψ〉 . (1.11)

The Hamiltonian operator is given by:

H := T + V (x) (1.12)

where we obtain the kinetic operator T by the correspondence principle from
classical mechanics. Start with the definition of the kinetic energy:

T :=
p · p
2m

and set the mass m = 1 (absorb it into the scaling parameter). In one dimension
the momentum operator is:

p := −iε2 ∂

∂x
and we find that:

T := −ε
4

2

∂2

∂x2
.

In higher dimensions we have:

pi := −iε2 ∂
2

∂x2
i

and in turn:

T := −ε
4

2
∆ (1.13)

for the quantum mechanical equivalent.
In case of non-adiabatic potentials the Schrödinger equation becomes vector-
valued and instead of (1.11) we should write:

iε2 ∂

∂t

∣∣∣∣∣∣∣
 ψ0

...
ψN−1

〉 =

 H


∣∣∣∣∣∣∣
 ψ0

...
ψN−1

〉 . (1.14)

The Hamiltonian operator is matrix-valued now:

H := T + V(x) . (1.15)

The kinetic operator T is block-diagonal with each entry being of the form shown
in (1.13).
We can solve the Schrödinger equation by a separation of variables ansatz and
find the following result for the time propagation of any quantum state |ψ (t)〉:

|ψ (t)〉 = exp

(
− i

ε2
Ht

)
|ψ (0)〉 . (1.16)

However we can almost never compute the exponential of H in closed form. In
the remaining chapters of this thesis we try to solve this equation by superior
numerical methods.
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Chapter 2

Wavefunction Propagation

In this chapter we take the first steps towards a numerical solution of the time-
dependent Schrödinger equation. The techniques presented in this chapter are
not new but can serve as reference point for other algorithms.

2.1 Evolution operator splitting

The time-evolution of a wavefunction |ψ〉 is given by the following formula which
can be obtained from the full time-dependent equation by separation of variables:

|ψ(t)〉 = exp

(
− i

ε2
Ht

)
|ψ〉 . (2.1)

The exponential of the Hamiltonian operator is known as the time evolution
operator. Computing its action is the main difficulty now. It is not feasible to
compute the exponential straight away. We rewrite the operator as follows by
inserting the definition of H:

exp

(
− i

ε2
Ht

)
= exp

(
− i

ε2
(T + V ) t

)
= exp

((
− i

ε2
T − i

ε2
V

)
t

)
.

The last term can be put into the form exp ((A+B) t) for which we now can
apply the Baker-Campbell-Hausdorff formula to compute a splitting into a
product of commuting simpler exponentials:

exp ((A+B) t) = exp (At) exp (Bt) exp

(
− t

2

2
[A,B]

)
where we truncated the series after the O

(
t2
)

term. Applying this idea to the
time evolution of an arbitrary function u(t) by a time step τ we get:

u(t+ τ) = exp ((A+B)τ)u(t)

≈ exp

(
1

2
Bτ

)
exp (Aτ) exp

(
1

2
Bτ

)
u(t)

which is the so called symmetric Lie-Trotter splitting. Going back to the time-
dependent Schrödinger equation and its solution we obtain:
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ψ(t+ τ) = exp

((
− i

ε2
T − i

ε2
V

)
τ

)
ψ(t)

≈ exp

(
1

2

(
− i

ε2
V

)
τ

)
exp

((
− i

ε2
T

)
τ

)
exp

(
1

2

(
− i

ε2
V

)
τ

)
ψ(t)

and are left with the much easier problem of computing the three simpler
applications above. We work in position space and the wavefunction is given as
ψ(x, t). The potential V (x) is given in position space too. The computation of
the following exponential is therefore trivial:

exp

(
− i

2ε2
V τ

)
= exp

(
− i

2ε2
V (x)τ

)
. (2.2)

In the non-adiabatic case where the potential is matrix-valued this becomes a
matrix exponential. But as V ∈ RN×N and N really small this is not a big issue.
Compare to [2] for the details on how to compute this efficiently.
The other exponential involving the kinetic operator T is more of a problem
since it includes a differential operator:

exp

(
− i

ε2
Tτ

)
= exp

(
− i

ε2

(
− ε4

2m
∆

)
τ

)
= exp

(
iε2

2m
∆τ

)
= exp

(
iε2

2
∆τ

) (2.3)

where we set the mass m = 1. The nasty point here is the Laplace operator
inside the exponential. Luckily going to momentum space by a simple Fourier
transform solves all our problems.

2.2 Fourier transformations

Since there are several closely related Fourier transforms we first write down
what we use as notation.

Definition 1 (Fourier transformation in one dimension). The Fourier transfor-
mation for ordinary and angular frequency are given by:

Fx : f(x)→ f̂(k) Fx :=

∫ ∞
−∞

f(x) exp(−2πikx)dx

Fx : f(x)→ f̂(ω) Fx :=
1√
2π

∫ ∞
−∞

f(x) exp(−iωx)dx

and the respective inverse transformations are:

Fk−1 : f̂(k)→ f(x) Fk−1 :=

∫ ∞
−∞

f̂(k) exp(2πikx)dk

Fω−1 : f̂(ω)→ f(x) Fω−1 :=
1√
2π

∫ ∞
−∞

f̂(ω) exp(iωx)dω

with ω = 2πk.
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In higher dimensions the transformations are of course similar. It is advantageous
to use vector notation for their definition.

Definition 2 (Fourier transformation in D dimensions). Define the vectors
x = (x0, . . . , xD−1), k = (k0, . . . , kD−1) and ω = (ω0, . . . , ωD−1). Then the
Fourier transformation for angular frequency is given by:

Fx : f(x)→ f̂(ω) Fx :=
1

(2π)
D
2

∫
RD

f(x) exp(−iω · x)dx

and the respective inverse transformation is:

Fω−1 : f̂(ω)→ f(x) Fω :=
1

(2π)
D
2

∫
RD

f(ω) exp(iω · x)dω .

Now we can use the following well-known theorem to simplify the exponential
of T . The differential operator transforms under the Fourier transformation as
follows:

dn

dxn
f(x)→ (iω)nf̂(ω) = (2πik)nf̂(k) .

First we do the computation in one space dimension because it is easier to get
the idea there. As known from the introduction the operator T is of the form:

T = −ε
4

2

∂2

∂x2
(2.4)

and we compute now its Fourier transform as:

Fx (T ) = Fx
(
−ε

4

2

∂2

∂x2

)
= −ε

4

2
Fx
(
∂2

∂x2

)
= −ε

4

2
(iω)2 =

ε4

2
ω2

by using the fundamental properties of the Fourier transform. Plugging this into
the exponential where we compute exp

(
− i
ε2Tτ

)
we get:

exp

(
− iε

2

2
ω2τ

)
(2.5)

which is easy to evaluate. Doing the same computations in D dimensions is
much more grinding. First we get for the operator T :

T = −ε
4

2
∆ = −ε

4

2

(
∂2

∂x2
0

+
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
D−1

)
= −ε

4

2

D−1∑
d=0

∂2

∂x2
d

(2.6)

by replacing the Laplace through its definition in the current coordinate system.
The principle now is to recursively compute Fourier transforms for a single
variable xd only. For the first iteration by Fx0

we get:
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Fx0
(T ) = Fx0

(
−ε

4

2

(
∂2

∂x2
0

+

D−1∑
d=1

∂2

∂x2
d

))

= −ε
4

2
Fx0

(
∂2

∂x2
0

+

D−1∑
d=1

∂2

∂x2
d

)

= −ε
4

2

(
Fx0

(
∂2

∂x2
0

)
+

D−1∑
d=1

∂2

∂x2
d

)

= −ε
4

2

(
(iω0)

2
+

D−1∑
d=1

∂2

∂x2
d

)
where the terms in the sum are constant with respect to x0. Performing the
next iteration and computing Fx1 we get:

Fx1

(
−ε

4

2

(
(iω0)

2
+

D−1∑
d=1

∂2

∂x2
d

))

=− ε4

2
Fx1

((
(iω0)

2
+

∂2

∂x2
1

+

D−1∑
d=2

∂2

∂x2
d

))

=− ε4

2

(
(iω0)

2
+ Fx1

(
∂2

∂x2
1

)
+

D−1∑
d=2

∂2

∂x2
d

)

=− ε4

2

(
(iω0)

2
+ (iω1)

2
+

D−1∑
d=2

∂2

∂x2
d

)
and we can see the pattern. Finally following this path we will get the result:

Fx (T ) = FxD−1
· · · Fx0

(
−ε

4

2
∆

)
= −ε

4

2

D−1∑
d=0

(iωd)
2

=
ε4

2
ω · ω .

For the exponential exp
(
− i
ε2Tτ

)
we get the expression:

exp

(
− iε

2

2
ω · ωτ

)
(2.7)

which simplifies to (2.5) above if we set D = 1. At this point we have all parts
together to compute the time evaluation of a wavefunction ψ(x, t).

2.3 Time propagation of wavefunctions

Using the operator splitting shown earlier we can write the approximative time
propagation of a wavefunction ψ by small time steps τ as:
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ψ(x, t+ τ) = exp

(
− i

2ε2
τV

)
exp

(
− i

ε2
τT

)
exp

(
− i

2ε2
τV

)
ψ(x, t)

or better with three separate steps as:

ψ(x, t+ τ)′ = exp

(
− i

2ε2
τ V (x)

)
ψ(x, t)

ψ(x, t+ τ)′′ = exp

(
− i

ε2
τ T (x)

)
ψ(x, t+ τ)′

ψ(x, t+ τ) = exp

(
− i

2ε2
τ V (x)

)
ψ(x, t+ τ)′′ .

(2.8)

The first and third step are easy, they only involve the potential operator. In
contrast the second step is problematic because it includes a differential operator.
This is now the point where we use the Fourier transformation to get rid of
the differential operator. We compute the angular-frequency Fourier transform
in the spatial coordinates only ψ̂(ω, t) = Fx (ψ(x, t)) and then the second step
becomes:

ψ(x, t+ τ)′′ = Fω−1

[
exp

(
− i

ε2
τ T̂ (ω)

)
Fx [ψ(x, t+ τ)′]

]
. (2.9)

For the sake of completeness we can write out the whole procedure as:

ψ(x, t+ τ)′ = exp

(
− i

2ε2
τ V (x)

)
ψ(x, t)

ψ(x, t+ τ)′′ = Fω−1

[
exp

(
− i

ε2
τ T̂ (ω)

)
Fx [ψ(x, t+ τ)′]

]
ψ(x, t+ τ) = exp

(
− i

2ε2
τ V (x)

)
ψ(x, t+ τ)′′ .

(2.10)

This is the full formula for the time propagation of wavefunctions with discrete
timesteps τ but still continuous space x.
To get shorter notation we define the following propagation operators:

Ve(x) := exp

(
− i

2ε2
τV (x)

)
(2.11)

for the potential part in steps 1 and 3 and:

Te(ω) := exp

(
− iε

2

2
τω · ω

)
(2.12)

for the kinetic part in step 2. In case of vector-valued wavefunctions we get
matrix-valued operators here. If we write them out we obtain:

Ve(x) := exp

− i

2ε2
τ

 v0,0 (x) · · · v0,N−1 (x)
...

...
vN−1,0 (x) · · · vN−1,N−1 (x)


 (2.13)
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which is another N ×N matrix that is in general non-diagonal. For the other
operator we get a similar matrix:

Te(ω) := exp

(
− iε

2

2
τω · ω

)
1N×N = exp

− iε2

2
τ

ω · ω . . .

ω · ω




(2.14)
but this time the matrix is diagonal and therefore the exponential of it is diagonal
too. If we write the operator in the following form:

Te(ω) :=


exp

(
− iε22 τω · ω

)
. . .

exp
(
− iε22 τω · ω

)
 (2.15)

this even allows for different vectors ωj for each component ψ̂j
(
ωj , t

)
of ψ.

The advantage is that we can take different position space grids Γj for each
component.

2.4 Discretised position and momentum space

The final goal is to perform numerical simulations on a computer. Therefore we
need not only to discretise time by taking small steps forward, but to discretise
space as well. This is done by introducing a fine grid of nodes on the whole
computational domain. We show the process in one space dimension first. The
domain is just the interval [a, b[∈ R with a size of ∆ := |b− a|. We assume x to
be periodic with respect to this interval. Now we place N nodes on [a, b[ where
we take care not to put a node at b. The grid mesh size δ is then defined by

δ := ∆
N = |b−a|

N . Hence single grid nodes γj ∈ R can be constructed as:

γj := a+ j
∆

N
= a+ jδ j ∈ 0, . . . , N − 1 (2.16)

and the whole position space grid Γ is:

Γ := {γj}N−1
j=0 . (2.17)

In D dimensions the computational domain is the hypercubic tensor product
[a0, b0[× · · · × [aD−1, bD−1[. Along each axis xd we place Nd grid nodes in the
interval [ad, bd[. We can construct the full grid by taking the following tensor
product over one-dimensional grids:

Γ :=

D−1⊗
d=0

Γd . (2.18)

Notice that
∏D−1
d=0 ∆d is the volume of the computational domain. Further∏D−1

d=0 Nd is the total number of grid nodes |Γ| of Γ since we are dealing with

tensor product grids. Finally the value
∏D−1
d=0

∆d

Nd
is kind of an inverse grid node

density.
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If we shift the arbitrary interval [a, b[ to [0,∆[ then the position space grid nodes
are given by Γ = {∆j

N }N−1
j=0 . Hence the momentum space grid Ω consists of the

following nodes:

Ω := {ωj}N−1
j=0 =

{
1

∆

(
j − N

2

)}N−1

j=0

(2.19)

with fundamental frequency 1
∆ . The Fourier space grid for a D dimensional

space is obtained by a tensor product of D one-dimensional grids:

Ω :=

D−1⊗
d=0

Ωd . (2.20)

A grid node ω ∈ Ω is then of the form ω = (ω0, . . . , ωD−1) with ωd the frequency
index along the axis d.

2.5 Discrete Fourier transformations

Of course we have to replace the Fourier transformations in the propagator (2.10)
by a discrete analogue. We use the following definitions for the one-dimensional
discrete Fourier transformations.

Definition 3 (Discrete Fourier transformation in one dimension). Let x be a
vector having N entries xn. Then the discrete Fourier transformation in unitary
scaling is given by:

x̂k :=
1√
N

N−1∑
n=0

xn exp

(
−2πi

kn

N

)
while the inverse is:

xn :=
1√
N

N−1∑
k=0

x̂k exp

(
2πi

kn

N

)
.

For our implementation we use the fast Fourier transform algorithm to compute
these vectors efficiently.
Next we work out the discrete Fourier transform in the multi-dimensional case.
Start with a D dimensional data tensor xn0,...,nD−1

. Then we do the discrete
Fourier transform along the first axis only:

xk0,n1,...,nD−1
=

1√
N0

N0−1∑
n0=0

xn0,n1,...,nD−1
exp

(
−2πi

k0n0

N0

)
.

In the next step we do the transform along the second axis only:
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xk0,k1,n2...,nD−1
=

1√
N0

1√
N1

N1−1∑
n1=0

xk0,n1,...,nD−1
exp

(
−2πi

k1n1

N1

)

=
1√
N0N1

N1−1∑
n1=0

N0−1∑
n0=0

xn0,n1,...,nD−1
exp

(
−2πi

k0n0

N0

)
exp

(
−2πi

k1n1

N1

)

=
1√
N0N1

N1−1∑
n1=0

N0−1∑
n0=0

xn0,n1,...,nD−1
exp

(
−2πi

(
k0n0

N0
+
k1n1

N1

))
.

Going on in the same way evaluating the transformations for all remaining axes
we get:

xk0,...,kD−1
=

1∏D−1
d=0

√
Nd

ND−1−1∑
nD−1=0

· · ·
N0−1∑
n0=0

xn0,n1,...,nD−1
exp

(
−2πi

D−1∑
d=0

kdnd
Nd

)
.

To get a more compact notation we may introduce the following vectors n :=
(n0, . . . , nD−1), k := (k0, . . . , kD−1) and N := (N0, . . . , ND−1). Then we have:

x̂k :=
1∏D−1

d=0

√
Nd

N−1∑
n=0

xn exp

(
−2πi

k · n
N

)
and for the inverse:

xn :=
1∏D−1

d=0

√
Nd

N−1∑
k=0

x̂k exp

(
2πi

k · n
N

)
where all operations on vectors are understood as element-wise. If we only use
the angular frequency ω = 2πk we arrive at our final transformation formulae.

Definition 4 (Discrete Fourier transformation in D dimensions). Let x be a D
dimensional data tensor xn0,...,nD−1

with Nd entries along the direction d. Then
the discrete Fourier transformation and its inverse both in unitary scaling are
given by:

x̂ω :=
1∏D−1

d=0

√
Nd

N−1∑
n=0

xn exp

(
−iω · n

N

)

xn :=
1∏D−1

d=0

√
Nd

N−1∑
ω=0

x̂ω exp

(
i
ω · n
N

)
.

2.6 Basis transformations

Using the formula (1.4) from the introduction we can write the basis transfor-
mation of a wavefunction |ψ〉 as:

|ψcanonical〉 = M(x) |ψeigen〉
|ψeigen〉 = M−1(x) |ψcanonical〉 = MH(x) |ψcanonical〉

(2.21)
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where we used that the transformation matrix M is unitary.
The time propagation of wavefunctions |ψ〉 has to happen in the canonical
basis because we know the operators only there. On the other hand we are
interested in the behaviour of |ψ〉 on the different energy levels. Therefore the
computation of observables must be done in the eigenbasis. Only the overall
norm of wavefunctions as well as the total energy are basis independent.
Assume the wavefunction |ψ〉 is vector-valued with N components ψi. The
explicit transformation to the eigenbasis is then:

ψe =

 ψe0
...

ψeN−1

 = MH

 ψc0
...

ψcN−1

 =


∑N−1
i=0 MH

0,i ψ
e
0

...∑N−1
i=0 MH

N−1,i ψ
e
N−1

 .

2.7 Observables

2.7.1 Norm of a scalar wavefunction

Given the scalar wavefunction |ψ〉 we want to compute the norm 〈ψ |ψ〉. The
norm is interesting because it gives us the probability density function according
to the Kopenhagen interpretation. In one space dimension the norm is defined
as:

〈ψ |ψ〉 =

∫
R
ψ(x)ψ(x)dx .

In discretised space we evaluate ψ on the nodes of a grid Γ and get:

〈ψ(Γ) |ψ(Γ)〉 = ‖ψ(Γ)‖22
=
∑
γ∈Γ

ψ(γ)ψ(γ)

=

N∑
i=1

ψ(γi)ψ(γi)

where we employ Parseval’s identity and go to momentum space:

=
T

N2

N∑
i=1

ψ̂(ωi)ψ̂(ωi)

=
T

N2
‖ψ̂(Ω)‖22

where N = |Γ| the number of grid nodes and T = |b−a| the extension of our grid
(the length of the interval) 1. The final result for the norm of a wavefunction in
one space dimension is therefore:

‖ψ(Γ)‖2 =

√
T

N
‖ψ̂(Ω)‖2 .

1A possible derivation of the prefactors goes as follows:

19



In an arbitrary number D of space dimensions the grid Γ has an extension Td
in each direction d and is subdivided into Nd nodes along this axis. Define the
vector N := (N0, . . . , ND−1) used for D-dimensional summation. Following the
same route we get:

∫
T0

· · ·
∫
TD−1

ψ (x)ψ (x) dx ≈
D−1∏
d=0

Td
Nd

N−1∑
j=0

ψ

(
γ
j

)
ψ

(
γ
j

)

=

D−1∏
d=0

Td
N2
d

N−1∑
j=0

ψ̂
(
ωj

)
ψ̂
(
ωj

)
.

At the end of the day we find that:

‖ψ(Γ)‖2 =

D−1∏
d=0

√
Td
Nd
‖ψ̂(Ω)‖2 (2.22)

holds for the norm of a D-dimensional scalar wavefunction |ψ〉 evaluated on an
appropriate grid Γ ⊂ RD.

2.7.2 Norm of a vectorial wavefunction

We do not stop at the scalar case but want to find norms of vectorial wavefunctions
|ψ〉 with N components. This computation is done in the eigenbasis and therefore
we need to transform |ψ〉. Computing the total norm of |ψe〉 we find that:

〈ψe |ψe〉 = 〈ψe0 |ψe0〉+ · · ·+
〈
ψeN−1

∣∣ψeN−1

〉
=

N−1∑
i=0

〈ψei |ψei 〉

where 〈ψei |ψei 〉 is the norm of the part ψi of the wavefunction ψ that resides on
the energy level λi(x). For each of these brakets we can now apply the formula
(2.22) from section 2.7.1. This was easy because there is no operator in the
middle of the braket which could mix up the components ψi.

2.7.3 Energy of a scalar wavefunction

The energy of a scalar wavefunction |ψ〉 is given by the expectation value:

E = 〈ψ |H |ψ〉 (2.23)

‖ψ‖2
L2(T )

=

∫
T
ψ(x)ψ(x)dx ≈ T

N

N∑
i=1

ψ(γi)ψ(γi)

=
T

N

N∑
i=1

1√
N
ψ̂(ωi)

1√
N
ψ(ωi) =

T

N2

N∑
i=1

ψ̂(ωi)ψ(ωi)

=
T

N2
‖ψ̂‖22

where we have used Riemann sum approximation and the unitary discrete Fourier transform.
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of the Hamiltonian operator H = T + V . We can split this into an expression
for the kinetic and one for the potential energy:

E = Ekin + Epot = 〈ψ |T + V |ψ〉 = 〈ψ |T |ψ〉+ 〈ψ |V |ψ〉 . (2.24)

In the following short sections we will compute both parts starting with the
potential energy.

Potential energy

Write down the following expression for a fixed time t:

Epot = 〈ψ |V |ψ〉 = 〈ψ(x) |V (x) |ψ(x)〉

=

∫
· · ·
∫
RD

ψ(x)V (x)ψ(x)dx

then transforming to Fourier space:

=

∫
· · ·
∫
RD

F
(
ψ(x)

)
F (V (x)ψ(x)) dω .

Computing separately the subexpression ϕ(x) := V (x)ψ(x) we obtain:

Epot =

∫
· · ·
∫
RD

ψ̂(ω)ϕ̂(ω)dω .

But this is still assuming a continuous space representation. Switching to the
discretised space by introducing the grid Γ we get:∫

· · ·
∫
RD

ψ(x)ϕ(x)dx ≈
D−1∏
d=0

Td
Nd

N−1∑
j=0

ψ

(
γ
j

)
ϕ

(
γ
j

)
.

Applying the unitary discrete Fourier transform next gives the final result:

Epot =

D−1∏
d=0

Td
N2
d

N−1∑
j=0

ψ̂
(
ωj

)
ϕ̂
(
ωj

)
. (2.25)

Kinetic energy

The kinetic energy is given from theory by:

Ekin = 〈ψ |T |ψ〉 =

〈
ψ(x)

∣∣∣∣−1

2
ε4∆

∣∣∣∣ψ(x)

〉
.

The Laplace operator in this expression is bad because we have difficulties to
compute its action. However we can circumvent these issues by going to Fourier

space. We already know that F
(
− ε42 ∆

)
= ε4

2 ω · ω and for this reason we can

get:
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〈
ψ(x)

∣∣∣∣−ε4

2
∆

∣∣∣∣ψ(x)

〉
=

〈
ψ̂(ω)

∣∣∣∣ ε4

2
ω · ω

∣∣∣∣ ψ̂(ω)

〉
=
ε4

2

∫
· · ·
∫
RD

ψ̂(ω)ω · ω ψ̂(ω)dω .

In discretised space we avoid computing the Fourier transform at first. Instead
we take this formula from the continuous space representation:〈

F
(
ψ(γ)

) ∣∣∣∣ ε4

2
ω · ω

∣∣∣∣F (ψ(γ)
)〉

and discretise the integral first giving approximately:

ε4

2

D−1∏
d=0

Td
Nd

N−1∑
j=0

F
(
ψ

(
γ
j

))
ωj · ωjF

(
ψ

(
γ
j

))
.

Now we can easily apply the discrete Fourier transformation and get our final
result for the kinetic energy:

Ekin =
ε4

2

D−1∏
d=0

Td
N2
d

N−1∑
j=0

ψ̂
(
ωj

)(
ωj · ωj

)
ψ̂
(
ωj

)
. (2.26)

This is all we need to compute energies of scalar wavefunctions |ψ〉. In an efficient
implementation all the multi-sums over the grid nodes are fully vectorised and
drop out. Also we can precompute the inner product of the ω vectors.

2.7.4 Energy of a vectorial wavefunction

Now we consider vectorial wavefunctions having N components and try to
compute their energies. Again we want to find the energies given in the eigenbasis.
For the kinetic energy of |ψe〉 we have to compute:

Ekin = 〈ψe |Te |ψe〉
where Te is the kinetic operator in the eigenbasis. The problem is that we do
not know what Te looks like. Therefore we take each single component ψei , put
it into a wavefunction vector like:

ψ′e :=



0
...
ψei
...
0


and transform this object back to the canonical basis to avoid picture change
errors. We obtain in general:

Mψ′e = ψ′c =

 ψ′c0
...

ψ′cN−1

 .
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From this we can easily compute:

Eikin = 〈ψ′c |T |ψ′c〉
where T is block-diagonal of size N ×N :

T =

Ti . . .

Ti


with all Ti being identical. Therefore we get for the kinetic energy of ψei :

Eikin =

N−1∑
i=0

〈ψ′ci |Ti |ψ′ci 〉 . (2.27)

For each braket we apply (2.26) and the techniques of section 2.7.3. The total
kinetic energy of |ψe〉 is then of course:

Ekin =

N−1∑
i=0

Eikin . (2.28)

Computing the potential energy of |ψe〉 is easier. We can do this in the eigenbasis
where we need to compute:

Epot = 〈ψe |Λ |ψe〉 .
Because Λ is a diagonal matrix we can decompose this into:

Epot =

N−1∑
i=0

〈ψei |λi |ψei 〉

and the potential energy of ψei is:

Eipot = 〈ψei |λi |ψei 〉 . (2.29)

The brakets here can in turn be computed by the formula (2.25) from 2.7.3. To
conclude this chapter we show that the total energy is basis independent:

〈ψe |Λ |ψe〉 =
〈
ψe
∣∣M−1MΛM−1M

∣∣ψe〉 =
〈
ψeM

∣∣MΛM−1
∣∣Mψe

〉
=
〈
ψc
∣∣MΛM−1

∣∣ψc〉 = 〈ψc |V |ψc〉 .
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Chapter 3

Semi-classical Wavepackets

3.1 The basis functions

We first show once more the one-dimensional semi-classical wavepackets. This
short section will constitute a reference to compare with when we will head for
the D-dimensional case. The full mathematical details can be found in [8].

3.1.1 The one-dimensional case

In the 1-dimensional case the semi-classical Hagedorn wavepacket is defined as:

φ0[Π](x) = π−
1
4 (ε2)−

1
4Q−

1
2 exp

(
iPQ−1(x− q)2/(2ε2) + ip(x− q)/ε2

)
(3.1)

:= (πε2)−
1
4Q−

1
2 exp

(
i

2ε2
PQ−1(x− q)2 +

i

ε2
p(x− q)

)
(3.2)

where x, q, p ∈ R and Q,P ∈ C some parameters. We gather them into the
set Π := q, p,Q, P which we often call the Hagedorn parameter. For these
parameters, there is a condition that must hold:

QP − PQ = 2i (3.3)

PQ−QP = 0 . (3.4)

The second equation is trivial in the one-dimensional case because complex
numbers commute.
The equation (3.1) represents some kind of ground state φ0. We can construct
higher order states φk by the help of raising operators. The raising operator R
and lowering operator L are defined as:

R =
i√
2ε2

(
P (x− q)−Q(y − p)

)
(3.5)

L = − i√
2ε2

(P (x− q)−Q(y − p)) (3.6)
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where y denotes the momentum operator y := −iε2 ∂
∂x . See [2] for the details of

the one-dimensional case. Applied to the function φ0 we get:

φk =
1√
k
Rkφ0 (3.7)

by repeated application of R. For a single application to the function φk we
know that:

φk−1 =
1√
k
Lφk (3.8)

φk+1 =
1√
k + 1

Rφk . (3.9)

In principle we can now write the expression for φk in closed-form:

φk[Π](x) = 2−
k
2 (k!)−

k
2 (πε2)−

1
4Q−

k+1
2 Q

k
2Hk

(
ε−1|Q|−1(x− q)

)
·

exp

(
i

2ε2
PQ−1(x− q)2 +

i

ε2
p(x− q)

)
where the Hermite polynomials Hk are defined as Hk(z) := ez

2 (− ∂
∂z

)k
e−z

2

.
Although we have this closed-form expression for φk we will never use it due to
numerical issues for example with the factorial there.
With the use of the ladder operators we can find a three-term recursion formula
involving φk+1 , φk and φk−1 only:

φk+1(x) =

√
2

ε2

1√
k + 1

Q−1(x− q)φk(x)−
√

k

k + 1
Q−1Qφk−1(x) . (3.10)

For this recursive computation we need two starting points. Obviously we use
φ0 which we can compute easily. For the second point we could use φ1 = Rφ0 =√

2
ε2Q

−1(x− q)φk(x) which we can find by hand. Alternatively we can use the

fundamental property of the lowering operator Lφ0 ≡ 0 and find that φ−1 ≡ 0.
Although this appears to be a very technical argument it works fine.

3.1.2 The multi-dimensional case

In the D-dimensional case everything works analogously but also becomes more
complicated. However we can check correctness of the results by taking D = 1.
All formulae from the last section have to be contained as special cases.
First we note that x ∈ RD is a vector with D components denoted by x =
(x0, . . . , xD−1). It follows that the position and momentum means are also
vectors, in short q, p ∈ RD. The parameters Q,P ∈ CD×D are hence complex
matrices of shape D × D. For these matrices two relations analogue to (3.3)
hold:

QHP−PHQ = 2i1 (3.11)

PTQ−QTP = 0 . (3.12)
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Figure 3.1: The grid of basis functions φk,l for the case D = 2.

The ground state φ0 can now be defined as:

φ0[Π] (x) := (πε2)−
D
4 (det Q)−

1
2 exp

(
i

2ε2

〈
(x− q),PQ−1(x− q)

〉
+

i

ε2

〈
p, (x− q)

〉)
.

(3.13)

We will see soon that we have to index it by a multi-index 0 := (0, . . . , 0) instead
of a simple 0.

3.2 Raising and lowering operators

Defining the raising and lowering operators is not as trivial as in the one-
dimensional case. We have no linear arrangement of all functions φk. In fact the
index k is a vector- or multi-index:

k := (k0, . . . , kD−1) ∈ ND0 . (3.14)

Its length is defined as:

|k| :=
D−1∑
i=0

ki (3.15)

and its factorial as:

k! := (k0!)(k1!) · · · (kD−1!) =

D−1∏
i=0

ki! . (3.16)

In the following we will set D = 2 for most examples. In the two-dimensional case
we take k = (k, l) and get the grid of functions φk,l indexed by two non-negative
integers k and l as shown in figure 3.1.
Every arrow stands for a raising operator R and we see that there are two kinds
of arrows, vertical and horizontal ones. Following an arrow only one of the two
indices (k, l) changes. This is shown in more details in figure 3.2.
This fact suggests that we assign a raising operator to each arrow type hence
we get two operators R0 and R1 which are of different nature. We can assign a
distinct set {Ri,Li} to each axis i ∈ [0, . . . , D − 1] of the lattice.
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φk,l φk,l+1

R1

L1

(a)

φk,l

φk+1,l

R0L0

(b)

Figure 3.2: The two raising and lowering operator pairs in action.

Leaving this introductionary example and following the formal derivation from
[8] now, we take v ∈ CD, define y := −iε2∇x and begin with:

Rv :=
1√
2ε2

(〈
−iPv, (x− q)

〉
− i
〈
Qv, (y − p)

〉)
(3.17)

=
1√
2ε2

(
i
〈
Pv, (x− q)

〉
− i
〈
Qv, (y − p)

〉)
(3.18)

=
i√
2ε2

(〈
Pv, (x− q)

〉
−
〈
Qv, (y − p)

〉)
(3.19)

and similarly we get:

Lv :=
1√
2ε2

(〈
−iPv, (x− q)

〉
+ i
〈
Qv, (y − p)

〉)
(3.20)

=
1√
2ε2

(
−i
〈
Pv, (x− q)

〉
+ i
〈
Qv, (y − p)

〉)
(3.21)

= − i√
2ε2

(〈
Pv, (x− q)

〉
−
〈
Qv, (y − p)

〉)
. (3.22)

For the one-dimensional case we can get back at the definitions from (3.5).
Following along the lines of [8] we can compute several commutators:

[Lv,Lw] = LvLw − LwLv = 0 (3.23)

[Rv,Rw] = RvRw −RwRv = 0 (3.24)

[Lv,Rw] = LvRw −RwLv = 〈v, w〉 (3.25)

for general v, w ∈ CD. The fact that we are allowed to interchange two raising
operators is important and could have been guessed from figure 3.1. There we
have:

φ1,1 = R0φ0,1 = R0R1φ0,0

φ1,1 = R1φ1,0 = R1R0φ0,0

thus the order in which we compute φk,l from φ0,0 does not matter. If we flip
all arrows we get to the same conclusion but this time for lowering operators.
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From the scalar case we know that we can not simply exchange two different
operators, remember for example the definition of the number operator N .
However, we can go from φ1,0 to φ0,1 by either way:

φ0,1 = L0φ1,1 = L0R1φ1,0

φ0,1 = R1φ0,0 = R1L0φ1,0 .

This is the consequence of the third commutation relation above which tells us
that the two operators commute iff v and w are orthogonal.
Continuing with the formal derivation we choose a basis of RD. For simplicity
we take the canonical basis {ej}D−1

j=0 . In this basis we can more precisely say
what Rv is. We define the following two sets of ladder operators:

Rj := Rej (3.26)

Lj := Lej (3.27)

each containing exactly D operators. Finally we can build the vector-valued
operators:

R :=

 R0

...
RD−1

 and L :=

 L0

...
LD−1

 . (3.28)

Recalling the defining equations for Rv and Lv we can then find explicit expres-
sions for R and L:

R =
i√
2ε2

(
PH(x− q)−QH(y − p)

)
(3.29)

L = − i√
2ε2

(
PT(x− q)−QT(y − p)

)
. (3.30)

At this point we should stop for a moment and see what happens if we set D = 1
now. If we carried out all calculations we would return step by step to the
expressions given in (3.5).
With the help of R we can now go on and define all higher states φk properly:

φk := Rkφ0 (3.31)

=
1√
k!
Rk00 Rk11 · · ·R

kD−1

D−1 φ0 (3.32)

=
1√∏D−1
i=0 ki!

D−1∏
i=0

Rkii φ0 . (3.33)

We can show theorem 3.3 of [8]:

Theorem 1. The functions φk [Π] (x) form an orthonormal basis of L2
(
RD
)
.
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For a proof see again this reference.
To close this section we take a closer look at the application of Rj on φk:

Rjφk =
√
kj + 1φk′ (3.34)

where:

k′ := k + ej = (k0, . . . , kj−1, kj + 1, kj+1, . . . , kD−1) (3.35)

and similarly:

Ljφk =
√
kjφk′ (3.36)

with:

k′ := k − ej = (k0, . . . , kj−1, kj − 1, kj+1, . . . , kD−1) . (3.37)

This justifies the formula (3.31) allowing us to construct φk out of φ0 by raising
each index multiple times as necessary. We build a path through the lattice
starting at the origin and ending at the point k.
From these formula we see that computing Rφ0 is sufficient to access all higher
order functions. The remaining question is how to do this efficiently. Computing
the action of R is not straight forward because it contains the differential
operator y := −iε2∇x. For this reason we seek a way to compute Rφ0 without
ever applying y explicitly. The solution to this task is given by the adjoint pair
R,L of operators. We can set up a system of two operator equations. First
we solve the equation defining L for y. For simplicity of notation we define
θ := i√

2ε2
and transform as follows:

L = −θ
(
PT(x− q)−QT(y − p)

)
L = −θPT(x− q) + θQT(y − p)

L+ θPT(x− q) = θQT(y − p)

QT(y − p) =
1

θ
L+ PT(x− q)

y − p =
1

θ
Q-TL+ Q-TPT(x− q)

y =
1

θ
Q-TL+ Q-TPT(x− q) + p . (3.38)

Note that solving R for y gives us the complex conjugate of this last line:

y = −1

θ
Q-HR+ Q-HPH(x− q) + p . (3.39)

In the next step we plug the result (3.38) into the definition of R:
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R = θ
(
PH(x− q)−QH(y − p)

)
R = θ

(
PH(x− q)−QH

((
1

θ
Q-TL+ Q-TPT(x− q) + p

)
− p
))

R = θ

(
PH(x− q)−QH

(
1

θ
Q-TL+ Q-TPT(x− q)

))
R = θ

(
PH(x− q)− 1

θ
QHQ-TL −QHQ-TPT(x− q)

)

R = θ

−1

θ
QHQ-TL+ (PH −QHQ-TPT)︸ ︷︷ ︸

∗

(x− q)

 . (3.40)

This is already quite useful a result. But let’s see if we can simplify the
underbraced part further. Simplifying the ∗ part needs a bit of algebra. We
start with the basic relations in (3.11) and multiply the first one by Q−1 from
the right:

QHP−PHQ = 2i1

QHPQ−1 −PHQQ−1 = 2iQ−1

QHPQ−1 −PH = 2iQ−1

PH −QH PQ−1︸ ︷︷ ︸
∗∗

= −2iQ−1 .

Now we are left with ∗∗ where we can apply the other fundamental relation
which we have to transform a little bit first:

PTQ−QTP = 0

Q-TPTQ−Q-TQTP = 0

Q-TPTQ = P .

The last line can now be used to replace the P in ∗∗ which yields:

PH −QHQ-TPTQQ−1 = −2iQ−1

PH −QHQ-TPT = −2iQ−1 .

This is the part ∗ we wanted to simplify. Going back to (3.40) we can write:

R = θ

(
−1

θ
QHQ-TL − 2iQ−1(x− q)

)
R = −QHQ-TL − 2iθQ−1(x− q) .

At the end of the day we get:

R =

√
2

ε2
Q−1(x− q)−QHQ-TL (3.41)
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where we reinserted the term for θ and took into account the i therein. Of course
we would get the very same result if we used (3.39) and plugged it into the
definition of L. Just for the sake of completeness we state the complex conjugate
result for the L operator too:

L =

√
2

ε2
Q−1(x− q)−QTQ-HR (3.42)

with a similar derivation as the one above.

3.3 Higher order basis functions

With this equation at hand we can continue in (3.34) where we left off computing
Rdφk. We start applying the operator for the d-th direction. But we do not
have an explicit expression for Rd and on the other hand we need the result
for all d ∈ [0, . . . , D − 1]. Therefore is seems wise to do these computations
simultaneously for all D components:


√
k0 + 1φk+e0

...√
kD−1 + 1φk+eD−1

 =

 R0φk
...

RD−1φk

 = Rφk (3.43)

Using the formula (3.41) for R gives us:


√
k0 + 1φk+e0

...√
kD−1 + 1φk+eD−1

 =

√
2

ε2
Q−1(x− q)φk −QHQ-T


√
k0φk−e0

...√
kD−1φk−eD−1

 .

(3.44)
From this we get the new functions φk+ed as:

 φk+e0

...
φk+eD−1

 =

√ 2

ε2
Q−1(x− q)φk −QHQ-T


√
k0φk−e0

...√
kD−1φk−eD−1


�


√
k0 + 1

...√
kD−1 + 1


where the operator � denotes component-wise division. In a next step we use this
formula for evaluation of all φk basis functions of D dimensional semi-classical
wavepackets. This last formula is so important that it should carry a box too
but it seems there is no space left.

3.4 Construction of wavepackets

In the previous section we saw how to compute the functions φk[Π](x). Now we
can take a very general set K of indices k and use the corresponding functions
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Plots of the first few functions φk,l with parameters set to q = 0,

p = (1, 1
2 ), Q = 1, P = i1 and ε = 1. The surface represents ten times the value√

〈φk,l |φk,l〉 where the factor of 10 is just for visual purpose. For an explanation
of the colours, see appendix B. (a) φ0,0 (b) φ1,0 (c) φ0,1 (d) φ1,1 (e) φ0,2 (f) φ1,2
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Plots of the first few functions φk,l with parameters set to q = 0,

p = (1, 1
2 ), Q = 1, P = i1 and ε = 1. The surface represents ten times the value√

〈φk,l |φk,l〉 where the factor of 10 is just for visual purpose. For an explanation
of the colours, see appendix B. (a) φ2,0 (b) φ3,0 (c) φ2,1 (d) φ3,1 (e) φ2,2 (f) φ3,2
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φk to build a (more or less truncated) basis for L2(RD). In a first step we can
construct so called scalar wavepackets Φ by linear combinations:

Φ(x) := exp

(
iS

ε2

)∑
k∈K

ckφk (3.45)

where the coefficients ck ∈ C depend on time only and the basis functions φk
depend on space but also on time through the parameter set Π(t) which is
time-dependent1. We added a global phase S which is also time-dependent. An
overly precise notation reads:

Definition 5 (Scalar semi-classical wavepacket).

|Φ〉 := Φ [Π(t)] (x, t) = exp

(
iS(t)

ε2

)∑
k∈K

ck(t)φk [Π(t)] (x) . (3.46)

Every single basis function φk is a perfectly valid wavepacket too. Sometimes we
will append the parameter S to the set Π and use the notation Π = {q, p,Q, P, S}.
This should be clear from the context. Also we will drop the time variable since
we look at wavepackets at fixed times.

3.5 Basis set expansion and basis shapes

The above formulation is a basis expansion for the true wavefunction ϕ(x, t).
Remember that the set {φk}k∈K is a (complete) basis of the function space
L2(RD). Hence the basis expansion is exact if we take the full lattice K = ND0
of indices. In theoretical considerations we can use the full lattice but for all
practical purposes we need to truncate the basis and make the set K finite. This
can be done in various ways and we refer to the shape of a basis set if we speak
about these details of K. Basis shapes usually depend on some parameters θ, we
occasionally write K(θ) for this.
For a first ansatz we can use a hypercubic basis set K which means that we take
the subset of all lattice points for which k < K holds. The components of K
specify the number of points along each of the D directions. A more formal
definition is:

Definition 6 (Hypercubic basis shape).

K(K) :=
{
k ∈ ND0 : kd < Kd ∀ d ∈ [0, . . . , D − 1]

}
. (3.47)

If we use this basis shape we call the resulting wavepacket dense. By |K| we
denote the basis size, the overall number of basis functions φk we use. In the
hypercubic case this is obviously:

|K| =
D−1∏
d=0

Kd . (3.48)

As a shorthand notation to specify the hypercubic shape we simply write K =
K = [K0, . . . ,KD−1]. We should think of K as being both the vector in the

1In general we neglect explicit time-dependence of the parameter set Π in our notation.
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Figure 3.5: The size |K| of two-dimensional hyperbolic basis shapes with various
cut-off values K.

lattice ND0 and the set of all index points in the hypercube spanned by the origin
0 = (0, . . . , 0) and K − 1 = (K0 − 1, . . . ,KD−1 − 1), depending on the context.
The size of this basis shape grows exponentially with the number D of dimensions.
Therefore we introduce more sparse basis sets which grow slower as the number
of dimensions increases. The first example is the hyperbolic cut basis shape
defined as follows:

Definition 7 (Hyperbolic cut basis shape).

K(K) :=

{
k ∈ ND0 :

D−1∏
d=0

(1 + kd) ≤ K
}

(3.49)

where we limit the number of basis functions by hyperbolic cuts. For this we
introduce a scalar parameter K ∈ N which we call sparsity in this context. The
number of basis functions is then bounded by:

|K| ≤ CK (logK)
D−1

. (3.50)

where C is some constant.
Figure 3.5 shows the application of this bound to the two-dimensional case.
As we see in figures 3.6 and 3.7 this basis shape has long tails consisting of
functions with high frequencies in one direction. Sometimes we do not need
these tails. We can combine the two basis shapes introduced and define a new
shape:

Definition 8 (Hyperbolic cut basis shape with limits).

K(K,L) :=

{
k ∈ ND0 :

D−1∏
d=0

(1 + kd) ≤ K ∧ kd < Ld ∀ d ∈ [0, . . . , D − 1]

}
.

(3.51)
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Figure 3.6: The lattice nodes that are part of a two-dimensional hyperbolic cut
basis shape. Additionally the cut-off function is shown. Compared to the full
hypercubic basis shape the sparsity of this type of basis shape becomes clearly
visible. (a) K = 8 (b) K = 32
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Figure 3.7: The lattice nodes that are part of a three-dimensional hyperbolic
cut basis shape. Compared to the full hypercubic basis shape the sparsity of
this type of basis shape becomes clearly visible. (a) K = 8 (b) K = 32
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Figure 3.8: The lattice nodes that are part of a two-dimensional limited hyperbolic
cut basis shape. Compared to the unlimited hyperbolic cut basis shape the long
tails are missing here. (a) K = 8 and L = (4, 4) (b) K = 32 and L = (8, 8)

The parameter K ∈ N is again the sparsity defining the hyperbolic cuts. The
parameter L is a list of D elements with each Ld ∈ N. These limits act as sharp
upper bounds on the entries of k. In that way we can combine the two previous
basis shapes. If we choose Ld ≥ K ∀ d ∈ [0, . . . , D − 1] then we obtain a simple

hyperbolic cut basis shape. On the other hand, if we set K ≥∏D−1
d=0 Ld we are

back in the full hypercubic case.
There exist many more possibilities for specific basis shapes. For a generic basis
shape K a fundamental property has to hold. We can state it by the following
implication:

∀ k ∈ ND0 : k ∈ K⇒ k − ed ∈ K∀ d ∈ [0, . . . , D − 1] . (3.52)

In other words, for each k ∈ K it must hold that for all d = 0, . . . , D − 1 the
multi-index defined by k′ := k − ed has no negative components and k′ ∈ K. In
less formal terms this means that an index k is part of K iff all its backward
neighbours are also part of K. This condition is necessary for the recursive
evaluation of wavepackets which we will show later.
Probably the most general way to write a scalar wavepacket (3.46) now is:

|Φ〉 := Φ [Π(t),K(t)] (x, t) = exp

(
iS(t)

ε2

) ∑
k∈K(t)

ck(t)φk [Π(t)] (x) (3.53)

which uses an arbitrary, possibly time-adaptive basis shape K(t). In principle
we can exchange the basis shapes at each timestep during the simulation. This
provides us with adaptivity for all parameters θ a basis shape depends on.
Sometimes we will need to bring the elements k of a basis shape K into a fixed
total order. This is done by the linearisation mapping.
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Definition 9 (Linearisation mapping). A mapping:

µ : K→ N0

k 7→ n

that fixes a total order of the set K.

If it is not clear from the context we denote this mapping by µK to mark explicitly
which basis shape it belongs to. In practical cases we usually have µ(0) = 0 but
this is not a requirement.
Finally the following two algorithms 1 and 2 can be used to find the neighbour-
hood of a given multi-index k in a general basis shape K.

Algorithm 1 Find forward neighbours

Require: The number D of space dimensions
Require: The basis shape K
Require: The multi-index k whose neighbours we search

// List for the result
N := {}
// Find neighbourhood
for d = 0 to d = D − 1 do
k′ := k + ed

if k′ ∈ K then
N = N ∪ {(k′, d)}

end if
end for
return N

Algorithm 2 Find backward neighbours

Require: The number D of space dimensions
Require: The basis shape K
Require: The multi-index k whose neighbours we search

// List for the result
N := {}
// Find neighbourhood
for d = 0 to d = D − 1 do
k′ := k − ed
if k′ ∈ K then
N = N ∪ {(k′, d)}

end if
end for
return N

3.5.1 Basis shape transformation mappings

Given two basis shapes K and K′ and their linearisation mappings:
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Figure 3.9: The two mappings µ and µ′ together with the transformation rule T
(orange arrows).

µ : K→ N0

µ′ : K′ → N0 .

We look for a way how to change a data array c ∈ C|K| (storing complex scalar
data for each multi-index k ∈ K at the position cµ(k)) if we replace the basis shape
K by K′. The problem is that the two mappings are in general incompatible with
each other. Hence we have to permute the elements of the array c. Referring
to figure 3.9, the task is now to connect the keys i and i′ such that for all
multi-indices k ∈ K ∩ K′ it holds that:

(µ′)
−1

(T (µ (k))) = k .

The transformation T is bijective if and only if K ≡ K ∩ K′ ≡ K′.
When remapping linearly indexed data vectors cµ(k), we drop the entries for all
k ∈ K \K′ and we fill in zero values for all k ∈ K′ \K. The procedure is shown in
algorithm 3 below.

Algorithm 3 Transformation of basis shapes and data remapping

Require: The old basis shape K
Require: The new basis shape K′

Require: An array c of length |K| containing arbitrary data
// Set up the new array of length |K′|
c′ := 0 ∈ C|K′|
// Copy over the data we can keep
for k ∈ K ∩ K′ do

// Compute linear mapping of k in both basis shapes
i := µ (k)
j := µ′ (k)
// Update the array
c′ [j] = c [i]

end for

An example of such a mapping is given in figure 3.10.
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Compatibility mapping T : K → K ′

Figure 3.10: An example of a basis shape transformation mapping T . The original
shape was K = K = (4, 2) and |K| = 8 while the new shape is K′ = K ′ = (5, 3)
and |K′| = 15.

3.5.2 Basis shape extensions

For computing the gradients of wavepackets (see section 3.8) we need to extend
the basis shape. Informally spoken, extending a basis shape means that we
add a node in each direction. For each lattice point of a shape we add all its
neighbours. A formal definition is:

Definition 10 (Basis shape extension). Given a basis shape K we define its
extension K by:

K := K ∪
{
k′ : k′ = k + ed ∀ d ∈ [0, . . . , D − 1]∀ k ∈ K

}
.

This defines the most tight extension. But any even larger basis shape is a valid
extension too. In any case it holds that K ⊂ K.

This definition is not handy enough to work with. For some of the less complex
basis shapes K(θ) it is often possible to express the extended shape K(θ′) simply
by modifying the parameters θ the shape depends on.
If we look at a hypercubic basis shape K(K) then we can express its extension

K(K ′) by the new parameters K ′ which obviously are:

K ′ = [K0 + 1, . . . ,KD−1 + 1] . (3.54)

The attentive reader may notice that in case D > 1 this new basis includes one
node too much, namely the lattice point (K0, . . . ,KD−1). This however poses
no problems beside wasting a very small amount of memory. A basis shape
extension has not to be tight with respect to the above definition.
For the hyperbolic cut shape, extension is less trivial. Assume that the sparsity
is K. We first look at the extension of a two-dimensional shape. Here the two
nodes (K − 1, 0) and (0,K − 1) are the outermost ones. Since the whole basis
shape is symmetric under permutation of the axes, we focus only on (K − 1, 0)
lying on the first axis. We have to make sure that its neighbours are part of K.
This is guaranteed (by definition 7) if we can construct a new hyperbolic cut
shape K′(K ′) that contains the node (K − 1, 1). By using the equation of the
above definition we get:
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(1 +K − 1)(1 + 1) ≤ K ′

which we can solve for the minimal K ′ and find that:

K ′ = 2K . (3.55)

In the general case of D > 1 dimensions we have a similar equation:

(1 +K − 1)(1 + 1) · · · (1 + 1) = (1 +K − 1)

(
D−1∏
d=1

(1 + 1)

)
≤ K ′

from which we obtain:

K ′ = 2D−1K . (3.56)

This is only valid for D > 1 and gives for D = 1 the wrong result K ′ = K. If we
want a single formula valid for all dimensions then we have to start from the
point k = (K, 0, . . . , 0). For this point we get:

(1 +K)

(
D−1∏
d=1

(1 + 1)

)
≤ K ′

giving:

K ′ = 2D−1(K + 1) . (3.57)

However we should note that this leads to overly big extensions for D > 1
compared to the other formula. For example if we start with a two-dimensional
basis shape with K = 4 then we get K ′ = 8 and K ′ = 10 respectively. The basis
sizes of the extended shapes are then 20 and 27 and the tight extension given by
the direct definition would have size 14 but is not of hyperbolic cut type.
Extending a hyperbolic cut basis shape with limits is easy again. First we
change the limits L according to (3.54). Then we increase K by using one of
the formulae (3.55) or (3.56) depending on the dimensionality. That is all we
need to do for this type of basis shape.
We can use the limited hyperbolic cut basis shape to produce more tight exten-
sions of the standard hyperbolic cut basis shapes. For an example, refer to figure
3.11.

3.6 Evaluation of wavepackets

For the numerical simulation we will need to evaluate a wavepacket at sets of grid
nodes γ ∈ RD. The formula for the ground state (3.13) and the recursion (3.44)
for higher order basis functions is in principle all we need to do this. Even if this
seems to be very simple at first glance there are a few tricky details involved.
In this section we start from the mathematical formulae and work towards an
algorithmic description for computing Φ(γ).
First we can evaluate the ground state φ0 directly by algorithm 4. If this is
programmed by using vectorisation for the linear algebra functions we can even
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Figure 3.11: Comparison of two methods to extend a hyperbolic cut basis shape
with K = 8. The original nodes (blue circles) and the nodes of the extension
(red diamonds) are shown for both methods. The difference in basis size is 14
nodes. (a) Extension is again an unlimited hyperbolic cut shape with K = 16.
(b) Extension is a limited hyperbolic cut shape with K = 16 and L = (9, 9).
This extension introduces only 3 nodes more than required.

perform the evaluation on a set Γ = {γi}i of nodes simultaneously. The return
value is then not a single scalar value but an array of scalars. Usually we imagine
this to be a row vector of |Γ| elements.
For the higher order basis functions φk we employ the recursion formula. With
the help of this relation we can compute any φk given some of the predecessors.
For D = 1 this is easy since we just compute φk+1 from φk and φk−1. In the
multi-dimensional case it is less obvious what happens. To compute the set of
all successors {φk+ed}D−1

d=0 we need the function φk as well as all antecessors

{φk−ed}D−1
d=0 . We call this rule that specifies how we get new functions from old

ones a stencil and denote it by SD. The figure 3.12 shows the stencils we get in
one, two and three dimensions.
For all these recurrences we need starting points. The only point we know is φ0.
But as we found earlier we can insert a 0 for all k where ∃kd with kd < 0. Hence
we have indeed enough known values to get the process started. An example of
how this works in two dimensions is shown in figure 3.13 and algorithm 5.
The most severe issue with this naive stencil application is that we compute
almost all functions twice, here this becomes obvious the first time for φ1,1. Even
worse, in D dimensions we would compute almost all functions D times!
Therefore we seek a better way to organise the computations. To achieve this
goal we modify the stencil in a way that seems to be counter intuitive at first.
Define the modified cheap stencil as follows.

Definition 11 (Cheap recursion stencil). The cheap recursion stencil does not
compute all D outputs φk+ed for all d ∈ [0, . . . , D − 1] but only one output for a
single and fixed direction d. We denote the cheap stencil for direction d and in
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Algorithm 4 Evaluate the ground state φ0 directly

Require: The number D of space dimensions
Require: The Hagedorn parameter set Π = {q, p,Q, P}
Require: The semi-classical scaling parameter ε
Require: The grid node γ ∈ RD

// Whether to include the problematic prefactor or not
if prefactor is True then
α := (πε2)−

D
4 (det Q)−

1
2

else
α := (πε2)−

D
4

end if
// The exponent
u := γ − q
β1 :=

〈
u,PQ−1u

〉
β2 :=

〈
p, u
〉

// The full ground state
φ0 := α exp

(
i
ε2

(
1
2β1 + β2

))
return φ0

(a) S1 (b) S2 (c) S3

Figure 3.12: The basis function recursion stencils in one, two and three dimen-
sions. The black nodes can be computed given the white ones. This works in
one single step, i.e. we need all white ones and get all black ones.

D dimensions by SDd . In D dimensions we have D different stencils:

SDd d ∈ [0, . . . , D − 1] .

Figures 3.14 and 3.15 give an impression how the stencils look like and how they
work in two and three dimensions. In one dimension we obviously find S1

0 ≡ S1.
In all dimensions it holds that we recover the full stencil SD as the sum:

SD =

D−1⊕
d=0

SDd

where all stencils are applied centred at the very same node φk.
Formally we have just used the d-th row of equation (3.44) only to compute the
application of SDd to φk. By using colon or slicing notation we can write the
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Algorithm 5 Evaluate higher order states φk recursively (naive version)

Require: The number D of space dimensions
Require: The Hagedorn parameter set Π = {q, p,Q, P}
Require: The semi-classical scaling parameter ε
Require: The basis shape K and its linearisation mapping µ
Require: The grid node γ ∈ RD

// Storage space for the result
ψ := 0 ∈ C|K|
// Evaluate the ground state by algorithm 4
ψ[µ(0)] = evaluate ground state(D,Π, ε, γ)
// Loop over the multi-indices
for k ∈ K do

// Backward neighbours
ξ := 0 ∈ CD
for d = 0 to d = D − 1 do
k′ := k − ed
if k′ ∈ K then
ξ[d] =

√
k[d]ψ[µ(k′)]

end if
end for
// Compute 3-term recursion
α := (γ − q)ψ[µ(k)]

β1 :=
√

2
ε2 Q−1 · α

β2 := Q−1Q · ξ
β := β1 − β2

// Store the results at the correct positions (forward neighbours)
for d = 0 to d = D − 1 do
k′ := k + ed

if k′ ∈ K then

ψ[µ(k′)] =
β[d]√
k[d]+1

end if
end for

end for
// Whether to include the problematic prefactor or not
// Make sure not to divide twice for φ0!
if prefactor is True then
ψ = 1√

detQ
ψ

end if
return ψ
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Figure 3.13: Naive stencil application in two dimensions. All values we initially
know are printed in black. In a first step we centre the stencil S2 at the node
k = (0, 0) (blue) and compute φ0,1 and φ1,0. Next we can apply the stencil there
(green) and find φ0,2, φ1,1 and φ2,0.

(a) S20 (b) S21

Figure 3.14: The modified basis function recursion stencils S2
d in two dimensions.

The black node can be computed given the white nodes. The grey node would
be computed by the full stencil S2 but is intentionally left out by the modified
ones.

(a) S30 (b) S31 (c) S32

Figure 3.15: The modified basis function recursion stencils S3
d in three dimensions.

The black node can be computed given the white nodes. The grey nodes would
be computed by the full stencil S3 but is intentionally left out by the modified
ones.

formula for the modified stencils SDd as follows:

√
kd + 1φk+ed =

√
2

ε2

(
Q−1

)
d,:

(x− q)φk −
(
Q−1Q

)
d,:


√
k0φk−e0

...√
kD−1φk−eD−1

 .

(3.58)45
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Figure 3.16: First step in the efficient application of the recursion stencils in two
dimensions. All values we initially know are printed in black. In a first step we
centre the cheap stencil S2

0 at the node k = (0, 0) and compute φ1,0 only. Next
we can use the same stencil centred at φ1,0 and find φ2,0. We continue like this
until an overflow occurs. (In this little example we are done after the next step.)

What can we do with these modified stencils? And why should they be more
efficient? The most important gain is that we do never compute any function
twice. But for this we have to use the new stencils in a clever way. We start
with an empty grid like the one in figure 3.13. It contains only the ground state
evaluated φ0. Now we apply the stencil SD0 along the first direction d = 0 until
we overflow. This works fine as we use the ground state as anchor point for this
recursion chain and produce new anchor points successively. This process is
shown in figure 3.16.
After this first step we can not apply the stencil S2

0 anymore. There is no anchor
point left that would give us new nodes in the lattice. But we have build a whole
chain φk,0 of starting points. Hence we take the stencil S2

1 at hand and go along
the second direction d = 1 starting a chain for each φk,0. Again we follow each
chain until an overflow occurs. Note that we must do this in increasing order of
the index k because we need the values to the left of where we centre S2

1 . Figure
3.17 shows the process for the first two chains starting at φ0,0 and φ1,0.
For a three-index recursion evaluating all the functions φk0,k1,k2 we would start
with a chain along the first dimension computing all φk0,0,0. Then we build new
chains along the second direction starting one at each of the nodes φk0,0,0 and
computing all φk0,k1,0. And finally we build chains starting at the functions
φk0,k1,0 which gives us all the remaining functions φk0,k1,k2 . If we do this correctly
we never compute any function more than once and nonetheless get all functions
evaluated. Since we are building chains starting at some node k going along
a given direction d we call this procedure chain building. And we need a very
specialised way of iterating over all k ∈ K which we call chain mode iteration
(compared to, for example, lexicographical iteration).

Definition 12 (Chain mode basis shape iterator). An iterator I is just a list of
multi-indices with a well specified order. By iteration over this list we retrieve the
contained values in this fixed sequence. Given a basis shape K in D dimensions
we can obtain D different chain mode iterators IDd for d ∈ [0, . . . , D − 1]. Any
iterator is tightly related to the basis shape it belongs to. For that reason we
sometimes write IDd [K] to make this important connection absolutely manifest.
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Figure 3.17: Second step in the efficient application of the recursion stencils in
two dimensions. All values we initially know are printed in black. In a first step
we centre the cheap stencil S2

1 at the node k = (0, 0) and compute φ0,1 only.
Next we can use the same stencil centred at φ0,1 and find φ0,2. We continue like
this until an overflow occurs. (In this little example we are done after the next
step.) Now we can start the second chain at the anchor (1, 0) and recursively
compute φ1,1, φ1,2, φ1,3 until the overflow occurs. In a next step (not shown
here) we start a chain at (2, 0), then at (3, 0) and so forth until the last node
(k, 0).

Clearly the intersection Id ∩ Id′ is never empty since all iterators Id contain the
multi-index 0 as starting point.

Referring back to the figures 3.16 and 3.17 we computed all the φk for k ∈ I2
0

and k ∈ I2
1 respectively. The iterator I2

0 there yields the values (0, 0), (1, 0) and
(2, 0) in this order and then gets exhausted. The next higher iterator I2

1 gives
the values (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), . . . , (3, 0), (3, 1), (3, 2) before
it gets exhausted too.
Going back to the general D dimensional case and an arbitrary basis shape K we
recognise that each iterator IDd [K] exactly yields the nodes k ∈ K where we have
to apply the modified stencil SDd . This is the quintessence of this whole idea!
Now we are ready to formulate the algorithm 6 for efficient basis evaluation.
Note that all algorithms in this section are quite general and do not depend on
the details of the basis shape K. We only assume that K provides us with enough
information about itself. We use the size |K| and we have to get an answer for
the question if k ∈ K. We need the linearisation mapping µK and we have to
be able to obtain chain mode iterators IDd for K. Any reasonable basis shape
implements these functions without much trouble.

3.6.1 Number of stencil applications

We want to count how many times we apply the stencils. Assume we work in a
hypercubic basis shape K where the limits are given as K = [K0, . . . ,KD−1].

For the full stencil SD this is easy. We have to apply it maximally
∏D−1
d=0 Kd
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Algorithm 6 Evaluate higher order states φk recursively (efficient version)

Require: The number D of space dimensions
Require: The Hagedorn parameter set Π = {q, p,Q, P}
Require: The semi-classical scaling parameter ε
Require: The basis shape K and its linearisation mapping µ
Require: The grid node γ ∈ RD

// Storage space for the result
ψ := 0 ∈ C|K|
// Evaluate the ground state by algorithm 4
ψ[µ(0)] = evaluate ground state(D,Π, ε, γ)
// Loop over the directions
for d = 0 to d = D − 1 do

// Get the iterator
Id := chain mode iterator(K, d)
// Start the chain building process
for k ∈ Id do

// Backward neighbours
ξ := 0 ∈ CD
for d′ = 0 to d′ = D − 1 do
k′ := k − ed′
if k′ ∈ K then
ξ[d′] =

√
k[d′]ψ[µ(k′)]

end if
end for
// Compute 3-term recursion
α := (γ − q)ψ[µ(k)]

β1 :=
√

2
ε2 (Q−1)[d, :] · α

β2 := (Q−1Q)[d, :] · ξ
// Store the result in correct position (forward neighbour in direction d)
k′ := k + ed

if k′ ∈ K then
ψ[µ(k′)] = β1−β2√

k[d]+1

end if
end for

end for
// Whether to include the problematic prefactor or not
// Make sure not to divide twice for φ0!
if prefactor is True then
ψ = 1√

detQ
ψ

end if
return ψ
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Algorithm 7 Evaluate the whole basis set {φk}k∈K on a grid Γ

Require: The basis shape K
Require: The grid Γ containing the nodes γ ∈ RD

// Storage space for the result
B := 0 ∈ C|K|×|Γ|
// Evaluate the basis functions {φk}k∈K for all grid nodes by algorithm 6
// A real implementation of course exploits vectorisation.
for i = 0 to i = |Γ| − 1 do

B[:, i] = evaluate higher order states(γi)
end for
return B

times. And a more careful analysis shows that we have to apply it exactly:

D−1∏
d=0

(Kd − 1) + 1 (3.59)

times where the last 1 is to get the node φK−1. This is only necessary for D > 1.
For the modified stencils this gets more complicated. The number of applications
of each individual stencil is given in the table below.

Stencil Number of applications

SD0 K0 − 1
SD1 K0(K1 − 1)
SD2 K0K1(K2 − 1)

...

SDd
∏d−1
i=0 Ki(Kd − 1)

...

SDD−1

∏D−2
i=0 Ki(KD−1 − 1)

Now the overall number of stencil applications is then:

D−1∑
d=0

d−1∏
i=0

Ki(Kd − 1) =

D−1∑
d=0

(
(Kd − 1)

d−1∏
i=0

Ki

)
=

D−1∑
d=0

(
d∏
i=0

Ki −
d−1∏
i=0

Ki

)

=

D−1∑
d=0

d∏
i=0

Ki −
D−1∑
d=0

d−1∏
i=0

Ki

=

D−1∏
i=0

Ki −
−1∏
i=0

Ki =

D−1∏
i=0

Ki − 1

where the sum is resolved via telescoping and we define the empty product as
the multiplicative identity. Of course it holds that:

D−1∏
d=0

(Kd − 1) + 1 ≤
D−1∏
d=0

Kd − 1
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Figure 3.18: Total number of stencil applications for a hypercubic basis shape in
D = 6 dimensions and with K nodes along each direction.

for large enough K and D. The consequence is that we perform more applications
when using the modified stencil. But it will turn out that this is not a bad fact.
An example in 6 dimensions is shown in figure 3.18.

3.6.2 Cost of a stencil application

We define the cost of a stencil application Sφk as the number of multiplications
which involve a φ. The reason is that we will evaluate φk on large grids with
many nodes hence φk is a very long vector.
During the application of the full stencil SD we multiply a D vector by φ in the
first term. In the second one we multiply a D ×D matrix by a vector of size D
containing a (different) φ in each element. Hence the application SDφk has a
total cost of D2 +D.
For the modified stencil we only evaluate the first element of the vector equation
and therefore we compute the product of a scalar with φ and form an inner
product between two vectors of length D, one containing a (different) φ in each
element. The application of any modified stencil SDd has therefore a total cost of
D + 1 which is linear in the number of dimensions. Figure 3.19 shows the cost
of both stencils as a function of dimension D.
If we now compare both evaluation schemes by the number of stencil applications
and the costs of a single application it turns out that the scheme using modified
stencils is much more efficient! In formal notation we find:(

D−1∏
d=0

(Kd − 1) + 1

)
(D2 +D) <

(
D−1∏
d=0

Kd − 1

)
(D + 1)

for large enough K where the cross over point depends on the dimension D. For
D = 1 both schemes are equivalent and have the same costs. Figure 3.20 shows
the overall costs for an hypercubic basis shape in D = 6 dimensions.
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Figure 3.19: The costs of both stencil types in several dimensions.
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Figure 3.20: Total cost of a basis evaluation for a hypercubic basis shape in
D = 6 dimensions and with K nodes along each direction.
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3.7 Vector-valued wavepackets

For the purpose of solving the time-dependent Schrödinger equation with non-
adiabatic potentials the scalar wavepackets are not enough. Recall that the
potential has N different energy levels. The wavefunction |ϕ〉 needs therefore
N components stacked into a vector. In the following we construct vectorial
wavepackets where each component is given by a scalar wavepacket. Formally
we are in this situation:

Ψ(x, t) :=

 Φ0(x, t)
...

ΦN−1(x, t)

 . (3.60)

How many free input parameters does this object have? Each component Φi

needs a set Πi of Hagedorn parameters. (We should write Φi [Πi] but this
becomes lengthy so we drop this soon.) If we use the very same parameter set Π
for each component we arrive at what we call a homogeneous wavepacket.

Definition 13 (Homogeneous vectorial wavepacket).

|Ψ〉 := Ψ [Π] (x, t) =

 Φ0 [Π] (x, t)
...

ΦN−1 [Π] (x, t)

 (3.61)

where Πi ≡ Πj ≡ Π∀ i, j

However, at any fixed time each component is independent from all other ones.
For this reason we can choose possibly different sets Πi of parameters for all
N components. By doing this we get an inhomogeneous wavepacket, formally
defined as:

Definition 14 (Inhomogeneous vectorial wavepacket).

|Ψ〉 := Ψ [Π0, . . . ,ΠN−1] (x, t) =

 Φ0 [Π0] (x, t)
...

ΦN−1 [ΠN−1] (x, t)

 (3.62)

where Πi 6= Πj is possible.

In some applications, for example the spawning approach applied to tunneling
[6] and the non-adiabatic case [3], it perfectly makes sense to expand every
component into a different basis of L2

(
RD
)
. And since each basis φk is essentially

fully determined by the parameter set Π of its basis functions φk, this results in
different parameter sets Πi for each component Φi.
For some computations we find a more explicit representation of Ψ to be of greater
use. The above definitions can be trivially rewritten as follows by introducing
the unit vectors ej of the canonical basis of RN . In the homogeneous case we
get:

Ψ [Π] (x, t) =

N−1∑
n=0

enΦn [Π] (x, t) (3.63)
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and in the inhomogeneous one:

Ψ [Π0, . . . ,ΠN−1] (x, t) =

N−1∑
n=0

enΦn [Πn] (x, t) . (3.64)

We should also note that each component can have an individual basis shape Kn.
But from now on we will not mention this too often but implicitly assume that
each scalar wavepacket uses the currently best basis shape whatever that means.

3.8 Gradient computation

In this section we want to compute the gradient of a scalar wavepacket Φ. More
precisely we find the result of the operator application −iε2∇Φ. From now on
we define the short hand notation y := −iε2∇. We would like to have an explicit
representation of y. Of course it includes just the ordinary gradient differential
operator. But we need a more involved representation allowing us to easily
compute the application of y to a wavepacket of the form given in (3.46). Luckily
there is a term of precisely the form of y included in the definition of the ladder
operators in equation (3.29). We proceed by solving the linear system consisting
of the two operator definitions of L and R for y. We begin by transforming the
definition of R as follows (with the usual definition of θ):

R =
i√
2ε2

(
PH(x− q)−QH(y − p)

)
R = θPH(x− q)− θQH(y − p)

θQH(y − p) = −R+ θPH(x− q)

QH(y − p) = −1

θ
R+ PH(x− q) .

Before we proceed in solving this for y we transform the definition of L such
that we can replace the term (x− q):

L = −θPT(x− q) + θQT(y − p)
θPT(x− q) = −L+ θQT(y − p)

PT(x− q) = −1

θ
L+ QT(y − p)

x− q = −1

θ
P-TL+ P-TQT(y − p) .

Then we can plug this into the above equation:
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QH(y − p) = −1

θ
R+ PH

(
−1

θ
P-TL+ P-TQT(y − p)

)
QH(y − p) = −1

θ
R+−1

θ
PHP-TL+ PHP-TQT(y − p)

QHy −QHp = −1

θ
R− 1

θ
PHP-TL+ PHP-TQTy −PHP-TQTp

QHy −PHP-TQTy = −1

θ
R− 1

θ
PHP-TL+ QHp−PHP-TQTp(

QH −PHP-TQT
)︸ ︷︷ ︸

∗∗

y = −1

θ
R− 1

θ
PHP-TL+

(
QH −PHP-TQT

)
p .

Our next task is the computation of the subexpression ∗∗. For this we start
again with the basis relations from (3.11). For the first one we get:

QHP−PHQ = 2i1

QH −PHQP−1 = 2iP−1

and from the second one:

PTQ−QTP = 0

Q−P-TQTP = 0

Q = P-TQTP .

Combining these two results (replacing the second Q) we obtain:

QH −PHP-TQTPP−1 = 2iP−1

QH −PHP-TQT = 2iP−1 .

This last line can then be used as a substitution for ∗∗ above:

2iP−1y = −1

θ
R− 1

θ
PHP-TL+ 2iP−1p

P−1y = − 1

2iθ
R− 1

2iθ
PHP-TL+ P−1p

y = − 1

2iθ
PR− 1

2iθ
PPHP-TL+ p .

Finally cleaning up and undoing the introduction of θ we arrive at:

y =

√
ε2

2

(
PR+ PL

)
+ p . (3.65)

If we had begun by using the operators L and R in the opposite order we would
have got the complex conjugate equation:

y =

√
ε2

2

(
PL+ PR

)
+ p . (3.66)
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We can simplify the matrix product PPHP-T to obtain P. The reason is the
conditions (3.11) which must be fulfilled by P and Q, see [8].

3.8.1 Applying the gradient operator

With this explicit representation of the y operator in terms of raising and lowering
operators we can now study its application to an arbitrary basis function φk. In
the end we then need to apply y to the whole scalar wavepacket Φ in order to
find its kinetic energy.
What do we have to expect when applying y to a basis function φk? First, we
know that the gradient is defined as usual as:

∇x :=


∂
∂x0

...
∂

∂xD−1

 .

Hence we have to expect that the gradient applied to φk : RD → C is a vector
with D components. Next we conclude from (3.28) that the ladder operators
applied to a function give another vector of same shape. We wish to compute:

yφk(x) =

√
ε2

2

(
PR+ PL

)
φk(x) + pφk(x)

and if we carry out the application of the ladder operators we get step by step
the following relation for the gradient of a single basis function:

yφk(x) =

√
ε2

2

P

 R0

...
RD−1

+ P

 L0

...
LD−1


φk(x) + pφk(x)

where we apply the ladder operators now:

yφk(x) =

√
ε2

2

P


√
k0 + 1φk+e0

...√
kD−1 + 1φk+eD−1

+ P


√
k0φk−e0

...√
kD−1φk−eD−1


+ pφk .

(3.67)
This is just for one single basis function. But we need more. Thus we compute
the gradient of a whole scalar wavepacket Φ =

∑
k∈K ckφk:

yΦ =
∑
k∈K

y ckφk =
∑
k∈K

ck yφk

For a shorter notation we define the following variables:
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θ :=

√
ε2

2

α(φk) :=


√
k0 + 1φk+e0

...√
kD−1 + 1φk+eD−1



β(φk) :=


√
k0φk−e0

...√
kD−1φk−eD−1

 .

Continuing we derive:

=
∑
k∈K

(
ckpφk + θckPα(φk) + θckPβ(φk)

)
=
∑
k∈K

ckpφk +
∑
k∈K

θckPα(φk) +
∑
k∈K

θckPβ(φk) .

It becomes obvious that yφk has contributions from all neighbours φk+ed and
φk−ed for all d ∈ [0, . . . , D−1] and from φk. This immediately raises the question
of an efficient computation. In the end we will need yφk for all k ∈ K. Since there
are ladder operators involved we have to be careful for all k on the border of K
who don’t have a full set of neighbours in all directions d. For each neighbour
k ± ed that is not part of the basis shape K we have to decide what to do. And
the rules are as follows.
If the vector k−ed has negative components, then we can take the corresponding
basis function to be equivalent zero. We call this situation an underflow 2.
The other case is more involved. The functions φk clearly never vanish identically
zero. However we only have finite linear combinations Φ of basis functions φk.
Hence all coefficients for sufficiently large k vanish. And finally we are only
interested in the new coefficients c′ik of each component i of the gradient yφk.
For this reason we can also insert zeros in the case such an overflow occurs. For
an example of the situation and the issues that may arise refer to figure 3.21.
Before we continue let’s make a not so small but very simple example. Assume
the hypercubic basis shape in two dimensions is K = K = (3, 3). The wavepacket
consists of the following linear combination:

Φ := c0,0φ0,0 + c1,0φ1,0 + c2,0φ2,0

+ c0,1φ0,1 + c1,1φ1,1 + c2,1φ2,1

+ c0,2φ0,2 + c1,2φ1,2 + c2,2φ2,2 .

Computing the gradients individually for some of the terms we get:

2 This has nothing to do with the usual arithmetic over/underflow. It just serves as a
notation of where we access elements outside of our basis shape K.
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Figure 3.21: Stencil application for computing the gradient yφk for different k in
two dimensions. For each computation we need the function itself (grey circles),
the backward neighbours φk−ed (blue contours) and the forward neighbours
φk+ed (orange contours). Clearly we need additional functions outside of the
basis shape K (black rectangle). In all corners and along all sides we under- and
overflow respectively.

Multi-index node Gradient

k = (0, 0) c0,0 pφ0,0 + θc0,0 P

(√
1φ1,0√
1φ0,1

)
+ θc0,0 P

(√
0φ−1,0√
0φ0,−1

)
k = (1, 0) c1,0 pφ1,0 + θc1,0 P

(√
2φ2,0√
1φ1,1

)
+ θc1,0 P

( √
1φ0,0√

0φ1,−1

)
k = (0, 1) c0,1 pφ0,1 + θc0,1 P

(√
1φ1,1√
2φ0,2

)
+ θc0,1 P

(√
0φ−1,1√
1φ0,0

)
k = (1, 1) c1,1 pφ1,1 + θc1,1 P

(√
2φ2,1√
2φ1,2

)
+ θc1,1 P

(√
1φ0,1√
1φ1,0

)
k = (2, 1) c2,1 pφ2,1 + θc2,1 P

(√
3φ3,1√
2φ2,2

)
+ θc2,1 P

(√
2φ1,1√
1φ2,0

)
k = (1, 2) c1,2 pφ1,2 + θc1,2 P

(√
2φ2,2√
3φ1,3

)
+ θc1,2 P

(√
1φ0,2√
2φ1,1

)
... . . .

and we would sum up all these terms to get the overall gradient of Φ. In this
form however it is not of much use to us. We want to represent the gradient
again as linear combinations over the same set of basis functions:

yΦ =
∑
k∈K

c′kφk (3.68)

where c′k ∈ CD and K is the extended basis shape (in case of our example

K = K ′ = (4, 4)). This is indeed possible, expanding the fourth row from the
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table above in instances of φk and summing up we get:

c1,1 pφ1,1 + θc1,1
√

2 P:,0φ2,1 + θc1,1
√

2 P:,1φ1,2 + θc1,1 P:,0φ0,1 + θc1,1 P:,1φ1,0 .

In finding the coefficient c1,1 of φ1,1 we have to be very careful, because there
are further terms on up to 4 other rows that contribute to c1,1. (Note that this
coefficient is a good example as its lattice node has a full set of 4 neighbours.)
Summing up all relevant terms we find that:

c′1,1 = c1,1 p+ θc0,1 P:,0 .+ θc1,0 P:,1 + θc2,1
√

2 P:,0 + θc1,2
√

2 P:,1 .

The last four terms can be recombined into one per pair and we end up with:

c′1,1 = c1,1 p+ θP

(
c0,1
c1,0

)
+ θP

(√
2 c2,1√
2 c1,2

)
Doing these transformations in a systematic way is the major issue in computing
the gradients. With a bit of guessing we can find the following general rule for
the coefficient vectors c′k for all k ∈ K:

c′k = ck p+

√
ε2

2

D−1∑
d=0

ck+ed

√
kd + 1 P:,d +

√
ε2

2

D−1∑
d=0

ck−ed
√
kd P:,d

which again can be cast in compact form:

c′k = ck p+

√
ε2

2

P

 ck+e0
√
k0 + 1

...
ck+eD−1

√
kD−1 + 1

+ P

 ck−e0
√
k0

...
ck−eD−1

√
kD−1


 .

(3.69)

3.8.2 Gather-type algorithm

The most simple algorithm to compute yφk for all k ∈ K has to iterate over all

k ∈ K and apply the two stencils to get the data from backward and forward
neighbours of k and to compute yφk by the formula (3.69). This is simple to
understand and works reasonably efficient. We call this algorithm the gather-type
stencil application.
The only not so easy point here is that we can not iterate just over K but have to
extend the basis shape due to the nature of the neighbourhood stencil. In more
detail, this is necessary as there are k′ /∈ K for which the above formula (3.69)
still yields a non-zero result since the stencil centred at k′ still overlaps with the
basis shape K. And we do not want to loose these contributions. Therefore we
extend the basis shape K by one node in all directions and get what we denote
by K. This should be clear by looking at figure 3.21.
In one single space dimension x the gradient equals the derivative and the result
is not a vector of functions but just a function too. Therefore it is easier to
understand the gradient computation for one-dimensional wavepackets Φ(x)
first. The whole process of the gather-type algorithm is shown in figure 3.22 in
considerable detail.
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φk

φk

ck

c′k

Figure 3.22: The gather-type stencil application for computing the gradient
yΦ. The upper two arrays show the initial linear combination Φ consisting of
basis functions φk and coefficients ck. The lower two arrays show the linear
combination of dΦ

dx consisting of the same basis functions φk and new coefficients
c′k. Each of the triple arrows is one single stencil application (formula (3.69)),
not all applications are shown. We see that the basis shape K for the gradient is
larger. And also that we access several elements not part of the original basis
shape K. During the computation we insert the zeros on the fly and we drop the
coefficient c′−1 (because φ−1 ≡ 0). The original basis shape K is represented by
the black rectangle and the actual basis shapes are shown shaded grey.

The next figure 3.23 shows the same algorithm but this time for a two-dimensional
wavepacket. It should now be clear what happens. The principle is the same for
an arbitrary number D of space dimensions and arbitrary basis shapes K.
The general procedure for D dimensions is shown in listing (8).

3.8.3 Scatter-type algorithm

An improved version of the algorithm for computing gradient coefficients ck can
be obtained if we use formula (3.67). And instead of iteration over the extended
basis shape K we iterate over the original shape K. We use the formula mentioned
and split it into its three parts. Each part is then used independently inside the
algorithm. The main point is that we do not compute ck at once but assemble
it from these three pieces. For each k ∈ K we compute the contributions to the
coefficients ck±ed of (3.68) for all d ∈ [0, . . . , D − 1] independently.
The scatter-type algorithm is shown in figure 3.24 for D = 1 and in figure 3.25
for D = 2. The generic procedure is shown in algorithm 9.
Maybe we should make a little test run of this algorithm by hand to show how
it works. The best way to understand it is to set up a little table. We work in
D = 1 dimension to make things easier but the principle exactly applies also to
any higher dimensional case.
Each row results from the application of formula (3.67) to a single function φk.
We then arrange the terms depending on which c′k′ they belong to and write
the result into the correct column k′. After we finished all the rows we can sum
along the column k′ to get the full coefficient c′k′ .

In the following three tables we strip the common factor of
√

ε2

2 from all off-

diagonal entries. Additionally each row k should be multiplied by ck.
Note that the two extra columns with captions k = −1 and k = |K| are not part
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ck,l

c′k,l

Figure 3.23: The gather-type stencil application for computing the gradient yΦ.
The upper array (plane) shows the coefficients ck of the initial linear combination
Φ(x). The lower array (plane) shows the coefficients c′k of the linear combination

of ∇Φ(x) where each square is not a single number but stands for a whole
vector. Each arrow bundle is one single stencil application (formula (3.69)), not
all applications are shown. The original basis shape K is given by the black
rectangle. We then see that the basis shape K for the gradient is larger by one
square on each side. (But we again drop all coefficients with negative indices.)
The orange stencil shows that we sometimes have to access elements (coefficients)
that are not part of the original linear combination. We can safely insert zeros
there. The green stencil application shows that formula (3.69) produces (in
general) non-zero values for indices k /∈ K. Therefore we need to extend the basis
shape where the whole lower plane stands for K.
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Algorithm 8 Compute the gradient yΦ by gather-type stencil application

Require: Scalar wavepacket Φ in D space dimensions
Require: Basis shape K (including linearisation mapping µK) of Φ
Require: Parameters Π and coefficients {ck} of Φ

// Extend the basis shape K
K := extend basis shape(K)
// Storage space for the result

c′ = 0 ∈ CD×|K|
// Iterate over extended basis
for k ∈ K do

// Central node
if k ∈ K then
cc = ck

else
cc = 0

end if
// Backward neighbours
cb = 0 ∈ CD
for d = 0 to d = D − 1 do
k′ = k − ed
if k′ ∈ K then
cb[d] =

√
k[d] ck′

end if
end for
// Forward neighbours
cf = 0 ∈ CD
for d = 0 to d = D − 1 do
k′ = k + ed

if k′ ∈ K then
cf[d] =

√
k[d] + 1 ck′

end if
end for
// Compute (3.69)

c′[:, µK(k)] =
√

ε2

2

(
Pcf + Pcb

)
+ ccp

end for
return K and c′
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−1 0 1 2 3 4 . . .

yφ0 P
√

0 p P
√

1

yφ1 P
√

1 p P
√

2

yφ2 P
√

2 p P
√

3

yφ3 P
√

3 p P
√

4
...

. . .
. . .

. . .

Table 3.1: First few functions yφ0, yφ1 and so on.

. . . k − 1 k k + 1 . . .
...

. . .
. . .

. . .

yφk P
√
k p P

√
k + 1

...
. . .

. . .
. . .

Table 3.2: General case yφk.

of the original basis set anymore.

3.8.4 An example

As an example we take a wavepacket |Ψ〉 in two space dimensions with the
following parameter set Π = {0, 0,1, i1} and ε = 0.6. The coefficients are set to
the values printed in the next table.

k ck
(0, 0) 0.5
(0, 1) 0.5
(1, 1) 0.5
(2, 1) 0.5

A plot of the wavepacket evaluated on a small region of position space is shown
in figure 3.26.
Next we compute the gradient −iε∇Ψ by one of the above methods. For the
new coefficients ck we get the values (only non-zero ones) shown in the next
table. The two components of the gradient are plotted in figure 3.27.

. . . |K| − 3 |K| − 3 |K| − 2 |K| − 1 |K|
...

. . .
. . .

. . .

yφ|K|−3 P
√
|K| − 3 p P

√
|K| − 2

yφ|K|−2 P
√
|K| − 2 p P

√
|K| − 1

yφ|K|−1 P
√
|K| − 1 p P

√
|K|

Table 3.3: Highest order functions.
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Figure 3.24: The scatter-type stencil application for computing the gradient
yΦ. The upper two arrays show the initial linear combination Φ consisting of
basis functions φk and coefficients ck. The lower two arrays show the linear
combination of dΦ

dx consisting of the same basis functions φk and new coefficients
c′k. Each of the triple arrows represents the computation for a fixed k ∈ K
(formula (3.67)), not all computations are shown. We see that the basis shape
K for the gradient has to be larger. And also that we write to several elements
not part of the original basis shape K. We drop the coefficient c′−1 (because
φ−1 ≡ 0). The original basis shape K is represented by the black rectangle and
the actual basis shapes are shown shaded grey.

ck,l

c′k,l

Figure 3.25: The scatter-type stencil application for computing the gradient yΦ.
The upper array (plane) shows the coefficients ck of the initial linear combination
Φ(x). The lower array (plane) shows the coefficients c′k of the linear combination

of ∇Φ(x) where each square is not a single number but stands for a whole vector.
Each arrow bundle represents the computation for a fixed k ∈ K (formula (3.67)),
not all computations are shown. The original basis shape K is given by the
black rectangle. We then see that the basis shape K for the gradient is larger
by one square on each side. (But we again drop all coefficients with negative
index.) The orange stencil shows that we sometimes have to write to elements
(coefficients) that are not part of the original basis shape. Therefore we need to
extend the basis shape where the whole lower plane stands for K.
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Algorithm 9 Compute the gradient yΦ by scatter-type stencil application

Require: Scalar wavepacket Φ in D space dimensions
Require: Basis shape K (including linearisation mapping µK) of Φ
Require: Parameters Π and coefficients {ck} of Φ

// Extend the basis shape K
K := extend basis shape(K)
// Storage space for the result

c′ = 0 ∈ CD×|K|
// Iterate over original basis shape
for k ∈ K do

// Central node
c′[:, µK(k)] = c′[:, µK(k)] + ck p
// Backward neighbours
for d = 0 to d = D − 1 do
k′ = k − ed
if k′ ∈ K then

c′[:, µK(k′)] = c′[:, µK(k′)] +
√

ε2

2

√
k[d] ck P[:, d]

end if
end for
// Forward neighbours
for d = 0 to d = D − 1 do
k′ = k + ed

if k′ ∈ K then

c′[:, µK(k′)] = c′[:, µK(k′)] +
√

ε2

2

√
k[d] + 1 ck P[:, d]

end if
end for

end for
return K and c′
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Figure 3.26: The wavepacket |Ψ〉.
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Figure 3.27: The x0 (left) and x1 (right) components of the gradient −iε∇Ψ.
The wavepacket Ψ is indicated by some contour levels just for reference.
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ck

0
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c′k

0

1

Figure 3.28: Coefficients ck of Ψ (left) and ck of −iε∇Ψ (right). Notice also the
different basis sizes |K| of 8 and 15.

k x0 component of ck x1 component of ck
(0, 0) 0 −0.21213203ı
(0, 1) −0.21213203ı 0.21213203ı
(1, 0) 0.21213203ı −0.21213203ı
(1, 1) −0.08786797ı 0
(2, 0) 0 −0.21213203ı
(2, 1) 0.3ı 0
(3, 1) 0.36742346ı 0
(0, 2) 0 0.3ı
(1, 2) 0 0.3ı
(2, 2) 0 0.3ı

Finally, figure 3.28 shows again the coefficients of both, the original wavepacket
and the two components of its gradient.
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Chapter 4

Observables and Inner
Products

In this chapter we develop the machinery necessary to get information out of
the wavepackets whose time-evolution we will simulate. An essential part is the
computation of several types of brakets. This will be done numerically by a
special, high-order quadrature rule.

4.1 Observables in general

To compute any observable O we have to form the full braket:

O =
〈

Ψ
∣∣∣ Ô ∣∣∣Ψ〉 (4.1)

which boils down to a multi-dimensional integral. We look at the most general
case and seek to compute:

〈Ψ′ | F |Ψ〉 (4.2)

where the operator F is a N × N matrix of scalar functions Fr,c(x). The
wavepackets Ψ and Ψ′ are assumed to be of inhomogeneous type and can have
different parameter sets Π and Π′. The ansatz is:

〈Ψ′ | F |Ψ〉 =

〈 Φ′0
...

Φ′N−1


∣∣∣∣∣∣∣∣


...
· · · Fr,c · · ·

...


∣∣∣∣∣∣∣∣
 Φ0

...
ΦN−1

〉

=

N−1∑
r=0

N−1∑
c=0

〈Φ′r | Fr,c |Φc〉 .

We continue by using the definition (3.46) for the individual components and
resolve:
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〈Φ′r | Fr,c |Φc〉 =

〈∑
k∈K′r

φ′k

∣∣∣∣∣∣Fr,c
∣∣∣∣∣∣
∑
l∈Kc

φl

〉

=
∑
k∈K′r

∑
l∈Kc

〈
φ′k

∣∣∣Fr,c ∣∣∣φl〉
where we left out the global phase as well as the coefficients. The last braket
consists of basis functions only and we know that:〈

φ′k

∣∣∣Fr,c ∣∣∣φl〉 =

∫
· · ·
∫
φ′k(x)Fr,c(x)φl(x)dx .

Hence we make a longer detour and examine the computation of any inner-
product like this one before we return to observables.

4.2 Inner products

4.2.1 Integrals over basis functions

In the following we want to compute inner products of the form 〈φk[Πk] |φl[Πl]〉
with just an identity in place of Fr,c from above. We abuse the notation here. The
indices k and l are not multi-indices and do not index the φ in the corresponding
basis set. They are solely used to discriminate between the bra and the ket, to
make clear which function φ and parameter set Π we speak of. There is no useful
closed form solution to this integral and we have to compute it numerically by
using quadrature. For the derivation of the quadrature formulae we work with
the ground states only and hence φk = φ′0 and φl = φ0.

4.2.2 Quadrature rules

To compute the integral shown in the last section we use a Gauss-Hermite
quadrature rule of very high order. The properties of this quadrature rule make
it well-suited for our purpose. The quadrature rule ρ consists of nodes γ and
weights ω. In the case of Gauss-Hermite quadrature these values are built to
integrate f(x) in: ∫

R
e−x

2

f(x)dx ≈
R−1∑
i=0

ωif(γi) . (4.3)

For a quadrature of order R the nodes {γi}R−1
i=0 are then given as the roots of

the Hermite polynomial HR(x):

HR(x) = (−1)Rex
2 dR

dxR
e−x

2

.

Of course we do not compute the nodes by finding the roots of these polynomials
as this is inherently unstable. The quadrature weights are then given by:

ωi =
2R−1R!

√
π

R2H2
R−1(γi)

.

67



Since our integrals are not of the form (4.3) but instead we have:∫
R
g(x)dx (4.4)

where the exp(−x2) is built into the function g(x) such that g(x) = exp(−x2)f(x),
we have to alter the ansatz. We can not divide by exp(−x2) without getting
major numerical instabilities. But we can modify our quadrature weights to take
that factor into account. We define new quadrature weights ω′i as:

ω′i :=
1

Rh2
R(γi)

where hR are the Hermite functions defined as:

hR(x) :=
1√

2RR!
√
π
e−x

2/2HR(x) .

We can evaluate the Hermite function for any point x by a stable, recursive
scheme. Finally the quadrature rule ρ in use is given by:

ρ := {(γi, ω′i)}
R−1
i=0 (4.5)

for one space dimension. In higher dimensions we build a quadrature rule ρ by
computing the full tensor product of D one-dimensional quadrature rules ρd:

ρ :=

D−1⊗
d=0

ρd . (4.6)

Using the rules ρd, each of order Rd, we get the D-dimensional rule then denoted
by:

ρ :=
{(
γ
i
, ωi

)}R−1

i=0
(4.7)

with a total number R =
∏D−1
d=0 Rd of quadrature nodes. The quadrature nodes

γ
j
∈ RD are constructed as:

γ
j

:=


γ0
j
0

...

γD−1
j
D−1


with j ∈ [0, R0 − 1]× · · · × [0, RD−1 − 1] a multi-index. Each of the γd belongs
to the one-dimensional rule ρd. For the weights ωi of ρ we have:

ωj :=

D−1∏
d=0

ωdj
d

and again ωd is part of ρd. Figure 4.1 shows a typical two-dimensional quadrature
rule.
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Figure 4.1: Plot of the nodes γ
i

and weights ωi of a two-dimensional quadrature
rule ρ. The rule is build from two one-dimensional rules of order 24 and 32.

4.2.3 Adapting the quadrature

Since the basis functions are parametrised we have to adapt the quadrature rule
{γi, ωi}i to fit best the given situation depending on the sets Πk and Πl. If both
functions in the bra and the ket are members of the same family with Πk ≡ Πl

the process is much easier and we will do this case first. But we will need also
the more general case where Πk 6= Πl later. The purpose of this subsection is to
find a transformation rule for the quadrature nodes γi to suit the wavepacket’s
basis best. The final rule will be an affine transformation like:

γi
′ = v + Aγi (4.8)

where the quadrature node γi ∈ RD, the offset vector v ∈ RD and the transfor-

mation matrix A ∈ RD×D.

4.2.4 The homogeneous case

We first threat the homogeneous case of the overlap integral. This case is much
easier as we assume that we have the same wavepacket in the bra as well as in
the ket. Hence the inner-product simplifies to 〈φ |φ〉 and we have the same set
Π of Hagedorn Parameters. This makes combining the two exponential terms
from the definition (3.13) into a single one of the same form much easier.
We concentrate on the exponential parts which dominate the overall shape of the
basis functions and we are interested in the quadratic term only. Essentially we
only need to know where the peak of the Gaussian is and how big the spread is.
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〈φ |φ〉 =

exp

(
i

2ε2

〈(
x− q

)
,PQ−1

(
x− q

)〉
+

i

ε2

〈
p,
(
x− q

)〉
+

i

2ε2

〈(
x− q

)
,PQ−1

(
x− q

)〉
+

i

ε2

〈
p,
(
x− q

)〉)

= exp

(
−i
2ε2

〈(
x− q

)
,PQ−1

(
x− q

)〉
+
−i
ε2

〈
p,
(
x− q

)〉
+

i

2ε2

〈(
x− q

)
,PQ−1

(
x− q

)〉
+

i

ε2

〈
p,
(
x− q

)〉)

= exp

(
−i
2ε2

〈
PQ−1

(
x− q

)
,
(
x− q

)〉
+
−i
ε2

〈(
x− q

)
, p
〉

+
i

2ε2

〈(
x− q

)
,PQ−1

(
x− q

)〉
+

i

ε2

〈
p,
(
x− q

)〉)
For the sake of readability we define the matrix:

Γ := PQ−1

and continue. From now on we drop the exponential and work on the exponent
only. (The equal signs have to be understood within this laziness.)

=
i

2ε2

〈(
x− q

)
,Γ
(
x− q

)〉
− i

2ε2

〈
Γ
(
x− q

)
,
(
x− q

)〉
+

i

ε2

〈
p,
(
x− q

)〉
− i

ε2

〈(
x− q

)
, p
〉

=
i

2ε2

(〈(
x− q

)
,Γ
(
x− q

)〉
−
〈
Γ
(
x− q

)
,
(
x− q

)〉)
+

i

ε2

(〈
p,
(
x− q

)〉
−
〈(
x− q

)
, p
〉)

The linear terms vanish as the inner-product is symmetric for entirely real
arguments. We then rearrange and combine the brakets:

=
i

2ε2

(〈(
x− q

)
,Γ
(
x− q

)〉
−
〈(
x− q

)
,ΓH

(
x− q

)〉)
=

i

2ε2

〈(
x− q

)
,
(
Γ− ΓH

) (
x− q

)〉
.

Now we are almost done. The term on the last line is of the same form as the
quadratic one in the definition of |φ〉. Hence we succeeded in combining the
Gaussian exponential parts of two wavepackets into a single one.
The only thing left is to simplify the operator Γ− ΓH but this is not difficult.
Recalling the definition of Γ we get:

Γ− ΓH = PQ−1 −
(
PQ−1

)
H

= PQ−1 −Q-HPH

= PQ−1 −
(
PQ−1

)
H .
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Remembering the second of the two compatibility conditions in (3.11) we get:

QHP−PHQ = 2i1

Q-HQHP−Q-HPHQ = 2iQ-H

PQ−1 −Q-HPHQQ−1 = 2iQ-HQ−1

PQ−1 −Q-HPH = 2iQ-HQ−1

PQ−1 −
(
PQ−1

)
H = 2i

(
QQH

)−1

where we used identities from [16]. Hence:

Γ− ΓH = 2i
(
QQH

)−1 .

We want the combined wavepacket to look like the following (which is motivated
by the reason that this exactly yields a Gaussian with shift q0 and spread Q0):

exp

(
− 1

ε2

〈(
x− q0

)
,Q0

(
x− q0

)〉
+ optional junk

)
(4.9)

where q0 ∈ RD and Q0 ∈ CD×D are the final parameters to determine.
From above we have:

exp

(
i

2ε2

〈(
x− q

)
,
(
Γ− ΓH

) (
x− q

)〉)
= exp

(
i

2ε2

〈(
x− q

)
, 2i
(
QQH

)−1
(
x− q

)〉)
= exp

(
− 1

ε2

〈(
x− q

)
,
(
QQH

)−1
(
x− q

)〉)
.

Therefore we immediately see that we have to set:

q0 = q (4.10)

and:

Q0 =
(
QQH

)−1 (4.11)

Notice that in the limit of D → 1 we retrieve the scalar case presented in [2]
where q0 ∈ R and Q0 ∈ C and:

q0 = q

Q0 =
(
QQ
)−1 =

1

|Q|2 .
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4.2.5 The parameter QS

For the transformation of the quadrature rule {γi, ωi}i the values Q0 and q0 are
not enough. We need a parameter denoted by QS which is in the one-dimensional
case given by:

QS :=
1√
Q0

.

Therefore our next goal is to find a relation which holds in the D-dimensional
case too. We propose in analogy the following formula:

QS :=
(√

Q0

)
−1 (4.12)

But we have to find a way to express the root of a matrix in a suitable way. There
is a way to compute almost any scalar function f (x) for a matrix argument
X. The trick goes by the similarity transform of X and then computing f on
the eigenvalues λi of X. But this method relies on X being diagonalisable and
f being defined on the whole spectrum of X. We will now take a longer but
probably cleaner way which in the end turns out to be not that different.
We are in the homogeneous case and thus Q0 =

(
QQH

)−1. Refining the above
expression step by step we get:

QS :=
(√

Q0

)
−1

=

(√
(QQH)−1

)
−1

=

(√
(QH)−1Q−1

)
−1

=

(√
(Q−1) HQ−1

)
−1 .

If we now define X := Q−1 we get:

QS :=
(√

XHX
)
−1 . (4.13)

For a complex square matrix A one can define the so called polar decomposition
as follows:

A =: UP

where U is unitary and P is a positive-semidefinite Hermitian matrix. The two
factors are given as:

P :=
√

AHA

U := AP−1

with P being unique. When looking at P we recognise the root expression from
above if we take A ≡ X = Q−1. We have shown that we can find the matrix
QS by polar decomposition of Q−1 = UP. With this factorisation we can write:

72



QS = P−1 = QU .

The remaining question is now how to compute this decomposition of Q−1

into U and P. And the answer is quite trivial. One can compute the polar
decomposition of A from its singular value decomposition. We write the singular
value decomposition as:

A =: WΣVH

where W and V are two unitary matrices (which in our case are both of the
same size D×D because we started with a square matrix A) and Σ is a diagonal
matrix. Now we can write the two factors U, P of the polar decomposition of A
as:

P = VΣVH

U = WVH .

We obtain the final result for QS as follows, first we compute the singular value
decomposition of Q−1:

WΣVH := Q−1

then we form P−1 and simplify the result using the fact that V is unitary:

QS = P−1

=
(
VΣVH

)−1

= V-HΣ−1V−1

= VHHΣ−1VH .

At the end of the day we reached our goal and write:

QS := VΣ−1VH

Now we may remember what was mentioned above about computing a function
of a matrix. But instead of the eigenvalue decomposition TΛT−1 of AHA we
used the singular value decomposition. For WΣVH = A recall that Σ =

√
Λ

where Λ is the diagonal matrix which contains the eigenvalues of AHA. So
what we did is essentially the same but with less magic. Also notice that the
transformation matrices V are unitary hence minimising numerical errors.
To justify this formula further we can show that the reduction D → 1 to the
scalar case yields the correct result. In this case Q0 is a 1× 1 matrix as well as
Q. The singular value decomposition WΣVH = A can be computed as:

W := eigenvectors
(
AAH

)
V := eigenvectors

(
AHA

)
Σ :=

√
diagonal (eigenvalues (AAH)) .
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The eigenvector of a 1× 1 matrix is of course just 1 and the eigenvalue equals
the single entry. Therefore we have:

Σ =
√

(QQH)−1 =

√
1

QQ
=

1√
|Q|2

=
1

|Q|

and finally:

QS = Σ−1 = |Q| .
We derived this equation assuming the matrix Q0 from the homogeneous mixing
case and also Q enters in the singular value decomposition. In the inhomogeneous
case however we cannot apply it because we do not know what to feed into the
singular value decomposition. In that case we have to rely on other techniques
of computing the square root of a matrix. Details about the computation of
matrix square roots can be found in [10].

4.2.6 The inhomogeneous case

In this section we do the same derivation as in the last one but now in the fully
generalised case where both wavepackets have different parameter sets Πk and
Πl. We derive the mixing relations for the D dimensional case.

〈φk |φl〉 =

exp

(
i

2ε2

〈(
x− qk

)
,PkQk

−1
(
x− qk

)〉
+

i

ε2

〈
pk,
(
x− qk

)〉
+

i

2ε2

〈(
x− ql

)
,PlQl

−1
(
x− ql

)〉
+

i

ε2

〈
pl,
(
x− ql

)〉)

= exp

(
−i
2ε2

〈(
x− qk

)
,PkQk

−1
(
x− qk

)〉
+
−i
ε2

〈
pk,
(
x− qk

)〉
+

i

2ε2

〈(
x− ql

)
,PlQl

−1
(
x− ql

)〉
+

i

ε2

〈
pl,
(
x− ql

)〉)

= exp

(
−i
2ε2

〈
PkQk

−1
(
x− qk

)
,
(
x− qk

)〉
+
−i
ε2

〈(
x− qk

)
, pk
〉

+
i

2ε2

〈(
x− ql

)
,PlQl

−1
(
x− ql

)〉
+

i

ε2

〈
pl,
(
x− ql

)〉)

Define the two matrices:

Γk := PkQk
−1

Γl := PlQl
−1

and place them in the above expressions. From this line on we only care about
the argument of the exponential:
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=
i

2ε2

〈(
x− ql

)
,Γl

(
x− ql

)〉
− i

2ε2

〈
Γk

(
x− qk

)
,
(
x− qk

)〉
+

i

ε2

〈
pl,
(
x− ql

)〉
− i

ε2

〈(
x− qk

)
, pk
〉

=
i

2ε2

(〈(
x− ql

)
,Γl

(
x− ql

)〉
−
〈
Γk

(
x− qk

)
,
(
x− qk

)〉)
+

i

ε2

(〈
pl,
(
x− ql

)〉
−
〈(
x− qk

)
, pk
〉)
.

This time the linear part won’t vanish and we can not drop it. But we can ignore
it. (Be very attentive while reading the formulae as we will ignore more and
more junk terms that are not helpful for reaching our goal.)

=
i

2ε2

(〈(
x− ql

)
,Γl

(
x− ql

)〉
−
〈(
x− qk

)
,Γk

H
(
x− qk

)〉)

At this stage we can not combine the two inner products as we did in the
homogeneous case. So the only option left is to expand the brakets:

=
i

2ε2

(
〈x,Γlx〉 −

〈
x,Γlql

〉
−
〈
ql,Γlx

〉
+
〈
ql,Γlql

〉
−
〈
x,Γk

Hx
〉

+
〈
x,Γk

Hqk
〉

+
〈
qk,Γk

Hx
〉
−
〈
qk,Γk

Hqk
〉)
.

As a first step towards the goal (4.9) we can combine the two terms that are
quadratic in x.

=
i

2ε2

(〈
x,
(
Γl − Γk

H
)
x
〉

+ junk
)

Notice that when we expand the braket in (4.9) we get one that is quadratic in x
and looks like 〈x,Q0x〉. This is essentially what we wrote on the line above. We
just have to find a way to transform the prefactors. And the way to achieve this
goes by taking the imaginary part and pulling a factor of 1

2 inside the braket:

=
i

2ε2

〈
x,
(
<
(
Γl − Γk

H
)

+ i=
(
Γl − Γk

H
))
x
〉

=
i

2ε2

〈
x,<

(
Γl − Γk

H
)
x
〉

︸ ︷︷ ︸
junk

+
i

2ε2

〈
x, i=

(
Γl − Γk

H
)
x
〉

= − 1

2ε2

〈
x,=

(
Γl − Γk

H
)
x
〉

= − 1

ε2

〈
x,

1

2
=
(
Γl − Γk

H
)
x

〉
where we made use of the sesquilinearity in many steps. From the last line and
when we compare the quadratic term to (4.9) it is obvious that the parameter
Q0 has to be:

Q0 :=
1

2
=
(
Γl − Γk

H
)

(4.14)
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Now we compute the other parameter q0. It turns out that this is more difficult.
We could take a look at the scalar one-dimensional case where the real variable
q0 is of the following form:

q0 :=
=
(
Γlql − Γkqk

)
=
(
Γl − Γk

) .

In the multi-dimensional case however we deal with vectors in RD and matrices
in CD×D thus we have to get rid of the fractions and write proper inverses.
Hence we suggest that in our case the vector q0 should look like:

q0 :=
(
=
(
Γl − Γk

H
))−1=

(
Γlql − Γk

Hqk
)

(4.15)

This expression is also motivated from the fact that qk, ql are (column) vectors
and Γk, Γl and Q0 are square matrices. Hence q0 is a vector as it should be.
It is easy to show that these two formulae reduce to (4.10) and (4.11) when we
choose Γk ≡ Γl. Algorithm 10 implements this general D-dimensional mixing of
two parameter sets Πk and Πl.

Algorithm 10 Mixing two sets Πr and Πc of Hagedorn parameters

Require: Two sets Πr and Πc of Hagedorn parameters
// Apply the mixing formula (4.15) and (4.14) to the parameters
Γr := PrQr

−1

Γc := PcQc
−1

Γ := =
(
Γc − Γr

H
)

g := =
(
Γcqc − Γr

Hqr
)

q0 := Γ−1q

Q0 := 1
2Γ

// Apply the formula (4.12)
QS :=

(√
Q0

)−1

return q0 and QS

4.2.7 Quadrature applied

After we discussed in details the transformation of the quadrature nodes in the
last section we now look at the final quadrature rule. It’s not really difficult,
but it’s good to write down all the details at least once. First we transform the
quadrature nodes by (4.8) giving:

γi
′ = q0 + εQSγi . (4.16)

Then we carry out the quadrature for computing the braket:

〈φk | f |φl〉 ≈ εD · | det(QS)| ·
R−1∑
r=0

φk
(
γr ′
)
· f
(
γr
′) · φl (γr ′) · ωr (4.17)

where the two φ in general belong to the different families. But if they really
have the same parameter set Π then we can simplify this formula slightly. The
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trick is that we omit a prefactor of 1√
det(Q)

when evaluating φ
(
γr
′). Because we

have two times this evaluation both prefactors accumulate to 1
det(Q) . In the case

of a single family we have1 det(QS) = |det(Q)| hence the |det(QS)| outside the
sum cancels nicely with these prefactors. And the above formula becomes:

〈φ | f |φ〉 ≈ εD ·
R−1∑
r=0

φ
(
γr ′
)
· f
(
γr
′) · φ (γr ′) · ωr (4.18)

4.3 Matrix elements

Given a scalar function f(x) and two sets
{
φk
}
k∈K and

{
φ′l

}
l∈K′

of basis

functions. These functions depend as usual on their parameter sets like φ [Π]
and φ [Π′]. In the general case both parameter sets will be different. We now
try to compute matrix elements like this one:

FµK(k),µK′ (l)
:=
〈
φk [Π]

∣∣ f ∣∣φl [Π′]〉 . (4.19)

We assumed that k ∈ K and l ∈ K′. The matrix F we can build out of these
elements is of the following form:

F :=


...

· · ·
〈
φk [Π]

∣∣ f ∣∣φl [Π′]〉 · · ·
...

 (4.20)

and has size |K| × |K′|. The order of the entries is given by the linearisation
mappings µK and µK′ .
A generalisation of this algorithm is given in chapter 5 by algorithms 14 and 16.
The basic principle is the same. Instead of a scalar function f we have a matrix
F full of scalar functions fr,c. The packets are then vector-valued wavepackets
of homogeneous or inhomogeneous kind. Their number of components obviously
has to match the shape of F .
The matrix F is also used to compute the braket 〈Φ | f |Φ′〉 efficiently as shown
in algorithm 12.

1 This is in principle a simple but not necessarily obvious computation. We use several
fundamental properties of the determinant.

det (Qs) = det
((√

Q0

)
−1
)

=
1

det
(√

Q0

) =
1

det
(√

(QQH) −1
) =

1√
det ((QQH) −1)

=
1√
1

det(QQH)

=
1√
1

detQ detQH

=
√

detQ detQH =

√
detQdetQ

Let detQ be a complex number z. Then we get:√
detQdetQ =

√
zz =

√
|z|2 = |z| = |detQ|

When taking square roots one has to take into account branch cuts of the complex plane.
This is exactly the reason why we try hard to circumvent this computation at all by omitting
the prefactor 1

detQ
when evaluating the functions φ.
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Algorithm 11 Build the matrix F of matrix elements of f

Require: Two sets Φ :=
{
φk
}
k∈K and Φ′ :=

{
φ′l

}
l∈K′

of basis functions

Require: The parameter sets Π and Π′

Require: The basis shapes K and K′

Require: A scalar-valued function f(x)
Require: A quadrature rule (γ

j
, ωj) with R node-weight pairs

// Initialise F as the zero-matrix
F ∈ C|K|×|K′|, F := 0
// Apply the mixing formula from procedure 10 to the parameters
q0,QS := mix parameters(Π,Π′)
// Transform the quadrature nodes according to (4.16)
γ′
j

= q0 + εQS γj j = 0, . . . R− 1

// Evaluate the basis functions of both Φ with algorithm 7

B := evaluate basis at[Φ]
((
γ′

0
, . . . , γ′

R−1

))
B′ := evaluate basis at[Φ′]

((
γ′

0
, . . . , γ′

R−1

))
// Evaluate the function f for all quadrature nodes γ

j

(v0, . . . , vR−1) := f
((
γ′

0
, . . . , γ′

R−1

))
// Iterate over all R quadrature pairs

(
γ′
j
, ωj

)
for j = 0 to j = R− 1 do

F := F + εD vj ωj B[:, j]B′[:, j]T

end for
return F

Algorithm 12 Efficient computation of 〈Φ | f |Φ′〉
Require: Two scalar wavepackets Φ and Φ′

Require: The basis shapes K and K′ with corresponding mappings µ
Require: The scalar function f (x)

// Build the matrix F by algorithm 11
F := build block matrix(Φ,Φ′, f)
// Stack the coefficients {ck}k∈K and {c′l}l∈K′ into vectors

c :=
(
cµK(0) · · · cµK(k) · · ·

)
T

c′ :=
(
c′µ′K(0) · · · c′µ′K(l) · · ·

)
T

// Multiply by the coefficient vectors
I := cHFc′

// In case Π 6= Π′ add the global phase
π := exp

(
i
ε2

(
S′ − S

))
return π I
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Figure 4.2: The plots show the matrices F consisting of the matrix ele-
ments

〈
φk
∣∣V ∣∣φl〉 for V = 1

2x
2 (left), V = 1

2

(
x2 + y2

)
(middle) and V =

1
2

(
x2 + y2 + z2

)
(right). For an explanation of the colours, see appendix B.

Figure 4.3: The plots show the matrices F consisting of the matrix elements〈
φk
∣∣V ∣∣φl〉 for V = 1

2x
2 (left), V = 1

2y
2 (middle) and V = 1

2z
2 (right). For an

explanation of the colours, see appendix B.

Concluding this section we make an artificial example. Assume we have a
wavepacket |Ψ〉 with one single component Φ. Set the parameters to:

q =

 3.5
−6.5
1.2

 p =

−0.5
−2
3.4

 Q = 1 P = i1 S = 0

and take ε = 0.9. We use a 3 × 3 × 3 hypercubic basis shape K and set
c1,2,0 = 1 and all other coefficients to zero. Next we compute matrix elements
Fµ(k),µ(l) =

〈
φk
∣∣ f ∣∣φk〉 for k, l ∈ K by algorithm 11 (or one of the algorithms

14 or 16). The results for different functions f are shown in figure 4.2 and 4.3.
The block structures in the plots are due to the linearisation mapping µK and
the dependence of V on the variables x, y and z.

4.4 Computing norms of wavepackets

In the following we want to compute the norm of a wavepacket |Ψ〉. This is the
most simple observable or braket where the operator in between the bra and the
ket is just an identity. We start with:
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‖Ψ‖2L2 = 〈Ψ |Ψ〉

=

N−1∑
i=0

〈Φi |Φi〉

=

N−1∑
i=0

‖Φi‖2L2 .

Obviously the squared norm of the vector valued wavepacket is the sum of the
squared norms of its components. This is a pattern we will find several times
more when computing observables. In the general case however, the components
may get mixed up by the operator in the middle. Let’s continue with calculating
the norms of an individual component which can be considered as a scalar
wavepacket. Therefore we also drop the index i from above.

〈Φ[Π] |Φ[Π]〉 =

〈
exp

(
iS

ε2

)∑
k∈K

ckφk[Π](x)

∣∣∣∣∣∣ exp

(
iS

ε2

)∑
l∈K

clφl[Π](x)

〉

= exp

(−iS
ε2

)
exp

(
iS

ε2

)〈∑
k∈K

ckφk[Π](x)

∣∣∣∣∣∣
∑
l∈K

clφl[Π](x)

〉

The global phase cancels here and we get:

=
∑
k∈K

ck
∑
l∈K

cl
〈
φk[Π](x)

∣∣φl[Π](x)
〉
.

Now we can exploit the orthonormality condition
〈
φk
∣∣φl〉 = δk,l of the basis

functions and arrive at:

‖Φ‖2L2 = 〈Φ[Π] |Φ[Π]〉 =
∑
k∈K

ckck =
∑
k∈K
|ck|2 . (4.21)

4.5 Computing overlap integrals of wavepackets

If we wanted to compute overlap integrals between scalar wavepackets, then the
procedure is very similar but allows for less simplifications. Notice that now the
parameter set Π of Φ[Π] can be and in general will be different. To distinguish
them we use Π and Π′.

〈Φ[Π] |Φ′[Π′]〉 =

〈
exp

(
iS

ε2

)∑
k∈K

ckφk[Π](x)

∣∣∣∣∣∣ exp

(
iS′

ε2

)∑
l∈K′

c′lφl[Π
′](x)

〉

= exp

(−iS
ε2

)
exp

(
iS′

ε2

)〈∑
k∈K

ckφk[Π](x)

∣∣∣∣∣∣
∑
l∈K′

c′lφl[Π
′](x)

〉
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The global phase does not cancel here and we get:

= exp

(−iS
ε2

)
exp

(
iS′

ε2

)∑
k∈K

ck
∑
l∈K′

c′l
〈
φk[Π](x)

∣∣φl[Π′](x)
〉
.

At the end of the day we get the following formula for the overlap of two scalar
wavepackets:

〈Φ[Π] |Φ′[Π′]〉 = exp

(
i

ε2
(S′ − S)

)∑
k∈K

∑
l∈K′

ckc
′
l

〈
φk[Π]

∣∣φl[Π′]〉 . (4.22)

This is the most general formula for overlap integrals (which includes computation
of norms). We allowed for different Hagedorn parameter sets Π and Π′ as well
as different basis shapes K and K′. Hereby we conclude this section and continue
with the computation of energies in the next one.

4.6 Computing energies of wavepackets

To compute the energies of a wavepacket we start with the full Hamiltonian
H = T + V(x). Then the total energy of |Ψ〉 is given by:

Etotal = 〈Ψ |H |Ψ〉 . (4.23)

Next we split this braket into the kinetic energy and the potential energy
contribution:

Etotal = 〈Ψ |H |Ψ〉 = 〈Ψ |T |Ψ〉+ 〈Ψ |V(x) |Ψ〉 = Ekinetic + Epotential .

4.6.1 Potential energy

We start by computing the potential energy explicitly. Recall the definition of
the potential given in equation (1.1). Plugging this matrix V(x) into the braket
above we get:

Epotential = 〈Ψ |V(x) |Ψ〉

=

〈 Φ0(x)
...

ΦN−1(x)


∣∣∣∣∣∣∣
 v0,0(x) · · · v0,N−1(x)

...
...

vN−1,0(x) · · · vN−1,N−1(x)


 Φ0(x)

...
ΦN−1(x)

〉

=

〈 Φ0(x)
...

ΦN−1(x)


∣∣∣∣∣∣∣

∑N−1
i=0 v0,i(x)Φi(x)

...∑N−1
i=0 vN−1,i(x)Φi(x)

〉

=

N−1∑
j=0

N−1∑
i=0

〈Φj(x) | vj,i(x)Φi(x)〉

where we expressed the potential energy of the vector-valued wavepacket |Ψ〉 by
a sum of potential energies of its components Φi. This is a first step towards
our goal.

81



If we want to compute the potential energy of the wavepacket on each energy
surface λ(x) then we have to do the calculation in the eigenbasis shown in
equation (1.2). Because the matrix is diagonal now we can obtain a simplified
version of the double sum above:

Epotential = 〈Ψ |Λ(x) |Ψ〉

=

N−1∑
i=0

〈Φi(x) |λi(x)Φi(x)〉 (4.24)

where the braket 〈Φi(x) |λi(x)Φi(x)〉 on the last line is the potential energy
of the part Φi of |Ψ〉 residing on the energy surface λi(x). Of course we need
to transform the wavepacket |Ψ〉 to the eigenbasis before we can apply the
above formula. How to do this is shown in section 4.7. The integral is then
approximated by a high-order quadrature as shown at the beginning of this
chapter.

4.6.2 Kinetic energy

From the chapter 2 we know that the kinetic operator T is block-diagonal and
does not couple the different components of Ψ. Hence we find that:

Ekinetic = 〈Ψ |T |Ψ〉 =

〈 Φ0(x)
...

ΦN−1(x)


∣∣∣∣∣∣∣
T 0

. . .

0 T


 Φ0(x)

...
ΦN−1(x)

〉

=

N−1∑
i=0

〈Φi(x) |T |Φi(x)〉 .

We can concentrate at the last braket including a scalar wavepacket Φ only. To
take the next step we bring to mind that T actually is given by T = − 1

2ε
4∆ and

therefore we have:

〈Φ(x) |T |Φ(x)〉 =

〈
Φ(x)

∣∣∣∣−1

2
ε4∆

∣∣∣∣Φ(x)

〉
.

We split the operator into two parts by formally taking the square root of T :

=
1

2

〈
Φ(x)

∣∣ (−iε2∇)(−iε2∇)
∣∣Φ(x)

〉
.

Then we put the two parts into the bra and the ket respectively

=
1

2

〈
+iε2∇Φ(x)

∣∣−iε2∇Φ(x)
〉

=
1

2
‖ − iε2∇Φ(x)‖2 .

The braket simply expresses the squared norm of −iε2∇Φ. If we want to compute
this norm we need to know how the operator y := −iε2∇ acts on the wavepacket.
If we remember correctly, we have done all necessary computation already in
section 3.8.
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4.7 Basis transformations

This is a last small section before we can go to the time propagation algorithm for
wavepackets in the next chapter. In this part we describe the basis transformation
of vectorial wavepackets |Ψ〉 in detail. Recall the definition of the eigenbasis from
(1.2) and the basis transformation from (1.4). Then the basis transformation of
our wavepacket |Ψ〉 from and to the canonical basis hence looks like:

|Ψcanonical〉 = M(x) |Ψeigen〉
|Ψeigen〉 = M−1(x) |Ψcanonical〉 = MH(x) |Ψcanonical〉

(4.25)

and we exploited the fact that all eigenvectors are orthonormal. We can write a
more explicit version of M (we do not reuse 1.5 for notational reasons):

M(x) :=

 m0,0(x) · · · m0,N−1(x)
...

...
mN−1,0(x) · · · mN−1,N−1(x)

 .

From this the application of M to |Ψ〉 becomes obvious:

M(x) |Ψ(x〉 =

 m0,0(x) · · · m0,N−1(x)
...

...
mN−1,0(x) · · · mN−1,N−1(x)


 Φ0(x)

...
ΦN−1(x)


=

 m0,0(x)Φ0(x) + · · ·+m0,N−1(x)ΦN−1(x)
...

mN−1,0(x)Φ0(x) + · · ·+mN−1,N−1(x)ΦN−1(x)


=

 Φ′0(x)
...

Φ′N−1(x)

 = |Ψ′〉 .

4.7.1 Transformation of homogeneous wavepackets

Next we dig deeper and take a detailed look at a single row j of the above matrix
vector product:

mj,0Φ0 + · · ·+mj,N−1ΦN−1 = mj,0

∑
k∈K

c0kφk + · · ·+mj,N−1

∑
k∈K

cN−1
k φk

=
∑
k∈K

mj,0c
0
kφk + · · ·+

∑
k∈K

mj,N−1c
N−1
k φk

=
∑
k∈K

(
mj,0c

0
k + · · ·+mj,N−1c

N−1
k

)
φk

=
∑
k∈K

N−1∑
l=0

mj,lc
l
k︸ ︷︷ ︸

c′k

φk =
∑
k∈K

c′kφk = Φ′j .
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This is a simple calculation but with a big potential for errors. But we are almost
done with the most error-prone parts. Since the new coefficients c′k depend on x

through the entries mj,l(x) of M we need to project on the subspace spanned by
our basis functions φk. This works as follows. First we compute new coefficients:

djp :=
〈
φp

∣∣∣Φ′j〉 ∀p ∈ K

and then we build the transformed scalar and vectorial wavepackets step by step
as:

Φ′′j (x) =
∑
k∈K

djkφk(x) and finally |Ψ′′〉 =

 Φ′′0
...

Φ′′N−1

 .

In principle we are done now. One very last thing to show is the efficient
computation of the new coefficients djp. It seems to be complicated but in fact is

very simple once we look at a coarser picture. The first step is to rewrite:

djp :=
〈
φp

∣∣∣Φ′j〉 =

〈
φp

∣∣∣∣∣∣
∑
k∈K

N−1∑
l=0

mj,lc
l
kφk

〉

=
∑
k∈K

N−1∑
l=0

〈
φp

∣∣∣mj,lφk

〉
clk

where we obtained |K|2 matrix elements of the form:〈
φp

∣∣∣mj,l

∣∣∣φk〉 =

∫
· · ·
∫
RD

φp(x)mj,l(x)φk(x)dx .

Computing every single djp individually would be very cumbersome and inefficient

too. We can do better by noticing that it is possible to rearrange the above
expression into a matrix vector product form. Next we stack all ck and dp into

long column vectors of size |K|. The order is given according to µK. We gather
all matrix elements and build the following matrix Fj,l ∈ C|K|×|K|:

Fj,l :=


...

· · ·
〈
φp

∣∣∣mj,l

∣∣∣φk〉 · · ·
...


where we put the integral

〈
φp

∣∣∣mj,l

∣∣∣φk〉 at position
(
µ(p), µ(k)

)
.

Therefore we can now compute dlp for all p ∈ K at once by:

 dj0
...

dj|K|

 =

N−1∑
l=0


...

· · ·
〈
φp

∣∣∣mj,l

∣∣∣φk〉 · · ·
...


 cl0

...
cl|K|


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and thereby express the new coefficients dj of our transformed component Φj by
a sum of matrix vector products. This can be done very efficiently. Aiming for
an even coarser view we can stack the computations for all j ∈ (0, . . . , N − 1).
First we build the block matrix F ∈ CN |K|×N |K|:

F :=

 F0,0 · · · F0,N−1
... Fj,l

...
FN−1,0 · · · FN−1,N−1


The matrix can be computed efficiently by algorithm 14. Using the same partition
scheme we stack the coefficient vectors dj and cj for all j into even longer column
vectors of size N |K| (we assume each component having the same basis shape):

c :=
(
c0, . . . , cN−1

)
T and d :=

(
d0, . . . , dN−1

)
T

At the end of the day we can express the whole basis transformation as given in
equation (4.25) by a simple matrix vector product. For the transformation to
the eigenbasis we get:

c eigen = Fc canonical (4.26)

and we only need to split up c according to the partition used. For the opposite
transformation to the canonical basis we can write:

c canonical = FHc eigen (4.27)

since F is unitary. The only point not shown here is the detailed computation
of the matrix elements of Fj,l. This is not complicated but a little bit tricky to
do efficiently. The integrals are of course approximated by the quadrature rules
shown earlier in this chapter. The whole process is presented in [2].

4.7.2 Transformation of inhomogeneous wavepackets

In the case of inhomogeneous wavepackets the whole basis transformation process
works similar. There are just a few points where we have to be more general.
Again we first look at a single row j of |Ψ′〉 = M |Ψ〉. Main point here is to take
into account the possibly different parameter sets Πj and basis shapes Kj of each
component:

mj,0Φ0[Π0] + · · ·+mj,N−1ΦN−1[ΠN−1]

=
∑
k∈K0

mj,0c
0
kφk[Π0] + · · ·+

∑
k∈KN−1

mj,N−1c
N−1
k φk[ΠN−1]

=

N−1∑
l=0

∑
k∈Kl

mj,l c
l
k φk[Πl] .

Now we enter the projection step with this last expression giving:
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djp :=

〈
φp[Πj ]

∣∣∣∣∣∣
N−1∑
l=0

∑
k∈Kl

mj,l c
l
k φk[Πl]

〉

=

N−1∑
l=0

∑
k∈Kl

〈
φp[Πj ]

∣∣∣mj,l

∣∣∣φk[Πl]
〉
clk .

For these brakets on the last line we have to use the inhomogeneous quadrature
rule as the basis functions in the bra and the ket can have different parameter sets
Π. The matrix Fj,l is of size |Kj |×|Kl| and not necessarily square. (Theoretically
we could have used different basis shapes Kj per component Φj already in the
homogeneous case.)

Fj,l :=


...

· · ·
〈
φp[Πj ]

∣∣∣mj,l

∣∣∣φk[Πl]
〉
· · ·

...


The block matrix F is of shape

∑N−1
i=0 |Ki| ×

∑N−1
i=0 |Ki| and obviously square.

(This is a requirement because the transformation mapping should be bijective.)
We can compute this matrix by algorithm 16. Everything else works exactly the
same as in the homogeneous case.
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Chapter 5

Wavepacket Propagation

This last theoretical chapter is about time propagation of semi-classical wavepack-
ets. The last remaining missing piece of this puzzle is a good scheme for time
propagation of semi-classical Hagedorn wavepackets. Such an algorithm was first
described in [5] for the adiabatic one-level case. The generalisation to multiple
energy levels was done in [2] but for one space dimension only. These results
were published in [4].
In this chapter we review this algorithm once more and show a generalisation to
several energy levels in an arbitrary dimensional space.

5.1 Time propagation of Hagedorn wavepackets

The first step is to consider the free particle Schrödinger equation which contains
only the kinetic operator T and V ≡ 0:

iε2 ∂Ψ

∂t
= −1

2
ε4∆Ψ .

The proposition 2.1 of [5] tells us that a Hagedorn wavepacket Φ[Π] of the form
(3.46) solves the free Schrödinger equation with the following time evolution of
its parameter set Π(t):

q(t) = q(0) + tM−1p(0)

Q(t) = Q(0) + tM−1P(0)

S(t) = S(0) +
1

2
t p(0)TM−1p(0)

(5.1)

where p(t) = p(0) and P(t) = P(0) remain unchanged. Also unchanged are the
coefficients {ck}k∈K of Φ. The matrix M is the mass scaling matrix. It is set
to the identity if nothing else is written. For details see [5, equation 2.8]. A
free particle is not that interesting. The important point is that we can solve
its quantum equation of motion by only evolving the parameters Π(t) using the
simple update scheme above.
Next we consider the potential equation lacking the kinetic part:

iε2 ∂Ψ

∂t
= U(x)Ψ .
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For a first approach we assume U(x) to be quadratic at most. The proposition
2.2 of [5] gives us another set of update rules for Π(t):

p(t) = p(0)− t∇U(q(0))

P(t) = P(0)− t∇2U(q(0))Q(0)

S(t) = S(0)− t U(q(0))

(5.2)

and q(t) = q(0) and Q(t) = Q(0). In this case the coefficients {ck}k∈K are left
alone. Using the formulae from both sets (5.1) and (5.2) together we can solve
the time dependent harmonic oscillator. All we have to do is to propagate in time
the parameter set Π(t) of Φ[Π]. In the whole process we never touch or change
the coefficients {ck}k∈K. This is the reason that makes this time propagation
scheme extraordinarily efficient. But this is not really astonishing given that
the basis functions φk are just generalised eigenstates of the harmonic oscillator.
(For more details see the paper [8]).
Our next step aims for handling almost arbitrary potentials. But dropping the
restriction of U being quadratic provides us with several new hurdles. Assume
the potential V (x) is not quadratic anymore. We can always split V into a
quadratic part U and the non-quadratic remainder W :

V (x) = U(x) +W (x) .

This is done by a simple Taylor expansion of V (x) around a point 1 q giving:

U(x) = V (q) +∇V (q)(x− q) +
1

2
(x− q)T∇2V (q)(x− q)

W (x) = V (x)− U(x) .

This expansion allows us to focus on W (x) solely while assuming that U(x) is
perfectly handled by (5.2). We look at the potential equation:

iε2 ∂Ψ

∂t
= W (x)Ψ

once more but this time using the non-quadratic remainder part W (x). Since W
can be arbitrarily complicated there is no hope to solve this equation analytically
by a simple scheme as we did before. The trick is to perform a Galerkin
approximation to solve this equation. To do this we need a Hilbert space of test
functions v(x) defined by:

M :=

v ∈ L2(RD) : v(x) :=
∑
k∈K

ckφk[Π](x) , ck ∈ C

 . (5.3)

At this point we may repeat that φk constitutes a (complete) basis for L2(RD).
The Galerkin approximation (see section 2.4 of [5]) can then be written as:

At every time t determine ∂tu ∈M such that

∀k ∈ K 〈φk, (iε2∂t −W )u〉 = 0

with u ∈M.
1It’s not a coincidence that we call the expansion point q here.
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This integral can now be split like:

0 = 〈φk, (iε2∂t −W )u〉
= 〈φk, iε2∂tu〉 − 〈φk,Wu〉

and the solution u can in turn be replaced by its basis expansion:

〈φk, iε2∂t
∑
l∈K

clφl〉 − 〈φk,W
∑
l∈K

clφl〉 = 0 .

Next we carry out the differentiation ∂tclφl. We know that cl(t) depends only
on time and φl[Π](x) depends only on space (ignoring the time dependence of
Π) and whence we get:

∂tclφl = ċlφl .

Plugging this into the integrals above we obtain:

〈φk, iε2
∑
l∈K

ċlφl〉 − 〈φk,W
∑
l∈K

clφl〉 = 0

and pulling out the summations and constants yields:

iε2
∑
l∈K

ċl〈φk, φl〉 −
∑
l∈K

cl〈φk,Wφl〉 = 0 .

The first integral vanishes by orthonormality of the basis functions and what
remains is:

iε2ċk =
∑
l∈K

cl〈φk,Wφl〉 ∀k ∈ K .

We can stack all the |K| equations and get the following system of coupled
ordinary differential equations:

iε2


...
ċk
...

 =


...

· · ·
〈
φk,Wφl

〉
· · ·

...




...
cl
...


or in more compact matrix notation:

ċ = − i

ε2
Fc . (5.4)

The solution of this system is trivially given by:

c(t) = exp

(
− i

ε2
tF

)
c(0) . (5.5)

This was the last missing bit for the time propagation of scalar wavepackets |Φ〉
inside arbitrarily shaped potentials V (x). In algorithm 13 we assembled all the
pieces and provide a pseudo code of the implementation.
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Algorithm 13 Time propagation of scalar wavepackets |Φ〉
Require: A semi-classical wavepacket |Φ (x, t)〉
Require: The Hagedorn parameter set Π and the coefficients {ck}k∈K
Require: The basis shape K and the mapping µK

Require: The time step τ
// Propagate with the kinetic operator
q := q + τ

2 M−1p

Q := Q + τ
2 M−1P

S := S + τ
4p

TM−1p
// Propagate with the local quadratic potential
p := p− τ ∇V

(
q
)

P := P− τ ∇2V
(
q
)
Q

S := S − τ V
(
q
)

// Propagate with the non-quadratic remainder W
// Assemble the matrix F
Fµ(k),µ(l) :=

〈
φk
∣∣W (x)

∣∣φl〉 ∀k, l ∈ K
// And propagate the coefficients
c := exp

(
−τ i

ε2 F
)
c

// Propagate with the kinetic operator again
q := q + τ

2 M−1p

Q := Q + τ
2 M−1P

S := S + τ
4p

TM−1p
return |Φ (x, t+ τ)〉

5.2 Vector valued wavepackets

In the last section we reviewed the time propagation algorithm for scalar semi-
classical wavepackets |Φ〉 or equivalently for potentials with a single energy level
only. For simulations in the non-adiabatic case we need an extended version that
handles vectorial wavepackets |Ψ〉 as defined in (3.61) and (3.62). We examine
the case of homogeneous wavepackets first. This has mainly two reasons, namely
homogeneous wavepackets play a more important role in practical simulations
and we can show the important concepts easier while the inhomogeneous case
can be treated by simple generalisation later.

5.2.1 Homogeneous wavepacket propagation

As we defined in (3.61) a homogeneous wavepacket Ψ consists of N components
Φi all sharing the same parameter set Π. This set of parameters is propagated
by the same rules as in the scalar case. The propagation of Π has to take place
in the eigenbasis of V where the energy levels λi decouple. We need to choose
one of these levels λi(x) which then governs the propagation of Π and plays
the role of V in the scalar case. We denote this particular level by λχ and call
χ ∈ [0, . . . , N − 1] the characteristic component index. Then we apply the usual
splitting into quadratic part and non-quadratic remainder. Formally we write:
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uχ(x) = λχ(x) +∇λχ(q)(x− q) +
1

2
(x− q)T∇2λχ(q)(x− q)

wχ(x) = λχ(x)− uχ(x) .

This is sufficient for time propagation of Π but not for the Galerkin step where
we propagate the coefficients {ck}k∈K. There we need a splitting of the full
matrix V(x) = U(x) + W(x) into quadratic part U(x) and remainder W(x)
such that:

V =

uχ . . .

uχ

+

v0,0 − uχ · · · v0,N−1

...
. . .

...
vN−1,0 · · · vN−1,N−1 − uχ

 .

We will need W for building the matrix F later. Notice that up to now we did
not mix the different components Φi. This only happens during propagation of
the coefficients. For this we stack the coefficients {cik}k∈Ki

of all components Φi
into a long column vector c:

c :=
(
· · · c0k · · · | · · · | · · · cN−1

k · · ·
)

T

of length
∑N−1
i=0 |Ki| or N |K| if all components have a basis shape of same size.

Then we build the F matrix for use in equation (5.5). Obviously it must have
the following block structure:

F :=

 F0,0 · · · F0,N−1
... Fi,j

...
FN−1,0 · · · FN−1,N−1


and each block is of the form:

Fi,j :=


...

· · ·
〈
φk
∣∣Wi,j

∣∣φl〉 · · ·
...


for k ∈ Ki and l ∈ Kj . These blocks are not necessarily square but the matrix F
always is. (Compare this to the matrices used for the basis transformation of
wavepackets.)
Algorithm 14 gives pseudo code for the computation of F given a quadrature rule,
the remainder W and the homogeneous wavepacket Ψ[Π]. The time propagation
then is summarised in algorithm 15.

5.2.2 Inhomogeneous wavepacket propagation

The case of inhomogeneous wavepacket propagation is very similar to the homo-
geneous one presented in the last section. Here we only describe the differences
that are necessary. An inhomogeneous wavepacket Ψ consists of N components
Φi each having its own parameter set Πi. It is self-evident that now each energy
level λi(x) is used to propagate the corresponding parameter set Πi of the
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Algorithm 14 Build the homogeneous block matrix F := (Fr,c)r,c

Require: A homogeneous wavepacket Ψ with parameter set Π
Require: The basis shape Ki of each component Φi of Ψ, i = 0, . . . , N − 1
Require: A N ×N matrix W(x) of scalar functions wr,c(x)
Require: A quadrature rule (γ

j
, ωj) with R node-weight pairs

// Initialise F as the zero-matrix

η :=
∑N−1
i=0 |Ki|

F ∈ Cη×η, F := 0
// Transform the quadrature nodes according to (4.8)
γ′
j

= q + εQ γ
j

j = 0, . . . R− 1

// Evaluate the basis functions of each component Φi with algorithm 7
for i = 0 to i = N − 1 do

Bi := evaluate basis at[Φi]
((
γ′

0
, . . . , γ′

R−1

))
end for
// Iterate over all row and column blocks of this matrix
for r = 0 to r = N − 1 do

for c = 0 to c = N − 1 do
// Evaluate the function wr,c for all quadrature nodes γ

j

(v0, . . . , vR−1) := wr,c

((
γ′

0
, . . . , γ′

R−1

))
// Set up a zero matrix
Fr,c ∈ C|Kr|×|Kc|, Fr,c := 0

// Iterate over all R quadrature pairs
(
γ′
j
, ωj

)
for j = 0 to j = R− 1 do

Fr,c := Fr,c + εD vj ωj Br[:, j]Bc[:, j]T

end for
// Insert the block Fr,c into the block matrix F
Fr,c := Fr,c

end for
end for
return F
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Algorithm 15 Time propagation of a homogeneous wavepacket |Ψ〉
Require: A semi-classical wavepacket |Ψ (x, t)〉
Require: The corresponding Hagedorn parameter set Π
Require: For all components n ∈ [0, . . . , N − 1]: the coefficients {cnk}k∈Kn

,
Require: the basis shapes Kn and the mappings µKn

Require: The leading component index χ
Require: The time step τ

// Propagate with the kinetic operator
q := q + τ

2 M−1p

Q := Q + τ
2 M−1P

S := S + τ
4p

TM−1p
// Propagate with the local quadratic potential
p := p− τ ∇λχ

(
q
)

P := P− τ ∇2λχ
(
q
)
Q

S := S − τ λχ
(
q
)

// Propagate with the non-quadratic remainder W
// Stack the coefficient vectors cn of all components
C :=

(
c0| . . . |cN−1

)
T

// Assemble the block matrix F using algorithm 14
Π′ := {q, p,Q,P, S}
F := build homogeneous block matrix(W,Ψ[Π′])
// Propagate the coefficients
C := exp

(
−τ i

ε2 F
)
C

// Split the coefficients(
c0| . . . |cN−1

)
:= C

// Propagate with the kinetic operator again
q := q + τ

2 M−1p

Q := Q + τ
2 M−1P

S := S + τ
4p

TM−1p
return |Ψ (x, t+ τ)〉
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component Φi that resides on this level. Whence we have to apply the splitting
to each eigenvalue:

ui(x) = λi(x) +∇λi(qi)(x− qi) +
1

2
(x− qi)T∇2λi(q

i)(x− qi)
wi(x) = λi(x)− ui(x) .

for all i ∈ [0, . . . , N − 1] and qi ∈ Πi. This covers all we need to propagate the

parameter sets {Πi}N−1
i=0 . The splitting of the whole potential matrix V into U

and W is straight forward:

V =

u0

. . .

uN−1

+

v0,0 − u0 · · · v0,N−1

...
. . .

...
vN−1,0 · · · vN−1,N−1 − uN−1

 .

Again we use the non-quadratic remainder W(x) to compute the block matrix F.
The main difference here lies inside the off-diagonal blocks. While building Fi,j

with i 6= j the functions φk and φl appearing there belong to different families
with in general different parameter sets Πi and Πj . Therefore the correct formula
for these blocks reads:

Fi,j :=


...

· · ·
〈
φk[Πi]

∣∣Wi,j

∣∣φl[Πj ]
〉
· · ·

...


where k ∈ Ki and l ∈ Kj . The block is of size |Ki| × |Kj |. To compute the entries
we are required to use an inhomogeneous quadrature rule.
Everything else works exactly the same as in the homogeneous case. Pseudo code
for building the block matrix 16 and for the time propagation 17 is presented
below for explicit reference.
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Algorithm 16 Build the inhomogeneous block matrix F := (Fr,c)r,c

Require: An inhomogeneous wavepacket Ψ with N parameter sets Πi

Require: The basis shape Ki of each component Φi of Ψ, i = 0, . . . , N − 1
Require: A N ×N matrix W(x) of scalar functions wr,c(x)
Require: A quadrature rule (γ

j
, ωj) with R node-weight pairs

// Initialise F as the zero-matrix

η :=
∑N−1
i=0 |Ki|

F ∈ Cη×η, F := 0
// Iterate over all row and column blocks of this matrix
for r = 0 to r = N − 1 do

for c = 0 to c = N − 1 do
// Apply the mixing formula from procedure 10 to the parameters
q0,QS := mix parameters(Πr,Πc)
// Transform the quadrature nodes according to (4.16)
γ′
j

= q0 + εQS γj j = 0, . . . R− 1

// Evaluate the function wr,c for all quadrature nodes γ′

(v0, . . . , vR−1) := wr,c

((
γ′

0
, . . . , γ′

R−1

))
// Evaluate the basis functions for all quadrature nodes γ′

// Apply algorithm 7 to evaluate the basis of Φr and Φc

Br := evaluate basis at[Φr]
((
γ′

0
, . . . , γ′

R−1

))
Bc := evaluate basis at[Φc]

((
γ′

0
, . . . , γ′

R−1

))
// Do not forget the non-vanishing phase
πr,c := exp

(
i
ε2

(
Sc − Sr

))
// Set up a zero matrix
Fr,c ∈ C|Kr|×|Kc|, Fr,c := 0

// Iterate over all R quadrature pairs
(
γ′
j
, ωj

)
for j = 0 to j = R− 1 do

Fr,c := Fr,c + εD vj ωj det (QS) Br[:, j]Bc[:, j]T

end for
// Insert the block Fr,c into the block matrix F
Fr,c := πr,c Fr,c

end for
end for
return F
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Algorithm 17 Time propagation of an inhomogeneous wavepacket |Ψ〉
Require: A semi-classical wavepacket |Ψ (x, t)〉
Require: For all components n ∈ [0, . . . , N − 1]:
Require: the Hagedorn parameter sets Πn, the coefficients {cnk}k∈Kn

Require: the basis shapes Kn and the mappings µKn

Require: The time step τ
// Propagate with the kinetic operator
for n = 0 to n = N − 1 do
q
n

:= q
n

+ τ
2 M−1p

n

Qn := Qn + τ
2 M−1Pn

Sn := Sn + τ
4pn

TM−1p
n

end for
// Propagate with the local quadratic potential
for n = 0 to n = N − 1 do

p
n

:= p
n
− τ ∇λn

(
q
n

)
Pn := Pn − τ ∇2λn

(
q
n

)
Qn

Sn := Sn − τ λn
(
q
n

)
end for
// Propagate with the non-quadratic remainder
// Stack the coefficient vectors cn of all components
C :=

(
c0| . . . |cN−1

)
T

// Assemble the matrix F using algorithm 16
Π′i := {q

n
, p
n
,Qn,Pn, Sn} ∀n = 0, . . . , N − 1

F := build inhomogeneous block matrix(W,Ψ[Π′0, . . . ,Π
′
N−1])

// Propagate the coefficients
C := exp

(
−τ i

ε2 F
)
C

// Split the coefficients(
c0| . . . |cN−1

)
:= C

// Propagate with the kinetic operator again
for n = 0 to n = N − 1 do
q
n

:= q
n

+ τ
2 M−1p

n

Qn := Qn + τ
2 M−1Pn

Sn := Sn + τ
4pn

TM−1p
n

end for
return |Ψ (x, t+ τ)〉
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Chapter 6

Simulation Results

This chapter contains the results of some selected examples. First we show
that the code works correctly by simulating the well known toy examples like
harmonic oscillators in different settings. Next we reproduce some less trivial
results from [5] in two space dimensions. Finally we show several results of
non-adiabatic transition in two and more space dimensions.
All simulations were performed with our WaveBlocksND simulation code[1].
The code can perform simulations with an arbitrary number N of energy levels
defined in an arbitrary number D of space dimensions. The only limitations are
available computer memory and time.

6.1 Harmonic oscillators

The harmonic oscillator is the first toy example one usually studies to check if a
new simulation code works as expected. This is also what we are going to do
next. We start with a Gaussian wavepacket having the parameters:

q =

(
1.8
1.2

)
p =

(
0.6
0.8

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0 .

The scaling parameter ε is set to 0.1. These values for Π result in a cyclic
oscillation with elliptical orbits, see figure 6.3a. The potential is given by:

V (x, y) :=
1

2

(
1

2
x2 +

1

2
y2

)
. (6.1)

Another trivial but nice example is the combination of a free particle potential
with a harmonic oscillator. The potential is constant along one direction while
quadratic along the other, we get:

V (x, y) :=
1

4
y2 . (6.2)

The following simulation results were obtained by starting with a Gaussian φ0

with parameters:
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(a) (b)

Figure 6.1: The kinetic, potential and total energy and the drift of the total
energy of a wavepacket in a two-dimensional harmonic oscillator. (a) The energies.
(b) The energy drift.

Figure 6.2: Time-evolution of the parameter set Π of a wavepacket in a two-
dimensional harmonic oscillator.
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(a) (b)

Figure 6.3: Trajectories of the parameters q and p. (a) Trajectory of q. (b)
Trajectory of p.

(a) (b)

Figure 6.4: Trajectories of det Q and det P in the complex plane. (a) Trajectory
of det Q. (b) Trajectory of det P.
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(a) (b)

Figure 6.5: The kinetic, potential and total energy and the drift of the total
energy of a Gaussian wavepacket in the potential in (6.2). (a) The energies. (b)
The energy drift.

q =

(
0
1

)
p =

(
0
0

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0

and ε = 0.1.
An interesting fact appears if we look at the two eigenvalues λ0 and λ1 of Q.
We see that one oscillates and the other grows ad infinitum. Figure 6.8 shows
plots of λ0(t) and λ1(t).
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Figure 6.6: Time-evolution of the parameter set Π of a Gaussian wavepacket in
the potential in (6.2).

(a) (b)

Figure 6.7: Trajectories of det Q and det P in the complex plane. (a) Trajectory
of det Q. (b) Trajectory of det P.
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Figure 6.8: Time-evolution of the eigenvalues λ0 and λ1 of Q. (a) Real and
imaginary parts. (b) Absolute values.

6.2 Reproducing some other results

We try to reproduce the results in section 5.1 of [5]. The torsional potential in
two dimensions is given by the expression:

V (x, y) := (1− cos(x)) + (1− cos(y)) (6.3)

and plotted in figure 6.9.
The initial parameter set Π = {q, p,Q,P, S} for the wavepacket Ψ = φ0,0 is
given as:

q =

(
1
0

)
p =

(
0
0

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0 .

We use a hyperbolic cut basis shape K with a cutoff value of K = 8. This yields
20 basis functions in total. For each simulation we use a time step τ = 0.01 and
simulate until an end time of T = 20. We perform three simulations for different

Figure 6.9: The torsional potential in two dimensions.
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Figure 6.10: Propagation of the parameter set Π. This is the same for all ε.

values of the semi-classical scaling parameter ε 1.

1Note that we write ε2 for what the authors of the paper call ε.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket in a 2D torsional potential. Note
that despite of some violation of the total energy conservation we obtained
perfect norm conservation (not shown here). A larger basis set would reduce the
error. (a), (b) A wavepacket |Ψ〉 = φ0,0 with ε =

√
0.1. (c), (d) A wavepacket

|Ψ〉 = φ0,0 with ε =
√

0.01. (e), (f) A wavepacket |Ψ〉 = φ0,0 with ε =
√

0.001.
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6.3 A simple avoided crossing

We generalise a model for a single avoided crossing of two energy levels. The
one-dimensional potential was studied in [5, 2]. We extend this potential to two
dimensions by making it rotationally symmetric. The equation for V becomes:

V(x, y) :=

 1
2 tanh

(√
x2 + y2

)
δ

δ − 1
2 tanh

(√
x2 + y2

) (6.4)

with δ being half of the energy level gap. The potential is shown in figure 6.12.

Figure 6.12: Energy levels of the avoided crossing given by equation (6.4) for
δ = 0.08.

In the following simulation results we varied the value of ε and the gap size δ.
The initial parameter values are:

q =

(
−3
0

)
p =

(
0.5
0

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0 .

The timestep was set to τ = 0.01.
We see how for larger ε the energy conservation becomes worse. This is a sign
of a too small basis shape K which can not capture the emergence of more and
more quantum effects. The plots of the norms show that we get higher transition
probabilities for smaller gaps δ. Additionally we get faster transitions for smaller
ε. However we have to be careful interpreting these results because in most
simulations there is no energy conservation. Maybe a smaller timestep τ would
be appropriate in some cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.01. The simulations for δ = 0.01
would need a larger basis to work properly. (a), (b) δ = 0.01 (c), (d) δ = 0.05
(e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) δ = 0.2 (c), (d) δ = 0.5
(e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) δ = 0.01
(c), (d) δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.05. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.05. (a), (b) δ = 0.2 (c), (d) δ = 0.5
(e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.19: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.05. (a), (b) δ = 0.01
(c), (d) δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.05. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.1. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.1. (a), (b) δ = 0.2 (c), (d) δ = 0.5
(e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.23: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.1. (a), (b) δ = 0.01 (c),
(d) δ = 0.05 (e), (f) δ = 0.1
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(c) (d)

(e) (f)

Figure 6.24: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.1. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.25: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.2. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.26: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.2. (a), (b) δ = 0.2 (c), (d) δ = 0.5
(e), (f) δ = 1.0
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(c) (d)

(e) (f)

Figure 6.27: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.2. (a), (b) δ = 0.01 (c),
(d) δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.28: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.2. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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6.4 A conical avoided crossing

In this section we simulate a conical avoided crossing taken from [9] where it is
classified as type 3, see also [7]. The two-dimensional potential V (x, y) is given
by the following real symmetric matrix:

V(x, y) :=

(
x

√
y2 + δ2√

y2 + δ2 −x

)
(6.5)

where δ > 0 is a small real number related to the gap width which is actually 2δ.
The effect of shrinking gap width is shown in figure 6.29.
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Figure 6.29: Energy levels of the conic avoided crossing given by equation (6.5)
for different values of δ.

The initial parameter values are:

q =

(
1
0

)
p =

(
0
0

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0

and we used a timestep τ = 0.01.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.30: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 32 and ε = 0.01. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.31: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 32 and ε = 0.01. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.32: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 32 and ε = 0.05. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.33: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 32 and ε = 0.05. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.34: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 32 and ε = 0.1. (a), (b) δ = 0.01 (c), (d)
δ = 0.05 (e), (f) δ = 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.35: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 32 and ε = 0.1. (a), (b) δ = 0.2 (c),
(d) δ = 0.5 (e), (f) δ = 1.0
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6.5 A conical crossing

In this section we show some results for a special case of the potential (6.5) given
in the last section. The potential is shown in figure 6.36.
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Figure 6.36: Energy levels of the conic crossing given by equation (6.5) for δ = 0.
The energy levels touch for x = y = 0.

We start with a Gaussian having the following initial parameter set Π:

q =

(
−0.1
αε

)
p =

(
1
0

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0 .

The packet is initialised such that it misses the crossing point. This is controlled
by the parameter α which we will vary. Depending on this value, the potential
appears to be an avoided crossing. The figures 6.37 and 6.38 show the energies
of the wavepacket, the figures 6.39 and 6.40 show the norms and transition
probabilities. The time-evolution of Π is shown in figure 6.41 while the trajectories
of q are shown in figure 6.42.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.37: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) α = 0.0 (c), (d)
α = 0.5 (e), (f) α = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.38: Plots of the kinetic, potential and total energy and the drift of
the total energy of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis shape is a
hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) α = 1.5 (c), (d)
α = 2.0 (e), (f) α = 5.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.39: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) α = 0.0 (c),
(d) α = 0.5 (e), (f) α = 1.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6.40: Plots of the norm of the components on the upper and lower level
and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0. The basis
shape is a hyperbolic cut with cut-off K = 16 and ε = 0.01. (a), (b) α = 1.5 (c),
(d) α = 2.0 (e), (f) α = 5.0

133



Figure 6.41: Time-evolution of the parameter set Π. The curves look similar for
all values of α.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.42: The trajectories of q of a Gaussian wavepacket |Ψ〉 = φ0,0 in the
x-y-plane. The basis shape is a hyperbolic cut with cut-off K = 16 and ε = 0.01.
(a) α = 0.0 (b) α = 0.5 (c) α = 1.0 (d) α = 1.5 (e) α = 2.0 (f) α = 5.0
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6.5.1 A special initial condition

In this small section we show a simulation result for a very specialised, unnatural
initial configuration. The parameter set Π is:

q =

(
−αε
αε

)
p =

(
0.1
0.1

)
Q =

(
1 0
0 1

)
P =

(
i 0
0 i

)
S = 0

with α = 2.0 and ε = 0.01. We take a Gaussian wavepacket |Ψ〉 = φ0,0 for this
experiment.

(a) (b)

Figure 6.43: The trajectories of q and p in the x-y-plane.

(a) (b)

Figure 6.44: The trajectories of det Q and det P in the complex plane.
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Figure 6.45: Time-evolution of the parameter set Π for a special setting

(a) (b)

Figure 6.46: The plots show the energies and norms of a very special initial
setting where the packet orbits around the crossing point.
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6.6 Higher dimensional conical avoided crossings

We can generalise the potential given in (6.5) to an arbitrary number D of
dimensions. The matrix looks like:

V(x) :=

 x0

√
δ2 +

∑D−1
d=1 x2

d√
δ2 +

∑D−1
d=1 x2

d −x0

 . (6.6)

In the following we show a three-dimensional example. The parameters are
initialised to:

q =

1.0
0
0

 p =

0
0
0

 Q =

1.0 0 0
0 1.0 0
0 0 1.0

 P =

i 0 0
0 i 0
0 0 i

 S = 0

and ε = 0.01. The timestep is set to τ = 0.01 and we use a hyperbolic cut basis
shape with cut-off K = 16. The energy gap is taken to be δ = 0.5.
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(a) (b)

Figure 6.47: The kinetic, potential and total energy and the drift of the total
energy of a wavepacket in a three-dimensional conical avoided crossing. (a) The
energies. (b) The energy drift.

(a) (b)

Figure 6.48: Plots of the norm of the components on the upper and lower
level and the drift of the total norm of a Gaussian wavepacket |Ψ〉 = φ0,0 in a
three-dimensional conical avoided crossing. (a) The norms. (b) The norm drift.
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Figure 6.49: Time-evolution of the parameter set Π of a wavepacket in a three-
dimensional conical avoided crossing.

(a) (b)

Figure 6.50: Trajectories of det Q and det P in the complex plane. (a) Trajectory
of det Q. (b) Trajectory of det P.
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6.7 Examples from chemistry

We are currently working on some real world examples directly taken from
chemistry. Most recent work is done on the example of Pyrazine, studied
extensively in [12, 13, 20, 21]. Some other interesting problems are presented in
[17, 18]. The results of these efforts will be published elsewhere.
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Appendix A

Derivatives of Eigenvalues

In this small appendix we show the computation of derivatives of the eigenvalues.
Although these formulae are well known for example in structural mechanics
and similar areas of applied mathematics, we think that it is a good idea to
show them here. For more detailed comments and proofs see the references given
below.
We start with a real and symmetric N ×N matrix A. Each of its entries is a
function ar,c dependent on some parameters. In our case these are the position
space variables x0, . . . xD−1. Hence we write A(x). Next we assume that the
matrix is diagonalisable:

A = MΛMT (A.1)

also compare to (1.4). The eigenvectors are orthogonal by theory and we take
them normalised, which we can write as:

MTM = 1 . (A.2)

And finally we require the eigenvalues λ(x) to be all distinct for all values of the
parameters x. Then we can write the first derivatives as:

∂λi(x)

∂xj
= νi

T ∂A(x)

∂xj
νi (A.3)

for all i, j ∈ 0, . . . N − 1. With this formula we can compute gradients and
Jacobians for all eigenvalues. The important point is that we know the analytic
closed-form expressions for ar,c(x) and computing their derivatives thus is trivial.
For the second derivatives we have a similar formula:

∂2λi(x)

∂xj∂xk
= νi

T ∂2A(x)

∂xj∂xk
νi + 2

∑
l 6=i

(
νi

T ∂A(x)
∂xj

νl

)(
νi

T ∂A(x)
∂xk

νl

)
λi − λl

. (A.4)

With the help of this formula we can compute Hessian matrices for all eigenvalues
easily. These formulae provide us with the tools to compute the quadratic
approximation in algorithms 15 and 17.
For more comprehensive information on this topic see for example [11, 14, 15].
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Appendix B

Colour coding convention

For plotting complex-valued functions we use a special colour coding. This allows
us to plot phase and absolute values within the same figures. The colour code
shown here was introduced by Thaller in [19] many years ago.
Sometimes one also darkens the colours depending on the magnitude of the
absolute value. For details about this see the given reference.
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Figure B.1: This plot shows a complex-valued function f : R→ C in colour-coded
fashion as well as the real and imaginary parts and the phase.

Figure B.2: This plot shows the colour distribution for complex numbers z.
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