
Generalized Gaussian Quadrature for
Integrals with Singular Weights

Bachelor Thesis

Victor Kawasaki-Borruat

March 7, 2022

Supervisor: Prof. Dr. R. Hiptmair

Department of Applied Mathematics, ETH Zürich

Acknowledgements

Before we dive into the mathematics, I would like to make a few acknowl-
edgements. First and foremost I must thank my supervisor Prof. Ralf Hipt-
mair for accepting my request to write a Bachelor’s Thesis under his guid-
ance. I am grateful to have been able to practice my skills with him, and
can only hope that the feeling is mutual. Moreover I would also like to ex-
tend my acknowledgements to my parents, siblings, and close friends, who
supported and witnessed the development of this project and my liking for
mathematics, despite a rather unstable start in my studies.

This work is dedicated to the people who had faith in me in times where I
couldn’t.

i

Abstract

It goes without saying that the importance of numerical integration in the
fields of computational science and engineering is immense. In cases where
a) analytical solutions are too convoluted or simply nonexistent (especially
in cases of singular integrands) or b) integrands are sampled and thus incom-
plete, it is often still of high interest to efficiently approximate the integral.
There is thus a need for accurate and efficient computational methods in this
domain. Gaussian quadrature rules are a highly efficient method of approx-
imating integrals numerically. Their accuracy lies in the exploitation of asso-
ciated orthogonal polynomials with respect to the used measure (i.e. weight
function). This paper will cover the theoretical and computational aspects of
border-singular Jacobi- resp. logarithmic- weighted Gaussian quadratures,
and observe their accuracy.

The solving methods are based off of multiple works by W. Gautschi (both
theoretical and programmatical), and implement different variations of the
Golub-Welsch algorithm. As a result, a C++ framework has been developed,
which accurately approximates the desired singular integrals. Accuracy is
quantified by observing a) exactness in polynomial quadratures and b) ex-
ponential convergence for smooth integrands. Moreover, the obtained run-
times of the algorithms are coherent with their expected computational com-
plexity.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

1 Introduction 1

2 Mathematical Foundations 2
2.1 (Weighted) Integrals . 2
2.2 Polynomial Interpolation . 4
2.3 Weight Functions and Orthogonal Polynomials 4
2.4 Matrix Eigenvalue Problem . 6

3 Numerical Integration / Weighted Quadratures 8
3.1 Quadratures . 8

3.1.1 Affine Pullback . 9
3.1.2 Errors and Precision . 9

3.2 Newton-Cotes Formulae . 10
3.2.1 Approximation through Interpolation 10
3.2.2 Maximal Order of Classical Numerical Integration . . 11
3.2.3 Interpolation Errors . 11

3.3 Gaussian Quadratures . 11
3.3.1 Maximal Order Guarantee for Gaussian Quadrature . 12
3.3.2 Error of Gaussian Quadratures 13

4 Formal Problem Statement 14
4.1 Singular Gaussian Quadrature

& the Eigenvalue Problem . 14
4.1.1 Computing the Nodes 15
4.1.2 Computing the Weights 16

iii

Contents

4.2 Golub-Welsch Algorithm . 16

5 Singular Weight Functions 18
5.1 Jacobi Weight Function . 18

5.1.1 Jacobi Polynomials . 18
5.2 Special Cases of the Jacobi Weight Function 19

5.2.1 Legendre Weight Function 20
5.2.2 Chebyshev Weight Function 20
5.2.3 Affine Pullback . 20

5.3 Logarithmic Weight Function 21
5.3.1 Modified Chebyshev Algorithm 22
5.3.2 Computing the Quadrature 23
5.3.3 Affine Pullback . 23

6 Code Implementation: The SingGQ Library 24
6.1 The GaussRule Class . 24

6.1.1 Namespaces . 25
6.2 The GaussJacobiRule Class . 25

6.2.1 Computing the nodes and weights 26
6.2.2 Evaluating the integral 27
6.2.3 Different integral boundaries 27
6.2.4 Practical Subclasses . 27

6.3 The GaussLogRule Class . 28
6.3.1 Computing the special quadrature nodes and weights 29
6.3.2 Evaluating the integral 30
6.3.3 Different integral boundaries 30

6.4 Runtine Analysis . 31

7 Accuracy Analysis 32
7.1 Polynomial Exactness . 32

7.1.1 Gauss-Jacobi Polynomial Exactness 32
7.1.2 Gauss-Log Polynomial Exactness 33

7.2 Validation with Smooth Integrands 33

8 Conclusions 36

A Appendix 37
A.1 Error Plots . 37

A.1.1 Jacobi Weight Function 37
A.1.2 Logarithmic Weight Function 40

A.2 Other Plots . 41

Bibliography 42

iv

Chapter 1

Introduction

Numerical quadrature is a term designating a wide range of algorithms
relating to the numerical computation of one dimensional integrals. The
term itself was historically used to designate calculating area. It is clear that
computing integrals is an extremely important problem in most aspects of
computational science, ’trading’ the complexity of an integral for that of a
sum.

Quadrature rules can be classified in different types of categories, some
more or less accurate. This thesis will revolve around Gaussian quadratures,
one of – if not the most – precise fixed-point non-adaptive quadrature rules.

This paper will first present the mathematical foundations and most con-
cepts relevant to the topic. Off of these foundations, a general introduction
to numerical quadrature will be presented, followed by a definition of Gaus-
sian quadratures. From this general definition, a formal problem statement is
derived, which will be symbolically solved via the Golub-Welsch algorithm.

Once the solving algorithm is clear, it will be adapted to two weight func-
tions of interest, and some optimisation tweaking steps may be introduced.

Finally, the programming implementation is given, coherently linking all
the aforementioned steps, along with a runtime and accuracy analysis of
the code.

The SingGQ Framework

The framework developed in this paper is a C++ library, and is available for
download at https://github.com/itiskawa/singular-gauss-quadrature. A
setup guide and examples of usage are available on the repository. Full
documentation is available at https://itiskawa.github.io/SingGQ-doc/.

1

https://github.com/itiskawa/singular-gauss-quadrature
https://itiskawa.github.io/SingGQ-doc/

Chapter 2

Mathematical Foundations

Integral computation may be done over an uncountably infinite amount of
intervals in R. Thus, for sake of brevity the entirety of this paper will assume
the domain of integration I to be open, such that I =]a, b[, with a < b < ∞.
Moreover, any time a domain is referred to as I without further context, it is
assumed to be as defined in this paragraph.

The following section may be treated as an index for notations, definitions,
propositions and theorems which will be used later on.

2.1 (Weighted) Integrals

Definition 2.1 (Shorthand for Integration) Let f : I −→ R. Then,

I[f] :=
∫

I
f (x)dx =

∫ b

a
f (x)dx (2.1)

Definition 2.2 (Singularity) A function f : I −→ R is said singular if itself or
its first derivative contains a singularity over I, i.e. there exists one or multiple
points in I such that f or its derivative are not well-defined on these points.

Definition 2.3 (Weight Function) A weight function over I, µ : I −→ R+ is an
integrable function such that ∫

I
µ(x)dx < ∞ (2.2)

Weight functions can be discrete or continuous. In this paper, when w(x) is
mentioned as a weight function, it is assumed to be continuous.

Definition 2.4 (Weighted Integral) Let f : I −→ R be a function, µ : I −→
R+ a weight function. The weighted integral of f with respect to µ is denoted

I[f ; µ] :=
∫

I
f (x)µ(x)dx =

∫ b

a
(f · µ)(x)dx (2.3)

2

2.1. (Weighted) Integrals

Note that any ’regular’ (unweighted) integral is in fact weighted, where
µ(x) = 1, ∀x ∈ I.

Example 2.5 To further illustrate this concept, let µ(x) over I be the Jacobi weight
function (further detailed in 5.1), which will be one of the foci of this paper.

µ(x) = (1− x)α(1 + x)β α, β > −1

Let α = 1
2 and β = 1, then this instance of the Jacobi weight function yields:

Figure 2.1: Jacobi weight function with α = 0.5, β = 1

Now consider the function f (x) = cos(x) over I. The figure below demonstrates the
effect of the aforementioned weight function on f (x). Albeit slight, the changes oc-
curring are non-negligible, as well as those acting on the surface under the weighted
curve. This example demonstrates a subtle change, but all depends on the integrand
f and the weight function µ.

(a) f (x) = cos(x) (b) g(x) = cos(x) · µ(x)

Figure 2.2: Unweighted vs weighted cosine function

3

2.2. Polynomial Interpolation

2.2 Polynomial Interpolation

Definition 2.6 (Partition of an Interval) A partition ∆ of I is a real finite se-
quence ∆ = {x0, x1, x2, ..., xn} such that a < x0 < x1 < ... < xn−1 < xn < b.

Furthermore, a partition is said equidistant if the spacing between all xi is equal.
More formally, h = xn−x0

n = xi+1 − xi for all i ∈ 0, 1, ..., n− 1

Definition 2.7 (Interpolation) Let ∆ = {xi}n
i=0 ⊂ R be a partition of I, and a

set a points S = {xi, yi}n
i=0. An interpolation over S is a mathematical operation

which models a function f such that f (xi) = yi, for all i ∈ {0, 1, ..., n}.

Definition 2.8 (Knot polynomial) Let S = {x0, x1, ..., xn} be a partition of I.
The knot polynomial associated to the points {xi}n

i=0 is denoted

ω(x) =
n

∏
i=0

(x− xi) (2.4)

The zeros of the knot polynomial w.r. to S are the elements of S themselves.

Definition 2.9 (Lagrange Polynomial) Let S = {xi, yi}n
i=0 be a set of points

such that {xi}n
i=0 is a partition of I. The associated ith Lagrange polynomial is

defined by

li(x) :=
ω(x)

(x− xi)ω′(x)
=

n

∏
j=0,j 6=i

x− xj

xi − xj
(2.5)

Notice that li(xj) = δij

Proposition 2.10 Suppose we are looking to interpolate the points {xi, yi}n
i=0, then

p(x) =
n

∑
i=0

yili(x) (2.6)

is a valid polynomial interpolation of degree n.

Proof p(xi) = ∑n
i=0 yili(xi) = yi for all i, using the Lagrange polynomial

property, thus making p a valid polynomial interpolation of degree n. �

2.3 Weight Functions and Orthogonal Polynomials

There is an important link to be made between these two concepts, which
will directly impact the computation of ’optimal’ quadratures. Since explain-
ing the entire theory of space, measures and orthogonality in detail is by far
beyond the scope of this thesis, the following section will present useful
concepts relating to orthogonal polynomials and properties of continuous
weight functions.

4

2.3. Weight Functions and Orthogonal Polynomials

As described in definition 2.3, a weight function can be seen as distorting
the Euclidean space (here R), in such a way that typical measures are now
rendered obsolete. This entails a redefinition of some measures with respect
to the weight function at hand. Recall that (in definition 2.4) the weighted
integral operator has already been defined, but one more relevant operator
must be redefined for this paper.

Definition 2.11 ((Weighted) Inner Product of a Two Functions) Let µ(x) be
a weight function over I, p and q are functions defined over I. An inner product
with respect to µ, denoted 〈·, ·〉µ is defined as follows:

〈p, q〉µ =
∫

I
p(x)q(x)µ(x)dx (2.7)

Notice that 〈p, q〉µ = I[(p · q); µ], which yields a new well-defined L2-norm.

Definition 2.12 (Orthogonality) The principle of orthogonality is defined between
two vectors in a defined vector space as follows:

Let x,y ∈ K, an n-dimensional vector space, then x and y are said orthogonal if
〈x, y〉 = 0, where 〈·, ·〉 is a defined inner product over K.

A vector x may also be orthogonal to a subspace Y if 〈x, y〉 = 0, ∀y ∈ Y.

Combining both previous definitions implies that two polynomials p, q ∈ P,
n ∈N can be orthogonal with respect to a weight function µ.

Example 2.13 Let x = cos(θ), Tn(x) = Tn(cos(θ)) = cos(nθ). Under the
Euclidean inner product, it can be shown that Tn(x) and Tp(x) are not orthogonal
over the interval]− 1, 1[.∫ 1

−1
cos(n cos−1(x)) cos(p cos−1(x))dx 6= 0 if p 6= n

However, given x = cos(θ), notice that

∫ 1

−1

Tn(x)Tp(x)
√

1− x2
=
∫ π

0
cos(nθ) cos(pθ)dθ = 0 ⇐⇒ n 6= p

Thus demonstrating orthogonality of Tn(x) and Tp(x) with respect to the weight
function µ(x) = 1√

1−x2

Definition 2.14 (Orthogonal Polynomials) Let p, q ∈ Pn, and w a weight func-
tion. Then p and q are said orthogonal if 〈p, q〉µ = 0.

Definition 2.15 (Orthonormality) Let p, q ∈ Pn be orthogonal polynomials such
that p 6= q, and µ a weight function over I. p, q are said orthonormal if they are
unit vectors with respect to µ, i.e. 〈p, p〉1/2

µ = 1

5

2.4. Matrix Eigenvalue Problem

Proposition 2.16 (3-step Recursion) Let µ be a weight function and its asso-
ciated inner product 〈·, ·〉µ over I. Then there exists a sequence {un}∞

n=0 with
un ∈ Pn for all n ∈N such that:

• un(x) = ∑n
i=0 γixi , γi > 0∀i ∈N

• 〈un, um〉 = δn,m

These properties imply that the polynomials of the sequence {uk}n
k=0 generate an

orthonomal basis of Pn.

Set u−1 = 0, u0 = γ0 = I[w]−1/2, then ∃αk, βk such that the following 3-term
recusrion appears:

• βn+1un+1(x) = xun(x)− αn+1un(x)− βnun−1(x)

• αn+1 = 〈un(x), xun(x)〉

• βn+1 = γn
γn+1

, and β0 = 0

Proof Provided as the proof of Satz 33.1 in [7]. Understanding the demon-
stration of the above result was deemed out of the scope of this paper. �

Theorem 2.17 (Zeros of Orthogonal Polynomial) Let µ be a weight function
over I and {ui}∞

i=0 its associated orthonormal polynomial sequence. Then the zeros
of un(x) are all real and lie within I.

Proof Provided as the proof of Satz 34.1 in [7]. Again, too many new con-
cepts only relevant to the proof would need to be introduced. �

2.4 Matrix Eigenvalue Problem

As for the previous chapters, knowledge is assumed, here in matrix alge-
bra. Concepts such as linear independence of vectors, matrix multiplica-
tion, matrix-vector multiplication, transposition and matrix inversion will
be used.

The Matrix Eigenvalue Problem is a very common problem in Mathematics,
specifically in Numerical Analysis, as solving linear systems is a very im-
portant part of this field. Many different numerical methods solving the
Eigenvalue Problem exist, examples of which are the Power Methodor the
Jacobi Method.

This paper will not explain any of these methods – despite them being a
very interesting read – as the main goal is not to implement an Eigenvalue
Problem Solver. Rather, solving the Eigenvalue Problem will simply appear
to be a natural means of solving one principal component of the puzzle at
hand.

The following definitions are considered to be reminders.

6

2.4. Matrix Eigenvalue Problem

Definition 2.18 (Eigenvalues and Eigenvectors) Let A be a real-valued nxn
matrix. Then v ∈ Rn is an eigenvector of A if v 6= 0 and satisfies the following:

A · v = λv , λ ∈ R (2.8)

λ is v’s corresponding eigenvalue.

Definition 2.19 (Eigendecomposition) The eigendecomposition of a square ma-
trix A ∈ RNxN is possible when A’s eigenvectors vi are linearly independent, and
λi is vi’s corresponding eigenvalue. Let V, λ ∈ RNxN such that:

V =
[
v1, v2, ...vN

]
, Λ =

λ1

λ2
. . .

λN

Then A′s eigendecomposition is VΛVT

Definition 2.20 (Similar Matrices) Two square matrices A, B ∈ RNxN are said
to be similar if there exists an invertible matrix P ∈ RNxN such that B = P−1AP
i.e. A and B represent the same linear transformation, but under different bases.
Similar matrices have matching eigenvalues.

Definition 2.21 (Self-Adjoint (Hermitian) Matrix) A square matrix A is said
self-adjoint (or hermitian) if it is equal to its complex transpose AH, i.e. aij = aji.

Real-valued self-adjoint matrices are called symmetrical.

By the fact that a symmetrical matrix A = AT, then its eigendecomposition
yields:

A = VΛVT = AT = (VΛVT)T = VΛTVT (2.9)

thus implying that the eigenvalues λi satisfy the equation:

λi = λN−(i−1) (2.10)

for all i ∈ 1, 2, ..., N

This property will be later exploited for faster computation.

7

Chapter 3

Numerical Integration / Weighted
Quadratures

3.1 Quadratures

As mentioned in the introduction, a quadrature is a numerical method to
compute a one-dimensional integral. There are many different ways to com-
pute quadratures, a few of which will be described below, but all of them
follow the same principle:

Definition 3.1 (n-point Quadrature Rule) Let f : I −→ R be a function, and
µ : I −→ R+ a weight function over I. An n-point quadrature rule Qn[·; µ]
approximates the integral of (f · µ) over I through a weighted sum of function
values:

Qn[f ; µ] :=
n

∑
i=1

wi f (xi) ≈ I[f ; µ] (3.1)

Where wi ≥ 0 and xi ∈ I for all i ∈ {1, 2, ... , n}.

It is important to note that the weights of the quadrature wi ∈ R+ and the weight
function µ(x) : I −→ R+ are not the same and must not be confused with each
other!

Definition 3.2 (Quadrature Terminology) Let Qn[·; µ] be defined as above in
3.1. Then

• the wi are the quadrature weights

• the xi are the quadrature nodes

This description of a quadrature can be generalized to compute I[f] over any
]a, b[(while maintaining boundary singularities), by computing the integral
over]− 1, 1[of the affine pullback f̂ of f .

8

3.1. Quadratures

3.1.1 Affine Pullback

Let s ∈]− 1, 1[, and t ∈]a, b[, then by applying the transformation

Φ(s) :=
1
2
(1− s)a +

1
2
(s + 1)b (3.2)

to the quadrature nodes xi, and scaling the weights wi −→ ŵi accordingly,
the following holds:∫ b

a
f (t)dt ≈

n

∑
i=1

wi f (xi) =
1
2
(b− a)

n

∑
i=1

ŵi f̂ (x̂i) ≈
1
2
(b− a)

∫ 1

−1
f̂ (s)ds (3.3)

with

xi = Φ(x̂i)

wi =
1
2
(b− a) · ŵi

f (Φ(s)) = f̂ (s)

(3.4)

Any continuous function can thus be ’stretched’ from] − 1, 1[to]a, b[, the
integral of which can be computed. Concrete implementations relevant to
the weight functions of interest are explicitly computed in 5.2.3 and 5.3.3.

3.1.2 Errors and Precision

Given that the very definition of quadrature rules implies that they may lead
to errors, the quantification of the quadrature rule’s error is necessary.

Definition 3.3 (Error of a Quadrature Rule) Let Qn[·; µ] be defined as in 3.1,
then it’s error is

E(Qn[·; µ]) := |Qn[·; µ]− I[·; µ]| (3.5)

As explained, a quadrature rule Qn[·; µ] only considers the integrand at dis-
tinct points within the interval of integration. Due to this fact, most quadra-
ture rules will attempt to approximate I[f ; w] by computing I[p; µ], where p
is a Lagragian interpolation of {(xi, f (xi))}. Notice that p(xi) = f (xi) ∀i ∈
{1, 2, ..., n}, thus Qn[f ; µ] = Qn[p; µ]. This approximation of f by interpola-
tion thus requires a guarantee of precision in order to be somewhat reliable.

Definition 3.4 (Order of a Quadrature Rule) Let Qn[·; µ] be as defined in 3.1.
Then the order of Qn[.; µ] is n ∈N such that

Qn[p; µ] = I[p; µ] , ∀p ∈ Pn−1

i.e. the order of a quadrature rule Qn[·; µ] is n ∈ N such that the integral of all
polynomials of degree n− 1 are computed exactly through Qn[·; µ].

9

3.2. Newton-Cotes Formulae

3.2 Newton-Cotes Formulae

The Newton-Cotes method to compute n-point quadratures is by consider-
ing an equidistant partition of I, ∆ = {xi}n

i=1 and the function evaluation at
these points { f (xi)}n

i=1.

3.2.1 Approximation through Interpolation

Newton-Cotes quadrature rules approximate I[f ; w] by computing ∑n
i=1 p(xi)wi,

where p is a Lagrangian interpolation of f over I.

I[f ; µ] :=
∫

I
f (x)µ(x)dx ≈

∫
I

p(x)µ(x)dx =
∫

I
(

n

∑
i=1

f (xi)li(x)µ(x))dx (3.6)

Where f ’s interpolation is

p(x) :=
n

∑
i=1

f (xi)li(x) ∈ Pn−1 (3.7)

Since the quadrature nodes are pre-defined, the weights are now the only
degrees of freedom left. The following proposition offers a way to compute
them, while maintaining an order of n.

Theorem 3.5 (A general formula for weights and minimal quadrature order)
Let Qn[·; µ] be an n-point Newton-Cotes polynomial quadrature rule, and µ(x) be
a weight function over I. Then, Qn[·; µ] has order ≥ n ⇐⇒ the weights are given
by:

wi =
∫

I
µ(x)li(x)dx , 0 ≤ i < n (3.8)

Where li(x) is the associated ith Lagrange polynomial (see definition 2.9).

Proof Let p(x) ∈ Pn−1. If Qn[·; µ] is to have order ≥ n, it will be proven that
n is a lower bound of Qn[·; µ]’s order under the following conditions:

I[p; µ] = Qn[p; µ] :=
n−1

∑
i=0

wi p(xi)

Notice that p(x) ≈ ∑n−1
i=0 p(xi)li(x), thus implying

I[p; µ] =
∫

I
p(x)µ(x)dx =

∫
I
(

n−1

∑
i=0

p(xi)li(x))µ(x)dx

=
n−1

∑
i=0

p(xi)
∫

I
li(x)µ(x)dx = Qn[p; µ] ⇐⇒

∫
I

li(x)µ(x)dx = wi �

10

3.3. Gaussian Quadratures

A lower bound for n-point Netwon-Cotes quadrature order has been estab-
lished and below an upper bound will be introduced.

3.2.2 Maximal Order of Classical Numerical Integration

Proposition 3.6 The order of an n-point quadrature Qn[·; µ] is at most 2n.

Proof Let q(x) = ω2(x) be the squared knot poynomial (see 2.8) over a
partition ∆ of the integration domain I.

Then

Qn[q; µ] =
n

∑
i=1

wiq(xi) = 0 6=
∫

I
q(x)µ(x)dw := I[q; µ] > 0 �

However, Newton-Cotes quadrature rules are restricted to equidistant La-
grange interpolation. This leads to a low degree of freedom in the method,
which seems marginal, but can lead to enormous problems, especially if the
integrand isn’t well-behaved (even if it is, it will be shown that huge errors
can occur). A famous example is the Runge phenomenon.

3.2.3 Interpolation Errors

Runge’s phenomenon is a classic example of bad interpolation approxima-
tions of seemingly well-behaved functions. The task is to approximate the
Runge function, which is given by

f (x) =
1

1 + 25x2 (3.9)

over the interval]− 1, 1[.

The observed result is that equidistant interpolation for f (x) yields an ex-
tremely poor approximation, as seen on Figure 3.1.

This is one of the major downfalls of Newton-Cotes quadrature formulae,
as the quality of the quadrature is in direct relationship to the ’compliance’
of the function to equidistant interpolation. A clear way to improve the
accuracy of quadrature rules is to not use an equidistant partition of I, as to
focus on the ’important’ areas under the curve. The next section will cover
a method of choosing nodes to guarantee maximal-order quadratures.

3.3 Gaussian Quadratures

Gaussian quadratures differ from classical quadrature methods, in the sense
that the quadrature nodes are not taken from an equidistant partition over
I. This is such in hopes to solve the problems encountered in Newton-Cotes

11

3.3. Gaussian Quadratures

Figure 3.1: Runge Interpolation with n = 14, Source: [2]

quadrature rules, where the function is poorly interpolated over an equidis-
tant partition.

The idea of approximating the integrand f with an interpolation over n
points remains however the same, as well as approximating I[f ; µ] by Qn[f ; µ],
which is equivalent to Qn[p; µ].

Recall that in proposition 2.16, it was stated that a weight function µ : I −→ R

generates a sequence of orthonormal polynomials {un} with respect to the
weighted inner product

〈p, q〉µ =
∫

I
p(x)q(x)µ(x)dx

Also recall in Proposition 3.6 that the maximal order of an n-point quadra-
ture is 2n, an order that Gaussian quadratures achieve.

3.3.1 Maximal Order Guarantee for Gaussian Quadrature

Theorem 3.7 (Construction of a Gaussian Quadrature of order 2n) An n-point
weighted Gaussian quadrature Qn[·; µ] achieves order 2n if its nodes xi correspond
to the ith root of the nth orthogonal polynomial un associated to the weight function
µ.

Proof Let an orthonormal basis of Pn associated to the weight function w
be denoted by {uk}n

k=0 and p ∈ P2n−1.

12

3.3. Gaussian Quadratures

By long division, ∃q, r ∈ Pn such that p(x) = q(x)un(x) + r(x) , where q, r
are of degree < n. Thus, to compute I[p; µ], we get the following:

I[p; µ] :=
∫

I
p(x)µ(x)dx =

∫
I

q(x)un(x)µ(x)dx +
∫

I
r(x)µ(x)dx

= 〈q, un〉µ +
∫

I
r(x)µ(x)dx =

∫
I
r(x)µ(x)dx := I[r; µ] = Qn[r; µ]

since 〈q, un〉µ = 0 by orthogonality with respect to µ, and deg(r) < n so by
Theorem 3.5:

Qn[p; µ] = Qn[r; µ]

Finally,

Qn[p; µ] =
n

∑
i=1

wi p(xi) =
n

∑
i=0

wiq(xi)un(xi) +
n

∑
i=0

wir(xi)

which holds ⇐⇒
n

∑
i=0

wiq(xi)un(xi) = 0 ⇐⇒ xi are the zeros of un
�

This is a key proof, as it also offers intuition on the inner mechanisms of
Gaussian quadrature, which are now guaranteed to have maximal order if
the above conditions are met.

3.3.2 Error of Gaussian Quadratures

Since it has been established that n-point Gaussian quadrature rules have a
degree of 2n, then the error term of such a rule will be:

|
∫

I
f (x)µ(x)dx−

n

∑
i=1

wi f (xi)| ≤
f 2n(η)

(2n)!
〈un, un〉µ (3.10)

for a continuous integrand f with at least 2n continuous derivatives, a <
η < b, and un is the nth monic polynomial associated to µ (see definition
2.16).

This result is a consequence of f ’s Taylor expansion around η, explained in
the proof of Theorem 3.6.24 in [8].

13

Chapter 4

Formal Problem Statement

Now that all the foundations have been set, it is time to properly state the
problem, along with the offered solution.

Let I =] − 1, 1[∈ R, f : I −→ R a well-behaved continuous function, and
µ : I −→ R+ a singular weight function. Find the nodes xi ∈ I and the weights
wi ∈ R+ yielding a maximal order Gaussian quadrature rule Qn[·; µ] such that:

∫
I

f (x)µ(x)dx ≈
n

∑
i=1

wi f (xi) (4.1)

More specifically, µ(x) will only take on two forms1 (denoted w and v), to
which the details will be specified in the next chapter.

w(x) = (1− x)α(1 + x)β (4.2)

v(x) = ln(1 + x) (4.3)

4.1 Singular Gaussian Quadrature
& the Eigenvalue Problem

This section will cover the theoretical aspect of solving the stated problem
with the help of the Eigenvalue Problem (see definition 2.18).

1Generalizations of these weight functions are offered in 5.2.3 and 5.3.3 respectively.
However, the basic problem over]− 1, 1[is the most common case.

14

4.1. Singular Gaussian Quadrature
& the Eigenvalue Problem

4.1.1 Computing the Nodes

It has been shown that Gaussian quadratures and sequences of orthogonal
polynomials are very tightly related. It has however yet to be shown how
this helps solve the problem at hand, i.e. how to compute the nodes, i.e.
how to find zeros of orthogonal polynomials.

Recall the 3-term recurrence relation (2.16) of orthonormal polynomials {un}
with respect to a weight function µ:

βn+1un+1 = (x− αn+1)un − βnun−1 (4.4)

which can be rewritten as

xun = αn+1un + βnun−1 + βn+1un+1 (4.5)

Furthermore, if {un} are considered to be monic (leading coefficient = 1),
then equations 4.4 and 4.5 can be further simplified to

un+1 = (x− an+1)un − bnun−1 (4.6)

and
xun = an+1un + bnun−1 + un+1 (4.7)

Let ũ = (u0, u1, ..., un−1)
T, and en be the nth canonical basis vector. Equation

4.5 can be written as a matrix-vector product:

xũ = Aũ + unen (4.8)

where

A =

a0 1
b1 a1 1

b2 a2 1

b3
.
. 1

bn−1 an

(4.9)

Consider xi ∈ I to be the ith root of un(x), and consider evaluating equation
4.8 at x = xi. Its last term thus vanishes, and it reduces to:

xiũ(xi) = Aũ(xi) (4.10)

where ũ(xi) = (u0(xi), u1(xi), ...un(xi))
T. Notice that this forms an eigenvec-

tor problem, and implying that xi is an eigenvalue of A.

15

4.2. Golub-Welsch Algorithm

By Theorem 3.7, it is now safe to conclude that the eigenvalues of the tridiagonal
matrix A in 4.9 correspond to the quadrature nodes of an n-point Gauss quadrature
rule with respect to weight function µ.

4.1.2 Computing the Weights

Let µ, {un}, an, bn, A be defined as above.

Definition 4.1 The Christoffel function of a sequence of orthonormal polyomials
{un} relative to a weight function µ is defined by:

Λn(x) = (
n−1

∑
k=0
|uk(x)|2)−1 (4.11)

Theorem 4.2 Let xi be the eigenvalues of A. Then the weights wi of an n-point
Gauss quadrature can be computed through the Christoffel function as follows:

Λn(xi) = wi (4.12)

Proof Provided as the proof of Satz 40.3 in [7] .

This relation yields a direct method to compute the quadrature weights.

4.2 Golub-Welsch Algorithm

As shown above, building a Gauss quadrature rule can be boiled down to a
few steps. The Golub-Welsch Algorithm is the method that will be used to
efficiently compute Gaussian quadrature nodes and weights. It is comprised
of 3 steps:

1. computing the 3-term recurrence relation coefficients ai, bi relative to
the desired weight function

2. computing the eigenvalues xi by finding the eigenvalues of 4.9

3. computing the weights wi

However, there are still many aspects of this computation that can be dis-
cussed, namely optimising the process.

First of all, finding the eigenvalues of matrix 4.9 may be tedious work, and
it is preferable to solve a Hermitian eigenvalue problem (see definition 2.21).
Consider the Jacobi Matrix J :

J =

a0
√

b1√
b1 a1

√
b2√

b2 a2
√

b3
√

b3
.
.

√
bn−1√

bn−1 an

(4.13)

16

4.2. Golub-Welsch Algorithm

which is symmetrical (or self-adjoint) and similar to that of A in 4.9. Then
by similarity, the eigenvalues of A match with those of J . (The derivation
from A to J are explained in Chapter 5.3 on Gaussian Quadrature in [1]).

As seen in definition 2.21 of self-adjoint matrices , it is computationally
cheaper to find eigenvalues of symmetrical matrices, which is why this algo-
rithm favors it.

Secondly, computing the weights via the Christoffel function is highly in-
efficient. It must also be considered that the polynomials themselves may
be unknown, given that only the coefficients of the recurrence relation are
required to compute the nodes.

The Golub-Welsch Algorithm thus offers am optimized routine to compute
the quadrature nodes and weights.

Proposition 4.3 Let xi be the ith eigenvalue of the tridiagonal matrix obtained by
step 2, and vi = (vi,0, vi,1,, vi,n−1)

T be its corresponding unitary eigenvector,
then:

wi = µ0 · (vi,0)
2 (4.14)

where
µ0 =

∫
I

µ(x)dx (4.15)

Proof Found in code implementation of Gauss quadrature solvers in [5]
and in Chapter 5.3 on Gaussian Quadratures in [1]. Further understanding
of this proposition is not necessary for the code implementation. �

17

Chapter 5

Singular Weight Functions

The computation of weighted integrals with a non-singular weight function
is a rather straightforward process, and unless the integrand itself is not
well-behaved, no particular problems arise. Singular weight functions, how-
ever, most often lead to the computational problem in which some regions
may not be well-defined. The inaccuracy of this computation may be amor-
tized using associated Gaussian quadrature rules, which base themselves
off of the well-defined associated polynomials of the singular weight func-
tion. As explained in Section 3.3, the quadrature nodes and weights are fully
determined by the polynomials, which are guaranteed to exist.

This section will present the necessary steps to compute the recurrence rela-
tion coefficients of both weight functions of interest.

5.1 Jacobi Weight Function

Definition 5.1 The Jacobi weight function is defined over]− 1, 1[by:

w(x) = (1− x)α(1 + x)β , where α, β > −1 (5.1)

First of all, it is clear that if α, β ≥ 0, then the weight function will lose its
singularity property. For this reason, a general solver will be implemented.

Dealing with w(x) is a rather straightforward process, as the Jacobi weight
function is very well researched and documented.1

5.1.1 Jacobi Polynomials

The (non-monic) polynomials associated to w(x) are called Jacobi polynomials,
and the nth polynomial is often denoted Pα,β

n (x). Their analytical form is
1Namely the orthogonal polynomials associated to w(x) are one of the most widely used

orthogonal polynomials.

18

5.2. Special Cases of the Jacobi Weight Function

known in multiple forms, but is not relevant to the quadrature computation
of interest.

The inner product of Jacobi Polynomials with respect to w(x) is defined as
follows:∫ 1

−1
(1− x)α(1+ x)βPα,β

n (x)Pα,β
m (x)dx =

2α+β+1Γ(n + α + 1)Γ(n + β + 1)
(2n + α + β + 1)Γ(n + α + β + 1)

δnm

(5.2)
Note that 〈Pα,β

n (x)Pα,β
m (x)〉w 6= δnm, as these polynomials are orthogonal, but

not orthonormal.

From the above equation, a very useful value can be derived: the first moment
µ0: 2

µ0 =
∫ 1

−1
(1− x)α(1 + x)βdx =

∫ 1

−1
(1− x)α(1 + x)βPα,β

0 (x)Pα,β
0 (x)dx (5.3)

=
2α+β+1Γ(α + 1)Γ(β + 1)
(α + β + 1)Γ(α + β + 1)

=
2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)

Definition 5.2 (Recurrence Relation Coefficients) Let u(α,β)
n denote the nth poly-

nomial associated to the Jacobi weight function, then the 3-term recurrence rela-
tion (see Proposition 2.16) describing monic u(α,β)

n is given by:

1. u(α,β)
−1 = 0

2. u(α,β)
0 (x) = 1

3. u(α,β)
n+1 = (x− an+1)u

(α,β)
n − bnu(α,β)

n−1

In this case, the coefficients an+1 and bn+1 are given by:

1. an+1 = (α2−β2)
(2n+α+β)(2n+α+β−2)

2. bn+1 = 4n(n+α)(n+β)(n+α+β)
(2n+α+β)2(2n+α+β+1)(2n+α+β−1)

The above formulae for the coefficients were found in the code implementa-
tion of Gauss-Jacobi quadrature in [5]. A manual computation or derivation
of these coefficients adds no value to the paper, nor to the code implemen-
tation, as the source is deemed to be reliable and has been proven to be
efficient.

5.2 Special Cases of the Jacobi Weight Function

The Jaocbi weight function is highly modulable, due to its two parameters,
and here are some important special cases.

2Obtained via properties of the Γ-function, which will not be discussed in this paper.

19

5.2. Special Cases of the Jacobi Weight Function

5.2.1 Legendre Weight Function

The trivial case of α = β = 0 yields w(x) = 1, which is the ’normal’ weight
function i.e. unweighted Euclidean space. The polynomials associated to
this trivial weight function are the Legendre Polynomials.

Figure 5.1: Legendre polynomials of degrees 0 to 4

5.2.2 Chebyshev Weight Function

Another symmetrical case where α = β = − 1
2 yields the Chebyshev weight

function 1√
(1−x2)

(see Figure A.7), whose associated polynomials are the fa-

mous Chebyshev Polynomials of the first kind. The nodes of these polynomials
are xi = cos((2k−1)π

2n), for k ∈ {1, 2, ...n}.

5.2.3 Affine Pullback

The initial integral is:

I =
∫ 1

−1
(1− x)α(1 + x)β f (x)dx (5.4)

Using the affine pullback definition in 3.1.1, and requiring singularities at
the new borders, (i.e. a and b) the new integral I′ becomes

I′ =
∫ b

a
(x− b)α(x− a)β f (x)dx (5.5)

= (
b− a

2
)1+α+β

∫ 1

−1
(s− 1)α(s + 1)β f (Φ(x))ds (5.6)

Which can be compute simply with scaled version of a Gauss-Jacobi quadra-
ture rule Qn[f̂ , w] over I, where f̂ (s) = f (Φ(x)).

20

5.3. Logarithmic Weight Function

5.3 Logarithmic Weight Function

The second weight function of interest is a logarithmic one. Since there is
no ’classical’ logarithmic weight function, it has been decided to study the
following:

Definition 5.3 (Logarithmic Weight Function) The logarithmic weight function
is defined over]− 1, 1[and is given by:

v(x) = ln(x + 1) (5.7)

Using this weight function, the integral is given as:

I[f , v] =
∫ 1

−1
f (t)v(t)dt =

∫ 1

−1
f (t) ln(t + 1)dt (5.8)

Notice that v changes signs over I, which makes computations of Gaussian
quadratures rather ineffective. To remedy this, I[f , v] is split into a sum of
two integrals, at t0 = 0, i.e. where v changes signs.

I[f , v] =
∫ 0

−1
f (t) ln(t + 1)dt +

∫ 1

0
f (t) ln(t + 1)dt (5.9)

=
∫ 1

0
f (t− 1) ln(t)dt +

∫ 1

0
f (t) ln(t + 1)dx

=
∫ 1

0
f (t) ln(t + 1)dx−

∫ 1

0
f (t− 1) ln(

1
t
)dx (5.10)

The first term of the addition has no singularities (assuming f is well-behaved),
so equation 5.7 can be rewritten as:

I[f , v] ≈ Qn[f , v] =
n

∑
i=1

(ln(xi + 1) f (xi))wi −
n

∑
i=1

w̃i f (x̃i − 1) (5.11)

= Q1,n[ln(x + 1) f (x)]−Q2,n[f (x− 1), ṽ]

Which reduces to the addition of two quadrature rules:

• a Gauss-Legendre rule Q1,n[ln(x + 1) f (x)] over]0, 1[, which can easily
be computed using a Gauss-Jacobi quadrature rule and affine pullback

• a special quadrature rule Q2,n[f (x− 1), ṽ] over]0, 1[with ṽ(t) = ln(1
t),

nodes x̃i and weights w̃i. This special quadrature rule is subtler in its
computation, and will be subject to more fine calculations.

The special quadrature rule is presented in Example 2.27 of [4]. The recur-
rence relation coefficients (αn, βn) of ṽ’s associated orthogonal polynomials
are solved via the Modified Chebyshev Algorithm presented below.

21

5.3. Logarithmic Weight Function

5.3.1 Modified Chebyshev Algorithm

In Chapter 2 of [4], W. Gautschi presents moment-based methods to compute
the recurrence relation coefficients of the orthogonal polynomials associated
to an arbitrary weight function µ(x) (referred to as ’measure’ in the book).

Let πn(t) be the nth polynomial associated to µ(x), and {pk(x)} be a sys-
tem of monic polynomials that satisfy the three-term recurrence relation. Let
(αn, βn), (an, bn) be the respective recurrence relation coefficients of π, p:

• πn+1(t) = (t− αn)πn(t)− βnπn−1(t)

• pn+1(t) = (t− an)pn(t)− bn pn−1(t)

Definition 5.4 (Moment / Modified Moment) Let

• µr =
∫

R
trw(t)dt be w’s rth moment, and

• mk =
∫

R
pk(t)w(t)dt be w’s kth modified moment

Methods to compute mk are given in section 3 of [6], although the code
implementations of [3] differ.3

Let m = [m0, m1, ..., m2n−1], {ak, bk}2n−1
k=0 as defined above be the inputs to

the Modified Chebyshev Algorithm. The algorithm proceeds as follows:
Initialization:

α0 = a0 +
m1

σm0

β = m0

σ−1,l = 0 , l ∈ {1, 2, ..., 2n− 2}
σ0,l = ml , l ∈ {0, 1, ..., 2n− 1}

(5.12)

Where σ is a (n + 2)x2n matrix, used as a stencil to allow reuse of previous
computations.

For k ∈ {1, 2, ..., n− 1}:

For l ∈ {k, k + 1, ..., 2n− k− 1}
σk,l = σk−1,l+1 − (αk−1 − αl)σk−1,l

− βk−1σk−2,l + blσk−1,l−1

αk = ak +
σk,k+1

σk,k −
σk−1,k

σk−1,k−1

βk =
σk,k

σk−1,k−1

(5.13)

The output is the sequence of coefficients {αk, βk}n−1
k=0 as defined above.

3The manual computation and further explanations of the modified moments is outside
of the scope of this thesis. The implementation follows the methods presented in the MAT-
LAB repository [3].

22

5.3. Logarithmic Weight Function

5.3.2 Computing the Quadrature

Applying this knowledge to v(x) i.e. ṽ(x), it is now possible to approximate
I[f , v] in the following manner:

1. Let g(x) = ln(x + 1) f (x), and f̃ (x) = f (x− 1)

2. Compute the Gauss-Legendre quadrature rule Q1,n[g] over]0, 1[

3. Let {pk} = {P
α,β
k } as defined in 5.2

4. Compute the first 2n modified moments {mk} of ṽ w.r. to {pk}

5. using {ak, bk}2n−1
k=0 and {mk}2n−1

k=0 , find {αk, βk}n−1
k=0 via the modified Cheby-

shev Algorithm

6. Find the special quadrature rule Q2,n[f̃ , ṽ] via Golub-Welsch

7. Qn[f , v] = Q1,n[g]−Q2,n[f̃ , ṽ] 4

5.3.3 Affine Pullback

Starting from the initial integral:

I =
∫ 1

−1
ln(x + 1) f (x)dx (5.14)

and generalizing it by conserving border singularities, I′ becomes:

I′ =
∫ b

a
ln(x− a) f (x)dx (5.15)

Let s ∈]0, 1[, then x = s(b− a) + a and dx = (b− a)ds yields the following:

I′ = (b− a)
∫ 1

0
ln(s(b− a)) f (s(b− a) + a)ds (5.16)

= (b− a)(ln(b− a)
∫ 1

0
f (ŝ)ds +

∫ 1

0
ln(s) f (ŝ)ds) (5.17)

with
ŝ = (b− a)s + a, dŝ = (b− a)ds (5.18)

Equation 5.17 is again in two parts, one with no singularity, and one weighted
with ṽ(x). This is also solvable via the addition of a Gauss-Legendre and a
special quadrature rules, explained in subsection 5.3.2.

4Note that Qn[·, v] is the addition of two n-point quadratures

23

Chapter 6

Code Implementation: The SingGQ
Library

The goal of this paper is to compute Gaussian quadratures. This has been
done in the form of a C++ library, which offers a means of computing max-
imal order Gaussian quadrature rules w.r. to the aforementioned weight
functions. The developed library is not a standalone, as it depends on Eigen

and Boost, both of which are popular C++ libraries for scientific computing.

6.1 The GaussRule Class

Given the solving methods presented in the previous chapters, and their
similarities it is only natural to implements an abstract template super-class
with shared functions. These shared functions are namely the Jacobi recur-
rence relation coefficient computation, and the tridiagonalisation process.
Its signature is as follows:

1 template<class T> //template for different precision types (float, double)

2 class GaussRule{
3 public :
4 virtual Eigen : : Matrix<T , Eigen : Dynamic , Eigen : Dynamic> c_jacobi (←↩

std : : size_t n , double a , double b) ;
5

6 virtual Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> ←↩
tridiagCoeffs (Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic>←↩
coeffs , std : : size_t n) ;

7 }

The function c_jacobi returns a nx2 array containing the n first recurrence
relation coefficients of the Jacobi Polynomials (ak, bk) (see 5.2). These coeffi-
cients are computed via the Gautschi routines from [3].

24

6.2. The GaussJacobiRule Class

Trivially, tridiagcoeffs simply puts the (ak, bk) coefficients obtained from
c_jacobi into a tridiagonal matrix of the form 4.13.

6.1.1 Namespaces

Two namespaces were added: GQJacobi and GQLog, to be able to differentiate
between both in an easier manner. Moreover, the Gauss-Jacobi solver has
implemented sub-classes, making the user-code more readable.

6.2 The GaussJacobiRule Class

This class computes and handles computations related to a Gaussian quadra-
tures with respect to a Jacobi weight function (5.1), also called Gauss-Jacobi
quadratures.

As stated in section 4.2, the first step to creating an n-point Gauss-Jacobi
quadrature rule is to specify α, β, and n. These parameters are the construc-
tion parameters of the GaussJacobiRule, which is a class template, as to
allow a higher-precision type – analogous to double – be the type of choice.
Its members, accessors and constructors have the following signatures:

1 template <class T>
2 class GaussJacobiRule{
3 protected :
4 // members

5 std : : vector<T> nodes ;
6 std : : vector<T> weights ;
7 std : : size_t degree ; // number of evaluation points

8

9 public :
10 // basic accessors

11 std : : size_t getDeg () const ;
12 std : : vector<T> getN () const ; // for nodes

13 std : : vector<T> getW () const ; // for weights

14

15 //constructors

16 GaussJacobiRule () ; // default

17 GaussJacobiRule (const GaussJacobiRule& gq) ; // copy

18 GaussJacobiRule (std : : size_t n , double a , double b) ;
19

20 // operators

21 template<typename F>
22 T operator () (F f) const ;
23

24 template<typename F>
25 T operator () (F f , T a , T b) const

26

27 // member functions

28 double gamma_zero (double a , double b)
29 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> nw () ;
30 }

25

6.2. The GaussJacobiRule Class

The interesting constructor being the last, it first ensures the validity of the
arguments, and then computes and stores the nodes, resp. the weights as-
sociated to the desired quadrature rule right away. It does so by calling the
member function nw().

6.2.1 Computing the nodes and weights

1 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> nw () {
2

3 double gamma_0 = gamma_zero () ;
4 std : : size_t n = this−>degree ;
5 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> coeffs = this−>←↩

c_jacobi (n , this−>alpha , this−>beta) ;
6 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> J_n = this−>←↩

tridiagCoeffs (coeffs , n) ;
7

8 Eigen : : SelfAdjointEigenSolver<Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : :←↩
Dynamic>> solve (J_n) ;

9

10 Eigen : : Vector<T , Eigen : : Dynamic> nodes = solve . eigenvalues () . real () ;
11 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> eigenvecs = solve .←↩

eigenvectors () . real () ;
12

13 // Solving the weights using Golub-Welsch algorithm formula

14 Eigen : : Vector<T , Eigen : : Dynamic> weights = Eigen : : Vector<T , Eigen : :←↩
Dynamic> : : Zero (n) ;

15 for (int i = 0 ; i < n ; i++){
16 weights [i] = gamma_0∗pow (eigenvecs . col (i) . normalized () [0] , 2) ;
17 }
18

19 // Preparing more compact return type

20 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> nw = Eigen : : Matrix<T ,←↩
Eigen : : Dynamic , Eigen : : Dynamic> : : Zero (n , 2) ;

21 nw . col (0) = nodes ;
22 nw . col (1) = weights ;
23

24 return nw ;
25

26 }

This method computes the quadrature nodes and weights following the
Golub-Welsch (4.2) algorithm. Lines 5 and 6 pre-compute and setup the
recurrence relation coefficients in the 4.13 tridiagonal form. The call to
.real() in lines 10 and 11 are justified by 2.17. As explained in 2.21, a
hermitian solve is faster, so line 8 calls an optimized hermitian matrix eigen-
value solver.

gamma_0 computes the first moment of the corresponding weight function
via equation 5.3.

1 double gamma_zero (double a , double b)
2 { return (pow (2 , a+b+1)∗tgamma (a+1)∗tgamma (b+1)) /(tgamma (a+b+2)) ; }

26

6.2. The GaussJacobiRule Class

Unlike most solvers, the end-result does not necessarily yield a sorted se-
quence of nodes xi such that xi < xi+1, but it was deemed unnecessary to
sort, as the integrands of interest are real functions.

6.2.2 Evaluating the integral

Finally, the () operator, which allows the evaluation of the quadrature for a
given function, passed as a parameter.

1 template<typename F>
2 T operator () (F f) const {
3 T quad = 0 ;
4 for (std : : size_t i = 0 ; i < degree ; i++){
5 quad += (weights [i] ∗ std : : real (f (nodes [i]))) ; //casting to real

6 }
7 return quad ;
8 }

The cast to real numbers is required, as some functions with cmath, when
called with <double> return complex values, with no imaginary part.

6.2.3 Different integral boundaries

The previous operator is also overloaded to support different integration
boundaries, by applying affine pullback (see 3.3) to the Jacobi weight func-
tion, as explained in 5.2.3. The following operator takes as arguments the
integrand and the integration bounds]a, b[.

1 template<typename F>
2 T operator () (F f , T a , T b) const {
3 T quad = 0 ;
4 for (std : : size_t i = 0 ; i < degree ; i++){
5 T x_i = 0.5∗ ((1− nodes [i]) ∗a + (1+nodes [i]) ∗b) ;
6 quad += (weights [i] ∗ std : : real (f (x_i))) ; }
7 // affine pullback sccaling ratio

8 quad ∗= pow ((0 . 5 ∗ (b−a)) , 1+this−>getAlpha () +this−>getBeta ()) ;
9 return quad ; }

6.2.4 Practical Subclasses

The Jacobi weight function is quite broad, and has many very widespread
and useful special cases (examples in 5.1). Such special cases have been mod-
elled as subclasses of GaussJacobiRule; namely into GausLegendreRule and
GaussChebyshev. The former simply represents ’unweighted’ integration
and its only construction parameter is the n.

1 template<typename T>
2 class GaussLegendreRule : public GaussJacobiRule<T>{

27

6.3. The GaussLogRule Class

3 public :
4 GaussLegendreRule (std : : size_t n)
5 : GaussJacobiRule<T>(n , 0 , 0)
6 {}
7 } ;

It holds no extra members.

The latter represents a Gauss-Chebyshev rule, where the weight function is
given by either

• 1√
1−x2 , called a Chebyshev weight function of the first kind

•
√

1− x2, called a Chebyshev weight function of the second kind

1 template<typename T>
2 class GaussChebyshevRule : public GaussJacobiRule<T>{
3 private :
4 int sgn ; // indicates the sign of the exponents

5

6 public :
7 GaussChebyshevRule (std : : size_t n , int sgn)
8 : GaussJacobiRule<T>(n , sgn ∗0 . 5 , sgn ∗0 . 5)
9 {

10 this−>sgn = sgn ;
11 }
12

13 int getSgn () const{
14 return this−>sgn ;
15 }
16 } ;

It is thus justified to have an extra member sgn that will indicate the sign of
the exponent.

6.3 The GaussLogRule Class

This class computes and handles computations related to a Gauss quadra-
ture with logarithmic weight function (5.7). It highly resembles GaussJacobiRule
in structure, but has extra member methods to compute subtleties, as men-
tioned in 5.3.

1 template<typename T>
2 class GaussLogRule : public GaussRule<T>{
3 protected :
4 std : : vector<T> nodes ;
5 std : : vector<T> weights ;
6 std : : size_t degree ;
7

8 public :
9 //basic accessors

10 std : : size_t getDeg () const ;

28

6.3. The GaussLogRule Class

11 std : : vector<T> getN () const ;
12 std : : vector<T> getW () const ;
13

14 //constructors

15 GaussLogRule () ; // default

16 GaussLogRule (const GaussLogRule& gql) ; // copy

17 GaussLogRule (std : : size_t n) ;
18

19 //operators

20 template<typename F>
21 T operator () (F f) const ;
22

23 template<typename F>
24 T operator () (F f , T a , T b) const ;
25

26 //member functions

27 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> shifted_c_log (std←↩
: : size_t n) ;

28

29 Eigen : : Vector<T , Eigen : : Dynamic> mmom_log (std : : size_t n) ;
30

31 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> chebyshev (std : :←↩
size_t n , Eigen : : Vector<T , Eigen : : Dynamic> mom , Eigen : : Matrix<T←↩
, Eigen : : Dynamic , Eigen : : Dynamic> abj ;

32

33 Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> nw (std : : size_t n)
34 }

6.3.1 Computing the special quadrature nodes and weights

• shifted_c_log computes the shifted recurrence realtion coefficients
of the Jacobi weight function (an, bn as defined in 5.3.1). It follows the
routine r_jacobi01 of [3].

• mmom_log computes the modified moments of the special quadrature,
explained in 5.4.

• chebyshev is the entire process explained in 5.3.1. Explicitly, it follows
the algorithm in section 2.1.7 of [4].

• nw computes the nodes and weights of the special quadrature rule (5.3.2),
and is the same process 4.2 as 6.2.1, but the α, β coefficients are the
result of chebyshev

29

6.3. The GaussLogRule Class

6.3.2 Evaluating the integral

The () operator works in a different manner than that of GaussJacobiRule,
as the computation of the quadrature is fundamentally different (5.3.2). The
first part is computed via an instance of GaussLegendreRule, and the second
part via the special quadrature rule mentioned above.

1 template<typename F>
2 T operator () (F f) {
3 T quad = 0 ;
4

5 //Gauss-Legendre part

6 GQJacobi : : GaussLegendreRule<T> glg (this−>degree) ;
7 quad += glg ([&] (T x) { return log (x+1)∗f (x) ; } , 0 , 1) ;
8

9 // logarithmic part

10 for (std : : size_t i = 0 ; i < degree ; i++){
11 quad −= (weights [i] ∗ std : : real (f (nodes [i]−1))) ;
12 }
13 return quad ;
14 }

6.3.3 Different integral boundaries

This operator takes the integrand, and the integration boundaries]a, b[as
parameters, and computes the new integral via the affine pullback (general-
ization of 3.3 to]0,1[), explained in subsection 5.3.3.

1 template<typename F>
2 T operator () (F f , T a , T b) {
3 assert (a < b) ; // boundary condition check

4 T quad = 0 ;
5 GQJacobi : : GaussLegendreRule<T> glg (this−>degree) ; // Gauss-Legendre ←↩

computation

6 quad += glg ([&] (T x) {return f ((b−a) ∗x + a) ;} , 0 , 1) ;
7 quad ∗= log (b−a) ; // scaling

8 // evaluation of second half of the integral using the special ←↩
quadrature rule

9 for (std : : size_t i = 0 ; i < degree ; i++){
10 quad −= (weights [i] ∗ std : : real (f (nodes [i]∗ (b−a) +a))) ;
11 }
12 return (b−a) ∗quad ; // last scaling due to affine pullback

13 }

30

6.4. Runtine Analysis

6.4 Runtine Analysis

A runtime test for generation and evaluation of different Gauss quadrature
rules has been done.

Figure 6.1: Jacobi vs. Logarithmic weight function generation

As expected, the logarithmic weight function yields more runtime, as the
computations are more fine, and involve matrix generations, on size O(n2)
for an n−point quadrature rule.

31

Chapter 7

Accuracy Analysis

The accuracy of the developed Gaussian quadrature rule will be tested in
two ways:

• Perfect accuracy for polynomial integrands1

• Witness exponential convergence against results of another quadrature
calculator with ’smooth’ integrands

7.1 Polynomial Exactness

7.1.1 Gauss-Jacobi Polynomial Exactness

The n-point Gauss-Jacobi quadrature rule in the SingGQ library does indeed
provide polynomial exactness. Table 7.1.1 of computations confirms this
claim.

The error was computed by fabs(exp-obtained), where

exp =
∫ 1

−1
x2n−2dx =

2
2n− 1

(7.1)

is the analytical result, and obtained is the quadrature computation with an
instance of SingGQ::GQJacobi::GaussJacobiRule<double>.

Note that this shows exactness for polynomials of degree 2n− 2, as 2n− 1 degree
polynomials always have a surface of 0 over I, due to symmetry with respect to the
y-axis. This property also holds with SingGQ.

1i.e. reaching numerical errors around machine epsilon, which is about 10−15 for double
precision in the IEEE 754 Standard

32

7.2. Validation with Smooth Integrands

n obtained error
2 0.66666666666666640761 2.2204460492503130808e-16
3 0.39999999999999980016 2.2204460492503130808e-16
4 0.28571428571428503229 6.6613381477509392425e-16
5 0.22222222222222193233 2.7755575615628913511e-16
6 0.18181818181818173996 8.3266726846886740532e-17
7 0.15384615384615368816 1.6653345369377348106e-16
8 0.1333333333333326931 6.3837823915946501074e-16
9 0.117647058823531242 1.8318679906315082917e-15
25 0.040816326530611561629 6.8001160258290838101e-16
55 0.0.018348623853213244517 2.2343238370581275376e-15
109 0.0.0092165898617522726971 1.120631365481017383e-15
239 0.0041928721173942638464 6.1556662545036999745e-15
540 0.0018535681186340202415 5.66061954254681865e-15

Table 7.1: Computational results of Jacobi moments and their error

7.1.2 Gauss-Log Polynomial Exactness

A similar test as that in 7.1.1 can be done for the weight function v(x) as
defined in 5.7. However, note that the quadrature rule with respect to v(x)
is comprised of the addition of two quadrature rules (see 5.3.2). The Gauss-
Legendre quadrature rule has already been confirmed to by polynomial-
accurate in 7.1.1. For this reason, the polynomial check will only be done
with respect to the special quadrature rule. Table 7.1.2 confirms that it indeed
yields perfect accuracy for polynomial integrands.

From the runtime tests in 6.4, it was decided to reduce the number of quadra-
ture points, to avoid unnecessarily lengthy computations.

Again, the error was computed by fabs(exp-obtained), where

exp =
∫ 1

0
ln(x)xndx = − 1

(n + 1)2 (7.2)

is the analytical result, and obtained is the quadrature computation with an
instance of SingGQ::GQLog::GaussLogRule<double>.

7.2 Validation with Smooth Integrands

The quadrature calculator that was tested against is scipy.integrate.quad,
as scipy is a very reputable library in the realm of scientific computing.
The functions being tested were the following: ex, cos(x), 1

1+x2 . All weighted

33

7.2. Validation with Smooth Integrands

n obtained error
2 -0.11111111111111109107 1.3877787807814456755e-17
10 -0.0082644628099173139679 4.1633363423443370266e-17
15 -0.0039062500000000164799 1.6479873021779667397e-17
24 -0.0016000000000000527689 5.2692225582795515493e-17
30 -0.0010405827263267484941 5.42101086242752217e-18
43 -0.00051652892561985228916 1.7564075194265171831e-17
50 -0.00038446751249519178252 2.3852447794681097548e-18
100 -9.8029604940703710353e-05 1.1628068299907035055e-17
200 -2.4751862577673768348e-05 1.4799359654427135524e-17
240 -1.7217334412298025356e-05 1.1736488517155585498e-17

Table 7.2: Computational results of logarithmic moments and their error

with the Jacobi (respectively logarithmic) function, of course, and the tests
were repeated 3 times, with different weight function parameters.

Figure 7.1: Error plot with f (x) = ex, α = −0.7, β = −0.1

First of all, it can be observed in Figure 7.1 that for a large n, the GaussJacobiRule
quadrature rule exponentially converges for f (x) = ex. Results have been
plotted on a semilogarithmic scale for better observations of convergence.

In both cases, the resulted convergence is very satisfactory for the cos(x)
and ex functions, as a worst-case error under 1e-9 is attained with under 10
quadrature nodes. The last function, 1

1+x2 , requires more quadrature nodes
(n ≈ 25) to reach an error of 1e-9.

34

7.2. Validation with Smooth Integrands

Figure 7.2: f (x) = ex with v(x)

The logarithmic weight function v(x) shows a less stable error convergence,
which was expected. As presented by W. Gautschi in [6], the numerical sta-
bility of logarithmic singularities is still under research. Acceptable accuracy
is reached nevertheless. It must also be taken into account that Figure 7.2
plots errors down to 1e-15 (unlike Figure 7.1), which is around machine pre-
cision, thus introducing the possibility that round-off errors are tampering
with the outcome of the error-convergence plot. Further plots of other func-
tions and their errors have been deferred to the Appendix (A.1) for lighter
reading.

35

Chapter 8

Conclusions

This paper has presented the SingGQ library, from a theoretical aspect to an
implementation, accompanied by a runtime / accuracy analysis. The imple-
mentations of the Golub-Welsch algorithm exploited the orthogonal proper-
ties of the weight function’s associated polynomials and the computational
advantage of solving self-adjoint eigenvalue problems. In the logarithmic
case, we exploited previous computations to avoid redundancies, which is
reflected in the OOP structure of the code implementation. The results have
been tested against reliable sources and indicate that SingGQ is functional
and accurate, thus making it a working C++ library. Despite maximal efforts
to reduce computational complexity, the logarithmic weight function still
yields quadratic runtime. This is due to the underlying algorithm requir-
ing matrices of linear side-length with respect to the number of quadrature
points. It is to be noted that this topic is still currently under research, and
leaves many doors open to possible solvers.

36

Appendix A

Appendix

A.1 Error Plots

A.1.1 Jacobi Weight Function

For w(x), three tests have been done for different values of α, β. Namely,
(α, β) ∈ {(−0.7,−0.1), (−0.5,−0.5), (−0.8,−0.5)} for f (x) ∈ {ex, cos(x), 1

1+x2 }.

Figure A.1: All different tested functions

37

A.1. Error Plots

Figure A.2: Error Analysis for α = −0.7, β = −0.1

Figure A.3: Error Analysis for α = −0.5, β = −0.5

38

A.1. Error Plots

Figure A.4: Error Analysis for α = −0.8, β = −0.5

39

A.1. Error Plots

A.1.2 Logarithmic Weight Function

Only one test per function has been made.

Figure A.5: All tested functions with v(x)

Figure A.6: Error Analysis v(x)

40

A.2. Other Plots

A.2 Other Plots

Figure A.7: Chebyshev Weight Function with α = β = − 1
2

41

Bibliography

[1] Nice M. Temme Amparo Gil, Javier Segura. Numerical Methods for Special
Functions. Society for Industrial and Applied Mathematics, 2007.

[2] John D. Cook. Runge Phenomena. John D. Cook, 2017. URL: https:
//www.johndcook.com/blog/2017/11/18/runge-phenomena/.

[3] Walter Gautschi. OPQ: A MATLAB SUITE OF PROGRAMS FOR GEN-
ERATING ORTHOGONAL POLYNOMIALS AND RELATED QUADRA-
TURE RULES. Oxford University Press, 2004. URL: https://www.cs.
purdue.edu/archives/2002/wxg/codes/OPQ.html.

[4] Walter Gautschi. Orthogonal Polynomials: Computation and Approximation.
Oxford University Press, 2004.

[5] Walter Gautschi. Gauss Quadrature and Christoffel Function for Jacobi weight
functions. Purdue University Research Repository, Jun 2020. URL: https:
//purr.purdue.edu/publications/3407/1, doi:10.4231/17YY-MC20.

[6] Walter Gautschi. Gauss Quadrature Routines for two classes of Logarithmic
Weight Functions. Sprenger Science Business + Media, Jan 2010. doi:

10.1007/s11075-010-9366-0.

[7] Martin Hanke-Bourgeois. Grundlage der Numerischen Mathematik und des
Wissenschaftlichen Rechnens. Vieweg & Teubner, 2009.

[8] Roland Bulirsch Josef Stoer. Introduction to Numerical Analysis. Springer-
Verlag, 1992.

42

https://www.johndcook.com/blog/2017/11/18/runge-phenomena/
https://www.johndcook.com/blog/2017/11/18/runge-phenomena/
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html
https://purr.purdue.edu/publications/3407/1
https://purr.purdue.edu/publications/3407/1
https://doi.org/10.4231/17YY-MC20
https://doi.org/10.1007/s11075-010-9366-0
https://doi.org/10.1007/s11075-010-9366-0

	Acknowledgements
	Abstract
	Contents
	Introduction
	Mathematical Foundations
	(Weighted) Integrals
	Polynomial Interpolation
	Weight Functions and Orthogonal Polynomials
	Matrix Eigenvalue Problem

	Numerical Integration / Weighted Quadratures
	Quadratures
	Affine Pullback
	Errors and Precision

	Newton-Cotes Formulae
	Approximation through Interpolation
	Maximal Order of Classical Numerical Integration
	Interpolation Errors

	Gaussian Quadratures
	Maximal Order Guarantee for Gaussian Quadrature
	Error of Gaussian Quadratures

	Formal Problem Statement
	Singular Gaussian Quadrature & the Eigenvalue Problem
	Computing the Nodes
	Computing the Weights

	Golub-Welsch Algorithm

	Singular Weight Functions
	Jacobi Weight Function
	Jacobi Polynomials

	Special Cases of the Jacobi Weight Function
	Legendre Weight Function
	Chebyshev Weight Function
	Affine Pullback

	Logarithmic Weight Function
	Modified Chebyshev Algorithm
	Computing the Quadrature
	Affine Pullback

	Code Implementation: The SingGQ Library
	The GaussRule Class
	Namespaces

	The GaussJacobiRule Class
	Computing the nodes and weights
	Evaluating the integral
	Different integral boundaries
	Practical Subclasses

	The GaussLogRule Class
	Computing the special quadrature nodes and weights
	Evaluating the integral
	Different integral boundaries

	Runtine Analysis

	Accuracy Analysis
	Polynomial Exactness
	Gauss-Jacobi Polynomial Exactness
	Gauss-Log Polynomial Exactness

	Validation with Smooth Integrands

	Conclusions
	Appendix
	Error Plots
	Jacobi Weight Function
	Logarithmic Weight Function

	Other Plots

	Bibliography

