
Implementation of a C++ library for

data exchange with matlab R⃝

Bachelor Thesis

by
Andrea Arteaga

supervisor
Prof. Dr. R. Hiptmair∗

advisor
Roman Andreev†

September 10, 2010

Abstract

matlabR⃝ stores matrices and others data structures into binary files
which we call MAT-files. They represent an efficient and powerful way
for data exchange between C++ programs and matlabR⃝ or other C++
programs. We propose an easy-to-use C++ library for input and output
operations to share data in matrix form.

1 Description of the problem

In the field of numerical simulations the need to share data between a C++
algorithm and other programs like matlab R⃝, Octave or even other C++ pro-
grams is a common problem. An efficient way to do this is through MAT-files,
the matlab R⃝ standard for data saving. This standard has many advantages:

• It supports dense and sparse matrix storage.

• It supports other data structures, such as rectangular tensors, structs,
objects and cell arrays.

• The data are stored in a binary format, i.e. data precision is preserved.

• The standard does not impose a limit on the number of data objects.

• The standard allows data compression using zlib.

• The standard is portable.

Nevertheless, there is a lack of modern, powerful, object oriented, simple to
use C++ libraries for input-output operation with this type of files. matlab R⃝

does provide within External interfaces [2] a C/C++ API for that purpose, but
its C based functional programming does not conform to the object-oriented

∗Seminar for Applied Mathematics, Swiss Federal Institute of Technology, Rämistrasse
101, Zurich

†Seminar for Applied Mathematics, Swiss Federal Institute of Technology, Rämistrasse
101, Zurich

1



paradigm. On the web libraries for handling MAT-files are available, which,
however, do not meet the requirements above.

Therefore, the library presented here (the library in the following) aims to be
an object-oriented, portable, easy to learn and to use, fast, free and open-source
C++ library. Moreover, it should provide support for linear algebra facilities,
such as uBLAS [3] or Eigen [4]. The library has no dependencies other than
zlib, but can be used with other linear algebra libraries.

2 The structure of a MAT-file

The document matfile-format [1] describes the format of a MAT-file. It is not
our intention to analyze or explain this format, but only to consider the most
important implications of its structure for the construction of the library.

Header Every MAT-file begins with a 128-byte header which includes a first
116-byte field of human-readable description, an 8-byte field with subsystem-
specific data (which will not be part of our discussions), a 2-byte integer number
specifying the version of the file and a 2-byte field named endianess indicator.
The library allows the user to write a custom description; if the user does not
write anything, the library fills the description with default information, like
creation data and time, equivalent to the behavior of matlab R⃝.

Elements The rest of the file is organized in elements: each element consists
of an 8-byte tag and a set of bytes that correspond to the data. The tag contains
two pieces of information: the first 4 bytes specify the type, i.e. how the data
must be interpreted; the rest of the tag is a 32-bit integer containing the length
of the data in bytes. If the data is 4 bytes or shorter, a short tag can be used
which contains in the first 16 bytes the number of bytes (which can be a number
between 0 and 4), in the next 16 bytes the type, after which the actual data (4
bytes) follows.

The type can be one of the following:

Value Type name Meaning
1 miINT8 signed 8-bit integer
2 miUINT8 unsigned 8-bit integer
3 miINT16 signed 16-bit integer
4 miUINT16 unsigned 16-bit integer
5 miINT32 signed 32-bit integer
6 miUINT32 unsigned 32-bit integer
7 miSINGLE IEEE 754 single format
9 miDOUBLE IEEE 754 double format
12 miINT64 signed 64-bit integer
13 miUINT64 unsigned 64-bit integer
14 miMATRIX matlab R⃝ array
15 miCOMPRESSED compressed data

Table 1: Numeric and compound types

2



Matrix elements The type miMATRIX represents matlab R⃝ arrays, i.e.
dense/sparse matrices, structures, objects, cell arrays, etc. Arrays in MAT-files
are composite elements, i.e. the data consists of many sub-elements, each with
tag and data. Three sub-elements are common for all arrays, while other sub-
elements can be specific for array type. We present only two examples which are
the most important ones for the purpose of this work: dense matrices, whose
treatment follows here, and sparse matrices, which are discussed on page 5.

2.1 Dense matrices

Dense matrices are matlab R⃝ arrays with two or more dimensions and a value
for each entry. The storage of dense matrices is in column-major order. The
following are the sub-elements of dense matrices.

Sub-element name Type Number of bytes
Flags miUINT32 8
Dimensions miINT32 4 · nDim
Name miINT8 nChars

Real part Any numeric type typeSize ·
∏nDim

i=1 di

Imaginary part (optional) Any numeric type typeSize ·
∏nDim

i=1 di

Table 2: Sub-elements for dense matrices

Here and in the equivalent table for sparse matrices on page 5 we used the
following symbols:

nDim The number of dimensions of the matrix – for a common matrix this is
equivalent to two.

nChars The number of character of which the matrix name consists.

typeSize Size in bytes of an element of the given numeric type. E.g. for double,
this amounts to 8.

di The number of entries along the i-th dimension. E.g. for two-dimensions
matrices d1 = number of columns, d2 = number of rows.

In the following we discuss more in-depth each sub-element that we listed:

Flags This sub-element is common to all arrays. The flags specify the class of
the array and give some information about the matrix. In case of dense
matrices, the class can be one of the following:

The class does not describe the type in which the data is stored but the
class of the matrix when loaded into matlab R⃝. One could save a matrix
using tiny integer types (see Real part below), then load it into matlab R⃝

and treat it as a matrix of double type; so, for example, a result of a
division will not be rounded to its integer part.

Further information provided by this sub-element is encoded in three bits:

• complex: The bit is set to one if the matrix contains complex ele-
ments. If this bit is set, then the matrix will also have the optional
sub-element Imaginary part (see below).

3



Value Class name Meaning
6 mxDOUBLE CLASS Double precision matrix
7 mxSINGLE CLASS Single precision matrix
8 mxINT8 CLASS Signed 8-bit integer matrix
9 mxUINT8 CLASS Unsigned 8-bit integer matrix
10 mxINT16 CLASS Signed 16-bit integer matrix
11 mxUINT16 CLASS Unsigned 16-bit integer matrix
12 mxINT32 CLASS Signed 32-bit integer matrix
13 mxUINT32 CLASS Unsigned 32-bit integer matrix

Table 3: Matrix classes

• global: The bit is set to one if this matrix has to be saved in the
global workspace when loaded into matlab R⃝. This flag is ignored
by the library, which sets this bit to zero: every outputted matrix
will be a local object in matlab R⃝.

• logical: The bit is set to one if this matrix has to be interpreted as
containing logical (boolean) values when loaded into matlab R⃝. The
library ignores this flag, setting it to zero. No logical matrices can be
outputted with the library, and imported matrices will be considered
as matrices containing only 0’s and 1’s – but interpreted as numbers.

Dimensions This sub-element is common to all arrays. It is a sequence of mi-
INT321. In the most common case it contains exactly two integers which
specify the number of rows and the number of columns, respectively. Al-
though MAT-files allow to multi-dimensional tensorsthe library currently
only provides support for 2-dimensional matrices. Note that the number
of dimensions is an implicit piece of information which can be extracted
from the size of this sub-element: since every dimension accounts for ex-
actly 4 bytes, the size of this sub-element divided by 4 gives the number
of dimensions.

Name This sub-element is common to all arrays. The name of the matrix is
the name of the variable which will be used to reference the matrix when
loaded into matlab R⃝. The data is to be interpreted as ASCII text.

Real part This sub-element contains the real part of the entries. The order
is column-major. Any numeric type can be used for storing this data,
independently of the class of the matrix. For instance, one could store
the entries of a mxDOUBLE CLASS matrix as integers in order to save
space, if all of them are representable as integers without loss of precision.

Imaginary part This optional sub-element contains the imaginary part of the
entries. This sub-element is present if and only if the matrix is declared
to be complex trough the complex flag. The type of the entries of this
sub-element may differ from the type of the real part. So one can write a
mxDOUBLE CLASS matrix with real part stored as miINT32 and imagi-
nary part stored as miUINT16; when loaded inside matlab R⃝, that matrix
is interpreted as an array containing complex numbers in double precision.

1See table 1 on page 2

4



Sub-element name Type Number of bytes
Flags miUINT32 8
Dimensions miINT32 4 · nDim
Name miINT8 nChars
Row index miINT32 4 · nnz
Column index miINT32 4 · (cols + 1)
Real part Any numeric type typeSize · nnz
Imaginary part (optional) Any numeric type typeSize · nnz

Table 4: Sub-elements for sparse matrices

2.2 Sparse matrices

Sparse matrices are stored as matlab R⃝ arrays that contain only the non-zero
elements using CCS (aka CSC) [5] format. The indexing always starts at 0.
Table 4 lists the sub-elements of sparse matrices, which are now discussed.

Flags Contains the same information as the flags for dense matrices. The
class is always mxSPARSE CLASS. Sparse matrices are interpreted as
containers for doubles. Additionally, the last 4 bytes, which were unused
inside the flags sub-element of dense matrices, contain the number of non-
zero values stored as an miUINT32 integer that we call nnz.

Dimensions Same as the correspinding sub-element for dense matrices. Sparse
matrices have exactly 2 dimensions.

Name Same as the corresponding sub-element for dense matrices.

Row index The row index of every non-zero entry, ordered according to the
column-major strategy.

Column index For each column holds the index of the first element, i.e. the
number of elements before the column; at the end the value nnz is ap-
pended.

Real part The real part of each non-zero entry. Any numeric type can be used
here.

Imaginary part The imaginary part of each non-zero entry. Like dense ma-
trices, sparse matrices have this sub-element if and only if the complex
flag is set to one. Any numeric type can be used, independently of the
type used for the real part, cf. the corresponding sub-element of Dense
matrices, above.

2.3 Remarks

Types MAT-files do not only contain the data, but also the information on
the storage form. Naturally, this is all dynamic data which is parsed at run-
time. Therefore C++ has extract dynamically typed data into statically typed
arrays. For example, the library could read a MAT-file and save the data in
an array; but the type of the data contained in the MAT-file is only known at
run-time, while the type of the array is decided at compile-time. We adress this
issue by treating the data in MAT-files as raw bytes and apply type casts.

5



Dimensions In MAT-files, the minimum number of dimensions of a matrix
is 2, i.e. vectors are treated as matrices with either only one row or only one
column. There is no maximum number of dimensions and, for simplicity, the
library only supports the case of 2 dimensions. An exception is throw if the user
tries to load a matrix with a higher number of dimensions.

Complex numbers Common linear algebra libraries provide support for
complex-valued matrices, treating them as matrices of std::complex objects.
In MAT-files real and imaginary part of a matrix are stored separately. Conse-
quently, the library separates the two parts while outputting complex matrices
and constructs objects of type std::complex while inputting them.

3 Wrappers

C-arrays, std::vector, Boost::uBLAS, Eigen, Armadillo [6], MKL [7] are only a
few ways to handle dense or sparse matrices. The library allows any of these
to be used by means of Wrappers. A Wrapper is an interface that handles a
matrix, reads or writes data on it, provides a uniform and standardized access
from external objects to the matrix object without the need – from the external
point of view – to know the methods of that object or its properties.

A Wrapper is a class, which respect some structural rule, such as a set of
public methods and public typedefs2. These methods and typedefs serve as
unified interface for accessing the matrix’s properties. Since different matrix
classes can also be designed with different patterns in mind, we define sev-
eral types (designs) of wrappers, each addressing a certain access and storage
strategy. So, for example, ArrayDenseWrapper is a wrapper design for matrix
objects that store, or can easily return, their elements in column-major order,
while CWiseDenseWrapper is a wrapper design for matrix objects that store the
entries otherwise and for which it is preferrable to request them component by
component. At this point, for sparse matrix objects, the library only provides
the wrapper design ArraySparseWrapper for matrix objects which return the
data in the CCS format.

Let us present some examples of wrapper implementing certain designs.

3.1 Boost wrappers

A relevant part of this work was to develop wrappers for matrices provided in the
Boost uBLAS library. Those matrices are STL-like objects which customizable
through template parameters. For example, for dense matrices, the user can
specify the scalar type, the underlying storage strategy (row-major is default
and column-major is available) and the storage structure (std::vector or a
similar class).

3.1.1 BoostDenseOWrapper

An example of a wrapper class implementing the design ArrayDenseWrapper
is BoostDenseOWrapper, which works with dense uBLAS matrices, i.e. matrix

2In C++, a typdef is a programming clause that assigns an alternative name to an existing
type or class. It is often used for handling of statical informations through templates.

6



objects. Any such matrix object can be used with this wrapper, but some tricks
– which we discuss below – allow the user to do an optimal usage of these
objects.

Let us now focus on the requirements of en ArrayDenseWrapper. A class is
considered a valid ArrayDenseWrapper if it has:

• A public typedef named Type for the class ArrayDenseWrapper which is
expressed by the following clause: typedef ArrayDenseWrapper Type;.

• A public method with prototype void size(miINT32 t&, miINT32 t&),
which provides the number of rows (first argument) and of cols (second
argument) through references.

• A public method with prototype bool isComplex() which returns true
iff the scalar type is complex (i.e. is of type std::complex<T>).

• A public method with prototype MATtype realType() which returns the
type (MATtype is a typedef for the signed 32-bit integer type, that represent
a type – see Section 2) of the real part of the entries. In case of Boost
complex matrices, the type of the real part is the same as the type of the
complex part.

• A public method with prototype MATtype imagType() which returns the
type of the complex part. In this case, it simply returns the same as
realType().

• A public method with prototype const char *realData() which returns
a pointer to the array containing the real part of the data (in column-major
order).

• A public method with prototype const char *imagData() which returns
a pointer to the arrays containing the imaginary part of the data (in
column-major order).

Besides, a constructor (which is not mandatory for ArrayDenseWrappers)
is added in order to organize the data. The constructor is the only template
part of this class: it accepts any matrix type, extracts the data, making use
of traits and other tools for constructing dynamical information from statical
one, copies and formats the data in case of complex types or row-major-ordered
elements, stores pointers to the internal storage in case of real, column-major
– or symmetric, if the user specifies this information – matrices. An important
remark for this wrappers we point out is that, once the wrapper is constructed
with a matrix, the matrix should not be modified until the wrapper is used – i.e.
the data has been written to a MAT-file – or the result is undefined because the
pointers used for internal storage inside the matrix can be invalidated, which
results in a corruption of the information inside the wrapper.

3.1.2 BoostCompressedOWrapper

The ideas behind this wrapper for outputting sparse matrices – provided as
objects of type compressed matrix from the Boost uBLAS library – are the
same as for the already described BoostDenseOWrapper. This wrapper, like
every wrapper implementing the design ArraySparseWrapper, has the following
entities:

7



• A public typedef named Type for the class ArraySparseWrapper which is
expressed by the following clause: typedef ArraySparseWrapper Type;.

• A public method with prototype void size(miINT32 t&, miINT32 t&)
which provides the number of rows (first argument) and of cols (second
argument) through references.

• A public method with prototype bool isComplex() which returns true
iff the scalar type is complex (i.e. is of type std::complex<T>).

• A public method with prototype miINT32 t nnz() that returns the num-
ber of non-zero values.

• A public method with prototype const char *ir() that returns a pointer
to the begin of the array containing the row indices formatted as 32-bit
signed integers and ordered according to column-major storage strategy.

• A public method with prototype const char *jc() that returns a pointer
to the begin of the array containing the column indices formatted as 32-bit
signed integers and ordered according to column-major storage strategy.

• A public method with prototype MATtype realType() which returns the
type (MATtype is a typedef for the signed 32-bit integer type, that represent
a type – see Section 2) of the real entries. In case of Boost complex
matrices, the type of the real part is the same as the type of the complex
part.

• A public method MATtype imagType() which returns the type of the com-
plex part. In this case, it simply returns the same as realType().

• A public method const char *pr() which returns a pointer to the array
containing the real part of the data (in column-major order).

• A public method const char *pi() which returns a pointer to the arrays
containing the imaginary part of the data (in column-major order).

Like for BoostDenseOWrapper, this wrapper has a constructor that checks
the types, extracts the data and formats it if needed, or just stores the pointers
if no modification is necessary. If the matrix is real and stored according to
the CCS schema, then the entries can be written directly to the file from their
actual position in the matrix object; otherwise they are copied and reorganized
in order to be ready to be written, which is more expensive and requires more
memory. The indices have to be stored as 32-bit integers and according to the
CCS schema in order to be written directly to the file without reordering. Indices
and entries are treated separately, so that the operation also benefit by speed-up
if the matrix storage is not optimal, e.g. in case of complex entries – data is
reorganized – with 32-bit indices and CCS storage – no indices reorganization
needed.

4 IO operations

Having standardized wrapper objects, which provide a blackbox access to matrix
objects’ data, we can construct classes that use them to perform input and

8



output operations on MAT-files. We thus introduce two concepts: devices and
writers/readers. For writers and readers, see the section 4.2 on page 9.

4.1 Devices

The library introduces two classes that manage input and output operations.
These classes are devices. A device reads or writes the data to a stream –
commonly a file, but in practice also other types of streams –, recognizes and
organizes the structure of the MAT-file, handles the metadata, provides access
to the matrices and their informations. They do not read or write directly to the
stream but delegate these processes to the template classes Reader and Writer,
respectively. The interface is designed to be as simple as possible.

OutputDevice The behavior of OutputDevice is very simple: it contains a
method for adding a human-readable description to the MAT-file and a method
for writing a matrix. If the method for the description is never called, a standard
description is written. The method for writing a matrix – writeArray (const
std::string& name, const WrapperT& wrapper) – takes as first argument
the name of the matrix and a wrapper as second argument; this is a template
method that accepts any class as parameter: this parameter is then passed to
the Writer that will decide which actual specialization use depending on the
design of the Wrapper class.

InputDevice InputDevice is slightly more complex. When a MAT-file is
open, the device reads the file header, then reads every matrix present in the
file. If a matrix is compressed, then it inflates the data until it can read each
item of relevant information, i.e. class, flags, dimensions and name; this infor-
mation is written in the approximately first 60 bytes of the deflated string: this
process is very fast. Information about class, flags, dimension and name is then
stored together with the whole string (deflated or inflated) in an object named
MatrixInfo. The whole content of the MAT-file - without metadata – is then
represented as a vector of such objects.

The user can make use of iterators of that vector in order to get informa-
tion about the matrices contained in the MAT-file and request every single ma-
trix through its name using the method void readArray(const std::string&
name, WrapperClass& wrapper). Here, an input wrapper has to be created be-
fore this call and its type will be passed as template parameter to the Reader.

4.2 Writers and readers

For each wrapper type design a writer and a reader is provided. These objects
make use of the unified access methods to the matrices provided by wrppaer in
order to writeor to read MAT-files.

For that purpose, unformatted IO-methods of C++ standard streams are
used. For example, the code for writing the elements of a dense matrix to a
MAT-file – let elements be of type double and the matrix have dimensions 4×4;
let out be the file device; let wrapper be a wrapper of type ArrayDenseWrapper
– will be the following: out.write(wrapper.realData(), 8*16);. For input
operations the equivalent method ifstream::read is used.

9



Notice that writers and readers are internal classes: the user will never need
to use them directly, at least until he writes a custom wrapper type and therefore
needs a custom reader or writer. These classes are thus included (hidden) in
the namespace matfile::detail.

5 Usage examples

We will show here some usage examples with the library and the uBLAS ma-
trices. Please remember that you have to make an aware use of Boost uBLAS
classes, in particular of their template parameter, in order to efficiently work
with MAT-files.

5.1 Dense matrices

The uBLAS class for dense matrices is matrix. The default storage strat-
egy is row-major, which is the less efficient one for our purposes. We can
either use column-major storage by adding a template parameter, or tell the
BoostDenseOWrapper not to transpose the data. Here we present the example
with the first solution. For the latter we refer to the online documentation.

#include <boost/numeric/matrix.hpp>
#include <matfile/Output>
#include <matfile/Wrappers/BoostDenseOWRapper.hpp>

using namespace boost::numeric::ublas;
using namespace matfile;

int main()
{
//Declare the first matrix: real, column-major
matrix<double, column_major> my_real_matrix(8, 8);

// Fill the matrix with some value...
/*
...

*/

// Save the matrix inside a MAT-file:

// 1. Open the device
OutputDevice out("my_mat_file.mat");

// 2. Put the matrix into a wrapper
BoostDenseOWrapper wrapper(my_real_matrix);

// 3. Write the matrix
out.writeArray("my_real_matrix", wrapper);

10



// 4. Close the device
out.close();

}

5.2 Sparse matrices

uBLAS provides more than one class for handling sparse matrices. The two
most common classes are:

mapped matrix Each element is saved as 3-tuple with row-index, column-index
and value. Insertions are very fast (constant complexity), since they only
consist of three additions to vectors, while linear algebra operations are
slow due to the large number of iterations to be performed.

compressed matrix CRS (compressed row storage) or CCS (compressed col-
umn storage) are used: the storage strategy allows optimized loops for
typical linear algebra operations, resulting in significantly faster compu-
tations. The main disadvantage of this strategy is the linear complexity
of insertions.

The library only supports compressed matrix objects. The user can also
specify other template parameters that affect the behavior of the matrix and
consequently of the wrapper. We discuss here the five template parameters and
we encourage the user to be carefully while deciding the values to assign to these
parameters.

T The scalar type: can be of any numeric type (int, float, double,. . . ) or a
std::complex type.

F The storage strategy: can be either row major (default) or column major.
row major means CRS storage, while column major means CCS. At this
point, only column major is supported by the library.

IB The index base. Common values are 0 (default) and 1. At this point, only
0 is supported by MATfile.

IA The index array type. Can be any STL vector-like class (the default is
unbounded array<std::size t>). Warning: this template parame-
ter also defines the index type, which has to be an integer type. Every
type is supported, but only 32-bit types allow the library to be very ef-
ficient. Therefore the preferred index array class should be of the form
some array type<miINT32 t>.

TA The value array type. Can be any vector-like class, with the same elemnt
type specified in the first parameter.

We present an usage example with a BoostSparseOWrapper handling a
compressed matrix. Note that we set four of the five template parameters
of the class, resulting in a quite complex type definition. We put it in a typedef
and splitted the typdef among many lines, which makes the code more readable.

11



#include <boost/numeric/matrix_sparse.hpp>
#include <matfile/Output>
#include <matfile/Wrappers/BoostSparseOWRapper.hpp>

using namespace boost::numeric::ublas;
using namespace matfile;

//Useful typedef for the matrix
typedef compressed_matrx<
double,
column_major,
0,
unbounded_array<miINT32_t>

> RealMartixT;

int main()
{
// Declare the matrix
// 8 x 8 real matrix with 12 non-zero values
RealMartixT my_real_matrix(8, 8, 12);

// Fill the matrix
/*
...

*/

// Save the matrix inside a MAT-file:

// 1. Open the device
OutputDevice out("my_mat_file.mat");

// 2. Put the matrix into a wrapper
BoostSparseOWrapper wrapper(my_real_matrix);

// 3. Write the matrix
out.writeArray("my_real_matrix", wrapper);

// 4. Close the device
out.close();

}

6 Tests and performance

We ran some tests in order to give an approximation for the library performance.
The tests involved dense and sparse, real and complex matrices. The typical
test consists of the following steps:

1. A set of matrices is created and saved whithin MAT-files with mat-

12



lab R⃝. Each MAT-file contains only one matrix and the sizes of the ma-
trices are determined by the requirement that the number of elements
scales exponentially and covers a relatively wide range of common values
(from 300×300 up to 8000×8000 for dense matrices and from 10000 up
to 12000000 elements for sparse ones). Dense matrices are generated with
the rand function of matlab R⃝, resulting in square random matrices with
values between 0 and 1. Sparse matrices are Poisson-matrices, generated
with gallery(’poisson’, size).

2. The matrices are loaded whithin the C++ program and read into uBLAS
objects. Each step of the input operation is measured separately.

3. The matrices are saved into other MAT-files. Each step of the output
operation is measured separately.

4. The timings are saved (into MAT-files) for analysis with matlab R⃝.

5. The outputted matrices are verified to agree exactly.

We used the class boost::ublas::matrix for dense matrices and the class
boost::ublas::compressed matrix for sparse matrices; we adjusted the tem-
plate parameters in order to comply with column-major storage and optimal (i.e.
32-bit) indices for sparse matrices (see the above examples). The C function
gettimeofday was used for the timings.

6.1 Input operations

The input process consists of the following sequence of operations:

Open matrix The MAT-file device is opened; the header of the MAT-file is
read and interpreted; the first bytes of the matrix are inflated and read.
The relevant pieces of information – matrix flags, size, name – are stored,
while the rest is copied into the RAM.

Read matrix Matrix data is inflated and given to the wrapper, which decides
eighter to store it in a temporary memory location or to write it directly
to the assigned uBLAS object of type matrix.

Return matrix The wrapper reorders and casts the data in order to fill the
matrix if the operation Read matrix did not do that.

Note: these benchmarks refer to MAT-file compressed with zlib, which is
probably the most common case if the file is created with matlab R⃝. Non-
compressed input operation will be significantly faster as no inflation has to be
performed.

6.1.1 Dense real matrices

The Figure 1 shows that a dense matrix with about 6.5 × 107 elements is read
from the hard disk in less than 7 seconds. This value obvously depends on the
hard disk’s performance, fragmentation, location, and other parameters.

Note that the Return matrix operation has in this case constant complex-
ity, since everything is already done by Read matrix.

13



6.1.2 Dense complex matrices

Figure 2 documents the detailed time consumption for an input operation with
complex numbers. As expected, the Open file and Read matrix operations
take about double the time needed by the same operations with real matrices:
this is clear, since the same number of complex elements versus real ones involves
twice the number of entries (which are in double precision here). The last
operation exhibits however a different behaviour than for real matrices: the
Return matrix operation has linear complexity with respect to the number of
elements and requires for a 8000× 8000 matrix about 3 seconds to create 80002

objects of type std::complex<double>. This is however a relatively small task
when compared with the most expensive operation, which is Read matrix.

6.1.3 Sparse real matrices

See Figure 3 for the results of this test. As a remark, we point out that the only
significantly expensive operation here is Read matrix: for a sparse matrix with
about 1.2×107 nonozero elements this operation takes about 1.2 seconds, while
the other two take jointly less than 0.05 seconds. We expect the reason to be the
following: the deflate operation on sparse matrices is significantly more efficient
than on dense matrices, since random data are unlikely to be compressed; dense
matrices contain almost only random data (two double precision numbers be-
tween 0 and 1 can differ on 52 or more of 64 bits), while sparse Poisson-matrices
contain only two different real values, 4 and −1, and the indices are integer
numbers which exhibit a relatively small amount of information entropy. That
means, MAT-files containing sparse matrices are smaller than ones with dense
matrices and the loading operation (Open file) is less expensive. As for dense
real matrices, no operation is needed whithin Return matrix, resulting in a
constant complexity for that step.

6.1.4 Sparse complex matrices

See Figure 4 for the results of this test. Equivalent remarks as for complex dense
matrices apply: the Open file and Read matrix operation are computation-
ally about twice as expensive as for real matrices due to the bigger amount of
data – precisely Read matrix is only 40% more expensive than before, since the
indices read operation has to be performed only once –, while Return matrix
has now linear complexity due to the need to fill the std::complex<double>
objects.

6.2 Output operations

The output process in our tests consists of the following sequence of steps:

Create wrapper A wrapper object is created with a given matrix (in our
tests from a matrix returned by the input process described above). If the
matrix object obeys to a set of conditions – for these conditions we refer
to section 3.1.1, section 3.1.2 and to the online documentation – this step
has constant complexity, since the data is just referenced through pointers,
but not reorganized or copied. Otherwise the step has linear complexity
with respect to the number of nonzero values.

14



Figure 1: Input of real matrices

0 1 2 3 4 5 6 7

x 10
7

0

1

2

3

4

5

6

7

Number of elements

S
ec

on
ds

 

 

open file

read matrix

return matrix

Figure 2: Input of complex matrices

0 1 2 3 4 5 6 7

x 10
7

0

2

4

6

8

10

12

14

Number of elements

S
ec

on
ds

 

 

open file

read matrix

return matrix

15



Figure 3: Input of sparse real matrices

0 2 4 6 8 10 12 14

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of elements

S
ec

on
ds

 

 

open file

read matrix

return matrix

Figure 4: Input of sparse complex matrices

0 2 4 6 8 10 12 14

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of elements

S
ec

on
ds

 

 

open file

read matrix

return matrix

16



Write matrix The data is written to a MAT-file. This step has linear com-
plexity with respect to the number of nonzero values.

Note: no compression is performed for these benchmarks. Actually, the
library does not provide support for compressed output yet.

6.2.1 Dense real matrices

The Figure 5 shows quite clearly that this output operation is very simple and
fast: the Create wrapper operation runs in constant time, as the organization
of the matrix is a trivial task: the data as provided by the mytrix object is ready
to be written to the MAT-file. The performance of the second operation depends
on hardware properties.

6.2.2 Dense complex matrices

Figure 6 looks very different: actually, the most expensive operation while out-
putting complex matrices is not the Write matrix, which as fast as before, but
the Create wrapper; the data has to be reorganized: the real part has to be
separated from complex one. As a consequence, out measurements show that
writing a complex matrix to a MAT-file is twenty times more time-consuming
that the same task with a real matrix of same size.

6.2.3 Sparse real matrices

In Figure 7 we have again the situation where the Create wrapper operation
has constant complexity, while the Write matrix runs with constant complex-
ity.

6.2.4 Sparse complex matrices

An intresting phenomenom appears in Figure 8: the two operations are nearly
equally expensive and the Create wrapper requires signifantly less time than
on dense matrices. This is due to the fact that the CCS indices – see Section
2.2 and 3.1.2 – are stored in the matrix object in the same format as they will
be written onto the MAT-file and consequently only the complex entries have
to be reorganized.

7 Conclusions and outlook

The presented library for reading and writing MAT-files (the matlab R⃝’s stan-
dard for data storage to disk) is already quite stable when working with matrix
and vector objects provided in the Boost uBLAS library. We have presented
timings involving output and input processes acting on dense and sparse, real
and complex matrices. The results show that every process has linear complex-
ity with respect to the number of nonzero values. The optimizations which are
accomplished when the matrix object properties allow them make the library
fast and memory-preserving. The aim of easyness was in our opinion archieved,
since only few lines of code allow the user to realize every operation. The design
pattern we implemented through wrappers enable the use of this library with a

17



Figure 5: Output of real matrices

0 1 2 3 4 5 6 7

x 10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of elements

S
ec

on
ds

 

 

create wrapper

write matrix

Figure 6: Output of complex matrices

0 1 2 3 4 5 6 7

x 10
7

0

5

10

15

20

25

Number of elements

S
ec

on
ds

 

 

create wrapper

write matrix

18



Figure 7: Output of sparse real matrices

0 2 4 6 8 10 12 14

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of elements

S
ec

on
ds

 

 

create wrapper

write matrix

Figure 8: Output of sparse complex matrices

0 2 4 6 8 10 12 14

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of elements

S
ec

on
ds

 

 

create wrapper

write matrix

19



potentially infinite set of linear algebra libraries with the only need to construct
special classes for standard access to the matrix objects. At this point only
Boost uBLAS matrix objects are supported.

However, we consider our work not to be ended. The library will be ac-
tively developed in the future. Here we list some interesting points for future
improvement:

• Construction of some data structure. Often one uses uBLAS or other ma-
trix libraries just to store the results of experiments and to subsequently
save them to a file for postprocessing. With miMATRIX we tried to repro-
duce the MAT-file usual data structures, in order to let the user also choose
those objects for multi-dimensional matrices, sparse matrices, matlab R⃝

structures, objects and cell arrays. No linear algebra operations are pro-
vided, only simple but powerful storage of data. The construction of this
library is in progress. We do not discuss this library in this document, as
not directly related with the purpose of our work.

• Definition of new wrapper designs supporting objects like tensors, struc-
tures, objects and cell arrays.

• Construction of wrappers. So far, only the matrices provided by the Boost
uBLAS library and std::vector are supported.

• Improvement of devices. OutputDevice and InputDevice have so far a
very limited set of possible operations. For example, it is impossible to
delete a matrix written to an OutputDevice or to append matrices to a
MAT-file. It would not be not so difficult to extend the functionalities of
these devices and maybe to introduce a new IODevice for edit of existing
MAT-files.

Aknowledgements

The author thanks the Seminar for Applied Mathematics and in particular Prof.
Dr. Ralf Hiptmair for the proposal of this bachelor thesis. Many thanks go to
my advisor Roman Andreev who helped me during the implementation of the
library and the drafting of this document. Concerning this, also thanks to Julia
Schweitzer (SAM) and Eliana Pusterla for helping with the proof-reading of the
thesis.

I would like to mention my sources of information:

• The MathWorks R⃝ Company that places a large quantity of free documen-
tation concerning its products at disposal.

• The Eigen community and its mailing list. The members are very kind
and competent.

• The Boost community, in particular the mailing list of uBLAS that is
often very helpful for me.

• In general the open-source community. I received many helps on the in-
ternational Gentoo forum3 and the italian Ubuntu forum4.

3http://forums.gentoo.org
4http://forum.ubuntu-it.org

20



References

[1] MathWorks R⃝ Company,
http://www.mathworks.com/access/helpdesk/help/pdf doc/matlab/matfile format.pdf,
Revision September 2010

[2] MathWorks R⃝ Company,
http://www.mathworks.com/access/helpdesk/help/pdf doc/matlab/apiext.pdf,
Revision September 2010

[3] Boost uBLAS library,
http://www.boost.org/doc/libs/release/libs/numeric/ublas/doc/index.htm

[4] Eigen library,
http://eigen.tuxfamily.org

[5] Netlib, Compressed Column Storage,
http://netlib.org/linalg/html templates/node92.html

[6] Armadillo library,
http://arma.sourceforge.net

[7] Intel R⃝ Math Kernel Library,
Intel R⃝ Company,
http://software.intel.com/en-us/intel-mkl

[8] Andrea Arteaga,
matfile library,
n.ethz.ch/˜arteagaa/matfile

21


