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Summary. We develop a data-sparse and accurate approximation to para-
bolic solution operators in the case of a rather general elliptic part given by
a strongly P-positive operator [4].

In the preceding papers [12]-[17], a class of matriGésfatrices) has
been analysed which are data-sparse and allow an approximate matrix arith-
metic with almost linear complexity. In particular, the matrix-vector/matrix-
matrix product with such matrices as well as the computation of the inverse
have linear-logarithmic cost. In the present paper, we applyHtiratrix
techniques to approximate the exponent of an elliptic operator.

Starting with the Dunford-Cauchy representation for the operator expo-
nent, we then discretise the integral by the exponentially convergent quadra-
ture rule involving a short sum of resolvents. The latter are approximated by
the?{-matrices. Our algorithm inherits a two-level parallelism with respect
to both the computation of resolvents and the treatment of different time
values. In the case of smooth data (coefficients, boundaries), we prove the
linear-logarithmic complexity of the method.
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1 Introduction

There are several sparée x n)-matrix approximations which allow to
construct optimal iteration methods to solve the elliptic/parabolic boundary
value problems witlD(n) arithmetic operations. But in many applications
one has to deal with full matrices arising when solving various problems
discretised by the boundary element (BEM) or FEM methods. In the latter
case the inverse of a sparse FEM matrix is a full matrix. A class of hierarchi-
cal () matrices has been recently introduced and developed in [12]-[17].
These full matrices allow an approximate matrix arithmetic (including the
computation of the inverse) of almost linear complexity and can be con-
sidered as "data-sparse”. Methods for approximating the action of matrix
exponentials have been investigated since the 1970s, see [20]. The most
commonly used algorithms are based on Krylov subspace methods [22,18].
A class of effective algorithms based on the Cayley transform was developed
in [8].

Concerning the second order evolution problems and the operator co-
sine family new discretisation methods were recently developed in [4]- [5]
in a framework of strongly P-positive operators in a Banach space. This
framework turns out to be useful also for constructing efficient parallel ex-
ponentially convergent algorithms for the operator exponent and the first
order evolution differential equations [5]. Parallel methods with a polyno-
mial convergence order 2 and 4 based on a contour integration for symmetric
and positive definite operators were proposed in [24].

The aim of this paper is to combine tfi&-matrix techniques with the
contour integration to construct an explicit data-sparse approximation for the
operator exponent. Starting with the Dunford-Cauchy representation for the
operator exponent and essentially using the strong P-positivity of the elliptic
operator involved we discretise the integral by the exponentially convergent
trapezoidal rule based on the Sinc-approximation of integrals in infinite strip
and involving a short sum of resolvents. Approximating the resolvents by
the?#-matrices, we obtain an algorithm with almost linear cost representing
the non-local operator in question. This algorithm possesses two levels of
parallelism with respect to both the computation of resolvents for different
guadrature points and the treatment of numerous time values. Our parallel
method has the exponential convergence due to the optimal quadrature rule
in the contour integration for holomorphic function providing an explicit
representation of the exponential operator in terms of data-sparse matrices
of linear-logarithmic complexity.

Our method applies to the matrix exponentiatp(A) for the class of
matrices withRe(sp(A)) < 0, which allow the hierarchical data-spafie
matrix approximation to the resolvettl — A)~!, » ¢ sp(A). First, we
discuss an application for solving linear parabolic problems with P-positive
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elliptic part. Further applications of our method for the fast parallel solving
of linear dynamical systems of equations and for the stationary Lyapunov-
Sylvester matrix equatiod X + X B + C' = 0 will also be discussed, see
Sect. 4.

2 Representation ofexp(t £) by a sum of resolvents

In this section we outline the description of the operator exponent with a
strongly P-positive operator. As a particular case a second order elliptic dif-
ferential operator will be considered. We derive the characteristics of this
operator which are important for our representation and give the approxi-
mation results.

2.1 Strongly P-positive operators

Strongly P-positive operators were introduced in [4] and play an important
role in the theory of the second order difference equations [23], evolution
differential equations as well as the cosine operator family in a Banach space
X[4].

Let A : X — X be alinear, densely defined, closed operator in X with
the spectral sefp(A) andtheresolventsgtA). Letly = {z = {+in : £ =
an?® +~0} be a parabola, whose interior contaipgA). In what follows we
suppose that the parabola lies in the right half-plane of the complex plane,
i.e.,70 > 0. We denote by, = {z = £+in: &> an® + vyt a > 0,
the domain inside of the parabola. Now, we are in the position to give the
following definition.

Definition 2.1 We say that an operatod : X — X is strongly P-positive
if its spectrumsp(A) lies in the domain2, and the estimate

(2.1) |(zI — A)~ forall z € C\2p,

Yxox < M
1+ /|7
holds true with a positive constan{ .

Next, we show that there exist classes of strongly P-positive operators
which have important applications. Let C X = H C V* be a triple of
Hilbert spaces and let(-, -) be a sesquilinear form ol. We denote by
ce the constant from the imbedding inequality|| x < cc||ully, Yu € V.
Assume that(-, -) is bounded, i.e.,

la(u,v)| < c|lullv|lvlly  forallu,v e V.
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Fig. 1. Parabolad’s andlp
The boundedness af-, -) implies the well-posedness of the continuous
operatorA : V — V* defined by
a(u,v) =y-< Au,v >y forall € V.

As usual, one can restriet to a domainD(A) C V and considerd as an
(unbounded) operator iff. The assumptions

Re a(u,u) > dollull} — di|jull} forallu eV,
ISm a(u,u)| < kl|ul|v]|vlx forallu eV

guarantee that the numerical ranggu, v) : v € X with ||ul|x = 1} of
A (andsp(A)) lies in 21, where the parabolB, depends on the constants
50, 01, K, ce. Actually, if a(u,u) = &, + in, then we get

& =Realu,u) > 50Hu||%/ — 6 > 5006_2 — 01,

nul = [Sm a(u, u)| < klully.
It implies

§+01
o

_ 1
(2.2) &4 > boc? — 6y, HUH%/S%@J‘*‘&), | < K

The first and the last inequalities in (2.2) mean that the pardjota {z =
E+in: &= %0772 — 01} contains the numerical range 4f Supposing that
Re sp(A) > v1 > 70 one can easily see that there exists another parabola

Lo={z=¢+in: &= an’+ v} with a = %;g?;fg in the right-half
plane containingp(A), see Fig. 1. Note thac, 2 — §; > 0is the sufficient
condition forRe sp(A) > 0 and in this case one can choase= dyc. 2 —d;.
Analogously to [4] it can be shown that inequality (2.1) holds tru€\u’,
(see the discussion in [4, pp. 330-331]). In the following, the operatisr

strongly P-positive.
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2.2 Examples

As the first examplelet us consider the one-dimensional operator:
L1(0,1) — L1(0,1) with the domainD(A) = H3(0,1) = {u : u €
H?(0,1), u(0) = 0, u(1) = 0} in the Sobolev spacH?(0, 1) defined by

Au=—u"  foralue D(A).

Here we setX = L;(0, 1) (see Definition 2.1). The eigenvalugs =
k*r? (k = 1,2,...) of A lie on the real axis inside of the domaidy;
enveloped by the pathy = {z = 7% + 1 £ in}. The Green function for the
problem

(2I — Au=u"(z) + 2u(z) = —f(x), xe€(0,1); u(0)=u(l)=0
is given by
oy 1 siny/zesiny/z(1 —¢) ifx <¢,
G(z,82) = Vzsin/z {sin\/gfsinﬁ(l—x) if z>¢,

i.e., we have

1
u(w) = (=1 - A)Lf = /0 G, € 2) f(€)de.

Estimating the absolute value of the Green function on the parabela
n? + 1 4 in for |z| large enough we get that||;, = ||(z1 — A)~Lf|L, <
1+\FHfHL1 (f € L1(0,1), z € C\2p,), i.e., the operatod : L — L,

is strongly P-positive in the sense of Definition 2.1. Similar estimates for
the Green function imply the strong positivenessialso inL, (0, 1) (see
[5] for detalils).

As thesecond examplef a strongly P-positive operator one can consider
the strongly elliptic differential operator

0
(2.3) L:= Z 0; a]kak—FZb 0j + o <aj = 31:-)
J

7,k=1

with smooth (in general complex) coefficientg,, b; andcg in a domain

(2 with a smooth boundary. For the ease of presentation, we consider the
case of Dirichlet boundary conditions. We suppose that= a,, and the
following ellipticity condition holds

d

d
Z aij Yi Yy Z(leyz-

i,j=1 i=1
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This operator is associated with the sesquilinear form

d d
a(u,v) = / (Z aij Ou d;v + Z b;j Ojuv + couv) ds.
2

4,j=1 J=1

Our algorithm needs explicit estimates for the parameters of the parabola
which in this example have to be expressed by the coefficients of the differ-
ential operator. Let

, Cy:=Vdmax|b(a)],
x?]

ulf = 3, |0jul* be the semi-norm of the Sobolev spdt&(2), |-« be the
norm of the Sobolev spadd”(£2) (k = 0,1,...) with H°(2) = Ly(£2),
andCr the constant from the Friedrichs inequality

w2 > Cpllul2 forallu e HL(2).

This constant can be estimated 6y = 1/(4B?), where B is the edge
of the cube containing the domain. It is easy to show that in this case
withV = H&(Q), H = LQ(.Q) it hOldeu > Cl‘u‘% — CQHUH() > ClCF —
Ca, |nu| < Csluly < Csv/(&u + C2)/Cq, so that the parabolg; is defined
by the parameter = C4, 01 = Cs, k = C3 and the lower bound ofp(A)

can be estimated by, = C1Cr — Cs > ~y. Now, the desired parabolg

is constructed as above by putting= ((7711301))‘2’ , see Sect. 2.1.

The third exampleis given by a matrixA € R"*™ whose spectrum
satisfieste sp(A) > 0. Inthis case, the parameters of the paratglean be
determined by means of the Gershgorin circles.Aet {a;;}};_,, define

n

n
Ci = {Z . ‘Z — an'| § Z al-j}, D]’ = {Z . |Z — ajj\ § Z al-j}.
J=1,j#1 i=1,i#j
Then by Gershgorin’s theorem,

sp(A) C C4 = (U;C;) N (U;Dy) .

The corresponding parabalg is obtained as the enveloping one for the set
C 4 with simple modifications in the cad&(C4) N (—o0, 0] # 0.

2.3 Representation of the operator exponent
Let £ be a linear, densely defined, closed, strongly P-positive operator in

a Banach spac&’. The operator exponert(t) = exp(—tL) (operator-
valued function or a continuous semigroup of bounded linear operators on
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X with the infinitesimal generatat, see, e.g., [21]) satisfies the differential
equation
dTr

(2.4) — HLT =0, T(0)=1,

wherel is the identity operator (the last equality means that_, o 7'(¢)
ug = ug for all ug € X). Given the operator exponefi(t) the solution of
the first order evolution equation (parabolic equation)

du
E-F,CU—O u(0) = ug

with a given initial vectorug and unknown vector valued functiar(t) :
R, — X can be represented as

u(t) = exp(—tL)ug.

Let Iy = {z = £ +in : £ = an® + 7o} be the parabola defined as above
and containing the spectrusp(L£) of the strongly P-positive operatdr.

Lemma 2.2 Choose a parabola (called the integration parabalay {z =
E+in: & =an®+blwitha < a, b < 7. Then the exponerkp(—tL)
can be represented by the Dunford-Cauchy integral [2]

1
2. — = 2T 1,
(2.5) exp(—tL) 9 / e (2 L) dz

Moreover,T'(t) = exp(—tL) satisfies the differential equation (2.4).

Proof. In fact, using the parameter representatioa an? + b + in,n €
(0, 00), of the path/” and the estimate (2.1), we have

lexp(—tL)|| =

21

1 . .
g7 | O G b= in) 1) 2 — i)
T

< C/ @byt VAaain? +1 d
+[(an® + ) + ]/
Analogously, applying (2.1) we have for the derivativelgt) = exp(—tL)

_ i —zt o —1
1€ exp( tﬁ)ll—Hzm./er (LI = £)7")dz||
< C/ V(@R + )2 + e @+
0
VAaatn? +1

. d ,
1+ [(@n? + 07 + ]

0 ~ .
”7 / —@PHbHm(Gn2 4 b+ i) I — L)Y (2an + i)dn
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where the integrals are finite for> 0. Furthermore, we have

dT 1
_ ET - o ,—zt I — E 71d
7 + 371 Jr ze #(z ) dz

+L (1/ e (2 — E)_ldz>
211 T

1
=5 i ze # (2] — L) dz
1
i /- ze*t (2] — L) 'dz =0,

i.e., T(t) = exp(—tL) satisfies the differential equation (2.4). This com-
pletes the proof. ]

The parametrised integral (2.5) can be represented in the form

1 o0
2. —tL) = — F(n,t)d
(2.6) exp(—tL) = o /_Oo (n, t)dn
with
—zt 1 dz ~ 2 .
F(n,t)=e (21 — L) s z=an"+b—1n.
n

2.4 The computational scheme and the convergence analysis

Following [25], we construct a quadrature rule for the integral in (2.6) by
using the Sinc approximation dr-co, 00). Forl < p < oo, introduce the
family HP(D,) of all operator-valued functions, which are analytic in the
infinite strip Dy,

(2.7) Dj={2€C:—-0c0< Rez < o0,|Vmz| <d},
such that ifD,(¢) is defined fol0 < e < 1 by

(2.8) Dj(e) ={z€C:|Rez| <1/, |Smz| <d(l—¢€)}
then for each¥ € H? (D) there holds| F || (p,) < oo with

1/p
hm( / ||f<z>up|dz\> 1< p< oo
(2.9) || Fllar(p,) = § <70 \JoDa(e)

lim sup | F(2)] if p=o0.
€—>0268Dd(€)

Let

(2.10) Sk, h)() = sin [w(z — kh)/h]

m(x — kh)/h
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be thekth Sinc function with step sizé, evaluated atc. Given F €
H?(D,),h > 0, and a positive integeN, let us use the notations

I(F) = /R]-"(a:)da:,

N
T(F,h) =h Y F(kh), Tn(F,h)=h > F(kh),
k=—o00 k=—N

C(F,h) = i F(kh)S(k,h),

k=—o00

nN(fvh):I(f)_TN(fvh)v n(f’h) :I(}—)_T(}—vh)'

Adapting the ideas of [25,5], one can prove (see Appendix) the following
approximation results for functions frol! (D).

Lemma 2.3 For any operator-valued functiofi € H'(D,), there holds
i f(§ —id) exp(—m(d +i§)/h)
=5 [ e

_ f(€+id) exp(—7(d —i§)/h)
@1 sin [n(€ + )/ }d§

providing the estimate

exp(—mnd/h)
m’\f“wwg

If, in addition, f satisfies orR the condition

(2.12) In(f, bl <

(2.13) If ()] < ce™, a,e>0,

then
exp(—2md/h)
a(l — exp (—2nd/h)
exp[—a(N + 1)2h?]
ah(N +1)

o (f, h)| < evm

(2.14)

Applying the quadrature rul&y with the operator-valued function

(2.15) F(n,t; £) = (2an — i)e(n) (¢ (n)] — £)~

where

(2.16) p(n) =e W0 p(n) =an® +b—in,



92 I. P. Gavrilyuk et al.

we obtain for integral (2.6)
T(t) = eap(~1£0) = Tv(t) = eapy(~4£)

(2.17) =h Z F(kh,t; L).

Note thatF' satisfies (2.13) witlay = t a. The error analysis is given by the
following Theorem (see Appendix for the proof).

Theorem 2.4 Choosek > 1, a = a/k, h = {/2rdk/((N + 1)2a), b =
b(k) = v0 — (k—1)/(4a) and the integration parabold“b ={z =
an? + b(k) —in : n € (—oo0,00)}. Then there holds
1T(t) = T (t)]| = || exp(—tL) — expy(—tL)]]
Wk exp[—s(N + 1)%/?]
Vat(1 — exp(—s(N + 1)%/3))

kexp[—ts(N + 1)2/3]]

(2.18) < Meyr

t(N + 1)1/3/2xdka?
where
= 3/ (2nd)2%a/k,
1 k
21 — M, etlad® /k+d—b] — (1 — —
( 9) c 16 bl d ( \/E)Qa

1282 — ]
M; = max -
2€Dg 1+ /[ %22 + b — iz

and M is the constant from the inequality of the strong P-positiveness.

The exponential convergence of our quadrature rule allows to introduce
the following algorithm for the approximation of the operator exponent at a
given time value.

Algorithm 2.5 1. Choose: > 1,d = (1 — %)m' N and determine;,

(p=—N,....,N)byz, = ¢(ph)% + b — iph, whereh = {/ =% (N +
1)=2/3 andb = 5o — L.

2. Find the resolvent§z, I — £)™1, p = —N,..., N (note that it can be
done in parallel).

3. Find the approximationxp (—tL) for the operator exponerkp(—tL)
in the form

h

N
— —_ _th g _ _ -1
(220)  expy(—tL) = 5 - e [2kph z} (zp] — L)

p=—N
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Remark 2.6The above algorithm possesde® sequential levels of paral-
lelism first, one can compute all resolvents at Step 2 in parallel and, second,
each operator exponent at different time values (provided that we apply the
operator exponential for a given time vector, to, . . ., tar)).

Note that for small parametets< 1, the numerical tests indicate that
Step 3in the algorithm above has slow convergence. In this case, we propose
the following modification of Algorithm 2.5, which converges much faster
than (2.20).

Algorithm 2.7 1'. Determineh = {/ 2%k (N + 1)=2/3, z,(t) (p = —N,
.., N) by z,(t) = %(ph)? + b(t) — iph, where the parametér(t) is
defined with respect to the location @f(¢L), i.e.,b(t) = tb.

2'. Find the resolventsz,(t)I — t£)~!, p = —N,..., N (it can be done

in parallel).
3. Find the approximationxp n(—tL) for the operator exponerkp(—tL)
in the form
- a
o _ v —tzp(t) @ o - -1
expy(—tL) 57 e {kah z} (zp(t)] —tL)™".

p=—

Though the above algorithm allows only a sequential treatment of dif-
ferent time values close to= 0, in many applications (e.g., for integration
with respect to the time variable) we may choose the time-grid asi At,

i =1,...,n: Then the exponentials far= 2, ..., n; are easily obtained
as the corresponding monomials fresp 5 (—AtL).

3 On the H-matrix approximation to the resolvent (21 — £)~?!

Below, we briefly discuss the main features of #ematrix techniques to
be used for data-sparse approximation of the operator resolvent in question.
We recall the complexity bound for ti#é-matrix arithmetic and prove the
existence of the accuraté-matrix approximation to the resolvent of elliptic
operator in the case of smooth data.

Note that there are different strategies to constructthmatrix approx-
imation to the inversel = £~! of the elliptic operatorZ. The existence
result is obtained for the direct Galerkin approximati&p to the operator
A provided that the Green function is given explicitly (we call thisnatrix
approximation byA ). In this paper, such an approximation has only the
theoretical significance. However, using this construction we proveehe
sity of H-matrices for approximation to the inverse of elliptic operators in
the sense that there exists tHematrix A5 such that
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|A, — Ayl < en®, n <1,

whereL = O(log N), N = dim V},, cf. Corollary 3.4.

In practice, we start from certain FE Galerkin stiffness mdtnjpcorre-
sponding to the elliptic operator involved, which has alreadyHhmatrix
format, i.e., we sel.y; := Lj. Then using the{-matrix arithmetic, we
compute the approximat®-matrix inversezi% to the exact fully popu-
lated matrixL;,'. The differencel|Ay — Ay|| will not be analysed in
this paper. In turn, the numerical results in [9] exhibit the approximation
ILz! — Ay| = O(¢) with the block rank- = O(log?~!e~) for d = 2.

We end up with a simple example of the hierarchical block partitioning
to build theH-matrix inverse for the 1D Laplacian and for a singular integral
operator.

3.1 Problem classes

Suppose we are given the second order elliptic operator (2.3). In our ap-
plication, we look for a sufficiently accurate data-sparse approximation of
the operatoz1 — £)~' : H=Y(0) — H}(2), 2 € R, d > 1, where

z € C, z ¢ sp(L), is given in Step 1 of Algorithm 2.5. Assume th&t

is a domain with smooth boundary. To prove the existence ¢{anatrix
approximation texp(—tL), we use the classical integral representation for
(21 — £)71,

GY  GI-07u= [ GepHuwd,  ueH(9),
(9}
where Green'’s functioti(z, y; z) solves the equation
(2] = L£)2:G(,y32) =d(x —y) (2, € £2),
G(z,y;2) =0 (r €9, ye N).

Together with an adjoint system of equations in the second varjablgua-
tion (3.2) provides the base to prove the existence ofthmatrix approx-
imation of (21 — £)~! which then can be obtained by using tHematrix
arithmeticfrom [12,13].

The error analysis for thi{-matrix approximation to the integral oper-
ator from (3.1) may be based on using degenerate expansions of the kernel,
see Sect. 3.2. In this way, we use different smoothness prerequisites. In the
case of smooth boundaries and analytic coefficients the analyticity of the
Green’s functiorG(z, y; z) for x # y is applied:

(3.2)

Assumption 3.1 For anyzg, yo € 2, o # o, the kernel functiortz(z, y;
z) is analytic with respect to andy at leastin the domaifi(x, y) € 2x 2 :

|z — xo| + |y — yo| < |xo — yol}-
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An alternative (and weaker) assumption requires that the kernel function
G is asymptotically smooth, i.e.,

Assumption 3.2 For anym € N, for all z,y € R%, z # y, and all multi-
indicesa, 8 with || = a1 + ... + ag there holds|92d) G(z, y; z)| <
c(lal, |8]; 2) |z — y[>~1I=1P= for all |al, |8] < m.

The smoothness of Green’s functiof(z, y; z) is determined by the
regularity of the problem (3.2).

3.2 On the existence @&f-matrix approximation

Let A := (2 — £)~!. Given the Galerkin ansatz spakg C L?({2), con-
sider the existence of a data-sparse approximatigrto the exact stiffness
matrix (which is not computable in general)

Ay, = (Agi,pj)ijer,  whereVy, = span{y;}icr.
Let I be the index set of unknowns (e.g., the FE-nodal points)7afid
be the hierarchical cluster tree [12]. For eack I, the support of the
corresponding basis functign; is denoted byX (i) := supp(p;) and for
eachcluster € T'(I) wedefineX (1) = (J,c, X (7). Inthe following we use
only piecewise constant/linear finite elements defined on the quasi-uniform
grid.

In a canonical way (cf. [13]), a block-cluster trég/ x I) can be con-
structed fron¥'(I), where all vertices € T'(1 x I') are of the fornb = 7 x o
with 7,0 € T(I). Given amatrixM € R?*! the block-matrix correspond-
ingtob € T(I x I) is denoted by\/? = (mij) i, 5)ep- AN @admissible block
partitioning P, C T'(I xI) isasetofdisjointblocks € T'(1 x I), satisfying
theadmissibility condition

(3.3) min{diam(o),diam(7)} < 27 dist(o, 7),

(o,7) € P2, n < 1, whose union equals x I (see an example in Fig. 2b
related to the 1D case). Let a block partitioniRgof I x I andk <« N be
given. The set of compleX-matrices induced by, andk = k(b) is

My (I x I, Py) :={M € Z'*": forall b € P,there holds
rank(M®) < k(b)}.
With the splitting P, = Pfar U Prear, WherePy,, := {0 X 7 € Py :
dist(X (1), X (o)) > 0}, the standar@{-matrix approximation of the non-

local operatord = (zI — £)~! is based on using a separable expansion of
the exact kernel,

Tafl:ya Zau v (I,y)EX(O’)XX(T),
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of the orderk < N = dim V}, for o x 7 € Pj,,, see [13]. The reduction
with respect to the operation count is achieved by replacing the full matrix
blocksA™*7 (1 x o € Pyq,) by their low-rank approximation

k
TXO .__ T nr Ne
A% .—E a,-c,, a, e R" ¢, e R",
v=1

wherea, = { [y au(@)ei@)de} ., ev = { [y oW)esw)y}
Therefore, we obtain the following storage and matrix-vector multiplication
cost for the matrix blocks

Nt (A;{X”) =k(n; +ney), Ny (A;{XU) = 2k(n; +ny),

wheren, = #r, n, = #o. On the other hand, the approximation of the
orderO(N—%), a > 0, is achieved wittk = O(log?~* N).

3.3 The error analysis

For the error analysis, we consider the uniform hierarchical clustef{rEe
(see [12,13] for more details) with the deptrsuch thatV = 2¢~. Define
P .= P,nT{, whereT} is the set of clusters x o € T, such that blocks
7,0 belong to levell, with ¢ = 0,1,..., L. We consider the expansions
with the local rankk, depending only on the level numbéand defined by

ke := min{2%E=0 mJ~1} wherem = m, is given by
(3.4) me = a L'™9(L — £)7 4+ b, 0<qg<l, a,b>0.

Note that forg = 0, we arrive at the constant order = O(L), which
leads to the exponential convergence of Hienatrix approximation, see
[16].

Introduce

Ny = max max<{ max Z @ 1, max wlp-
0<t<p TET(¥) TITXTEP, o€T(¢) o:TXoER,

For the ease of exposition, we consider the only two special ecase$
andg = 1. Denote byA;, : V}, — V) the restriction ofd onto the Galerkin
subspac®), C L?(£2) defined by A,u,v) = (Au,v) forallu,v € Vj,. The
operatordy has the similar sense. The following statement is the particular
case of [15, Lemma 2.4].

Lemma 3.3 Letp =27% a > 0, and

|5(2,y) — sro(z,y)| S n™3 4 dist(r,0)* ¢
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foreachr x o € P“), where the order of expansian, is defined by (3.4)
with ¢ = 0,1 and with a giveru > 0 such that—aa + 2 < 0. Then, for all
u,v € Vj there holds

(3.5) (A = Az)u, v) < h*Nod(L, q)||ullo|[v]lo,
wheres(L,0) = n* andé(L,1) = 1 andd = 2, 3.

Note that in the case of constant order expansions, i.eq fer0, we
obtain the exponential convergence

((An = Ag)u,0) S NoL* " |lullolfvllo (w0 € V3)

for anya in (3.4).

The first important consequence of Lemma 3.3 is that for the variable
order expansions with = 1 the asymptotically optimal convergence is
verified only for trial functions from?(£2). On the other hand, the expo-
nential convergence in the operator ngtm||;-1_, ;1 may be proven for
any0 < ¢ < 1, see [15].

Corollary 3.4 Suppose that the inverse inequalityl|o.o < A7 1|[v]|-1.0
is valid for all v € V},. Then there holds

(36) HAh - AH”H—1—>H5 5 NO(;(L)q)a q= 07 1.

Proof. The estimate (3.5) and the inverse inequality imply

Ay — Ay)uy,v
(AR — AJunllara( = sup = Ar)un;?)
o T loe

< hINoS(L, q)||unlo,

for anyu;, € V. Finally, the repeated application of the inverse inequality
now to the termj|uy||o implies (3.6). [

Remark 3.5In the case; = 1 andd = 2, 3, we obtain the optimal error
estimate for functions, € L?(2). However, ifd = 1, we have the local
rank of constant ordek.,,; = O(m?1') = O(1) which again leads to
linear complexity.

We further discuss an important aspect of our scheme related to the
uniformity of the error estimate with respect to the choice of quadrature
points z,, ¥ = —N, ..., N. The point is that the following asymptotic
estimate holds (see Algorithm 2.5)

. 1
(3.7) max |z,| = O(N*3) =0 <log 8) :
whereN is the number of quadrature points and the given tolerance. In

fact, due to Theorem 2.4, there hold8/? = loge~!. Therefore, the cor-
responding Green function in (3.1), (3.2) has oscillating features like in the
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case of Helmholtz’ equation, which potentially may lead to a “deterioration
of data-sparsity” in th&{-matrix approximation. We further give arguments
explaining that this is not the case.

For the ease of exposition, consider the 3D Lapladas, —A. We use
the representation

G(z,y;2) = s(z,y; 2) + Go(x, y; 2),
where the fundamental solutiaiiz, y; z) is given by

1 67\/5|x7y‘

(3.8) s(z,y; 2) (z,y € RY)

T ar Jz—y
and the remaindef satisfies the equation

(2] = £)2Go(z,y32) =0 (z,y € ),
(3.9) Go(z,y;2) = —s(x,y;2) (x € 9092, y € 2).

Here we assume that the principal singularity(efz, y; z) is described
by the fundamental solutios(x, y; z) though the componer(x, y; z)
also has a singular behaviour on the submanifole y, =,y € I'. The
complexity of theH-matrix approximation to integral operators with the

Helmholtz kernelﬁ—ﬂ% was analysed in [15] in the case®éf x =
0. However, the result remains verbatim in the general situatienC. In

our case, we sdts| = N'/3 and obtain that the order of expansion to
approximate the matrix blocks with the accuraeg,”) will be estimated

by O(L + |x|) (see [15] for more details). Taking into account tiiat=
O(loge~'), we arrive ax| = O(L'/?). This relation shows that one may
expect a certain growth of the local rank; however, the total cost has the
same asymptotical estimate as in the case0.

Finally, we support these arguments by the numerical results presented
in Tables 1-3 below. Table 1 shows the approximation error for the different
resolvents depending on the local rankand actually indicates that, with
fixede > 0, the local ranki does not grow with respect ia Table 2 illus-
trates the exponential convergence of the quadraturdrulsith respect to
k. Table 3 presents the weightsin front of the resolvents in the quadrature
formula (2.20), decaying exponentially with respecpie= v).

Further numerical results will be presented in Sect. 5.

3.4 Complexity estimate and further discussiofi{ematrices

The linear-logarithmic complexit® (kN log N) of the?{-matrix arithmetic
is proven in [12—14]. In the special case of regular tensor-product grids the
following sharp estimate is valid: for arfy-matrix M € R”*! with rank4



‘H-Matrix approximation for the operator exponential with applications 99

Table 1. Approximation the resolvents for differeat, v = 0, ..., 10, vs. the local rank

v 0 1 2 3 4 6 8 10
k=1] 19.0] 64| 11] 029] 0.08] 0.09] 0.03] 0.02
k=3] 071] 033] 0.07] 002] 0.00] 0.00] 0.00] 0.00]
k=5] 006] 003] 0.00] 0.00[ 0.00] 0.00[ 0.00] 0.00

k=10 | 3.4e-4] 1.6e-4| 3.3e-5| 8.7e-6| 5.4e-6| 1.3e-6| 9.3e-7| 7.0e-7

Table 2. Approximation the exponerf = exp(—L) vs. local rankk

k] 1] 2] 3 4 5 6 10
Tl [ 3.47] 2.73] 053 0.046 | 0.011 | 0.0045 | 0.00011

Table 3. Coefficientsyv in front of the resolvents in (2.20) far = 0, ..., 10

v 0 1 2 4 6 8 10
2,1(0.29,0)(0.35,0.28)(0.54,0.56)(1.31,1.13)(2.58,1.69)(4.36,2.26)(6.65,2,82
| éRe'yV[ -0.03[ -O.qu -0.009] 0.015{ 0.009] 0.001&1 0.000]J
|%m Yy [ 0.00[ 0.022 0.034{ 0.02q 0.004 -0.00051 -0.00021

blocks the storage and matrix-vector multiplication complexity is bounded
by

Na(M) < (24 = 1)(Vdn ™t + 1)?KLN,  Nav(M) < 2N, (M).

Here, as abovel. denotes the depth of the hierarchical cluster Fgé)
with N = #I = 2%L andy < 1 is the fixed admissibility parameter defined
in (3.3) and responsible for the approximation.

The complexity of the variable ord@f-matrices withm, given by (3.4)
and ford = 2,3 depends on the representation of matrix blocks. Using the
representation of blocks in a fixed basis, see [17], we have

k

(310) A;{XU = Zi;:l Qjj (ai . C]T) €eV,®V., a; €R"7, ¢ € R,
wherey, = span{ai}lgigkw V., = span{cj}lgjgke with ke = O(mgil)
We then obtain the following storage estimate

L
Net(Az) S No Y k72% S NoLPU—0U-DN,

As result, we arrive at a linear complexity bound with the chagice 1 in
(3.4). It is easy to see that fgr= 1 the matrix-vector product has linear
complexity as well, see [17,16].

In what follows, we discuss simple examples of block partitioniftgs
and the corresponding-matrix approximations for the integral operators
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with asymptotically smooth kernels. The inversion in tHematrix arith-
metic to the given\/ € My, (I x I, P») is discussed in [12,13]. In the
general case of quasiuniform meshes the compléxi#y’ N') of matrix in-
version is proven. It is worth to note that the FE Galerkin matrix for the
second order elliptic operator Bf, d > 1, belongs toMy, (I x I, P,) for
eachk € N. In particular, ford = 1 the tridiagonal stiffness matrix corre-
sponding to the operate%% t HY(2) — H-Y(2), 2 = (0,1), belongs

to My,.1(I x I, P») with the partitioningP, depicted in Fig. 2a. Therefore,
each matrix block involved in the above partitioning has the rank equals
one. ltis a particular 1D-effect that the inverse to this tridiagonal matrix has
the same format, i.e., the inverse is exactly reproduced By-amatrix (see

[12] for more details).

+

+

+

+
+
@ (b)

Fig. 2a,b.Block partitioningP- in the case of 1D differential operator (a) and for the integral
operator with a singular kernel (b)

In general, the admissibility condition is intended to provide the hier-
archical approximation for the asymptotically smooth kei@ét, y), see
Assumption 3.2, which is singular on the diagomak y. Thus, an admis-
sible block partitioning includes only “nontouching blocks” belonging to
Py, and leaves of (I x I), see Fig. 2b corresponding to the cgse 1
N = 24 for an 1D index set. In the case= 2,3 the admissible block
partitioning is defined recursively, see [13], using the block cluster tree
T(I x I). The numerical experiments for the 2D Laplacian illustrate the
efficiency of the{-matrix inversion. Improved data-sparsity is achieved by
using the?{?-matrix approximation [17] based on the block representation
(3.10) with fixed bases af, and), for all admissible matrix blocks.
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4 Applications
4.1 Parabolic problems

Inthe first example, we consider an application to parabolic problems. Using
semigroup theory (see [21] for more details), the solution of the first order
evolution equation

du
o + Lu=f, u(0)= up,
with a known initial vectony € L?(§2) and with the given right-hand side
f € L3Qr), Qr := (0,T) x £, can be represented as

(4.1) ult) = exp(—tL)uo + / exp(—(t — s)L)f(s)ds fort € (0,T].
0

The uniform approximation te—*~ with respect to the integration pa-
rametert € [0,00) is based on a decompositidh, o) = U/_,d, by
a hierarchical time grid defined as follows. L&t = 2=/ > 0 be the
minimal time step, then we defing := [0, At], §, = [At2Y, At20F1],
a=1,..,J—-1andd; := [1,00). LetM;, be the}{-matrix approximation
of the resolventz;,J — £)~! in (2.20) associated with the Galerkin ansatz
spaceV;, C L?(£2), where we choose different parabols for different
time intervalsd,,. Careful analysis of the error estimate (2.18) ensures the
uniform 7{-matrix approximation to the operator exponential in the form

h

o ., .
27”.(2*&]}@—@),

N
eXp?—L(_t‘C) = Z ’Vjae_zjathaa Via = k
. fe"

j=—N
t€dy, a=1,..J.

Now, we consider the following semi-discrete scheme. igtf be the
vector representations of the corresponding Galerkin projections afd
f onto the spacek), andV}, x [0, T], respectively, and 10, t] = U4,
Jo < J. Substitution of the above representations into (4.1) leads to the

entirely parallelisable scheme

N

4.2) up(t) = Z W/jJOeiZjJOtM]’JOUO
=N

Jo
+ Z ’Yjaeizjatha / e °f(s)ds
a=1 S
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with respecttgj = —N, ..., N, to compute the approximatiany (t).
The second level of parallelisation appears if we are interested to calcu-
late the right-hand side of (4.2) for different time values.

4.2 Dynamical systems and control theory

Inthe second example, we consider the linear dynamical system of equations

dX (t)
dt

whereX, A, B,C € R™ "™, The solution is given by

= AX(t)+ X()B+C@t),  X(0) = Xo,

¢
X(t) = e Xpe!P + /e(t_s)AC(s)e(t_s)Bds.
0

Suppose that we can construct tHematrix approximations of the corre-
sponding matrix exponents

2Nop—1 2Nop—1

expy (tA) = Z Yae A, expy(tB) Z e ti'B;,
1=1

Al,Bj € M'H,k(I X I, PQ).

Then the approximate solutioXy, (¢) may be computed in parallel as in the
first example,

N

Xu(t)= Y [%uo’ybﬂoe(alJ0+ij0)tA1JoXijJo
Lj=——N

Jo
+Z’Yaza'7b € ~(@atbja) tAl / (orothyeds )dSBja .
a=1

Let C be constant and the eigenvaluesipfB have negative real parts, then
X (t) - Xo ast — oo, where

Xoo = /etACetht
0

satisfies thé.yapunov-Sylvester equation

AXoo + XooB+C = 0.
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Assume we are given hierarchical approximationstbande!” on each
time intervald,, as above. Then there holds

0 Jo N N
X?-l,oo:/z < Z 'Yalae_alatAla> C?—l( Z ijtxe_bjatBja) dt
o o=l I=—N j=—N

Jo N
(43) :Z Z ,yala’ybja/ 6_(ala+bja)tthlaC’HBja7
a=11j=—N O

whereCy stands for thé{-matrix approximation t@ if available. Taking
into account that thé/-matrix multiplication has the complexii® (k?n),
we then obtain a fully parallelisable scheme of comple&ityV .J, k& n) (but
notO(n?) as in the standard linear algebra) for solving the matrix Lyapunov
equation.

In many applications the right-hand side is given by a low rank matrix,
rank(C') = k < n. Inthis case we immediately obtain the explicit low rank
approximation for the solution of the Lyapunov equation.

Lemma 4.1 LetC = Y%_ a, - cI. Moreover, we assum@ = A”. Then
the solution of the Lyapunov-Sylvester equation is approximated by

Xy = zk: ) zj: e~ (@atbja) AL2Y _ o—(ajatbja)At22
B=11,j=—N a=1 Giac 7+ bja
(4.4) (Asag) - (Ajacs),

such that|| X — X#||eo < &, With N = O(loge™!) andrank(Xy) =
k(2N —1)J.

Proof. In fact, substitution of the rank-matrix C into (4.3) leads to (4.4).
Due to the exponential convergence in (2.18), we obdais O(loge™!),
wheree is the approximation error. Combining all terms in (4.4) corre-
sponding to the same indéx= —N, ..., N proves thatXy has the rank
E(2N —1)J. [

Various techniques were considered for numerical solution of the Lya-
punov equation, see, e.g., [3], [7], [20] and the references therein. Among
others, Lemma 4.1 proves the non-trivial fact that the solufigg of our
matrix equation admits an accurate low rank approximation if this is the
case for the right-hand sidé. We refer to [9] for a more detailed analysis
and numerical results concerning thematrix techniques for solving the
matrix Riccati and Lyapunov equations.
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5 On the choice of computational parameters and numerics

In this section we discuss how the parameters of the parabola influence our
method.
Let Iy = {z = £ +in = an® + vo £+ in} be the parabola containing the
spectrum of whose parameters vy are determined by the coefficients of
L. Givena, we choose the integration paltfy;,) = {z = & £im = %nf +
bEim : m € (—oo,00)} with b(k) = 7o — E=L. In this case the integrand
can be extended analytically into the stfify with d = (1 — ﬁ) % and
the estimate (2.18) holds with constants given by (2.19).
First, let us estimate the constat in (2.19). Since the absolute value
of an analytic function attains its maximum on the boundary, we have

—O0,00) 776(_00700

(5.1) My = max{ sup  f-(n), sup f+(77)} ,
ne( )
where

(5.2) fa(n) = 250t id) —

14/ =i +b— it = id)|

It is easy to see that

PR Rt VRS
i_1+|% n? & 2ndi — d?) + b+ d Fin|’

Further we have for the functiofy-

4a277 + (2%d — 1)2

(5.3)

2
<
f+(77)—1+\/ —d2)+b+d)?+ (27d—1)2772
4202 + (224 — 4% n2 4
(5.4) < 277 (2 ) _ 2"7 k
L+ 2> =d®))+b+d  En*+ 1+
da+ 4y —1

k(€414 70)%
where¢ = an?/k, ¢ € (0,0). The latter function increases monotonically
andmax fi = fi(co0) = 4a/k provided thatda + 4o > 1, while it
decreases monotonically amthx f, = f,(0) = m provided that
0 < 4a + 47 < 1. Similarly one can see thatax f_ = f_(oc0) = 4a/k
provided thatda(l — vo)/k > (2 — 1/k)?, while max f~ = f_(0) =
(2 —1/VE)?/(1 + ) if 4a(1 — y0)/k < (2 — 1/k)?. Thus, we have

(5.5) M; < max { da L (2-1/Vk)* } .

E'E(L+v) 14+
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Other constants can be rewrite as
= Mlet[adQ/k—i-d—b] _ Mletk(l—l/\/E)/a

s = {/x2k0 - 1/VR)?/a =< ¥k a.

One can see that the multiplicative constaintthe estimate (2.18) increases
linearly asa — oo, whereas the multiplicative coefficieatin the front of
(N +1)%/3 in the exponent tends to zero, i.e., the convergence rate becomes
worse. On the other hand,tends to infinity as: tends to zero, but the
constant tends exponentially to infinity.

Givena, we can influence the efficacy of our method by changing the
parametek > 1. Denotingt, = min {1, ¢}, we see that fok large enough,
the leading term of the error is

(5.6)

(5.7) o[ V/k/ata(N+1)/3—tk/a]

In order to arrive at a given toleranee> 0, we have to choose

1 1 3/2
N = ( In = + tm2/t*) ,
mt, €

wherem = {/k/a. Itis easy to find thatV (i.e., the number of resolvent
inversions for various;) becomes minimal if we choodex g; In % In this
case the number of resolvent inversions is estimated by

' 1 2/3
S

To complete this section, we present numerical examples oriHthe
matrix approximation of the exponential for the finite difference Laplacian
Aponf2 = (0,1)% d = 1,2 (with zero boundary conditions) defined on the
uniform grid with the mesh-sizé = 1/(n + 1), wheren? is the problem
size. Table 4 presents the relative error of Hrgnatrix approximation for
1D Laplacian by Algorithm 2.3 versus the numbéof resolvents involved.
The relative error is measured by

[exp(—tAn) — expy(=tAn)llo/[ exp(=tAn)]l2-

The local rank is chosen &g = 8, while b = 0.9 \pin(Ap), a = 4.0, k =

5.0. Our calculations indicate the robust exponential convergence of (2.18)
with respect taV for the range of parametebse (0, 0.95\ymin(4)) and

a € (0,ap) with ap = O(1) and confirm our analysis. The computational
time (in sec.) corresponding to tlé-matrix evaluation of each resolvent

in (2.18) at a 450MHz SUN-UltraSPARC?2 station is presented in the last
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Table 4. Approximation to the exponential af;, with d = 1, wheren = dimV}, andN is
defined from (2.20)

n\N 1 4 7 10 20 30 40| time/N(sec
256|6.0e-2/8.7e-3 1.7e-313.8e-45.6e-6) 1.5e-7 59e-9 0.5

| 1024]6.4e-29.6e-31.9e-34.4e-469¢e-6] 2.0e-7] 7.3e-9 3.7]
[ 4096]6.5e-29.8e-31.9e-34.6e-47.4e-6] 2.5e-7(3.6 e-8) 21]
[16384[6.6 e-29.9 e-3/2.0 e-3 4.6 e-4 7.0 e-6] (1.3 e-6) (1.9 e-7)] 118]

Table 5. Approximation to the exponential at;, with d = 2, wheren = dimV}, andN is
defined from (2.20)

n\N 1 4 7] 10 20 30 40]time/N(sec
256|5.5e-2/7.9e-3/1.5e-333e-445e-6) 1.1e7 43e-9 0.5
[1024]6.3e-2/9.3e-3[1.8e-3 4.2e-46.5e-6 1.9e-7/(5.2e-8) 51]
[4096] 6.5 e-2[9.7 e-3[1.9 e-3 4.5 e-4 7.2 e-6[ (4.5 e-7) (3.0 e-7), 379]

column. The numbersin brackets “()” indicate that the best possible accuracy
with rank= 8 is already achieved.

The results have been obtained using the gertdk&A1l code imple-
menting theH-matrix arithmetic, see also [9] for more details.

Table 5 presents the results for the 2D Laplaciafvos (0, 1)2 obtained
on 300MHz SUN UltraSPARC2. Parametersk, b are chosen as in the
previous example. In both cases the efficacy appears to be not sensitive to
the choice ofx andk, but the parametérhas to approachy,, (4A) from
below.

6 Appendix: Proof of Lemma 2.3 and Theorem 2.4
First, we prove Lemma 2.3.
Proof. Let E(f, h) be defined as follows

E(f,h)(2) = f(2) = C(f,h)(2).

Analogously to [25] (see Theorem 3.1.2) one can get

(6.1)  E(f,h)(2) = f(2) = C(f,h)(2)

_sin(mz/h) f(& —id)
- 2mi /R {(f—z—id) sin [m(§ — id)/h]

- f(€ +id)
(6.2) (& — z +id) sin [7 (& + id) /D] } “
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and upon replacing by x we have

6.9 w5 = [ B( B a)da,
After interchanging the order of integration and using the identities
(6.4) 1 sin (7x/h) de — fe—w(diig)/h

omi Jp £(E—x)—id 2 ’
we obtain (2.11). Using the estimate (see [25], p.188h (wd/h) <
|sin [7(& £ id)/h]| < cosh (wd/h), the assumptiorf € H'(D,) and the

identity (2.11), we obtain the desired bound (2.12). The assumption (2.13)
now implies

6.5) v (£ < In(f R +h D> (kB

|k|>N

exp(—md/h) ,
< S einh (rayn) | IE 00 + B lkl;NeXp[—a(k:h) ]

For the last sum we use the simple estimate

3 o—alkh)? _ g 3 p—a(kh)? §2/OO p-cha? g

k>N k=N+1 N+1
2 & 2
(6.6) = / e dx
Vah J anver
T
= \/\/a;erfc(\/&h(N +1))
T _ o 11
(6.7) - \/gf (N+1)2 hQTﬁ <2, 5 (N + 1)2ah2> 7

wherey (3, ; (N+1)2ah?) is the Whittecker function with the asymptotics
[1]

11 Mo\
(6.8) (0 <2,2;$2> = Z <2) z—(2n+1) +O(|:1:]_2M_3)_

This yields

(69) Z 6—a(kh)2 < LG—Q(N-FI)th.
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It follows from (2.13) that
o —ax 2c
which together with (6.5) and (6.9) implies
exp(—mnd/h) exp[—a(N + 1)2h?]
Vasinh (wd/h) ah(N +1) ’

which completes the proof. [ ]

Nz

I (£ 1) < evm [

Now, we conclude with the proof of Theorem 2.4.
Proof. First, we note that one can choose as integration path any parabola
(6.11) Fb:{z:%n2+b+in:n€(—oo,oo),k:>1,b<'yo},
which contains the spectral parabola
(6.12) Iy ={z=an’+~0+in:n € (—00,00)}.

In order to apply Lemma 2.3 for the quadrature rifewe have to provide
that the integrand’(n, t) can be analytically extended in a st around
the real axig. It is easy to see that it is the case when there exists(
such that foilr| < d the function (transformed resolvent)

(6.13) R(n+iv,L) = [(n+iv)] — E]_l, i € (—00,00), V| <d

has a bounded norfiR|| x -, x . Due to the strong P-positivity df, the latter
can be easily varified if the parabola set

Iy(v) = {Z = %(T}—l—iu)2 +b+i(n+iv): ne (—o00,00), |V < d}
Lt Bt Y L (1429,
U E da k\"T2a) T k)

(6.14) ne€(—o0,00), |V < d}

does not intersedt. Each parabola from the s&}(~) can be represented
also in the form¢ = a’n? + b’ with

402 )\ k kO
(6.15) a':a<k+4a1/+2y2) ’b,:b+—a<y+> ,

Now, it is easy to see that if we choose

1 ko B B k—1
(6.16) v= <\/E_1>2a__d’ b=0b(k) = —
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then

kE—1 n }
—|—b—|—7+z— € (—o00, 00

(6.17) {Z—CLT]*+’}/0+Z77*. :76( oo,oo)}
Ip.

From (6.15), one can see thdt— 0, & — 0 monotonically with respect
to v asv — oo, i.e. the parabolae fror,(v) move away from the spectral
parabolal{, monotonically. This means that the parabolae 5gt/) for

b = b(k), |v| < d lies outside of the spectral parabdlg, i.e. we can
extend the integrand into the strip (2.7) witlgiven by (6.16). Note, that
the choicev = d = (1 — 1/Vk)4 selects from the familyy)(v) the
particular parabola

Ty (d) = {2’ = an’/k+by +in(2—1/Vk):n e (—00700)}
(6.18) = {z =ani+by+in e =n2—-1/VE) € (—o0, oo)}
with

a 3k —4vEk+1
— by =b-
k(2 —1/Vk)? 4a

which for |v| < d is the most remote from the spectral parahidjaDue to
the strong P-positivity of there holds for: = n + iv € Dy

a4 =

(2%2 — 4)| exp[—t($22 + b — iz)]
|%z2 +b—iz]
2%2 —ilexp{—t[g(n* —v*) + b+ v]}

1E(z 6 L) < M

6.19 =M and
( ) 422 +b—iz]
F(z,t;L£) € HY(D,) forallt > 0.
We have also
(6.20) IF(n,t; L)|| < ce ", n e R
with
(6.21)
o = ta c = Mlet[adQ/k—‘,-d—b}’ Ml — max ‘2EZ — Z‘

k' 2Dy 1+ /[222 +b—iz|
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Using Lemma 2.3 and setting in (2.14)= t%, we get
(6.22) [ (F, R)|| <

2Vk exp(—27nd/h) k exp[—(N + 1)2h%%4]
Mevr [mu “ep(-2nd/i)) | ahNED) ] '

Equalising the exponents by settingrd/h = —(N + 1)2h%a/k, we get
h = {/Z2(N + 1)~2/3, Substituting this value into (6.22) leads to the
estimate

[l (S B)|| <
9/ e s(N+1)2/3 Le—ts(N+1)2/3
6.23) Meyr Ve e ,
Vat(l — e sINFDEY (N 4 1)1/3Y/2ndka?
which completes our proof. [ ]
Note that our estimate implighyy (F, h)|| = O(W) ast — 0,
but numerical tests even indicate an error od L) ast — 0.

N+1)1/3
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