Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Geometric Numerical Integration: Hamiltonian Systems, Symplectic Transformations

Marc Sarbach

ETH Zürich

January 9th, 2006

ション ふゆ マ キャット マックシン

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

• Lagrange's equations

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic T

Symplectic Transformations

- introduction Symplecticity Geometric Interpretation
- Poincaré's Theorem
- Characteristic property of Hamiltonian systems

- Lagrange's equations
- Hamilton's canonical equations

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

- introduction Symplecticity Geometric Interpretation
- Poincaré's Theorem
- Characteristic property of Hamiltonian systems

- Lagrange's equations
- Hamilton's canonical equations

ション ふゆ く は く は く む く む く し く

• Symplectic Transforms

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

- introduction Symplecticity Geometric Interpretation
- Poincaré's Theorem
- Characteristic property of Hamiltonian systems

- Lagrange's equations
- Hamilton's canonical equations
- Symplectic Transforms
- Geometric Interpretation of Symplecticity for non linear mappings

ション ふゆ マ キャット マックシン

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

- Lagrange's equations
- Hamilton's canonical equations
- Symplectic Transforms
- Geometric Interpretation of Symplecticity for non linear mappings

ション ふゆ マ キャット マックシン

• main result: Poincaré's Theorem

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

- Lagrange's equations
- Hamilton's canonical equations
- Symplectic Transforms
- Geometric Interpretation of Symplecticity for non linear mappings
- main result: Poincaré's Theorem
- Preservation of Hamiltonian character under symplectic transformations

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

introduction

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltoniar Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems Suppose, that the position of a mechanical system with d degrees of freedom described by

$$q = (q_1, \ldots, q_d)^T,$$

as generalized coordinates, such as cartesian coordinates, angles etc. We suppose, that the kinetic energy is of the form

$$T = T(q, \dot{q})$$

and the potential energy is of the form

$$U = U(q).$$

We then define L = T - U as the corresponding Lagrangian of the system.

introduction

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic *T*

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems The coordinates $q_1(t), \ldots, q_d(t)$, then obey the set of differential equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = 0, \quad \text{for } k = 1, \dots, d.$$

Numerical or analytical integration of this system therefore allows one to predict the motion of the system, given the initial values.

うして ふゆう ふほう ふほう ふしつ

Examples

Newton's second law

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltoniar Systems

Examples

Hamilton's Canonical Equations Case of quadratic 2

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Let *m* be a mass point in \mathbb{R}^3 with Cartesian coordinates $(x_1, x_2, x_2)^T$. We have $T = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2)$. Suppose, the point moves in a conservative force field $F(x) = -\nabla U(x)$. Calculation of the Lagrangian equations leads to $m\ddot{x} - F(x) = 0$, which is Newton's second law.

うして ふゆう ふほう ふほう ふしつ

Examples

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples

Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Newton's second law

Let *m* be a mass point in \mathbb{R}^3 with Cartesian coordinates $(x_1, x_2, x_2)^T$. We have $T = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2)$. Suppose, the point moves in a conservative force field $F(x) = -\nabla U(x)$. Calculation of the Lagrangian equations leads to $m\ddot{x} - F(x) = 0$, which is Newton's second law.

Pendulum

Take α as the generalized coordinate. Since $x = l \sin(\alpha)$ and $y = -l \cos(\alpha)$, we find for the kinetic energy $T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) = \frac{1}{2}ml^2\dot{\alpha}^2$ and for the potential energy $U = mgy = -mgl\cos(\alpha)$. The Lagrangian equations then lead to $ml^2\ddot{\alpha} + \frac{g}{l}\sin(\alpha) = 0$, the pendulum equation.

Hamilton's Canonical Equations

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations introduction Symplecticity Geometric Interpreta-

Poincaré's Theorem

Characteristic property of Hamiltonian systems Hamilton simplified the structure of Lagrange's equations. He introduced the conjugate momenta:

$$p_k = \frac{\partial L}{\partial \dot{q}_k} \quad \text{for } k = 1, \dots, d$$
 (1)

and defined the Hamiltonian as

$$H(p,q) := p^T \dot{q} - L(q, \dot{q}),$$

by expressing every \dot{q} as a function of p and q, i.e. $\dot{q} = \dot{q}(p,q)$. Here it is, required that (1) defines, for every q, a continuously differentiable bijection: $\dot{q} \leftrightarrow p$. This map is called Legendre Transformation.

Equivalence of Hamilton's and Lagrange's equations

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Theorem

Lagrange's equations are equivalent to Hamilton's equations

$$\dot{p}_k = -\frac{\partial H}{\partial q_k}(p,q)$$
$$\dot{q}_k = \frac{\partial H}{\partial p_k}(p,q),$$

・ロト ・ 四ト ・ ヨト ・ ヨト

ъ.

for k = 1, ..., d.

Case of quadratic T

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic *T*

Symplectic Transformations introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems Assume $T = \frac{1}{2}\dot{q}^T M(q)\dot{q}$ quadratic, where M(q) is a symmetric and positive definite matrix. For a fixed q we have $p = M(q)\dot{q}$. Replacing \dot{q} by $M^{-1}(q)p$ in the definition of the Hamiltonian leads to

$$\begin{split} H(p,q) = p^T M^{-1}(q) p - L(q, M^{-1}(q)) \\ = p^T M^{-1}(q) p - \frac{1}{2} p^T M^{-1}(q) p + U(q) \\ = \frac{1}{2} p^T M^{-1}(q) p + U(q), \end{split}$$

which is the total energy of the system. For quadratic kinetic energies, the Hamiltonian therefore represents the total energy.

introduction

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpreta-

Poincaré's Theorem

Characteristic property of Hamiltonian systems A first property of Hamiltonian systems is, that the Hamiltonian is a first integral for Hamilton's equations. Another very important property, which will be shown later, is the symplecticity of its flow. The basic objects we study are two-dimensional parallelograms in \mathbb{R}^{2d} . Suppose, that a parallelogram is spanned by two vectors

$$\xi = \begin{pmatrix} \xi^p \\ \xi^q \end{pmatrix}, \quad \eta = \begin{pmatrix} \eta^p \\ \eta^q \end{pmatrix} \quad \xi^p, \xi^q, \eta^p, \eta^q \in \mathbb{R}^d,$$

in the p, q-space. Therefore, the parallelogram is defined as

 $P:=\{t\xi+s\eta\mid 0\leq t\leq 1, 0\leq s\leq 1\}$

うして ふゆう ふほう ふほう ふしつ

introduction

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 2

Symplectic Transformations

introduction Symplecticity Geometric Interpreta-

Poincaré's Theorem

Characteristic property of Hamiltonian systems For d = 1 consider the oriented area or. area $(P) := \det \begin{pmatrix} \xi^p & \eta^p \\ \xi^q & \eta^q \end{pmatrix} = \xi^p \xi^q - \eta^p \eta^q$. For d > 1 replace it by the sum of the oriented areas of the projections of Ponto the coordinate planes $(p_i, q_i), i = 1, \dots, d$:

$$\omega(\xi,\eta) := \sum_{i=1}^d \det \begin{pmatrix} \xi^p & \eta^p \\ \xi^q & \eta^q \end{pmatrix} = \sum_{i=1}^d \left(\xi^p \xi^q - \eta^p \eta^q \right).$$

This defines a bilinear map acting on vectors in \mathbb{R}^{2d} . It will play a central role for Hamiltonian systems. In matrix notation:

$$\omega(\xi,\eta) = \xi^T J \eta$$
 where $J = \begin{pmatrix} 0 & \mathbb{I} \\ -\mathbb{I} & 0 \end{pmatrix}$.

Symplecticity

Definition

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

A linear mapping $A : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ is called symplectic if $A^T J A = J \quad \Leftrightarrow \quad \omega(A\xi, A\eta) = \omega(\xi, \eta) \; \forall \; \xi, \eta \in \mathbb{R}^{2d}$.

Symplecticity

Definition

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

A linear mapping $A : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ is called symplectic if $A^T J A = J \quad \Leftrightarrow \quad \omega(A\xi, A\eta) = \omega(\xi, \eta) \; \forall \; \xi, \eta \in \mathbb{R}^{2d}$.

In the case of d = 1, where $\omega(\xi, \eta)$ represents the area of P, symplecticity of a linear mapping A is therefore the area preservation of A.

うして ふゆう ふほう ふほう ふしつ

Symplecticity

Definition

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

A linear mapping $A : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ is called symplectic if $A^T J A = J \quad \Leftrightarrow \quad \omega(A\xi, A\eta) = \omega(\xi, \eta) \; \forall \; \xi, \eta \in \mathbb{R}^{2d}$.

In the case of d = 1, where $\omega(\xi, \eta)$ represents the area of P, symplecticity of a linear mapping A is therefore the area preservation of A.

Differentiable functions can locally be approximated by linear mappings, therefore the following definition is reasonable.

Symplecticitiy

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltoniar Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Definition

A differentiable map $g: U \to \mathbb{R}^{2d}$, where $U \subset \mathbb{R}^{2d}$ (open subset) is called symplectic if the Jacobian matrix g'(p,q) is everywhere symplectic, i.e.

$$g'(p,q)^T J g'(p,q) = J$$

or

$$\omega(g'(p,q)\xi,g'(p,q)\eta) = \omega(\xi,\eta) \ \forall \ \xi,\eta \in \mathbb{R}^{2d}$$

- 日本 - 4 日本 - 4 日本 - 日本

Geometric Interpretation of Symplecticity for non linear mappings

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems Consider a 2-dimensional sub-manifold M of the 2*d*-dimensional set U. Suppose, that $M = \psi(K)$, where $K \subset \mathbb{R}^2$ is a compact set and let $\psi(s,t)$ be a continuously differentiable function. The sub-manifold M can then be considered as the limit of a union of small parallelograms, each spanned by the vectors

$$rac{\partial \psi}{\partial s}(s,t)ds \quad ext{and} \quad rac{\partial \psi}{\partial t}(s,t)dt.$$

We take for each parallelogram the sum over the oriented areas of its projections onto the (p_i, q_i) plane. Then we sum over all parallelograms. In the limit we get the following:

$$\Omega(M) = \iint_{K} \omega\left(\frac{\partial \psi}{\partial s}(s,t), \frac{\partial \psi}{\partial t}(s,t)\right) ds dt.$$

Geometric Interpretation of Symplecticity for non linear mappings

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Lemma

If the mapping $g: U \to \mathbb{R}^{2d}$ is symplectic on U then it preserves the expression $\Omega(M)$.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

Geometric Interpretation of Symplecticity for non linear mappings

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Lemma

If the mapping $g: U \to \mathbb{R}^{2d}$ is symplectic on U then it preserves the expression $\Omega(M)$.

Notation

With the Lemma we're now ready to prove the main result of my speech. Notation:

$$\begin{split} y =& (p,q) \\ \dot{y} =& J^{-1} \nabla H(y) = J^{-1} H'(y)^T \end{split}$$

For the flow of the Hamiltonian system: $\varphi_t : U \to \mathbb{R}^{2d}$, we have the mapping, that advances the solution in time.

Poincaré's Theorem

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Theorem (Poincaré, 1899)

Let H(p,q) be a twice continuously differentiable function on $U \subset \mathbb{R}^{2d}$. Then, for each fixed t, the flow φ_t is a symplectic transformation wherever it is defined.

ション ふゆ マ キャット マックシン

Characteristic property of Hamiltonian systems

Geometric Numerical Integration:

locally Hamiltonian

Marc Sarbach

Overview

Hamiltoniar Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations introduction Symplecticity

Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems Symplecticity of the flow is characteristic property of Hamiltonian systems. A diff eq $\dot{y} = f(y)$ is called **locally** Hamiltonian if $\forall y_0 \in U \exists$ a neighborhood where $f(y) = J^{-1} \nabla H(y)$, for a function H.

ション ふゆ マ キャット マックシン

Characteristic property of Hamiltonian systems

Geometric Numerical Integration:

> Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations introduction

Symplecticit Geometric Interpretation

Poincaré's Theorem

Characteristi property of Hamiltonian systems

Symplecticity of the flow is characteristic property of Hamiltonian systems. A diff eq $\dot{y} = f(y)$ is called **locally** Hamiltonian if $\forall y_0 \in U \exists$ a neighborhood where $f(y) = J^{-1} \nabla H(y)$, for a function H.

Theorem

locally Hamiltonian

Let $f: U \to \mathbb{R}^{2d}$ be continuously differentiable. Then the following is equivalent:

 $\dot{y} = f(y)$ it's flow $\varphi_t(y)$

is locally Hamiltonian \Leftrightarrow is symplectic $\forall y \in U$,

t sufficiently small.

うして ふゆう ふほう ふほう ふしつ

Integrability Lemma

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltoniar Systems

Examples Hamilton's Canonical Equations Case of quadratic *T*

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Let $D \subset \mathbb{R}^n$ be open and $f: D \to \mathbb{R}^n$ be continuously differentiable. Assume that the Jacobian f'(y) is symmetric for all $y \in D$. Then for every $y_0 \in D$ there exists a neighborhood and a function H(y) such that

$$f(y) = \nabla H(y)$$

うして ふむ くまく ふせく しゃくしゃ

on this neighborhood.

Lemma

Hamiltonian systems under coordinate changes

Geometric Numerical Integration:

Marc Sarbach

Overview

Hamiltonian Systems

Examples Hamilton's Canonical Equations Case of quadratic 7

Symplectic Transformations

introduction Symplecticity Geometric Interpretation

Poincaré's Theorem

Characteristic property of Hamiltonian systems

Theorem

Let $\psi: U \to V$ be a change of coordinates such that ψ and ψ^{-1} are continuously differentiable. If ψ is symplectic, the Hamiltonian system $\dot{y} = J^{-1}\nabla H(y)$ becomes in the new variables $z = \psi(y)$:

 $\dot{z} = J^{-1} \nabla K(z)$ where K(z) = H(y). (*)

うして ふゆう ふほう ふほう ふしつ

Conversely, if ψ transforms every Hamiltonian system to another Hamiltonian system via (\star) , then ψ is symplectic.