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@ main result: Poincaré’s Theorem

@ Preservation of Hamiltonian character under symplectic
transformations
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Musal  Suppose, that the position of a mechanical system with d
7 degrees of freedom described by

q= (QL---,(]d)T

b

as generalized coordinates, such as cartesian coordinates,
angles etc. We suppose, that the kinetic energy is of the
form

T =T(q,9)
and the potential energy is of the form

U=U(q).

We then define L =T — U as the corresponding Lagrangian
of the system.




introduction

The coordinates q1(t), ..., qq(t), then obey the set of

differential equations
d (0L oL
—|=—]—-—=—=0, fork=1,...,d.
dt \ 9y Iqx
Numerical or analytical integration of this system therefore

allows one to predict the motion of the system, given the
initial values.




Examples

Geometric
Nur al y
Integration: Newton’s second law

Let m be a mass point in R? with Cartesian coordinates
(w1, 22, 22)". We have T = %m(fn% + i3 + #3). Suppose, the
point moves in a conservative force field F(z) = —VU(z).
Calculation of the Lagrangian equations leads to

mi — F(x) = 0, which is Newton’s second law.

Examples
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Newton’s second law

Let m be a mass point in R® with Cartesian coordinates
(w1, 22, 22)". We have T = %m(fn% + i3 + #3). Suppose, the
point moves in a conservative force field F(z) = —VU(z).
Calculation of the Lagrangian equations leads to

mi — F(xz) = 0, which is Newton’s second law.

Pendulum

Take « as the generalized coordinate. Since z = Isin(«) and
y = —lcos(a), we find for the kinetic energy

T= %m(m2 +9?) = %ml2d2 and for the potential energy

U = mgy = —mgl cos(a). The Lagrangian equations then

lead to mi%a + 4 sin(a) = 0, the pendulum equation.




Hamilton’s Canonical Equations
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Hamilton simplified the structure of Lagrange’s equations.
He introduced the conjugate momenta:

OL
=— fork=1,....d 1
PE= Bar (1)
and defined the Hamiltonian as
H(p,q) :==p"d— L(q,q),

by expressing every ¢ as a function of p and ¢, i.e.

d = q(p,q). Here it is, required that (1) defines, for every g,
a continuously differentiable bijection: ¢ < p. This map is
called Legendre Transformation.




Equivalence of Hamilton’s and Lagrange’s

equations

Lagrange’s equations are equivalent to Hamilton’s equations
. OH
Pr=— @(p, q)
. OH
dk :Tpk@’ q),

fork=1,...,d.




Case of quadratic T
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Bl Assume T = 347 M(q)¢ quadratic, where M(q) is a

\ symmetric and positive definite matrix. For a fixed ¢ we
have p = M(q)q. Replacing ¢ by M ~!(q)p in the definition
of the Hamiltonian leads to

H(p,q) =p" M~ (q)p — L(¢, M (q))

= "M @)p — "M @)+ U)

1

= 5p' M~ (g)p+U(a),
which is the total energy of the system. For quadratic
kinetic energies, the Hamiltonian therefore represents the
total energy.
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A first property of Hamiltonian systems is, that the
Hamiltonian is a first integral for Hamilton’s equations.
Another very important property, which will be shown later,
is the symplecticity of its flow. The basic objects we study
are two-dimensional parallelograms in R?¢. Suppose, that a
parallelogram is spanned by two vectors

¢ = (?;) n= (ZZ) £, €9, 1,1 € R,

AR in the p, g-space. Therefore, the parallelogram is defined as

P:={t&+sn|0<t<1,0<s<1}
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For d = 1 consider the oriented area

P
or.area(P) := det (gq Zq
it by the sum of the oriented areas of the projections of P
onto the coordinate planes (p;,q;), i =1,...,d:

= EPE9 — nPnd. For d > 1 replace

d

d fp
=) det <§q n) > (eret -
=1

=1

This defines a bilinear map acting on vectors in R??. Tt will
play a central role for Hamiltonian systems. In matrix
notation:

w(&,n) =TTy where J = <_O]I g) .
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A linear mapping A : R?¢ — R?? ig called symplectic if

ATJA=T & w(AgAn)=w(&n) VY& neR¥M,

Symplecticity



Symplecticity

Definition

A linear mapping A : R?¢ — R?? ig called symplectic if

ATJA=T & w(Ag An) =w(£,n) V& neR¥

In the case of d = 1, where w(&,n) represents the area of P,
symplecticity of a linear mapping A is therefore the area
preservation of A.

Symplecticity
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Selbac A linear mapping A : R?¢ — R?? ig called symplectic if

ATJA=T & w(Ag An) =w(£,n) V& neR¥

In the case of d = 1, where w(&,n) represents the area of P,
symplecticity of a linear mapping A is therefore the area
preservation of A.

Differentiable functions can locally be approximated by
linear mappings, therefore the following definition is
reasonable.

Symplecticity




Symplecticitiy

A differentiable map g : U — R?¢, where U ¢ R*? (open

subset) is called symplectic if the Jacobian matrix ¢'(p, q) is
everywhere symplectic, i.e.

Jp, )" Jgd (p,q) = J

or

w(g'(p, )& g'(p,@)m) = w(&m) V & n € R

Symplecticity
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Geometric Interpretation of Symplecticity for

non linear mappings

Consider a 2-dimensional sub-manifold M of the
2d-dimensional set U. Suppose, that M = 1 (K), where
K C R? is a compact set and let ¢(s,t) be a continuously
differentiable function. The sub-manifold M can then be
considered as the limit of a union of small parallelograms,
each spanned by the vectors

W
s

N
ot
We take for each parallelogram the sum over the oriented

areas of its projections onto the (p;, g;) plane. Then we sum
over all parallelograms. In the limit we get the following:

QM) = //Kw (g—f(s,t), %—f(s,t)) dsdt.

(s,t)ds and (s,t)dt.




Geometric Interpretation of Symplecticity for
non linear mappings

If the mapping g : U — R?*? is symplectic on U then it
preserves the expression Q(M).




Geometric Interpretation of Symplecticity for
non linear mappings
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- : Lemma

If the mapping g : U — R?*? is symplectic on U then it
preserves the expression Q(M).

Notation

With the Lemma we’re now ready to prove the main result
of my speech. Notation:

y =(p,q)
§=J"'VH(y) =J "H'(y)"

For the flow of the Hamiltonian system: ¢, : U — R??, we
have the mapping, that advances the solution in time.




Poincaré’s Theorem

Geometric

Theorem (Poincaré, 1899)

Let H(p,q) be a twice continuously differentiable function on
U C R?L. Then, for each fized t, the flow @, is a symplectic
transformation wherever it is defined.




Characteristic property of Hamiltonian systems

locally Hamiltonian

Symplecticity of the flow is characteristic property of
Hamiltonian systems. A diff eq ¢ = f(y) is called locally
Hamiltonian if V yop € U 3 a neighborhood where

f(y) = J'VH(y), for a function H.
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L Symplecticity of the flow is characteristic property of
Hamiltonian systems. A diff eq ¢ = f(y) is called locally

Hamiltonian if V yop € U 3 a neighborhood where

f(y) = J'VH(y), for a function H.

Theorem

Let f: U — R?? be continuously differentiable. Then the
following is equivalent:

g=1r() it’s flow i(y)
is locally Hamiltonian << s symplectic V y € U,

t sufficiently small.




Integrability Lemma

Lemma

Let D C R" be open and [ : D — R™ be continuously
differentiable. Assume that the Jacobian f'(y) is symmetric
for all y € D. Then for every yg € D there exists a
neighborhood and a function H(y) such that

f(y) =VH(y)

on this neighborhood.




Hamiltonian systems under coordinate changes

Theorem

Let v : U — V be a change of coordinates such that v and
™1 are continuously differentiable. If v is symplectic, the

Hamiltonian system 5 = J~ 'V H(y) becomes in the new
variables z = Y (y):

t=J'VK(2) where K(z)=H(y). (%)

Conwversely, if 1 transforms every Hamiltonian system to
another Hamiltonian system via (x), then v is symplectic.

y
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