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Theorem
Characteristic
property of
Hamiltonian
systems

Geometric Numerical Integration:
Hamiltonian Systems, Symplectic Transformations

Marc Sarbach

ETH Zürich
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Preservation of Hamiltonian character under symplectic
transformations



Geometric
Numerical
Integration:

Marc
Sarbach

Overview

Hamiltonian
Systems

Examples
Hamilton’s
Canonical
Equations
Case of
quadratic T

Symplectic
Transforma-
tions

introduction
Symplecticity
Geometric
Interpreta-
tion
Poincaré’s
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Preservation of Hamiltonian character under symplectic
transformations



Geometric
Numerical
Integration:

Marc
Sarbach

Overview

Hamiltonian
Systems

Examples
Hamilton’s
Canonical
Equations
Case of
quadratic T

Symplectic
Transforma-
tions

introduction
Symplecticity
Geometric
Interpreta-
tion
Poincaré’s
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Suppose, that the position of a mechanical system with d
degrees of freedom described by

q = (q1, . . . , qd)T ,

as generalized coordinates, such as cartesian coordinates,
angles etc. We suppose, that the kinetic energy is of the
form

T = T (q, q̇)

and the potential energy is of the form

U = U(q).

We then define L = T − U as the corresponding Lagrangian
of the system.
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The coordinates q1(t), . . . , qd(t), then obey the set of
differential equations

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, for k = 1, . . . , d.

Numerical or analytical integration of this system therefore
allows one to predict the motion of the system, given the
initial values.
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Newton’s second law

Let m be a mass point in R3 with Cartesian coordinates
(x1, x2, x2)T . We have T = 1

2m(ẋ2
1 + ẋ2

2 + ẋ2
3). Suppose, the

point moves in a conservative force field F (x) = −∇U(x).
Calculation of the Lagrangian equations leads to
mẍ− F (x) = 0, which is Newton’s second law.

Pendulum
Take α as the generalized coordinate. Since x = l sin(α) and
y = −l cos(α), we find for the kinetic energy
T = 1

2m(ẋ2 + ẏ2) = 1
2ml

2α̇2 and for the potential energy
U = mgy = −mgl cos(α). The Lagrangian equations then
lead to ml2α̈+ g

l sin(α) = 0, the pendulum equation.



Geometric
Numerical
Integration:

Marc
Sarbach

Overview

Hamiltonian
Systems

Examples
Hamilton’s
Canonical
Equations
Case of
quadratic T

Symplectic
Transforma-
tions

introduction
Symplecticity
Geometric
Interpreta-
tion
Poincaré’s
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Hamilton’s Canonical Equations

Hamilton simplified the structure of Lagrange’s equations.
He introduced the conjugate momenta:

pk =
∂L

∂q̇k
for k = 1, . . . , d (1)

and defined the Hamiltonian as

H(p, q) := pT q̇ − L(q, q̇),

by expressing every q̇ as a function of p and q, i.e.
q̇ = q̇(p, q). Here it is, required that (1) defines, for every q,
a continuously differentiable bijection: q̇ ↔ p. This map is
called Legendre Transformation.
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Equivalence of Hamilton’s and Lagrange’s
equations

Theorem
Lagrange’s equations are equivalent to Hamilton’s equations

ṗk =− ∂H

∂qk
(p, q)

q̇k =
∂H

∂pk
(p, q),

for k = 1, . . . , d.
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Case of quadratic T

Assume T = 1
2 q̇

TM(q)q̇ quadratic, where M(q) is a
symmetric and positive definite matrix. For a fixed q we
have p = M(q)q̇. Replacing q̇ by M−1(q)p in the definition
of the Hamiltonian leads to

H(p, q) =pTM−1(q)p− L(q,M−1(q))

= pTM−1(q)p− 1
2
pTM−1(q)p+ U(q)

=
1
2
pTM−1(q)p+ U(q),

which is the total energy of the system. For quadratic
kinetic energies, the Hamiltonian therefore represents the
total energy.
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A first property of Hamiltonian systems is, that the
Hamiltonian is a first integral for Hamilton’s equations.
Another very important property, which will be shown later,
is the symplecticity of its flow. The basic objects we study
are two-dimensional parallelograms in R2d. Suppose, that a
parallelogram is spanned by two vectors

ξ =
(
ξp

ξq

)
, η =

(
ηp

ηq

)
ξp, ξq, ηp, ηq ∈ Rd,

in the p, q-space. Therefore, the parallelogram is defined as

P := {tξ + sη | 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}
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For d = 1 consider the oriented area

or. area(P ) := det
(
ξp ηp

ξq ηq

)
= ξpξq − ηpηq. For d > 1 replace

it by the sum of the oriented areas of the projections of P
onto the coordinate planes (pi, qi), i = 1, . . . , d:

ω(ξ, η) :=
d∑

i=1

det
(
ξp ηp

ξq ηq

)
=

d∑
i=1

(ξpξq − ηpηq) .

This defines a bilinear map acting on vectors in R2d. It will
play a central role for Hamiltonian systems. In matrix
notation:

ω(ξ, η) = ξTJη where J =
(

0 I
− I 0

)
.
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Symplecticity

Definition

A linear mapping A : R2d → R2d is called symplectic if

ATJA = J ⇔ ω(Aξ,Aη) = ω(ξ, η) ∀ ξ, η ∈ R2d .

In the case of d = 1, where ω(ξ, η) represents the area of P ,
symplecticity of a linear mapping A is therefore the area
preservation of A.

Differentiable functions can locally be approximated by
linear mappings, therefore the following definition is
reasonable.
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Symplecticitiy

Definition

A differentiable map g : U → R2d, where U ⊂ R2d (open
subset) is called symplectic if the Jacobian matrix g′(p, q) is
everywhere symplectic, i.e.

g′(p, q)TJg′(p, q) = J

or
ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η) ∀ ξ, η ∈ R2d .
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Geometric Interpretation of Symplecticity for
non linear mappings

Consider a 2-dimensional sub-manifold M of the
2d-dimensional set U . Suppose, that M = ψ(K), where
K ⊂ R2 is a compact set and let ψ(s, t) be a continuously
differentiable function. The sub-manifold M can then be
considered as the limit of a union of small parallelograms,
each spanned by the vectors

∂ψ

∂s
(s, t)ds and

∂ψ

∂t
(s, t)dt.

We take for each parallelogram the sum over the oriented
areas of its projections onto the (pi, qi) plane. Then we sum
over all parallelograms. In the limit we get the following:

Ω(M) =
∫∫

K
ω

(
∂ψ

∂s
(s, t),

∂ψ

∂t
(s, t)

)
dsdt.
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Geometric Interpretation of Symplecticity for
non linear mappings

Lemma

If the mapping g : U → R2d is symplectic on U then it
preserves the expression Ω(M).

Notation
With the Lemma we’re now ready to prove the main result
of my speech. Notation:

y =(p, q)

ẏ =J−1∇H(y) = J−1H ′(y)T

For the flow of the Hamiltonian system: ϕt : U → R2d, we
have the mapping, that advances the solution in time.
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Poincaré’s Theorem

Theorem (Poincaré, 1899)

Let H(p, q) be a twice continuously differentiable function on
U ⊂ R2d. Then, for each fixed t, the flow ϕt is a symplectic
transformation wherever it is defined.
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Characteristic property of Hamiltonian systems

locally Hamiltonian
Symplecticity of the flow is characteristic property of
Hamiltonian systems. A diff eq ẏ = f(y) is called locally
Hamiltonian if ∀ y0 ∈ U ∃ a neighborhood where
f(y) = J−1∇H(y), for a function H.

Theorem

Let f : U → R2d be continuously differentiable. Then the
following is equivalent:

ẏ = f(y) it’s flow ϕt(y)
is locally Hamiltonian ⇔ is symplectic ∀ y ∈ U,

t sufficiently small.



Geometric
Numerical
Integration:

Marc
Sarbach

Overview

Hamiltonian
Systems

Examples
Hamilton’s
Canonical
Equations
Case of
quadratic T

Symplectic
Transforma-
tions

introduction
Symplecticity
Geometric
Interpreta-
tion
Poincaré’s
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Integrability Lemma

Lemma
Let D ⊂ Rn be open and f : D → Rn be continuously
differentiable. Assume that the Jacobian f ′(y) is symmetric
for all y ∈ D. Then for every y0 ∈ D there exists a
neighborhood and a function H(y) such that

f(y) = ∇H(y)

on this neighborhood.
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Hamiltonian systems under coordinate changes

Theorem
Let ψ : U → V be a change of coordinates such that ψ and
ψ−1 are continuously differentiable. If ψ is symplectic, the
Hamiltonian system ẏ = J−1∇H(y) becomes in the new
variables z = ψ(y):

ż = J−1∇K(z) where K(z) = H(y). (?)

Conversely, if ψ transforms every Hamiltonian system to
another Hamiltonian system via (?), then ψ is symplectic.
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